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Abstract. A continuous open finite-to-one surjection f preserves
Cantor rank. If the domain of f is a Hausdorff compact space,
Cantor degree variations are bounded by the maximal size of the
finite fibres. If the fibres are infinite, we show inequalities involving
the maximal and minimal rank of the fibres. A closed preorder on a
denumerable Hausdorff compact space is the intersection of clopen
preoders. We compute the Cantor rank of a cartesian product and
build a semiring where the Cantor derivative is a derivation.

The Cantor derivative was introduced by Georg Cantor in 1872 to
derivate sets of convergence of trigonometric series [1]. In Model The-
ory, one century later, Cantor-Bendixson rank gave birth to Morley
rank in ω-stable theories [6] and to Cantor rank in small ones. We shall
specify some properties of this rank, well known by logicians when they
refer to Morley rank. We first notice that the Cantor derivative of a
topological sum and cartesian product is well-behaved. A continuous
open finite-to-one surjection f preserves Cantor rank. Moreover, if the
domain of f is a Hausdorff compact space, Cantor degree variations
can be bounded by the maximal size of the finite fibres. If the fibres
are infinite, there are still inequalities involving the maximal and mini-
mal rank of the fibres. Thanks to Cantor rank, a closed preorder on a
countable Hausdorff compact space can be shown to be the intersection
of clopen preoders. This was almost noticed in [7, 4]. We build an or-
dered division semiring in which the Cantor derivative is a derivation.
We consider when this semiring can be given a lattice structure. We
finish by applying the results to first order theories having countably
many types. This gives a new proof of a Theorem in [5] computing
Cantor rank and degree over an algebraic tuple.

Most of section 1 and 2 must be well known. However, I could not
find any reference except [3]. Proposition 5, Theorem 14 and Proposi-
tion 16 along with section 3, 4 and most of 5 seem to be new.
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1. Rank of a denumerable Polish space

Let X be a Hausdorff topological space. We shall write Ac for the
complement of a subset A of X. A point is isolated if it is an open set.
Otherwise, it is a limit point. We shall write X ′ for the derivative of X,
that is the set of limit points with the induced topology. It is a closed
subset. X is perfect if all points are limit points. Define a descending
chain of closed subsets Xα inductively by setting :

X0 = X
Xα+1 =

(
Xα

)′
for a successor ordinal

Xλ =
⋂
α<λ

Xα for a limit ordinal λ

The perfect kernel of X is the intersection of every Xα when α runs
over ordinals, written X∞. A Polish space is a separable, completely
metrisable topological space. We refer to [3] for more details about
Polish spaces. Polish spaces can be partitioned into a perfect kernel and
a countable rest. This is the well known Cantor-Bendixson Theorem :

Theorem 1. (Cantor-Bendixson) Let X be a Polish space. There is a
unique decomposition of X of the form P ∪ C where P is perfect and
C countable open.

Therefore, if X is a denumerable Polish space, its perfect kernel is
empty. We say that X is ranked by Cantor-Bendixson rank, and call
its Cantor-Bendixson rank the least ordinal β such that Xβ is empty.
If T denotes the topology on X, we write CB(X,T ) or CB(X) for
the rank of X. Define the Cantor-Bendixson rank of a point x in X,
written CB(x,X) or CB(x), by the maximal ordinal α such that Xα

contains x. We have

CB(X) = sup{CB(x) : x ∈ X}

Note that x has rank at least α + 1 if and only if it is a limit point of
points having rank at least α. Moreover, x is isolated from points of
greater rank. Define the Cantor rank CB(O) of every open set O in
X as the Cantor rank of the induced topological space O. We have

CB(x) = min{CB(O) : x ∈ O, O open set}

Proof. Let α be the rank of x. An open set O isolates x from points of
greater ranks, so Oα+1 is empty. Conversely, show inductively that if x
is in Xα and O is an open set containing x, then x is in Oα too. If x is
in Xα+1, then x is a limit point in Xα. If x is not a limit point in Oα,
then it is a limit point in

(
Oc

)α
, so x belongs to Oc, a contradiction. �

Therefore, the rank of a point does not depend on the neighbourhood
in which it is calculated. We shall write CB(x) for it. Note that the
rank decreases when the topology gets finer :
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Proposition 2. Let X be a set, T1 ⊂ T2 two topologies on X. Then
CB(X,T1) is smaller than CB(X,T2).

