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ABSTRACT. Let Cj be the cyclic group of order k and N' = (R, +, -, <,...) an o-minimal
expansion of a real closed field R. Let X be a definably connected definable set with
a free definable Cj-action. Assume that there exists a positive integer n such that
Hy(X;Z/kZ) =0for 1 < g <n. IfY is a definable set with a free definable Cy-action
such that Hy41(Y/Ck,Z/kZ) = 0, then there is no definable Cy-map from X to Y. We
also prove the topological version of this definable version.

1. INTRODUCTION

Let C} be the cyclic group of order k. Let S™ be the n-dimensional unit sphere of
the (n + 1)-dimensional Euclidean space R™™! with the antipodal Cs-action. From the
viewpoint of transformation groups, the classical Borsuk-Ulam theorem states that if there
exists a continuous Cy-map from S™ to S™, then n < m. There are several equivalent
statements of it and many related generalizations (e.g. [2], [12], [13], [14], [16]).

The classical Borsuk-Ulam theorem is generalized to topological spaces by several au-
thors. For example, J.W. Walker [20], Pedro L. Q Pergher, Denise de Mattos and Edivaldo
L. dos Santos [17].

Several Cy-versions of the classical Borsuk-Ulam theorem are discussed in [10] and [7].
The following two theorems are Cy-versions for topological spaces which are generaliza-
tions of [20], [17], [10] and [7].

Theorem 1.1. Let X be an arcwise connected free Cy-space and Y a Hausdorff free C-
space. If there exists a positive integer n such that Hy(X;Z/kZ) = 0 for 1 < ¢ <n and
H, 1 (Y/Cy; ZJKZ) = 0, then there is no continuous Ci-map from X to Y. Here this
homology means the singular homology.

Let k be a prime. For a topological space Y, let D = {(y1,...,yx) €Y X --- x Y|y =
.-+ = yg} be the diagonal and write Y* =Y x --- x Y — D admitting the free Cy-action
defined by g(yb Y2, - - 7yk> = (yku Yis - - 73/]?*1)7 where g genera’tes Ck

Theorem 1.2. Let k be a prime and X an arcwise connected free Cy-space. If there exists
a positive integer n such that Hy(X;Z/kZ) =0 for 1 < ¢ <n andY is a Hausdorff free
Cr-space with Hy, 1 (Y*/Cy; Z/k7Z) = 0, then every continuous map f : X — Y has a
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Ci-coincidence point, that is, a point x such that f(x) = f(gz), where g is a generator of
Cy.

The purpose of this paper is to consider the definable versions of Theorem 1.1 and
Theorem 1.2

Let N = (R,+,+,<,...) be an o-minimal expansion of a real closed field R. Any
definable category is a generalization of the semialgebraic category. Many results in the
semialgebraic geometry hold in the o-minimal setting and there exist uncountably many o-
minimal expansions of the standard structure of the field R of real numbers ([18]). See also
[4], [6], [11] for examples and constructions of o-minimal structures. General references
on them are [3], [5], [19]. In this paper “definable” means “definable with parameters in
N7, everything is considered in A/ and each definable map is continuous unless otherwise
stated.

The singular definable homology is introduced in [21].

Theorem 1.3 (Definable Borsuk-Ulam Theorem). Let X be a definably connected de-
finable set with a free definable Cy-action. If there exists a positive integer n such that
H(X;Z/kZ) =0 for 1 <q <mn andY is a definable set with a free definable Cy-action
such that H,1(Y/Cy; Z/kZ) = 0, then there is no definable Cy-map from X toY. Here
this homology means the singular definable homology.

If Y is a definable set with a definable Cy-action, then by 10.2.18 [3], Y/C} is a definable
set and the orbit map 7m : Y — Y/Cy is definable. If dimY < n, then by 4.1.6 [3]
dimY/C, <n. Thus if dimY <n, then H,,11(Y/Cy;Z/kZ) = 0.

