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Abstract

In this paper we study the model theory of classes of finite Moufang polygons. We

show that each family of finite Moufang polygons forms an ‘asymptotic class’. As a

result, since every non-principal ultraproduct of an asymptotic class is ‘measurable’,

and therefore supersimple of finite rank, we obtain examples of (infinite) supersimple

Moufang polygons of finite rank.

In a forthcoming paper, [8], we will show that all supersimple Moufang polygons

of finite rank arise over supersimple fields and belong to exactly those families which

also have finite members.

This body of work will give a description of groups with supersimple finite rank

theory which have a definable spherical Moufang BN-pair of rank at least two.

1 Introduction

There is a well-known model-theoretic conjecture, often referred to as the ‘Algebraicity

Conjecture’, which states that simple groups over an algebraically closed field are exactly

the simple groups of finite Morley rank (a model-theoretic notion of dimension which

generalises that of an algebraic variety). This has been answered in the ‘even type’ and

‘mixed type’ cases, see [1], while there still seems to be a lack of methods to tackle the
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‘odd type’ and ‘degenerate type’ cases. In [1], a very important tool is the classification of

simple groups of finite Morley rank with a spherical Moufang BN-pair of Tits rank ≥ 2,

which was achieved in [11]. The latter makes use of the classification of Moufang polygons

of finite Morley rank (also given by [11]).

The ‘finite Morley rank’ condition is very strong, and eliminates many interesting

Moufang polygons. For example, non-principal ultraproducts of finite Moufang polygons

have a very nice model theory - they are supersimple finite rank - but do not have finite

Morley rank. This inspired the work carried out in [7], which was intended to generalise

the results of [11] from the superstable context (with the stronger assumption of finite

Morley rank) to the supersimple one.

The work in this paper is extracted from [7]. The main results can be stated as follows

(more detailed statements are, respectively, Theorems 7.2 and 8.2). First, we recall that

there are, up to duality, only seven families of finite Moufang polygons, i.e., those whose

members are either projective planes, symplectic quadrangles, Hermitian quadrangles

in projective space of dimension 3 or 4, split Cayley and twisted triality hexagons, or

Ree-Tits octagons, with the latter arising over (finite) difference fields (see Definition

5.12). According to Definition 3.6, every (possibly infinite) Moufang polygon which

belongs to one of those families listed above, is said to be good.

Theorem 1.1 Let C be any of the families of finite Moufang polygons. Then C forms an

asymptotic class.

Theorem 1.2 Let Γ be a good Moufang polygon, and let Σ be its associated little

projective group. Then Γ and Σ are parameter bi-interpretable. In particular, Γ is

supersimple finite rank if and only if Σ is supersimple finite rank.

We also show the following result (which is Theorem 7.1), which does not seem to appear

in the literature, although, to some extent, it is implicitly present in [16]; it is a fairly

small extension of the results from [16].
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Theorem 1.3 For any fixed family G of either finite Chevalley groups or finite twisted

groups of fixed Lie type and Lie rank, there exists an Lgroup-formula σ such that for any

fixed finite group G, we have G ∈ G if and only if G |= σ.

Theorem 1.1 says, essentially, that the class of definable sets in any family of finite

Moufang polygons satisfies the Lang-Weil asymptotic behaviour of the rational points

of varieties in finite fields. The remaining work done in [7] deals with those (infinite)

Moufang polygons which are not good, showing that the latter are not supersimple finite

rank. This work will also be extracted and presented in a forthcoming paper, [8]; it rests

on the classification of Tits and Weiss [18].

This paper is organized as follows. Sections 2 and 3 give some background on Moufang

polygons (in particular, Section 2 gives examples of good Moufang polygons), while Section

5 introduces the model-theoretic notions that we will use throughout this paper; in

particular, the notion for a class of finite structures to be an asymptotic class. Also,

Section 4 deals with the key points regarding the interpretation of the little projective

group in the polygon; this is done almost exactly as in Section 1 of [11]. Sections 6 and

7 prove Theorem 1.1. More precisely, Section 6 shows a uniform bi-interpretation (using

parameters) between a given family of finite Moufang polygons and its corresponding

class of finite little projective groups; since the classes of finite little projective groups are

well-known (they are either classes of finite Chevalley groups or finite twisted groups of

fixed Lie type and Lie rank), and they are shown to be ‘asymptotic classes’ by [16], this

uniform bi-interpretation procedure allows us to ‘transfer’ the asymptotic behaviour to

the classes of finite Moufang polygons. This is proved in Theorem 6.3. However, there

is an issue regarding the use of parameters. This, in a similar context (see Chapter 5

of [16]), led Ryten to introduce the notion of a strong uniform bi-interpretation between

classes of finite structures. This is treated in Section 7. Indeed, Theorem 7.2(i) proves that

the bi-interpretation shown in the proof of Theorem 6.3 is strong. This gives Theorem

1.1. Since by [12] non-principal ultraproducts of asymptotic classes are ‘measurable’ and

thus supersimple finite rank, Theorem 1.1 provides examples of supersimple finite rank
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Moufang polygons arising over (difference) pseudofinite fields.

Finally, Section 8 deals with Theorem 1.2, namely Theorem 8.2. One direction, the

interpretation of the little projective group in the associated good Moufang polygon,

requires just a result on the existence of a bound for the number of ‘root groups’

generating the little projective group, which is known to be true in the literature (see

[3], for instance). For the other direction, to interpret the polygon from the group, we

basically interpret the points and lines of the polygon as the coset space in the little

projective group of, respectively, the pointwise stabilizers of a fixed point and a fixed line

(where the latter are incident and play the role of a ‘fundamental flag’).
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2 Generalized polygons

In this section we introduce Moufang polygons, which are the basic objects of this paper.

In view of Theorem 1.1, we will concentrate on those families of Moufang polygons which

include infinitely many finite Moufang polygons.

Moufang polygons have been classified by Tits and Weiss, and their book [18] gives

full details of this classification; also, [19] gives further details on generalized polygons,

including polygons without the Moufang assumption. We use both references.

Let Linc = (P,L, I) be a language with 2 disjoint unary relations P and L and a binary

relation I, where I ⊆ P × L ∪ L × P is symmetric and stands for incidence. An Linc-

structure is called an incidence structure. Usually, the elements a satisfying P are called

points, those satisfying L are called lines, and pairs (a, l), or (l, a), satisfying I are called

flags.
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A sequence (x0, x1, ..., xk) of elements xi ∈ P ∪ L such that xi is incident with xi−1 for

i = 1, 2, ..., k is called a k-chain; if x, y ∈ P ∪L, and k is least such that there is a k-chain

(x0, x1, ..., xk) with x0 = x and xk = y, we write d(x0, xk) = k. For x ∈ P ∪ L, we define

Bk(x) := {y ∈ P ∪ L : 1 ≤ d(x, y) ≤ k}. If a is a point, B1(a) is called a line pencil; if l is

a line, B1(l) is called a point row.

Definition 2.1 A generalized n-polygon, or generalized n-gon, is an incidence structure

Γ = (P,L, I) satisfying the following three axioms:

(i) every element x ∈ P ∪ L is incident with at least three other elements;

(ii) for all elements x, y ∈ P ∪ L we have d(x, y) ≤ n;

(iii) if d(x, y) = k < n, there is a unique k-chain (x0, x1, ..., xk) with x0 = x and xk = y.

A subpolygon Γ′ of Γ is an incidence substructure Γ′ = (P ′, L′, I ′) ⊆ Γ, i.e., P ′ ⊆ P , L′ ⊆ L

and I ′ = I ∩ (P ′ × L′), satisfying the axioms (i)-(iii) above.

Generalized n-gons are often called thick generalized n-gons; this is because sometimes

the definition above is given with ‘two’ in place of ‘three’ in (i), and if so by dropping the

assumption (i) and replacing it by:

(i)′ “every element x ∈ P ∪ L is incident with exactly two other elements”,

we obtain thin generalized n-gons, namely ordinary polygons.

If confusion does not arise, we will often refer to generalized n-gons as n-gons, for

short. Generalized polygons are objects interesting in their own right, but have particular

significance because of the following result; for backgroung on buildings, see any of:

[2],[3],[15],[17] and [18].