Given a family of topological spaces Ai indexed by I, we write
⊕

I Ai

for their direct sum, that is their disjoint union with the topology de-
fined as follows : an open set of

⊕
I Ai is any set the intersection of

which with every Ai is open in Ai. Recall that any ordinal can be
uniquely written as ωα1 ·n1 + . . .+ωαk ·nk where α1, . . . , αk is a strictly
decreasing chain of ordinals and n1, . . . , nk are integers. This is known
as Cantor normal form. If α and β are two ordinals with normal form
ωα1 ·m1 + . . .+ ωαk ·mk and ωα1 · n1 + . . .+ ωαk · nk respectively, their
Cantor sum α⊕ β is defined by :

α⊕ β = ωα1 · (m1 + n1) + . . .+ ωαk · (mk + nk)

See [2] for more explanations. Let us now compute the derivative and
rank of a union, direct sum and cartesian product of topological spaces :

Proposition 3. Let A and B be subsets of a topological space X.

1) If A ⊂ B, then A′ ⊂ B′, and CB(A) ≤ CB(B).
2)

(
A ∪B

)α
= Aα ∪Bα for all α.

3) CB(A ∪B) = max{CB(A), CB(B)}
Proof. 1) If x is isolated in B, it is in A. 2) After 1), A′∪B′ ⊂ (A∪B)′.
Conversely, if U and V isolate x in A and B respectively, then U ∩ V
isolates x in A ∪B, and (A ∪B)′ ⊂ A′ ∪B′. Finish inductively. �

Proposition 4. Let (Ai)i∈I be topological spaces.

1)
( ⊕

i∈I

Ai

)α
=

⊕
i∈I

Aα
i for every ordinal α.

2) CB
( ⊕

i∈I

Ai

)
= sup{CB(Ai) : i ∈ I}

Proof. 1) After the previous Proposition,
⊕

i∈I A
′
i ⊂ (

⊕
Ai)
′. Con-

versely, if x is a limit point in
⊕

i∈I Ai, it belongs to a unique Ai in
which it cannot be isolated. Finish inductively. 2) Follows from 1). �

Proposition 5. Let A and B be non empty topological spaces.

1)
(
A×B

)α
=

⋃
β⊕γ=α

Aβ ×Bγ for all ordinal α.

2) CB(A)⊕ CB(B) ≤ CB(A×B) + 1 ≤ CB(A)⊕ CB(B) + 1

Proof. 1) If a is isolated in A, and b in B, so is (a, b) in A × B, and
(A× B)′c ⊃ A′c × B′c. Conversely, if a, b is isolated in A× B, there is
pair U, V of open sets in A and B respectively such that U ×V isolates
a, b. So U isolates a, V isolates b, and (A×B)′c ⊂ A′c×B′c. Therefore,(

A×B
)′

= A′ ×B ∪ A×B′

Inductively, suppose that for an ordinal α, we have(
A×B

)α
=

⋃
β⊕γ=α

Aβ ×Bγ
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Note that the union runs over a finite set. Then(
A×B

)α+1
=

( ⋃
β⊕γ=α

Aβ ×Bγ
)′

=
⋃

β⊕γ=α

(
Aβ ×Bγ

)′
⋃

β⊕γ=α

(
Aβ+1 ×Bγ ∪ Aβ ×Bγ+1

)
=

⋃
β⊕γ=α+1

Aβ ×Bγ

2) follows from 1). �

Finite-to-one continuous open surjections preserve Cantor rank :

Proposition 6. Let X and Y be topological spaces, and f a map from
X to Y . Then,

1) If f is an open surjection, CB(X) ≥ CB(Y ).
2) If f continuous and finite-to-one, CB(X) ≤ CB(Y ).

