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Abstract

This paper reduces the Zilber-Pink conjecture to proving that
weakly optimal, resp. optimal, points which are maximal with
respect to inclusion among weakly optimal, resp. optimal, proper
subvarieties are not Zariski dense.
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Introduct ion

Prereguisites and Setup

Let 2 bhe any connected mixed Shimura variety over € and let ¥ be some
irreducible Csubvariety of 2. Endow 2 with both the special pregeometry
and the weakly special pregeometry, then define both the weakly and
the special defect: [CassaniTDC] explains this in details.

Relevant History and Related Literature

Simpler cases of the THEOREM appeared originally in [HP16:0M] (for
abelian varieties and powers of the level two modular curve), then
in [DR18:HAS] (for pure Shimura varieties), where they reduce the
finiteness of weakly optimal subvarieties (called “geodesic optimal”
in [HP16:0M]) to the finiteness of the corresponding points.

I provide a twofold improvement over these results from the literature
by using many of the same ingredients as in the literature, coupled
with some extra “inductive” machinery:

(=) the THEOREM is formulated for mixed Shimura varieties,

(=) the THEOREM reguires weaker conditions and provides stronger con-
clusions.

The THEOREM is somewhat similar to [BD21:DC], which was proven inde-
pendently and simultaneously.

Preliminary Construction and statement of the LEMMA

Denote by {}z and by {}2s the weakly special closure and the special
closure, respectively. Denote

S22 (V) = dimiViza - dim(V), &2(V) = dimi{Viz - dim(V).

Fix any connected mixed Shimura 2, any irreducible Csubvariety V of 2,
and any two morphisms of connected mixed Shimura varieties 27«2’ :r and
m:2’» 2 where m is a Shimura immersion.

e’ «2’° %2

Suppose the weakly special closure {A}z of some irreducible Csubvariety
A of ¥ arises as some irreducible Ccomponent of the fibre mr-1(ns) for
some nae 2.

Pick any irreducible component &’ of m1{A)nr-1(ns) whose dimension
eguals dim{m 2 {A)nr-1(ns)). Fix ¥’ any irreducible Ccomponent of m~1 (V)
which contains A&’. Denote by V’ the Zariski closure of r{(V¥’), as in
the diagrams below:



Ve 3oy,

LEMMA. Then ¥’ contains ns and is such that the following happens: fix
some nonempty open therefore dense U'o in ¥ such that r restricted
to r-1(U'o)n ¥ 1is flat. Denote by g the restriction of r to V' . If A
is not included in H=<m(¥'\g~1(U’o)):2ar and is weakly optimal, resp.
optimal, in ¥ then ns is weakly optimal, resp. optimal, in ¥’ {(which
I defined above as being the Zariski closure of V).

COROLLARY C.

Fix any connected mixed Shimura 2, any irreducible Csubvariety ¥V of 2,
and any two morphisms of connected mixed Shimura varieties 2”7«<2’:0 and
[i]:2’> 2 where 1 is a Shimura immersion.

Then there’s some finite set of indexes J which correspond to all
irreducible components of [i]-1(V), and for each j in J denote by q
the restriction of o to ¥ (j). Also denote some other finite col-
lection of parameters 1 which correspond to all irreducible compo-
nents of <[i] (¥’ \g~1(U'0))2ar (same notations as in the LEMMA), which
parametrise varieties Vo (j),Ho (1(j)) which correspond respectively to
the Zariski closures of the image by o, and to the irreducible com-
ponents of KWo(j) as defined in the LEMMA, such that for any no (in
the image of o) and for any irreducible subvariety A of ¥ such that
the weakly special closure of A arises as irreducible component of
[i]o1(ns), there’s some j in J which verifies both the following:

(1x) Y7 (j) contains no,

(2x%) if A is not included in any of the HWe(i(j)) for this particular
j, then ne is weakly optimal, resp. optimal, in Y. 7(j) whenever A is
weakly optimal, resp. optimal, in V.