Proposition 2.2 (Proposition 3.2 of [15]) Let (∆,A) be an irreducible, spherical building

of Tits rank ≥ 3, with associated Coxeter matrix M = (mij)i,j∈I . Then, every residue of

rank 2 is a generalized mij-gon for some i, j ∈ I.
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Remark 2.3 By the work of Tits (see, for instance, Proposition 40.5 of [18]), these rank

2 residues have the ‘Moufang’ property (see Definition 2.6). In general, generalized n-

polygons seem too wild to classify, but under the Moufang assumption they are classified

in [18]; in particular, by Theorem 17.1 of [18], n ∈ {3, 4, 6, 8}.

For any n-gon Γ = (P,L, I), the cardinality of a line pencil B1(a), for some a ∈ P , and

the cardinality of a point row B1(l), for some l ∈ L, do not depend, respectively, on a

and l; therefore, if s = |B1(a)| and t = |B1(l)|, for some a ∈ P and l ∈ L, where s and t

can be either finite or infinite cardinals, then we define (s, t) to be the order of Γ. We

denote by Γdual = (L,P, I) the dual of Γ; here, Γdual is obtained by interchanging points

and lines of Γ.

Definition 2.4 Given two incidence structures Γ1 = (P1, L1, I1), and Γ2 = (P2, L2, I2),

an isomorphism of Γ1 onto Γ2 is a pair of bijections α : P1 −→ P2 and β : L1 −→ L2

preserving incidence and non-incidence; a duality of Γ1 onto Γ2 is an isomorphism of Γ1

onto Γdual
2 .

Definition 2.5 Let Γ = (P,L, I) be an n-gon. Suppose that x, y ∈ P ∪ L and d(x, y) =

k < n. By axiom (iii) of Definition 2.1, there is a unique element z ∈ Bk−1(x) ∩ B1(y),

which is denoted by z = projk(x, y). In particular, if d(x, y) is exactly n, then there is a

bijection [y, x] : B1(x) −→ B1(y), given by z 7−→ projn−1(z, y), with inverse [x, y]. We call

the map [y, x] a perspectivity between x and y; a composition of perspectivities is called a

projectivity, and we put [x3, x2][x2, x1] = [x3, x2, x1], and so on.

Definition 2.6 A root of an n-gon Γ is an n-chain α = (x0, x1, ..., xn) with xi−1 6= xi

for i = 1, 2, ..., n. Given such a root α, consider the set X = ∪n−1
i=1 B1(xi). We define

the root group Uα to be the group of all automorphisms of Γ that fix X elementwise.

Since Uα fixes x0 and xn, the root group Uα acts on both sets B = B1(x0)\{x1} and

B′ = B1(xn)\{xn−1}. The group Σ := 〈Uα : α root 〉 is called the little projective group of

the polygon Γ.

6



A root α is called Moufang if the group Uα acts transitively on the set B and,

symmetrically, on the set B′; or, equivalently, on the set of all ordinary n-polygons

containing α. Then Γ is called Moufang if every root α is Moufang.

There are basically two ways of coordinatizing a generalized polygon. We follow a

purely geometric approach as in [11] and [19], while the Tits and Weiss classification

follows a more algebraic path.

Definition 2.7 Let u, v be a flag of an n-gon Γ. Then, for some k < n, we define

Bk(u, v) = Bk(v)\Bk−1(u) to be a Schubert cell of Γ. In particular, since P = B0(l, a) ∪

B1(a, l)∪B2(l, a)∪..., the set of points P is partitioned into n Schubert cells. Likewise for

the set of lines L.

Definition 2.8 Consider an element x ∈ Bk(x2n−1, x0), for some k < n, and let

(x2n−1, x0, x
′
1, x

′
2, ..., x

′
k = x) denote the corresponding (k + 1)-chain. Note that

d(x′i, xn+i) = n, for i = 1, 2, ..., k, so we may put ti(x) = projn−1(x′i, xn+i−1) ∈ Ti, where

Ti = B1(xn+i−1)\{xn+i} are the parameter sets. We have therefore attached coordinates

(t1(x), t2(x), ..., tk(x)) ∈ T1 × T2 × ...× Tk to the element x.

Above, we considered only elements at distance k from x0 which are not at distance

k − 1 from x2n−1. Thus, we can attach coordinates to the remaining elements treating

them as elements of the Schubert cells Bk(x0, x2n−1); for example, if x ∈ Bk(x0, x2n−1),

for k ≤ n − 1, then the first element x′1 of the (k + 1)-chain joining x with the flag

(x0, x2n−1) is now opposite to (i.e., at distance n) xn−2, and not to xn as in the previous

case; thus, the coordinates of x with respect to the Schubert cell Bk(x0, x2n−1) are ti(x) =

projn−1(x′i, xn−i) ∈ Tn−1+i for i = 1, 2, ..., k, where Tn−1+i = B1(xn−i)\{xn−i−1}.

It follows that the coordinatization uses 2n − 2 parameter sets, namely the sets

T1, T2, ..., Tn−1 for the Schubert cells Bk(x2n−1, x0) with k = 1, 2, ..., n − 1, and the sets

Tn, Tn+1, ..., T2n−2 for the Schubert cells Bk(x0, x2n−1) with k = n, n+ 1, ..., 2n− 2.
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Remark 2.9 Let Γ = (P,L, I) be a generalized n-gon, and let A = (x0, x1, ..., x2n−1) be

an ordinary polygon in Γ. We call the set X = ∪i=0,...,2n−1B1(xi) the hat-rack of Γ. Since

from the coordinatization every element x ∈ P ∪L has coordinates from the parameter sets

Ti, it follows that, model theoretically, dcl(X) = Γ (see second paragraph of the beginning

of Section 5).

Remark 2.10 Typically, there is an algebraic structure S (i.e., an alternative division

ring, a vector space over a field, a Jordan division algebra, and so on), two subsets S1

and S2 of S, and functions from S1 × S1, S1 × S2 and/or S2 × S1 to S1 and/or S2 (e.g.

a bilinear form, a quadratic form, a norm map, and so on), which ‘determine’ (up to

‘duality’) the associated generalized polygon, and vice versa. For instance, sometimes S1

has the structure of a field, S2 that of a vector space over S1, and the map S2 −→ S1 is a

quadratic form (this is the case of an orthogonal quadrangle - see Example 3.2).

In this paper, we will sometimes use the following informal meaning of coordinatization:

given a generalized polygon Γ, we say that Γ is coordinatized by, or coordinatized over, the

structure S, if S is the algebraic structure associated to Γ as in Remark 2.10 (see Part II,

Sections 9-16, and Part III, Section 30, of [18], for all the details about these algebraic

structures). This is not used in a precise model-theoretic sense.

3 Some examples of Moufang polygons

We now give an introduction to certain families of (Moufang) generalized polygons from

the Tits and Weiss classification which, up to some restriction, also arise in the finite

case. In the following, by a skew-field we mean a non-commutative division ring; in our

context this is not very relevant (there are no finite or commutative skew-fields), but will

be relevant for [8].
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Example 3.1 Triangles (n = 3): Generalized 3-gons are precisely projective planes.

By Theorem 17.2 of [18], Moufang projective planes are coordinatized by alternative

division rings; for the latter, see Construction 2.2.4 of [19]. Alternative division rings

are either associative (fields or skew-fields) or non-associative (Cayley-Dickson algebras,

see Definition 9.11 of [18]).

We denote by PG2(A) the Moufang projective plane coordinatized by an alternative

division ring A. Any finite Moufang projective plane is Desarguesian over a finite field,

and we denote it by PG2(q) for some finite field Fq with q a prime power.

Example 3.2 Orthogonal and Hermitian quadrangles (n = 4): Let V be a vector space

over some (possibly skew) field K, and let σ be a field anti-automorphism of order at

most 2, i.e., (ab)σ = bσaσ, for all a, b ∈ K. Put Kσ = {tσ − t : t ∈ K}. Then consider a

σ-quadratic form q : V −→ K/Kσ such that q(x) = g(x, x) +Kσ, for all x ∈ V , where g is

the ‘(σ, 1)-linear form’ associated to q; see Section 2.3 of [19] for the details.