Proof. 1) We Show f−1(Y ′) ⊂ f−1(Y )′. Let y be a limit point in Y and
x a preimage of y. For every neighbourhood O of x, f(O) is an infinite
neighbourhood of y, so O is infinite. Inductively, we have f−1(Y α) ⊂
f−1(Y )α. As f is onto, Y α ⊂ f(Xα). 2) Let x be a limit point in X and
O a neighbourhood of f(x). The neighbourhood f−1(O) of x is infinite,
and so are f(f−1(O)) and O. Inductively, f(Xα) ⊂ f(X)α. �

2. Degree of a denumerable compact space

If X is a denumerable compact space, its rank is a successor ordinal
α+1. Write CB∗(X) for α. Moreover, Xα is a finite set ; we call Cantor
degree of X its cardinal, written dCB(X). Among denumerable Polish
spaces, Cantor degree characterises compact spaces :

Proposition 7. Let X be a Hausdorff space ranked by Cantor rank.
If every closed subset of X has a finite Cantor degree, then X is a
compact space.

Proof. Let (Fj)j∈J be a family of closed sets with empty intersection.
Among finite intersections of Fj, choose one, namely I, having minimal
rank and degree. If I is not empty, choose x in I with maximal rank.
As the intersection of all Fj is empty, there exists Fj missing x, so
either the rank or the degree of I ∩ Fj decreases. �

Corollary 8. Let X be a second countable Hausdorff space. X is
ranked by Cantor rank and every closed set has a finite degree if and
only if X is a denumerable compact.

Proof. If every closed set of X has a Cantor degree, then X is compact.
As X is ranked by Cantor rank, X embeds in its open basis. �

Corollary 9. Let A and B be two compact spaces, then

CB∗(A×B) = CB∗(A)⊕ CB∗(B)
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Remark 10. One can inductively build a set having Cantor rank α. Let
X1 be the subset of fractions 1/n in Q together with zero. X1 has only
one limit point so has CB∗ rank one. If α is a successor’s successor,
take Xα×X1 for Xα+1. For a limit ordinal λ, set Xλ the sum

⊕
α<λXα,

which is locally compact, and Xλ+1 the one-point compactification of
Xλ. Note that Xα has same cardinality as α.

Let us compute the degree of a disjoint union and cartesian product :

Proposition 11. Let X and Y be topological spaces, A and B two
disjoint subsets in X having same Cantor rank. Then,

1) dCB(A ∪B) = dCB(A) + dCB(B)
2) dCB(X × Y ) = dCB(X) · dCB(Y )

Proof. 1) Let α be the rank of A. The sets Aα and Bα are disjoint, so

dCB(A ∪B) = |Aα ∪Bα| = |Aα|+ |Bα|
2) Let α be the rank of X and β the rank of Y .

dCB(X × Y ) =
∣∣∣ ⋃

γ⊕δ=α⊕β

Xγ ×Xδ
∣∣∣ = |Xα × Y β| = |Xα| · |Y β|

�

In compact Hausdorff spaces, Cantor rank and degree have the fol-
lowing characterisation, well known by logicians :

Proposition 12. Let X be a denumerable Hausdorff compact space.

1) CB(X) ≥ α + 1 if and only if there are infinitely many open
sets (Oi)i≥1 of rank at least α with CB(Oi ∩ Oj) < α for all
i 6= j.

2) The degree of X is the greatest number d of open sets O1, . . . , Od

having rank CB(X) with CB(Oi ∩Oj) < CB(X) for all i 6= j.

Proof. 1) Let (Oi)i≥1 be a sequence of open sets having rank at least
α with CB(Oi ∩Oj) < α for all i 6= j. The sets Oα

i are nonempty and
disjoint, so Xα is infinite, and has a limit point. Conversely, if Xα+1

is not empty, Xα has infinitely many isolated points xi isolated by Oi

respectively. So CB(Oi) ≥ α, and CB(Oi ∩Oj) < α for all i 6= j.
2) Let O1, . . . , Od be open sets in X having rank α with small ranked
intersections. The sets Oα