Theorem and Applications

We aim at applying pointcounting technigues and therefore chase state-
ments that relate the distribution of weakly optimal, resp. optimal,
subvarieties to the corresponding points.

Let 2 be any connected mixed Shimura variety and let ¥V be any irreducible
subvariety. Denote the following statements:

ZP(2,¥ k,p): only finitely many weakly optimal, resp. optimal, subva-
rieties A of ¥V whose difference in dimension between the weakly special
closure and the special closure is bounded by p, and dim A=k, arise.

MZZP(2,¥,0,p): the weakly optimal, resp. optimal, points & of V
which verify &za(P)=p, which are maximal with respect to inclusion
among weakly optimal, resp. optimal, proper subvarieties of ¥V whose



difference in dimension bhetween the weakly special closure and the
special closure is bounded by p, are not Zariski dense in V.

MP(2,¥,0,p): the weakly optimal, resp. optimal, points A of ¥ which
verify &2a(P)=p, which are maximal with respect to inclusion among
weakly optimal, resp. optimal, proper subvarieties of ¥V whose differ-
ence in dimension between the weakly special closure and the special
closure is bounded by p, are finitely many in V.

Apply to V both [CassaniTDC] and the “finiteness statement a la Bo-
gomolov” and denote by o the morphisms of connected mixed Shimura
varieties which correspond to the finite set Z from [G20:MAS, 8.2]
(which only depend on ¥): it follows from [G17:A0MS, S5.6] that the
weakly special closure {A}z of any weakly optimal, resp. optimal,
irreducible Csubvariety A of ¥, appears as the irreducible Ccomponent
of [ilo~1(ns) for some ns and for some o, where [i] is the morphism of
connected mixed Shimura varieties which corresponds to the inclusion
of connected mixed Shimura data, and o i1s the morphism of connected
mixed Shimura varieties which corresponds to some guotient of connected
mixed Shimura data. All in all, [i] is a Shimura immersion and o is
a Shimura quotient. It follows from Pink’s Thesis, 3.8, that [i] is
finite and closed and preserves dimensions.

For each o in Z construct the i,j and 2”7 as in COROLLARY C (they depend
on o!). Denote by “B” any positive dimensional proper weakly optimal,
resp. optimal, subvariety of ¥ which 1is maximal with respect to
inclusion. Denote by 2 the components of the Zariski closure of weakly
optimal, resp. optimal, points A of ¥V which are maximal with respect
to inclusion among weakly optimal, resp. optimal, proper subvarieties
of V.

THEOREM. Remark that there’s finitely many o,1,Jj by construction. As-
sume the following for all B,Z2 and for all o such that dim 2”<dim 2,
and their corresponding 1i,j:

(%1) Z2P{2,Ho(1(j)),k,p),
(x2) 2P(27,¥.7(j),0,p),
(x3) 2P(2,dim B,9,p),
(x4) MP(2,2,0,p).

Then 2P(2,V,k,p) holds.

The statement of the THEOREM suggests proving 2P(2,¥,k,p) by recursion,
where the hypothesis of the recursion is represented by the four stars
above and the inductive step is

(k5) M22P(2,V,0,p).
In fact:



(kkl) Wo(1(J)) 1is always proper in ¥,
(xx2) dim 27<dim 2 by construction,
(xx3) each B is proper in ¥,

(xk4) each 2 is proper in ¥ by (%5).

COROLLARY. A. Suppose that MZ2Z2P holds recursively for all objects
appearing in the statement of the THEOREM (remark further that 27 is
obtained as a guotient of 2!): then 2P(2,V,k,p) holds.

Denote the following statement, which clearly alludes to Pink’s Con-
jecture:

PINKx(2,V,0,p): suppose that &za(V)>k. Then the points A& of V¥ which
verify &za(A)=p, which are maximal with respect to inclusion among
all weakly optimal, resp. optimal, proper subvarieties of V whose
difference in dimension bhetween the weakly special closure and the
special closure is bounded by p, are not Zariski dense in V. Then:

COROLLARY. B. You can replace M22P(2,V,0,p) by PINKx(2,V,0,p) in the
statement of COROLLARY A.