We say that q has Witt index l, for some l ∈ N, if q−1(0) contains l-dimensional

subspaces but no higher dimensional ones. For a non-degenerate σ-quadratic form q on

K with With index 2, we define the following geometry Γ = Q(V, q): the points are the

1-spaces in q−1(0), the lines are the 2-spaces in q−1(0) and incidence is symmetrized

inclusion. By Corollary 2.3.6 of [19], Γ is a generalized quadrangle if and only if

V has dimension ≥ 5 or σ 6= idK (and dim V ≥ 4). All such quadrangles with σ

being the idK are called orthogonal quadrangles. We denote them by Q(l,K), for l :=

dim(V ) ≥ 5. The remaining ones, where σ 6= idK, give rise to Hermitian quadrangles,

which are constructed over vector spaces of dimension l ≥ 4; we denote them by HQ(l,K).

Over finite fields, orthogonal quadrangles arise only over a vector space of dimension 5

or 6 (see Section 2.3.12 of [19]), and we denote them by, respectively, Q(5, q) and Q(6, q),

for some finite field Fq with q a prime power. Likewise, over some finite field Fq, there

are only two examples (up to duality) of Hermitian quadrangles, and we denote them by

HQ(4, q) and HQ(5, q) (see again Section 2.3.12 of [19]).
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Remark 3.3 The orthogonal quadrangle Q(5,K) is sometimes seen, under the Klein

correspondence, as a quadrangle isomorphic to the dual (see Definition 2.4) of the

symplectic quadrangle W (K), say, over the same field (see Proposition 3.4.13 of [19] for

the details). The symplectic quadrangle W (K) consists of the totally isotropic 1 and 2-

subspaces of the 4-dimensional vector space equipped with a nondegenerate symplectic

form ((x, x) = 0, for all x ∈ V ).

There are also two examples of anti-isomorphisms between orthogonal and Hermitian

quadrangles: HQ(4, L) is isomorphic to the dual of the orthogonal quadrangle Q(6,K), for

some quadratic Galois extension L of the field K equipped with a non-trivial element σ ∈

Gal(L/K) (see Proposition 3.4.9 of [19]); HQ(5, L) is dual to the orthogonal quadrangle

Q(8,K), where L is a skew field which is a quaternion algebra (see Definition 9.3 of [18])

of dimension 4 over its centre K (see Proposition 3.4.11 of [19]).

Example 3.4 Split Cayley and twisted triality hexagons (n = 6): Let V be an 8-

dimensional vector space over a field K, and let Q7(K) be the nondegenerate quadric

hypersurface of Witt index 4 living in the associated 7-dimensional projective space P (V )

of V ; see Section 2.4 of [18] for the details. The hexagons we are interested in arise

from the quadric Q7(K). By the Witt index 4 assumption, Q7(K) contains 3-dimensional

projective subspaces of P (V ).

With regards to the quadric q, there exists a certain ‘trilinear form’ T : V ×V ×V −→ K

(see Section 2.4.6 of [19]) such that, for some fixed v ∈ V \{0}, the set of all w ∈ V for

which T (v, w, x) vanishes in x is a projective 3-space of Q7(K); moreover, the vanishing

of T (v, w, x) provides an incidence structure whose points are such projective 3-spaces, in

a way that it also allows us to represent these points as points of P (V ). Then this arising

point-line incidence structure (where the lines are just the lines of P (V )) turns out to be

a generalized hexagon; see Theorem 2.4.8 of [19]. There are two kinds of hexagons, and

they both depend on a certain automorphism σ of K of order 1 or 3. If σ = idK, we call

the associated hexagon a split Cayley hexagon, and denote it by H(K), and if σ 6= idK ,

we call it a twisted triality hexagon, and denote it by T (K,Kσ).
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In the finite case, the field automorphism σ is determined by the field Fq3 , where q is a

prime power, and therefore the finite twisted triality hexagon is unique, namely T (q3, q).

Example 3.5 Ree-Tits octagons (n = 8): These are associated to a certain

metasymplectic space M , which is a building arising from a Dynkin diagram of type F4; in

particular (see Theorem 2.5.2 of [19]), associated to M there is a field K of characteristic

2 which admits a Tits endomorphism σ (see Definition 5.13). The generalized octagons

associated to the pair (K,σ) are called Ree-Tits octagons, and denoted by O(K,σ).

Moufang octagons do arise over finite fields F22k+1 , and in this case the Tits

endomorphism is always the automorphism x −→ x2k
(see Lemma 7.6.1 of [19]). Thus,

we denote a finite Ree-Tits octagon by O(22k+1, x −→ x2k
).

Definition 3.6 With the notation of Examples 3.1, 3.2, 3.4 and 3.5, we call good polygons

all the following generalized polygons, assumed to satisfy the Moufang condition: PG2(A)

over a Desarguesian division ring A, Q(l,K) for l = 5, 6, HQ(l,K) for l = 4, 5, H(K),

T (K,Kσ, σ) and O(K,σ), with K a perfect field.

4 Definability of the root groups

With the notation of Section 2, let us fix a (Moufang) generalized n-polygon Γ, an ordinary

subpolygon A = (x0, x1, ..., x2n−1) in Γ, a root α = (x0, x1, ..., xn) ⊆ A, and the root group

Uα associated to α. We now discuss the procedure which allows us to define Uα in the

language Linc; this is extracted from [11]. For the model-theoretic concept of definability

and, in particular, the proof of Lemma 4.1, as well the notation used in the lemma, consult

the beginning of Section 5.

Put B = B1(x2n−1, x0) = B1(x0)\{x2n−1} and 0 = x1. Next, choose an element a ∈

B1(x2n−1)\{x0, x2n−2}. For y ∈ B, put ay = projn−1(a, [xn, x0](y)) and consider the

projectivity πy = [x0, ay, x2n−2, a0, x0] (see Definition 2.5). This projectivity fixes x2n−1,

induces a permutation on B, and maps 0 to y; also, πy is parameter definable from the

coordinatization (with parameters in A∪{a}), since it is a composition of perspectivities.

Hence, we have definable maps ± : B × B −→ B by putting x + y = πy(x) and x −
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y = π−1
y (x). The structure (B,+) is a right (or left) loop, i.e., satisfies the following:

(x+ y)− y = (x− y) + y = x, 0 + x = x+ 0 = x− 0 = x.

Let now g be an element of Uα, and put c := g(0), say. Then, since g is an automorphism,

g(a0) = g(ac). By Lemma 1.13 of [11], it follows that g(x) = [x0, ac, x2n−2, a0, x0](x) = x+c

for all x ∈ B and, similarly, that g−1(x) = x−c. In particular, the lemma tells us that given

any element g ∈ Uα, the restriction of g to B, denoted g|B, is definable with parameters in

A∪ {a}. Also, from Lemmas 1.15 and 1.16 of [11], it follows, respectively, that the action

of Uα on B is semi-regular, i.e., 1Uα is the only element in Uα fixing any element of B,

and Uα is embedded into (B,+) via the map g −→ g−1(0).

Assuming now the Moufang condition, Uα acts transitively (and thus regularly, by the

above semi-regularity) on the set B; therefore, we can definably identify the root group

Uα with the additive loop (B,+). In order to obtain a definable action of Uα on Γ, we

need to definably extend the action of (B,+) to the whole of Γ. This can be done using

the coordinatization as in Definition 2.8.

Lemma 4.1 The action of Uα on Γ is parameter definable in Linc.

Proof: Let Γ, A, α, and so on, as in the above setting. We have shown how to definably

identify (using parameters from A ∪ {a}) the root group Uα with the right loop (B,+).

Hence, for the assertion, we need to show that the action of every element g ∈ Uα definably

extends to the whole of Γ.

Let g be any element of Uα, and consider g|B. Let X = B ∪ B1(x1) ∪ B1(x2) ∪ ... ∪

B1(xn−1). Then g|X has a unique extension to an automorphism of Γ; indeed, the action

of g|X on the ordinary polygon A is uniquely determined, using perspectivities the action

on the corresponding hatrack is determined, and hence, by Remark 2.9, the action of g on

Γ is uniquely determined.