i are disjoint and nonempty so d ≤ dCB(X).
Conversely, let x1, . . . , xd be an enumeration of Xα. One can find
open sets Oi containing xi respectively, but no xj if j 6= i. Then,
CB(Oi ∩Oj) < α. The set Oα

i contains xi, so CB(Oi) ≥ α. �

Remark 13. If X is a denumerable compact, X is a metric space and
has a clopen basis. Replacing each Oi in the previous Proposition by
a basis clopen set included in Oi, which does not affect the rank of Oi,
we can assume that every Oi is clopen. Replacing inductively each Oi

by the clopen set Oi \ (Oi ∩
⋃

j<iOj), which does not affect the rank of
Oi either, one can assume that the sets Oi are disjoint.
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Theorem 14. Let X and Y be Hausdorff compact spaces. If f is a
continuous open n-to-one surjection from X to Y , then X and Y have
the same rank and

dCB(Y ) ≤ dCB(X) ≤ n · dCB(Y )

Proof. IfO1, . . . Od are d open sets in Y having maximal rank with small
ranked intersection, the open sets f−1(O1), · · · , f−1(Od) in X have
maximal rank and small rank intersection, so dCB(X) ≥ dCB(Y ).
Conversely, let d be the degree of Y , and O0, . . . , Od·n a sequence of
d ·n+ 1 open sets in X with maximal rank and small intersection. For
every subset I of [0, d · n] having at least n+ 1 points, the intersection⋂

i∈I f(Oα
i ) is empty, so there exist d + 1 disjoint subsets I0, . . . , Id of

[0, d · n] such that for all j, the set
⋂

i∈Ij
f(Oα

i ) is nonempty, and Ij is

maximal with this property. Let us write Vj for
⋂

i∈Ij
f(Oi). Every Vj

is an open set in Y , with the same rank as Y , and Vj ∩ Vk has small
rank for k 6= j in [0, d], a contradiction with Y having degree d. �

Let X be a topological space, R an equivalence relation on X. For
every subset A of X, set R−1(A) the union of classes of R intersecting
A. R is continuous if for every open set O in X, R−1(O) is an open
set in X. Recall that R is continuous if and only if the quotient map
from X onto X/R is open.

Corollary 15. Let X be a Hausdorff compact space and R a continuous
equivalence relation on X every class of which is finite.

1) CB(X) = CB(X/R)
2) If every class of R has cardinality at most n,

dCB(X) ≤ dCB(X/R) ≤ n · dCB(X)

Proof. The quotient map is n-to-one, continuous and open. �

Proposition 16. Let X, Y be compact spaces, f a map from X to Y .

1) If f is open, surjective, with fibres having CB∗ rank at least α,
then CB(X) ≥ α+ CB(Y ).

2) If f is continuous with fibres having CB∗ rank at most α, then
α+ CB(Y ) ≥ CB(X).

Proof. 1) We show f(X)β ⊂ f(Xα+β) for all β. The space X is the
union of the fibres Fi, and

⋃
Fα

i ⊂ Xα, so f(X) equals f(Xα). It was
shown in Proposition 6 that f(X)β ⊂ f(Xβ) for all β. So

f(X)β = f(Xα)β ⊂ f((Xα)β) = f(Xα+β)

2) We show that f(Xα+β) ⊂ f(X)β for all β. As Xα is in
⋃
Fα

i , the
restriction of f to Xα is a continuous finite-to-one map, and

f(Xα+β) = f((Xα)β) ⊂ f(Xα)β

�
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3. Closed preorders in a countable compact space

Let X be a topological space and R a binary relation on X. We say
that R is closed, respectively open or clopen if the set of pairs being
related by R is a closed, respectively an open or clopen set in X ×X.
Note that an open equivalence relation is also continuous. A preorder
on X is a reflexive transitive binary relation. The following Proposition
is inspired by [7, 4].

Proposition 17. Let X be a countable Hausdorff compact space, and
R closed preorder on X. Then R is the intersection of clopen preorders.