The proof of THEOREM is achieved essentially via the “finiteness state-
ment & la Bogomolov” as was proven by [G20:MAS], which says essentially
that the weakly special closures of all weakly optimal subvarieties of
YV arise from finitely many families of weakly special subvarieties. 0On
the other hand it must be noted that such “finiteness statement a la
Bogomolov” does not provide any additional information when points are
concerned: it follows that “Bogomolov” cannot be exploited further to
obtain any refined version of the THEOREM above. As a consequence the
THEOREM is essentially eguivalent to the “finiteness statement a la
Bogomolov” and this paper essentially represents a study of the latter.

Some attentive reader might wonder 1if anything is special about the
order by which all intermediate results are shown in the proof before
the THEOREM is achieved. Khy is the order as follows?

(%) Reduction to points,
(%) reduction to maximality with respect to inclusion,
(%) reuction to Zariski nondensity,

Reducing to points first improves the exposition and does not affect
the result. After reducing to points, the order between reduction to
maximality and reduction to Zariski nondensity is indifferent: their
application yields the same result.



Limitations and Areas of Further Investigation

The LEMMA (and COROLLARY C) which is part of the proof of the THEOREM
can bhe probably made stronger, for example by adding to the properties
“(x%)” in the statement, also the following:

(%) weakly optimal proper subvariety of ¥ and maximal with respect to
inclusion among weakly optimal proper subvarieties of VY.

However, given the strategy I decided to follow in the proof, this
would be a useless complication.

I apply the Finiteness Statement to weakly optimal subvarieties A
because this is how it was proven by [G29:MAS]. However it’s apparent
(at least from the statement) that, when operating the reduction to
points, the morphisms which Bogomolov produces factor out the weakly
special closure of A. This explains why only the difference between the
special defect and the weakly special defect appears in the statement
of my THEOREM. This bhehaviour is structural because only weakly special
subvarieties arise in family. It follows that it would make much more
sense to twist the concept of weak optimality so that 1t neglects
whatever lies inside the weakly special closure: only then one would
obtain the most natural Bogomolov statement. For instance this can
be obtained as follows: replace in the definition of weak optimality
dim{Arz by dim{A}zs and dim A& by dim{A}z. Incidentally this frees us
up of the constant copresence of weak optimality and optimality. Then
only the following will be needed:

(%) prove Bogomolov for this new concept of (weak) optimality,
(%) formulate all statements and conjectures as in this paper,

() replay the proofs in this paper to get the corresponding results.
Notice that this new notion coincides with the old one for points, the
same way that “whose weakly special closure is special” coincides with
“special” for points.

Perhaps the theorems achieved this way bear less interest hecause the
literature focuses on the classic notions of weak optimality and of
optimality. However only by using this new notion then one can really
express Bogomolov in its natural context.

Acknowledgments

Some technicalities in the proof of the LEMMA were overcome following
a fruitful conversation with G. A. Dill.



Proot of the THEOREM

Proof of the THEOREM by using COROLLARY C

For the sake of clarity, in my proof I will ignore the hypothesis and
the conclusion about the bound on the difference in dimension between
the weakly special defect and the special defect: however the version
stated in THEOREM follows imediately by replaying this proof and using
both that the image of some special subvariety by any morphism of
connected mixed Shimura varieties is special, together with the fact
that all irreducible components of the preimage of a special subvariety
by some Shimura morphism are special.

Reduction to weakly optimal, resp. optimal, points in ¥

Keep the same notations as in the statement. Apply COROLLARY C. to
each oeZ: it follows that for each weakly optimal, resp. optimal,
irreducible subvariety A of V¥ there is some of(A) in Z and some ne which
verify the hypotheses of COROLLARY C: therefore there’s some j in J{(o)
which verifies the conclusions of the COROLLARY C.