Consider now the language L = (P,L, I, c0, c1, ..., cn, Q, g|Q), where the ci are constant

symbols, and Q and g|Q are relation symbols of arity 1 and 2, respectively. Let T be

the first-order L-theory describing the above structure with the constant symbols ci
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interpreted as the elements xi of α, andQ interpreted as B∪B1(x1)∪B1(x2)∪...∪B1(xn−1).

Let also L+ = L ∪ {g}, where g is a binary relation symbol. Let T+ be the L+-theory

extending T which asserts that g is the graph of an automorphism of Γ = (P,L, I)

extending g|X . By the last paragraph, any model of T has a unique extension to a model

of T+. Hence, by Beth’s Definability Theorem (see, for instance, Proposition 0.1 of

[13]), g is uniformly definable in models of T . �

5 Asymptotic classes of finite structures

We assume that the reader is familiar with the basic notions of model theory; in particular,

the concepts of a first order language L and an L-structure M , that is, a structure

interpreting L. In general T will denote a complete theory in the language L. For a

first order L-formula σ, with parameters in M̄ (a sufficiently saturated extension of M),

by the expression |= σ we mean that σ is true in M̄ . Given an L-structure M , we often

refer to Th(M) as the theory of M , i.e., the theory consisting of those first order sentences

true inM . Usually, A, B, etc., will denote subsets ofM , and x, y, etc., will denote elements

of M . Unless it is clear from the context, x̄ will denote a tuple (x1, x2, ..., xn) ∈ Mn, for

some integer n. If b̄ = (b1, b2, ..., bn) ∈ Bn, we often abuse notation by writing b̄ ⊆ B.

A set D ⊆ Mn is said to be definable, over B ⊆ M , if there is some L-formula φ(x̄, b̄),

with parameters b̄ ⊆ B, such that φ(x̄, b̄) is satisfied exactly by elements of D. Sometimes

we will denote it by D = φ(Mn, b̄), for ease. When we define a set over the empty set, we

talk about a 0-definable set. If D is a finite B-definable set {a1, a2, ..., an}, the elements

ai are said to be algebraic over B; in particular, if A is a singleton {a}, then a is said to

be in the definable closure of B, which is denote by dcl(B). An interpretable set is a set

of the form A/E, where A ⊆ Mn is a definable set and E a definable n-ary equivalence

relation on A. A partial type over A is a set of formulas with parameters from A, which

is realized in M̄ ; while for a complete type over A, denoted by tp(x̄/A), we mean a partial

type which contains either σ or ¬σ for every first order L-formula σ over A.
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An important model-theoretic concept in this paper is that of supersimplicity, or more

strictly that of measurability. Supersimple theories represent a subclass of simple theories

equipped with a rank on types. A nice account on supersimple theories can be found

in [20]. As examples of supersimple structures, we mention pseudofinite fields and also

smoothly approximable structures (see [6]).

We now focus on a model-theoretic generalization of results on finite fields in [5],

stemming ultimately from Lang-Weil. It was introduced (in dimension 1) in [12], and

extended by arbitrary finite dimension by Elwes in [9].

Definition 5.1 (Definition 2.1 of [9]) Let L be a countable first order language, N ∈ ω,

and C a class of finite L-structures. Then we say that C is an N-dimensional asymptotic

class if for every L-formula φ(x̄, ȳ), where l(x̄) = n and l(ȳ) = m, there is a finite set of

pairs D ⊆ ({0, 1, ..., Nn} × R+) ∪ {(0, 0)} and for each (d, µ) ∈ D a collection Φ(d,µ) of

elements of the form (M, ā), where M ∈ C and ā ∈Mm, so that {Φ(d,µ) : (d, µ) ∈ D} is a

partition of {{M} ×Mm : M ∈ C}, and |φ(M, ā)| − µ|M |d/N = o(|M |d/N ), as |M | −→ ∞

and (M, ā) ∈ Φ(d,µ). Moreover, each Φ(d,µ) is required to be definable, that is to say

{ā ∈Mm : (M, ā) ∈ Φ(d,µ)} is uniformly 0-definable across C.

Remark 5.2 C In order to check that C is an N -dimensional asymptotic class, it suffices

to verify the above conditions for all formulas φ(x̄, ȳ) where l(x̄) = 1; see Lemma 2.2 of

[9].

Definition 5.3 Let C be a class of finite L-structures, and let N be a positive integer. We

say that C is a weak N-dimensional asymptotic class if it satisfies the asymptotic behaviour

as in Definition 5.1 but without the assumption that Φ(d,µ) is definable. Also, we say that

C is a semiweak N-dimensional asymptotic class if Φ(d,µ) is uniformly definable but not

necessarily 0-definable.
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As examples of 1-dimensional asymptotic classes we mention: finite fields; for every

finite d ≥ 2, the class of all finite vertex transitive graphs of valency d; finite extraspecial

groups of exponent a fixed odd prime number p; finite cyclic groups. See [12] for

the details about these examples. By [6], any smoothly approximable structure is

approximated by a sequence of ‘envelopes’; a carefully chosen class of finite envelopes

forms an N -dimensional asymptotic class. As an example, we mention, over a fixed finite

field Fq, the class of all finite dimensional vector spaces equipped with a non-degenerate

alternating bilinear form.

Elwes proved that there is a strong connection between asymptotic classes of finite

structures and the infinite ultraproducts arising from the members of the classes, in the

following sense (which is Lemma 4.1 of [12] generalised to N -dimensional asymptotic

classes; see also Corollary 2.8 of [9]); there are various notions of rank suitable for

supersimle theories, and the S1-rank is one of these (see, for instance, Section 5.1 of [20]).

Proposition 5.4 Let C be an N -dimensional asymptotic class and let M be an infinite

ultraproduct of members of C. Then Th(M) is supersimple and the S1-rank of M is at

most N .

The proof of Proposition 5.4 shows that ultraproducts of members of asymptotic classes

are in fact ‘measurable structures’ (see Definition 5.1 of [12]), which are supersimple

structures of finite rank (with extra conditions). There are corresponding notions of weakly

measurability and semiweak measurability, as in Definition 5.3.

We now introduce the concept of bi-interpretation, i.e., the interpretation of a structure

into another, and vice versa, which plays an important role in this paper. Bi-interpretation

can be formulated as a concept between classes of finite, or infinite, structures.
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Definition 5.5 Let C1 and C2 be classes of structures in first order languages L1 and L2,

respectively. We say that C1 is uniformly parameter interpretable, UPI, in C2 if there exists

an injection i : C1 −→ C2 so that for each M ∈ C1, the L1-structure M is (parameter)

interpreted in i(M), uniformly across C1, i.e., there exists an L2-formula φ(ū, z̄) such that

for every M ∈ C1 there are r ∈ ω, a definable set X = φ(ū, ā) ⊂ i(M)r for some tuple ā

of i(M) of the same length as z̄, an L2-definable equivalence relation E(ū1, ū2) (defined

over ā) on X with l(ū1) = l(ū2) = l(ū), a map fC1 : M −→ X/E, and L2-definable subsets

(defined over ā) of the Cartesian powers of X/E which interpret the constant, relation,

and function symbols of L1 in such a way that fC1 is an L1-isomorphism. We call M? the

interpretation of M in i(M), and denote by f : M −→M? the associated L1-isomorphism.

If āz, say, is the tuple of i(M), or an ‘imaginary’ tuple of X/E, that is used as parameters

to interpret M?, then we call āz the witness to the UPI in C2.

Suppose now that the map i is a bijection, and that C2 is also UPI in C1 (i.e., there exists

an L1-formula ψ(x̄, ȳ) such that for every N ∈ C2 there are s, Y = ψ(x̄, āy) ⊂ i−1(N)s,

E′, gC2 : N −→ Y/E′, etc., as before). Thus, denote by g : N −→ N? the L2-isomorphism

associated with the interpretation of N in i−1(N), for every N ∈ C2. Then g induces an

L1-isomorphism g? : M? −→ M??, where M?? is the interpretation of M? in i−1(M?);

likewise, we have an induced L2-isomorphism f? : N? −→ N??. With these assumptions,

we say that C1 and C2 are UPI bi-interpretable if the isomorphisms g?f and f?g are defined

uniformly in the members of C1, and in the members of C2, respectively. When we say

that āy and āz are witnesses to this UPI bi-interpretation, we mean, in addition to the

above, that the isomorphism g?f is āy-definable, and the isomorphism f?g is āz-definable.