Proof. X has a clopen basis. Set F to be the closed set of tuples in
X × X related by R. If x and y are not related by R, there exists
a basic open set O1 × O2 outside F containing the tuple (x, y) ; the
set O1 ∩ O2 is empty as R is reflexive. We choose O1 and O2 such
that (O1∪O2)

c have minimal Cantor rank and degree, and write Y for
(O1 ∪ O2)

c. We show that Y is empty ; otherwise, let y be in Y with
maximal rank. If (O1×{y})∩F and ({y}×O2)∩F are both nonempty,
as R is transitive, (O1×O2)∩F is also nonempty, a contradiction. We
may assume (O1×{y})∩F to be empty. The set O1×{y} is contained
in the open set F c. So we can choose a basic open set Q2 containing y
with O1×Q2 ⊂ F . But O1× (Q2∪O2) is outside F . So (O1∪O2∪Q2)

c

equals Y c ∩ Qc
2, which misses y, a contradiction with the degree of Y

being minimal. So Y is empty, X equals O1 ∪ O2, and O1 × Oc
1 ⊂ F c.

Therefore, F ⊂ (X × O1) ∪ (Oc
1 × X), and aRb implies aRx,yb where

Rx,y is the preorder defined by

aRx,yb ⇐⇒
(
a ∈ O1 ⇒ b ∈ O1

)
We have shown that aRb is equivalent to

∧
xRy∈F c aRx,yb. �

4. A word on Cantor’s derivative

Let X be a Hausdorff topological space, 2X its power set. With the
union law, 2X is a semigroup. According to Proposition 3, the function
mapping a subset of X to its derivative is linear. Should 2X be closed
under cartesian product, Proposition 5 would be a Leibniz formula.
Let us recall that limit points and derivated spaces have both been in-
troduced by G. Cantor to derivate sets of convergence of trigonometric
series [1]. Cantor named them Grenzpunkt and abgeleitete Punktmenge
respectively, and already wrote P ′ or P (1) for the first derivative of a
set of points P . We do not know whether he had in mind a Leibniz for-
mula or not, it is puzzling however that the class of topological spaces
can naturally be turned into a semiring where Cantor’s derivative is
actually a derivation.

We call ω-embedding an open continuous finite-to-one map between
topological spaces. We write Topω for the category of topological spaces
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the arrows of which are the ω-embeddings. The relation

A ≤ B if there exists an ω-embedding of A in B

is a partial order on Topω. We shall write A ≡ B to mean A ≤ B and
B ≥ A. It is an equivalence relation.

Proposition 18. Let A and B be topological spaces. A ⊕ B is the
unique least C modulo ≡ such that A ≤ C and B ≤ C.

Proof. If A and B embed in C via f and g say, then A⊕B embeds in
C via the map mapping a ∈ A to f(a) and b ∈ B to g(b). Conversely,
A and B both embed in A⊕B. �

We call topological union of A and B the equivalence class of A⊕B
modulo ≡, written A ∨ B. So A ∨ B ≡ B ∨ A, and A × B ≡ B × A.
The laws ⊕ and × survive modulo ≡ :

Proposition 19. Let A, B and C be topological spaces.

1) If A ≤ B, then A ∨ C ≤ B ∨ C.
2) (A ∨B) ∨ C ≡ A ∨ (B ∨ C)
3) If A ≤ B, then A× C ≤ B × C.
4) A× (B ∨ C) ≡ (A×B) ∨ (A× C)

Remark 20. If A,B ⊂ X, then A ∪B ≡ A⊕B and A⊕ A ≡ A.

Proof. 1) B and C embed in B∨C, so A and C too, and A∨C embeds
in B ∨ C. 2) Follows from the definition of ∨. 3) is clear. 4) After the
previous assertions,
A×(B∨C) ≡ A×(B⊕C) ≡ (A×B)⊕(A×C) ≡ (A×B)∨(A×C) �

For every space A, set D(A) the subspace of A minus its finite open
sets. As A is Hausdorff, D(A) equals A′. The map D together with its
properties survives modulo ≡ :

Proposition 21. Let A and B be topological spaces.