Now consider the collection of all weakly optimal, resp. optimal, irre-
ducible subvarieties A of ¥V such that there’s no o,j,ne in Z,J(o),o(V)
which verify (1x) from the conclusion of COROLLARY C and such that neo
is weakly optimal, resp. optimal, in ¥7(j). Then it must be that
each such A is included in Wo(i(j)) for some i,Jj,0. This is where (x1)
originates from.

Now focus on the remaining weakly optimal, resp. optimal, irreducible
subvarieties A of V. Remark that for any such A, there’s by definition
some o,J,ne in Z,J(o),o0(VY) which verify (1x) from COROLLARY C and ne
is weakly optimal, resp. optimal, in V.7 (j).

Remark now that each weakly optimal, resp. optimal, irreducible sub-
variety A of ¥V is automatically an irreducible Ccomponent of {A!z n V,
resp, {Arzas n ¥V, therefore finiteness of some collection of {A)z, resp.
{A*za, 1S eguivalent to finiteness of the corresponding collection of
A’s. This is where (x2) originates from.

Reduction to maximality with respect to inclusion in V

Now concentrate on weakly optimal, resp. optimal, points in ¥ (which
certainly cover the remaining A’s): pick any such point P. Fix some B
(same notations as in the statement of the THEOREM) containing P. Then
P is weakly optimal, resp. optimal, for B. Every such B we already
came across in the section above. This is where (x3) originates from.



Further reduction from finiteness to Zariskl nondensity

Now focus on weakly optimal, resp. optimal, points A& of ¥V which are
maximal with respect to inclusion among weakly optimal, resp. optimal,
proper subvarieties of ¥ (which certainly cover the remaining A’s)
and denote by 2 any irreducible component of their Zariski closure.
Because the number of such 2 is always finite, then this is where (x4)
originates from.

The THEOREM is proven.

Proof of the LEMMA

I will use the symbol *x as a place holder: replacing x by 2 yields
the proof for the property “weakly optimal”, whereas replacing it by
2a yields the proof for the property “optimal”.

He need to fix in the following specific order:

(¢) some irreducible Csubvariety A&’ of m~1(V) which verifies the fol-
lowing properties which are needed for the proof:

(¢0¢¢9) A’ is such that m(A’) dominates A,

(¢¢¢¢¢¢) {A’Y2 1is an irreducible component of r-1(ns) and mi{A’}z is
included in {A}z.

(¢¢0¢) A’ 1is contained in the fibre of r over na.

As suggested by the statement, choose the following A&’: consider
mi{A)nr-1(ns) and remark that because m restricted to r-1(ns) surjects
onto A& (because {Arz is included in mr-1{ns) ) then m(mi{A)nr-1{na))
= A.

Pick some irreducible component &’ of mi{(A)nr-1(ns) whose dimension
eguals dim(m 2{A)nr-1(ns)): A’ c mi(Y) and is irreducible by defini-
tion, let’s verify that such &’ is suitable.

Because m 1is finite and closed and therefore it preserves dimensions,
then dim m(A’) = dim A" = dim m~2(A)nr-1(ns) = dim m(m1(A)nr-1(ns))
= dim A: it follows from the fact that m{(a’)c A (by how we defined &)
that m(A’) = A.

Suppose that ¢(A’rz (which is irreducible contained in r-1(ns) ) were
strictly contained in some component K: then dim (A2 = dim {mA’}z =
dim m¢Aa’ 2 = dim (A’ 2 < dim K = dim m(K) (because m is finite closed
and preserves dimensions) which 1is irreducible and closed because
m is finite closed and preserves dimensions, contained in mr-1i{ns)
contradiction.



Finally use again that m is finite closed and preserves dimensions:
mi&’ 2 is closed, irreducible, contained in mr-1(ns) and contains {A}z:
it follows that m¢A’iz={A)2.

(¢) After & is fixed, then we can fix the ¥ from the statement. He
need for the proof that

(¢¢<) ¥’ contains A°.
Therefore, as suggested by the statement:

fix ¥’ any irreducible Ccomponent of m-1(Y¥) which contains &’ (such
V' 1s not guaranteed to dominate ¥V but it doesn’t matter).