In [16], Ryten considered a slightly more constrained notion, which he called a uniformly

parameter definable (UPD) bi-interpretation. In the UPD case, no quotient is involved:

for each M ∈ C, M is parameter bi-definable with i(M).

Remark 5.6 When we have a class of finite structures C1 and a UPI bi-interpretation

of the class C1 with an asymptotic class C2, then the asymptotic behaviour of C2 can
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be ‘transferred’, to the class C1; similarly, if we have an infinite structure M parameter

bi-interpretable with a measurable structure N , then (semiweak) measurability can be

‘transferred’ from N to M . If no parameters are involved in the bi-interpretation, then it

preserves the property of being an asymptotic class (or being measurable). These results

are due to Elwes and Ryten (see below).

Notice that, given an asymptotic class of finite structures C in a language L, and a

sublanguage L1 ⊂ L, the class of reducts {ML1 : M ∈ C} may not be an asymptotic

class anymore; the problem is with the definability assumption required in the last clause

of Definition 5.1. However, the set of reducts is a weak asymptotic class. On the other

hand, trivially, expanding the language L by constants preserves the property of being an

asymptotic class.

In order to show how to ‘transfer’ the asymptotics of a class to another class of finite

structures, we need the following result of Elwes, for which he needed to suitably extend

the language by finitely many constants; however (see Definition 5.8 and Proposition

5.10 below), if we introduce a ‘strong’ condition on the UPI bi-interpretation, then the

asymptotics transfer without need of extending the language.

Proposition 5.7 (Corollary 3.8 of [9]) If C1 and C2, in the finite languages L1 and L2

respectively, are UPI bi-interpretable, and C2 is an asymptotic class, then there is an

extension L′1 of L1 by finitely many constants, and for each M ∈ C1 an expansion M ′ to

L′1 so that C′1 := {M ′ : M ∈ C1} is an asymptotic class.

Definition 5.8 Let C and D be two classes of finite structures, respectively, in the finite

languages LC and LD, and suppose that C and D are UPI bi-interpretable. Then they are

strongly UPI bi-interpretable if additionally there is a 0-definable LC-formula γ(ȳ, t̄), such

that if C ∈ C and D = i(C) then for any āy, āt ∈ C, we have C |= γ(āy, āt) if and only

if āy and āz are witnesses to the UPI bi-interpretation between C and D (as in Definition

5.5) and g(āz) = āt.
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Remark 5.9 Notice that the strongness condition is not in general symmetric; however,

it is clear from the definition which direction we are taking, since the formula γ(ȳ, t̄) is an

L-formula with L either LC or LD. Thus, if γ(ȳ, t̄) is an LC-formula as in the definition

above, then we say that the UPI bi-interpretation is strong on the C-side.

Proposition 5.10 Suppose that D is an asymptotic class, and C is strongly UPI bi-

interpretable on the C-side with D. Then C is an asymptotic class.

Proof: By Proposition 5.7, C is a weak asymptotic class. We must show that C

satisfies the definability assumption required in the last clause of Definition 5.1, i.e., we

have to show that parameters are not needed to define dimension and measure in C.

This is done as in Proposition 4.2.10(1) of [16]. �

In Section 7 we will need the following, which is essentially Lemma 4.2.11 of [16]. The

statement is adjusted here to allow UPI rather than UPD bi-interpretation.

Lemma 5.11 Suppose C and D are UPI bi-interpretable classes of finite structures, as

above. For each C ∈ C, let āy, āz be witnesses to the bi-interpretation of C and i(C) = D.

Suppose in addition:

(i) there is an LD-formula ζ(z̄) such that ζ(āz) holds, and if ā′z ∈ D with ζ(ā′z), then

the LC-structure whose interpretation in LD is witnessed by ā′z is isomorphic to C?;

(ii) there is an LC-formula η(ȳ) such that η(āy) holds, and if ā′y ∈ C with η(ā′y), then

the LD-structure whose interpretation in LC is witnessed by ā′y is isomorphic to D?.

Then C and D are strongly UPI bi-interpretable, on the C-side.

Proof: This is virtually identical to the proof of Lemma 4.2.11 of [16], except that now

the interpretations allow quotients; these are handled by Proposition 5.7. We omit the

details. �
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We conclude this section with a further example of an asymptotic class which plays an

important role in the content of this paper, for the Ree-Tits octagons.

Definition 5.12 Let Ldiff be the language Lring augmented by a unary function symbol

σ. A difference field is a pair (K,σ) consisting of a field K and an automorphism σ of K.

Definition 5.13 Let K be a field of characteristic p, for some prime p. A Frobenius

endomorphism σ is the map which sends x to xp, for every x ∈ K, and we denote it by

Frob. Also, a Tits endomorphism of K is a square root of the Frobenius endomorphism,

i.e., the endomorphism σ : K −→ K such that xσ2
= Frob(x) for all x ∈ K.

Remark 5.14 We refer to [4] for a survey on difference fields. In [16], Ryten developed

a particular theory of pseudofinite difference fields, denoted by PSF(m,n, p) (see Section

3.3.2 of [16] for the axiomatization of PSF(m,n, p)). He shows that the class of finite

difference fields C(m,n,p) := {(Fpnk+m , σk) : k ∈ ω}, where m,n ∈ N with m ≥ 1, n > 1

and (m,n) = 1, and σ is the Frobenius automorphism, forms a 1-dimensional asymptotic

class; moreover, he shows that every non-principal ultraproduct of members of C(m,n,p)

is a model of PSF(m,n, p), and, vice versa, every model of PSF(m,n, p) is elementarily

equivalent to a non-principal ultraproduct of members of C(m,n,p) (see Theorem 3.3.15 of

[16]).

6 The UPI bi-interpretation

In this section we prove Theorem 6.3, which together with Theorem 7.2 will yield Theorem

1.1. With the notation of Examples 3.1, 3.2, 3.4 and 3.5, and according to the classification

of Tits and Weiss (see Section 34 of [18]), the finite Moufang generalized polygons are, up

to duality, PG2(q), W (q), HQ(4, q), HQ(5, q), H(q), T (q3, q) and O(22k+1, x 7→ x2k
).

We give the list (up to duality) of finite Moufang polygons in the following table,

where we associate to each polygon Γ the corresponding little projective group Σ; see, for

instance, Section 8.3 of [19].
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Γ Σ

PG2(q) PSL3(q)

W (q) PSp4(q)

HQ(4, q) PSU4(q)

HQ(5, q) PSU5(q)

H(q) G2(q)

T (q3, q) 3D4(q)

O(22k+1, x 7→ x2k
) 2F4(q)

Table 6.1

Let C be one of the above classes of finite Moufang polygons. To prove Theorem

1.1, we must show that C forms an asymptotic class (see Definition 5.1). By Proposition

5.10 (see also Proposition 5.7), in order to prove that C is an asymptotic class we firstly

need to show that C is UPI bi-interpretable (see Definition 5.5) with a class G, say, which

is already known to be an asymptotic class. The ‘natural candidate’ in this setting is the

class of corresponding finite little projective groups.

By Table 6.1 above, we also know that G is either a class of finite Chevalley groups or a

class of finite twisted groups of fixed Lie type and Lie rank. These classes of finite groups

all belong to classes already analyzed by Ryten in [16]; there he showed that G forms an

asymptotic class by proving that it is strongly UPI bi-interpretable with a class of finite

(difference) fields. We can summarize the main results from [16] in the following.

Theorem 6.1 (Ryten, [16]) Let G be any family of finite simple Lie groups of fixed Lie

rank.

(i) G is strongly UPD bi-interpretable with either the class of finite fields F or one of

the classes C(m,n,p);

(ii) G is an asymptotic class.
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Remark 6.2 There are just finitely many exceptions consisting of finite Moufang

polygons whose corresponding little projective groups are not simple (see Lemma 5.8.1

of [19]), but we can disregard the cases in our context as Ryten does in his thesis (Remark

5.2.9 of [16]): finitely many exceptional cases can be ruled out in the bi-interpretation, by

describing the elementary diagram of the corresponding models.