1) If A ≤ B, then D(A) ≤ D(B)
2) D(A ∨B) ≡ D(A) ∨D(B)
3) D(A×B) ≡ (D(A)×B) ∨ (A×D(B)))

Proof. 1) If A embeds in B via f , A′ embeds in B′ via its restriction.
2) (A ∨B)′ ≡ (A⊕B)′ ≡ A′ ⊕B′ ≡ A′ ∨B′
3) (A×B)′ ≡ (A′ ×B) ∪ (A×B′) ≡ (A′ ×B) ∨ (A×B′) �

Theorem 22. For every subclass C of Topω closed under finite disjoint
union and cartesian product, the class (C/≡,∨,×, D, ∅) is a commuta-
tive differential division semiring.

If C contains a finite set, write 1 for the class of this set modulo ≡.
The semiring C is then unitary.
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Remark 23. A condensation point is any point all the neighbourhoods
of which are uncountable. Mapping a topological space to the subspace
of its condensation points makes sense modulo ≡, defining a derivation
on Topω/≡.

Consider the class Pol0 of denumerable Polish spaces and the subclass
K0 of denumerable compact spaces.

Corollary 24. (Pol0/≡,∨,×, D) is a commutative differential division
semiring.

Corollary 25. The map CB∗ from (K0/ ≡,≤,∨,×) to (ω1,≤, sup,⊕)
is a morphism of ordered semirings.

Let C be a category. We write ≤C for the preorder associated to the
notion of arrows in C, and ≡C for the symmetrised equivalence relation.
Let (Ai, fij)i≤j∈I be an inductive system. If it exists, the inductive limit
lim
−→

Ai of this system is, up to equivalence modulo ≡C, the least upper

bound of the Ai. We say that the category C is closed under bounded
inductive limits if every inductive system (Ai, fij) in C bounded by
some B in C has an inductive limit in C.

The former paragraphs gave us a notion of least upper bound com-
patible with the sum. The next ones will give a notion of greatest lower
bound. Let C be a category every two objects A, B of which have a
least upper bound A ∨ B. Suppose that C is closed under projective
and bounded inductive limits.

Proposition 26. Let A and B be in C. There is a unique greatest
lower bound of A and B up to equivalence modulo ≡C.

Proof. Set D the set of lower bounds of both A and B, and show that
(D,≤C) is inductive. Let Ci an increasing chain of objects in D. The
inductive limit lim

−→
Ci is a greater bound of this chain, and still a lower

bound of A and B after the universal property. The existence follows
from Zorn’s Lemma. As for uniqueness : Let C and C ′ two greater
lower bounds of A and B, then C ∨C ′ is a lower bound of A and B as
C ∨ C ′ is the least upper bound of C and C ′. But C and C ′ are lower
bounds of C ∨ C ′. So C ≡C (C ∨ C ′) ≡C C ′ by maximality of C and
C ′. �

We shall write A ∧B for this greastest lower bound.

Proposition 27. Let A, B, C and D be in C.
1) If A ≤C C and B ≤C D, then A ∧B ≤C C ∧D.
2) A ∧ (B ∧ C) ≡C (A ∧B) ∧ C
3) A ∧ (B ∨ C) ≥C (A ∧B) ∨ (A ∧ C)

Proof. 1) A ∧B embeds in A and B, so in C and in D too. As C ∧D
is maximal with this property, A ∧B embeds in C ∧D.
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2) Follows from the very definition of ∧.
3) A ∧ B ≤ A and A ∧ C ≤ A, so (A ∧ B) ∨ (A ∧ C) ≤ A. Similarly,
(A∧B)∨ (A∧C) ≤ B ∨C. So (A∧B)∨ (A∧C) ≤ A∧ (B ∨C). �

Proposition 28. Suppose (C/≡C,≤,∧,∨) is a distributive lattice. Let
A ≤C B. Modulo ≡C, there is a unique least C such that A ∨ C ≡C B.