Denote by g the restriction of r to V', that is the map ¥’ « ¥’ . Consider
ir(V')i2ar and suppose that g-1(ns) -which is nonempty because because
Ns is contained in r{¥’ )- is not included in g~1(U’¢), which is open in
V' and nonempty since q is dominant by construction: therefore g-1(na)
is contained in the smaller dimensional ¥’ \g-1{U’s). It follows from
s00, 0000 00000 that A is contained in <m(V'\g-1(U’¢))}2ar.

To prove the statement assume that & is not contained in <m{¥’ \g=1{U’o))}2ar:
then na € U'o.

Consider any irreducible Csubvariety C of ¥’ containing ns and such
that &x(C)=&x(na), then fix B any irreducible Ccomponent of g 1(C)
which contains A’: this is made possible by <¢¢¢ and <<,

Consider g restricted to g-1{(U’on C), which is the base change of a
flat (by how we defined U’o) morphism, therefore is flat. From the two
facts that it’s the base change and is flat, it follows that

(£) every irreducible Ccomponent of g-1(U’on C) has dimension dim U’ on
C+dim ¥’ -dimV”’ (see Corollary 9.6 and Proposition 16.1 Hartshorne).

Instead it follows just from flatness of such base change (or, alter-
natively, of the original r restricted to g-1(U’¢)) that

(££) any such irreducible Ccomponent dominates Cn U’o (see EGA R.2,
Proposition 2.3.4 (ii)).

Now U’onC is open nonempty in C beause contains na, therefore dense in
C and dim U’onC= dim C. Moreover, dim B = dim B n g~1(U’6) and it’s
immediate that B n g-1(U’¢) is an irreducible Ccomponent of g-1{U’on
C). It follows from (£) and (££) both that

(-) B dominates C,
and
(kkckk) dim B = dim C + dim ¥ - dimV”.

Now use the hypothesis &x(C)=é6x(ns) and (-) to compute



(££££) &x(B)=( dim¢Biyx— dim<{C*+ SkC+( dim C- dim B)={ dim<¢B}*x-
dim{q(B) »x+&k(ns)+( dim{g(B):Z2ar-dim B).

Now:
(+) {g(B)*=q¢B}* by [CassaniTDC],

(+) &x(na) = dim <A¥xk- dim <¢A¥z because for *=2 it’s clear. Hhereas
for * the special defect then dim <&’} - dim <¢ns? = dim g1 (na) n
(A’ y(by the LEMMA 1in [CassaniTDC]) =z dim {A'}z (by ¢ece, <¢ee) = dim
{Arz (by ¢¢eee),

(+) dim<g(B):2ar - dim B = dim V’- dim ¥’ follows from (k) ,

(+) dim¢Bi* - dim q¢B}* = dim{A}2 because dimi{Atz = dim{f’ 2 (hy ¢¢s009)
= dim {B)x -dim g¢B}x (by the fibre dimension theorem and because by
s00¢¢¢ {A'¥2 1S an irreducible component of r-1(ns), therefore is an
irreducible component of the fibre of the restriction to {B}* over na).

(+) we have by (¢¢eee), (¢ee¢) and because na € U'o that dim A = dim
A Y

Now plug all the bulletpoints above in (££££): it follows that &x(B) =
&k(A). Now use that m is finite closed therefore preserves dimensions,
and that A 1s weakly optimal, resp. optimal, to conclude that m(B)
= fi. Because B contains A&’, then B=A’ otherwise dim B } dim & then
dim & = dim m(B) (by what we just proved) =dim B (because m is finite
closed therefore preserves dimensions) } dim A’ = dim m(A’) (because m
is finite closed therefore preserves dimensions) =z dim A (by <¢e<ee),
It follows that na = {g(A’)i2ar (by ¢<<<) = {g(B)i2ar = C (hy ).
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