Therefore, for the remainder of this section we will be exhibiting a UPI bi-interpretation

between any class of finite Moufang polygons C and the corresponding asymptotic class

of finite little projective groups G.

Theorem 6.3 The classes C and G are UPI bi-interpretable.

The proof of the theorem is given throughout the rest of the section. The map i : C −→ G

is defined to take each Γ ∈ C to its little projective group. Since both are parametrized

by a (difference) field, i is injective; in fact, by Remark 6.2 (since G\i(C) is finite) we

can assume, without loss of generality, that i is a bijection. We first show that C is UPI in G.

Lemma 6.4 Let G be a family of finite simple groups of Lie type. Then each conjugacy

class of parabolic subgroups is UPI across G.

Proof: We first deal with the untwisted case. By Proposition 8.3.1(iii) of [3], for Σ ∈ G

and a parabolic subgroup PJ of Σ corresponding to a set J of fundamental roots, we

have PJ = BNJB, so as NJ is finite, it suffices to show that Borels B are uniformly

definable. We also have B = UH; by Lemma 5.2.7 of [16], H is uniformly definable. Also,

U = Xr1Xr2 ...Xrn (see 5.5.3(ii) of [3]), for some integer n, where the Xri are positive root

groups, so it suffices to show that the Xri are uniformly definable. For this see Corollary

5.2.8 of [16].

For the twisted groups, the arguments are essentially the same. We have B1 = U1H1

(notation of Chapter 13 of [3]), and the appropriate uniform definability results can be

found in Chapter 5 of [16]. �

21



Lemma 6.5 There exists a uniform parameter interpretation of the Moufang polygon

Γ = Γ(Σ) in Σ, for Σ varying through G.

Proof: Let Σ be the little projective group associated to a Moufang polygon

Γ = (P,L, I) ∈ C, and let pIl be a fixed flag in Γ. Denote by Σp and Σl, respectively, the

stabilizer of p in Σ and the stabilizer of l in Σ. Then Σp and Σl turn out to be parabolic

subgroups of the BN-pair associated to Σ. Since Σ is simple, the set of pairs (Σp,Σl) such

that pIl is a flag, is UPI across G by Lemma 6.4. Hence, from the definable parabolic

subgroups of Σ we can interpret the polygon Γ as follows: interpret the points of Γ as the

cosets Σ/Σp and the lines of Γ as the cosets Σ/Σl; incidence I is interpreted as gΣpIhΣl if

and only if gΣp∩hΣl 6= ∅. �

Proposition 6.6 There exists a uniform parameter interpretation of the little projective

group Σ = Σ(Γ) in Γ, for Γ varying through C.

Proof: Let Γ ∈ C, and let Σ = 〈Uα : α is a root 〉 be its little projective group. We aim to

interpret Σ in a uniform way across C. First, fix an ordinary polygon A = (x0, x1, ..., x2n−1)

in Γ, a root α = (x0, x1, ..., xn) ⊂ A and a line pencil B centered at the point x0 of α. In

Section 4 we showed how to define, with parameters, a right loop on B, how to definably

identify it with the action of the root group Uα on the set B and, ultimately, how to extend

such an action on the whole polygon (see Lemma 4.1); put X = {x0, x1, ..., x2n−1, a}, the

set of parameters used to define Uα and its action on Γ. Since Σ is generated by all its

root groups, we aim to find a bound m such that for some root groups Uα1 , Uα2 , ..., Uαm

(not necessarily distinct) Σ = Uα1Uα2 ...Uαm . For we follow [3].

By the studies of Tits, we know that Σ is either a Chevalley group or a twisted group

of fixed Lie type and Lie rank. If Σ is a Chevalley group, by the Bruhat decomposition

(Corollary 8.4.4 of [3]) we need to find such bounds for U, V,H and N , where U is the

subgroup of Σ generated by the ‘positive’ root groups U1, U2, ..., Un and V that generated

by the ‘negative’ root groups, N the group associated to the BN -pair of Σ and H = N∩B.

Since the set of positive roots is finite, U is definable by Theorem 5.3.3 of [3]; likewise
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V . Also, by Chapter 6 of [3] and the assumption of finite Lie rank r, say, every element

of H is a product of 4r root groups; from this and the finiteness of the associated Weyl

group W = N/H, it follows that N is also generated by a product of boundedly many

root groups. For the twisted case the situation is similar as the Bruhat decomposition still

holds (see Proposition 13.5.3 of [3]).

Let now Σ be any finite little projective group in G. It follows from the above paragraph

that, for some integer m, we can construct Σ as a group with domain Uα1 × Uα2 × ... ×

Uαm/ ∼, where the equivalence relation ∼ is defined as follows:

(g1, g2, ..., gm) ∼ (h1, h2, ..., hm) if and only if

g1g2...gm(x) = h1h2...hm(x), for x ∈ P ∪ L, gi, hi ∈ Uαi and 1 ≤ i ≤ m.

Denote by [(g1, g2, ..., gm)]∼ the equivalence class of (g1, g2, ..., gm) ∈ Uα1 × ...× Uαm with

respect to ∼. Now we define the group multiplication “·”, say, as follows:

[(g1, g2, ..., gm)]∼ · [(h1, h2, ..., hm)]∼ = [(k1, k2, ..., km)]∼ if and only if

g1g2...gm(h1h2...hm(x)) = k1k2...km(x), for all x ∈ P ∪ L.

This is clearly well-defined. Without loss of generality, we may assume that Uα1 is Uα;

then, as we defined Uα, as well its action on the whole of the associated Γ ∈ C (over

the set of parameters X), we can do the same for the remaining root groups Uαi for

i ∈ 2, 3, ...,m; namely, by adding new parameters Xi = {x(i)
0 , x

(i)
1 , ..., x

(i)
2n−1, a

(i)}, say, for

some ordinary polygons Ai = (x(i)
0 , x

(i)
1 , ..., x

(i)
2n−1) and some a ∈ B1(x

(i)
1 )\{x(i)

0 , x
(i)
2 }, the

root groups Uαi and their respective actions on the whole of Γ are definable over the set

of parameters Xi for i = 2, 3, ...,m. Hence, it follows that the relation ∼ is definable:

for any x ∈ P ∪ L, g1g2...gm(x) = h1h2...hm(x) if and only if the image of x under

the definable action of g1g2...gm is the same under the definable action of h1h2...hm.

�

Remark 6.7 This can be used to find the bound m in alternative to the method used in

the proof of Proposition 6.6. Consider an infinite ultraproduct (Σ?, U?
α) = Π(Σ, Uα)/U ,

for some non-principal ultrafilter U . It follows from [16] that Uα is uniformly definable in

Σ (in [16] the root groups are denoted by Xr(K); since by Discussion 5.2.1 and, in the
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twisted cases, 5.3.3 and 5.4.1 of [16], the root groups Xr(K) are UPD in the class F of

the corresponding finite (difference) fields K, and since by Theorem 6.1(i) the classes G

and F are strongly UPD bi-interpretable, it follows that each Xr(K) is also UPD in G).

Hence, by Los’ theorem on ultraproducts, the root group U?
α, as its action on the whole

of ΠΓ/U , is parameter definable in Σ?. Also, since the cardinality |Uα| grows with Σ, the

root group U?
α is infinite.

By Remark 6.2 and by the main result from [14], Σ? is a simple group, definable in the

pseudofinite (difference) field ΠFq/U , where Fq denotes the underlying field of Σ as well

the underlying field of Γ.

Since Σ? is generated by {(U?
α)g : g ∈ Σ?, α root }, and this set is Σ?-invariant, by

the Zilber Indecomposibility Theorem (ZIT) in its supersimple finite rank version (see

Remark 3.5 of [10]) there exists a definable subgroup H ≤ U?
α1
U?

α2
...U?