Proof. We show that the set D of classes of C ≤ B mod ≡C so that
A ∨C ≥C B is inductive. Let Ci be an increasing chain in C such that
B ≤C A∨Ci. The projective limit lim

←−
Ci is a lower bound belonging to

D. By Zorn’s Lemma, there is a smaller C such that A ∨ C ≥C B. As
for uniqueness : if C and C ′ are two smaller elements with A∨C ≥C B
and A ∨ C ′ ≥C B, then A ∨ (C ∧ C ′) ≡C (A ∨ C) ∧ (A ∨ C ′) ≥C B, so
C ≡C (C ∧ C ′) ≡C C ′ by minimality of C and C ′. �

5. Rank of a denumerable space of types

Eventually, we apply the results to the space of types of a first order
small theory. Let L be a countable language, T a L-theory, a a finite
tuple. Write Sn(a) the set of n-types with parameters in a, with the
topology associated to the clopen sets [φ(x1, ..., xn)] where φ(x1, ..., xn)
runs over formulae in the language L∪{x1, ..., xn}∪ a. It is a compact
space. Suppose T is small, that is Sn(∅) is countable for all n. As a is
finite, Sn(a) is countable : every type p has an ordinal rank CBa(p).
We call Cantor rank over a of a formula φ with parameters in a, the
Cantor-Bendixson rank of the open set [φ] in Sn(a). The Cantor degree
of φ is the Cantor-Bendixson degree of [φ]. Write dCBa(φ). For a
formula φ, we have

CB(φ) = max{CB(p) : p ∈ [φ]}
CB(p) = min{CB(ψ) : ψ ∈ p}

According to the previous pages, we have the following well known
statements :

Corollary 29. Let C and D be two a-definable sets.

1) CBa(D) < ℵ1

2) If C ⊂ D, then CBa(C) ≤ CBa(D)
3) CBa(C ∪D) = max{CBa(C), CBa(D)}
4) If C and D are disjoint with the same Cantor rank,

dCBa(C ∪D) = dCBa(C) + dCBa(D)

5) CBa(D) ≥ α + 1 if and only if there are infinitely many a-
definable disjoint sets D with Cantor rank at least α.

6) The degree of D is the greastest number d of a-definable disjoint
sets in D having same Cantor rank as D.

Proposition 30. Let A and B be definable sets, and f a definable map
from A to B. Then f induces a map f̃ from [A] to [B] and
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1) f̃ is continuous and open.

2) If f is finite-to-one, so is f̃ .

3) If f is onto, so is f̃ .

4) If g is a definable map from C to A, then f̃ ◦ g = f̃ ◦ g̃.
5) If h = idA, then h̃ = id[A].

Proof. For a type p, let a be a realisation, and f̃(p) be tp(f(a)). Note

that f̃(p) does not depend on a. 1) Let [D] be a basic open set in [B],

f̃−1([D]) = {tp(a) ∈ [A] : f(a) ∈ D} = [f−1(D)]

So f̃ is continuous, and open as the space is compact with clopen
basis. 2) If f(a) |= tp(f(b)), then there is an automorphism σ such
that f(σ(a)) equals f(b), so σ(a) is in the fibre of f(b). �

This shows that there is a covariant functor ∼ from the category
of definable sets in a structure M , with definable maps as arrows, to
the category of topological spaces together with continuous open maps.
The functor ∼ preserves finite-to-one maps, inducing a a functor from
the subcategory of definable sets with finite-to-one maps to Topω.

Corollary 31. Let C and D be a-definable sets, f a a-definable map
from C to D.

1) If f is onto, CBa(C) ≥ CBa(D).
2) If f is finite-to-one, CBa(D) ≥ CBa(C).
3) If f is n-to-one, onto, then C and D have same Cantor rank

over a, and

dCBa(D) ≤ dCBa(C) ≤ n · dCBa(D)

Corollary 32. Let X be definable without parameters, a an algebraic
tuple having degree n, then

1) CBa(X) = CB∅(X)
2) dCB∅(X) ≤ dCBa(X) ≤ n · dCB∅(X)

Proof. Write Ra the relation on S(X, a) ”being conjugated under the
action of the group of automorphisms fixing a pointwise”. It is a con-
tinuous equivalence relation every class of which has at most n ele-
ments. On the other hand, S(X, ∅) is homeomorphic to S(X/Ra, a),
so CB∅(X) equals CBa(X/Ra). Apply Corollary 15. �
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