αn
in Σ? which

is also Σ?-invariant, so normal; moreover, for each i = 1, 2, ..., n, by ZIT we also have

that U?
αi
/H is finite, thus H 6= 1. Therefore, as Σ? is simple, H = Σ?. This argument

applies to all infinite ultraproducts of the (Σ, Uα). Hence, there is a single m such that

in all ultraproducts (Σ?, U?
α), we have Σ? = Uα1Uα2 ...Uαm . It follows that for all but

finitely many finite (Σ, Uα) we have Σ = Uα1Uα2 ...Uαm . By increasing m to deal with

the remaining finite (Σ, Uα), we may suppose that for all (Σ, Uα), we have that Σ =

Uα1Uα2 ...Uαm for some α1, α2, ..., αm.

Lemma 6.8 There exists a uniform parameter definable isomorphism between Γ and its

re-interpretation in itself.

Proof: Given a Moufang polygon Γ, we can re-interpret Γ in itself by first interpreting Σ in

Γ as in Proposition 6.6, and then by interpreting a copy of Γ from Σ as in Lemma 6.5. This

is possible because the bi-interpretation comes equipped with isomorphisms from objects

to their re-interpretations, on both sides. Namely, Γ is uniformly parameter interpreted

as the polygon (Σ/Σp,Σ/Σl, {(uΣp, uΣl) : u ∈ Σ}) from the group Uα1 × ... × Uαm/ ∼,

which is itself uniformly parameter interpreted from Γ; here the fundamental flag pIl of

Lemma 6.5 is the flag x0Ix2n−1 fixed in Proposition 6.6. Call Γ′ this re-interpretation of

Γ in itself.
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With the notation of Definition 5.5, we have an isomorphism g?f : Γ −→ Γ′. Put

g?f = φ. Then, by construction of ∼, the isomorphism φ is well-defined; precisely, φ sends

any point x ∈ Γ (or line l ∈ Γ) to the unique point y = uΣp ∈ Γ′ (or line y = uΣl ∈ Γ′), with

u the unique group element u = [(u1, u2, ..., um)]∼ ∈ Uα1× ...×Uαm/ ∼ such that x = u(p)

(or x = u(l)). Since by Proposition 6.6 we have a uniform parameter interpretation of the

group Uα1 × ...× Uαm/ ∼ and its action on the whole of Γ, we can thus uniformly define

(with parameters Y = X ∪ (∪r
i=2Xi)∪ {a}, see Proof of Proposition 6.6) the isomorphism

φ by specifying the coset uΣp such that u sends p to x.

Hence, it follows that we need the definability of the set {(x, uΣp) : x = u(p)} in Γ.

However, the latter is the following:

{(x, uΣp) : x = u(p)}

= {(x, (u1, u2..., um)/ ∼ Σp) : x = u1u2...um(p)}

= {(x, u1, u2, ..., um, k1, k2, ..., km) : x = u1u2...um(p), k1k2...km(p) = p}.

The latter is then parameter definable in Γ, using parameters from Y .

�

Lemma 6.9 There exists a uniform definable isomorphism between Σ and its re-

interpretation in itself.

Proof: We start from Σ ∈ G and re-interpret it in itself: we first interpret (see Lemma

6.5) Γ = i−1(Σ) as the coset geometry Γ′ := (Σ/Σp,Σ/Σl, {(uΣp, uΣl) : u ∈ Σ}), and then

we re-interpret (see Proposition 6.6) Σ as Σ′ = Uα1 ×Uα2 × ...×Uαm/ ∼, where pIl is the

fundamental flag of Γ as in Lemma 6.5.

With the notation of Definition 5.5, we have an isomorphism f?g : Σ −→ Σ′. Put

f?g = ψ. Let now u ∈ Σ. Then, we define ψ(u) = u′, where for each sΣp of Γ′, we

have u′(sΣp) = usΣp. Here, u′ is an element in U ′
α1
× ... × U ′

αm
/ ∼, and the U ′

αi
, for

i = 1, 2, ...,m, are the root groups of Γ′. Hence, we can define the set {(u, u′) : ψ(u) = u′}

in Σ. �
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Proof of Theorem 6.3: Let C be any class of finite Moufang polygons, and let G be its

associated class of finite little projective groups. Then, the UPI bi-interpretability between

C and G follows immediately from Lemma 6.5 and Proposition 6.6, and also Lemmas 6.8

and 6.9. �

7 Strongness of the UPI bi-interpretation

At this stage, using Theorems 6.1 and 6.3, we know that each class of finite Moufang

polygons is a semiweak asymptotic class (see Definition 5.3); i.e., we know that dimension

and measure are definable, but not yet that they are 0-definable. We address this issue in

this section.

The next theorem may have independent interest, but it is essentially a small extension

of results from [16]. We postpone its proof till after the proof of Theorem 7.2. It will be

used to verify condition (ii) of Lemma 5.11, for the UPI bi-interpretation between a class

of finite Moufang polygons and the associated class of finite little projective groups. In

the following, by Lgroup we mean the language of the first-order theory of groups, i.e.,

Lgroup = {·,−1 , c}, where ·, −1 and c stand for, respectively, group operation, inverse

group operation and group identity symbols.

Theorem 7.1 For any fixed family G of finite simple Chevalley groups, or finite twisted

groups of fixed Lie type and Lie rank, there exists an Lgroup-sentence σ such that for any

finite group G, we have G ∈ G if and only if G |= σ.

Theorem 7.2 (i) The UPI bi-interpretation between C and G of Theorem 6.3 is strong,

on the C-side.

(ii) Each family of finite Moufang polygons forms an asymptotic class.

Proof: First, note that (ii) follows from (i). For (i), we need to show conditions (i) and

(ii) of Lemma 5.11, with C being a class of finite Moufang polygons and D the associated
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class G of finite little projective groups, as in Theorem 6.3. To see that Lemma 5.11(i)

holds, note that if Σ ∈ G with Σ = i(Γ), then in the interpretation of Γ in Σ, the points

and lines of Γ are interpreted as cosets of certain maximal parabolic subgroups. There

are two cases: Γ is either a self-dual, i.e., dual of itself (see Definition 2.4), or a non

self-dual generalized polygon. Suppose first that the class C has self-dual members, and

let the maximal parabolic subgroups P1 and P2, say, be defined over āz, by the formulas

φ1(ū, āz) and φ2(ū, āz), respectively. Then it suffices for ζ(āz) to say that φ1(x̄, āz) and

φ2(x̄, āz) are non-conjugate maximal parabolics, and that the corresponding geometry on

the cosets is a generalized polygon. Consider now the non self-dual case. Let Pi and φi, for

i = 1, 2, as before. Then the two conjugacy classes PΣ
1 and PΣ

2 are definable, and invariant

under Aut(Σ) (even for saturated elementary extensions of Σ); for if there was g ∈ Aut(Σ)

interchanging PΣ
1 and PΣ

2 , this would give an isomorphism from the corresponding polygon

to its dual. Thus, e.g. by a compactness argument, PΣ
1 and PΣ

2 are 0-definable, i.e., there

are formulas ψi(x̄, z̄), for i = 1, 2, such that:

H ∈ PΣ
1 ⇐⇒ H = ψ1(Σ, b̄1) for some b̄1 ∈ Σl(z̄)

H ∈ PΣ
2 ⇐⇒ H = ψ2(Σ, b̄2) for some b̄2 ∈ Σl(z̄).

Then ζ(āz) should express that φ1(Σ, āz) = ψ1(Σ, b̄1) for some b̄1, φ2(Σ, āz) = ψ2(Σ, b̄2) for

some b̄2, and that the coset geometry of φ1(Σ, āz) and φ2(Σ, āz) is a generalized polygon.

For Lemma 5.11(ii), let σ be the sentence, as in Theorem 7.1, picking out (among finite

groups) the members of G; by Remark 6.2, these may be assumed simple. Then, η(ȳ) just

says that the little projective group may be interpreted as in Proposition 6.6, and that it

is simple and satisfies σ. �

Proof of Theorem 7.1: The proof is based on [16], where it is shown that each family G

of finite simple groups is UPI bi-interpretable (in fact UPD bi-interpretable) with a family

of finite (difference) fields F ; we already quoted this as Theorem 6.1(i).

Let G = G(K) be a finite group from the class G, where K denotes the underlying finite

(difference) field of G (i.e., for PSLn(q) it is Fq, for PSUn(q) - a subgroup of PSLn(q2) - it
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is Fq, for 2F4 it is (F22k+1 , x 7→ x2k
), and so on). We want the sentence σ to describe the

following:

(a) a uniform definition of a copy K? of K with K? ⊆ G;

(b) σ should express that K? ∈ F ;

(c) a uniform construction of a copy G?? of G, living on a power of G, whose underlying

field is exactly K?;

(d) a uniform definition of an isomorphism G −→ G??.

Since all the cases above are extensively treated in [16], we do not give any detail. Each

part of (a)-(d) is dealt in [16] in two different contexts, namely the untwisted case and

the twisted case; also, in the twisted case there are two sub-cases: groups with roots of

the same length and groups with roots of different lengths, i.e., Suzuki and Ree groups

(see, in particular, Discussion 5.4.1 of [16]). For the Suzuki and Ree groups (i.e., 2B2, 2G2

and 2F4) difference fields, rather than pure fields, are required (i.e., (F22k+1 , x 7→ x2k
) and

(F32k+1 , x 7→ x3k
)).

We first do the argument excluding the case of Suzuki and Ree groups, since for the other

families, all but finitely many finite fields arise. Part (a), for the uniform interpretation of

K ∈ F in G, comes all from sections 5.2.4, 5.3.4 and 5.4 of [16]. Let θ(x̄, ȳ) be a formula,

and let āy be a tuple of G such that θ(x̄, āy) interprets K, as well its field structure (field

addition and multiplication), and denote by K? such interpretation of K in G. For part

(b), Ryten showed that the class {K? : K ∈ F} is cofinite in the class D of all finite

fields. Thus, the formula θ(x̄, ȳ) can be augmented to a formula θ? = θ?(x̄, ȳ) interpreting

exactly the members of F , i.e., ruling out members of D\F by listing their isomorphic

types. We can now collect the following: there exists a formula η(ȳ) such that if āy ∈ G,

for some G ∈ G, then η(āy) holds if and only if θ?(x̄, āy) interprets a member of F , with

η(ȳ) being as in Lemma 5.11(ii). This gives (a) and (b). Part (c) is given by Lemmas 5.2.5

and 5.3.5, and Corollary 5.4.3(i) of [16]. Finally, for part (d), Lemma 4.3.10 of [16] tells us

how to extend the uniform Lgroup-definable, with parameters, isomorphism between K?

and K???, i.e., the re-interpretation of K? in itself, to the whole of G, so that we have a

uniformly parameter Lgroup-definable isomorphism between G and G??.
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Let now τ be a sentence which axiomatizes the appropriate class F of finite fields. Also,

let φ?(ū, z̄) interpret G?? in K?, as in part (c). Finally, let ψ(x̄, ū, v̄) be a formula defining

an isomorphism from G to G??, as in part (d). Then, σ is a first order sentence expressing:

∃ȳ∃z̄∃v̄(θ?(G, y) |= τ ∧ φ?(ū, z̄) ∧ ψ(x̄, ū, v̄))

This is first order expressible; for example, θ? |= τ is expressed by relativising the

quantifiers in τ to {x̄ ∈ G : θ?(x̄, ȳ) holds }.

A small modification of this argument handles the Suzuki and Ree groups. For

example, the class of finite difference fields (F22k+1 , x 7→ x2k
) can be characterized among

all finite difference fields (F, σ), by expressing that char(F ) = 2 and σ2◦ Frob = id.

�

8 Supersimple Moufang polygons

In this section, we extend the methods used above to prove Theorem 8.2 (which yields

Theorem 1.2). In the following, by Γ(K) we mean a good polygon (see Definition 3.6)

coordinatized over K, in the informal meaning of Remark 2.10; likewise, we denote by

Σ(K) the little projective group associated to Γ(K). Notice that, despite Sections 6 and

7, in Theorem 8.2 below Σ(K) is not necessarily assumed to be finite; thus, the group

structures associated to good Moufang polygons are not necessarily those listed in Table

6.1. However, Σ(K) is, essentially (up to the kernel of the action of Σ(K) on Γ(K)), an

extension of the group of K-rational points of a simple algebraic group of relative rank

2, a classical group of rank 2, or a group of mixed type; see, for instance, Chapter 41 of [18].

Corollary 8.1 Let C be any family of finite Moufang polygons as in Theorem 6.3, and

let F be the corresponding class of finite (difference) fields associated to C. Then, C is

UPI bi-interpretable with F .
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Proof: This follows directly from Theorems 6.1(i) and 7.2(i). �

Theorem 8.2 Let Γ(K) be a good Moufang generalized n-polygon, and let also Σ(K) be

its associated little projective group. Then:

(i) Γ(K) and Σ(K) are bi-interpretable (with parameters).

In particular:

(ii) Γ(K) is supersimple finite rank if and only if Σ(K) is supersimple finite rank.

(iii) If Γ(K) is measurable, then K is weakly measurable.

(iv) If Σ(K) is measurable, then Γ(K) is weakly measurable.

(v) If Σ(K) is pseudofinite, then Γ(K) is measurable.

Remark 8.3 ‘Weakly measurable’ can probably be strengthened in (iii) and (iv) to

measurable, using an analogue of Definition 5.8. The work has not been done.

Proof of Theorem 8.2: First, notice that (ii) and (iv) follow from (i). For (iii), we

can appeal to Lemmas 3.3, 3.4 and 4.9 of [11], where it is shown how to define the

field K from a Moufang polygon Γ(K), provided that some conditions on the associated

little projective group Σ(K) are satisfied; since all good Moufang polygons satisfy the

assumptions required by these lemmas, part (iii) follows. Moreover, in the particular case

of a Ree-Tits octagon O(K,σ), in the end of Chapter 3 of [7] is shown that the difference

field (K,σ) is interpretable in Γ(K); hence, in (iii), if Γ(K) is a measurable Ree-Tits

octagon, then (K,σ) is weakly measurable.

For (v), if Σ(K) is pseudofinite, then by the main theorem of [21] it is elementarily

equivalent to a non-principal ultraproduct of a class G of either finite Chevalley groups

of a fixed type or finite twisted groups of fixed Lie type and Lie rank. Thus, by the

Los theorem, the associated good Moufang polygon Γ(K) interpreted in Σ(K) is also

elementarily equivalent to a non-principal ultraproduct of a class C of finite structures;

namely, C is a class of finite Moufang polygons. Therefore, C is an asymptotic class and,
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by Theorem 7.2 and Proposition 5.4, Γ(K) is measurable.

To prove (i), let Γ = Γ(K) be a good Moufang polygon and let Σ = Σ(K) be its

corresponding little projective group. For the interpretation of Σ in Γ, it is done exactly

as in the proof of Proposition 6.6, by appealing to results from [3]. To interpret Γ in

Σ, we also follow [3]. Here we also have to distinguish between the self-dual and non

self-dual cases, but this is addressed exactly as in the proof of Theorem 7.2(i); thus,

we omit it and refer back to Theorem 7.2 for the details about the non self-dual case.

First, in Γ, let A = (x0, x1, ..., x2n−1) be a fixed ordinary polygon, α = (x0, x1, ..., xn)

a fixed root in A, and x0Ix2n−1 a fixed flag in α. Also, let B be the stabilizer (in

Σ) of x0Ix2n−1 and N be the setwise stabilizer (in Σ) of A; then, as in 33.4 of [18],

Σ has a BN-pair. With the notation of [3], let now P := {PJ = UJLJ : J ⊆ I} be

the set of maximal parabolic subgroups of Σ containing B. Then, by Section 8.5 of

[3], the parabolics PJ are uniformly definable. Hence, since every parabolic subgroup

is an intersection of finitely many maximal parabolics, it follows that we can interpret

Γ from P; see Section 15.5 of [3] (it deals with buildings, but by Proposition 2.2 the

Tits rank 2 case gives exactly the construction of generalized polygons). Finally, for the

definability of the isomorphisms g?f and f?g (with the notation of Definition 5.5) we can

essentially proceed as done in Lemmas 6.8 and 6.9 for the finite case; we omit the details.

�
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