Let S™ denote the n-dimensional unit sphere of R"**.

Corollary 1.4. (1) Suppose that k > 3 and that Cj, acts on S*™* and S*™*1 definably
and freely. If there exists a definable Cy-map f : S*™+ — S*+L then m < n.

(2) If S™ and S™ have free definable Cy-actions and there exists a definable Co-map
f:8™— 8" then m < n.

Corollary 1.4 is a generalization of 1.1 [15].

Theorem 1.5. Let k be a prime and X a definably connected definable set with a free de-
finable Cy-action. Assume that there exists a positive integer n such that H,(X;Z/kZ) =0
for1 < q<n. IfY is a definable set with H,1(Y*/Cx; Z/kZ) = 0, then every definable
map f: X — Y has a Cy-coincidence point, that is, a point x such that f(z) = f(gz),
where g is a generator of Cl.

2. PROOF OF RESULTS

We first prove Theorem 1.3. Let Z/kZ[C}| denote the group ring of Cy, over Z/kZ. For
any ¢ € NU{0}, the g-dimensional chain group C,(X;Z/kZ) has the standard Ci-action.
Then this action induces Z/kZ[Cy]-action on Cy(X;Z/kZ).

Let g be a generator of Cy, « = 1+ g+ ---+¢**1, and 3 = 1 — g. Then by def-
inition af = fa = 0, for every ¢, aCy(X;Z/kZ) and SC,(X;Z/kZ) are Z]/KkZ|Cy)-
submodules of Cy(X;Z/kZ) and a0 = Oa, 0 = 03, where 0 is the boundary operator
of {Cy(X;Z/KZ)}. Therefore {aCy(X;Z/kZ)} and {SC,(X;Z/kZ)} are subchain com-
plexes of {C (X Z/kZ)}.
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Proposition 2.1. For every q, the following two sequences are exact.

0 — aCy(X; Z/KZ) - Co(X: Z/KZ) D BC,(X; Z/KZ) — 0,
0 — BCL(X:;Z/KZ) L C(X;Z/KZ) S aCy(X; Z/KT) — 0,

where i,j denote the inclusions and « (resp. () stands for the multiplication of « (resp.
B)-

Proof. Since foi=0,a07=0,Im ¢ C Ker #,Im 5 C Ker a.

Let s =3, Zf:_ol n;ig'c; € Ker 3, where g is a generator of Cy. If [ #1' and 0 < i <
k—1, then g'o; # op . Since B3s = 0, for any 7, Zf:_ol n;ig'(1—g)o; = 0. Thus for every 7,

Zf;ll (nji — nj(i_l))giai + (nj() - nj(k_l))aj = 0. Hence for each j, Njo = MNj1 =+ = Njk—1-
We set n; = njo(=nj = --- =nr_1). Then We have s =" n;(1+g+---+ g ")o; =
a ) ;njo; € Imi. Therefore Ker 8 = Im i.

Let s =3, Zi:ol njig'o; € Ker a. Since as = 3 (njo+- -+ 1)) (14 - +g" Vo, =

0, njo + -+ +njp-1) = 0.

Thus s = > (njo(1 — g) + (njo +1;1)g(1 — g) + (njo + 11 +nj2)g*(1 — g) + - - - + (njo +
nj + -+ nju—2)g" 2(1 — g))o; € Im j. Therefore Ker a = Im j. O

Let HY(X,Z/kZ) (resp. HJ(X,Z/kZ)) denote the homology group induced from the
chain complex {aCy(X;Z/kZ)} (resp. {BC(X;Z/kZ)}).

By Proposition 2.1, we have the following theorem.

Theorem 2.2. The following two sequences are exact.

= HY(XGZ/KZ) 5 Hy(X;2/kZ) 5 HP (X, 2/k2) & HE (X Z/KZ) — ...

P Hqﬁ(X;Z/kZ) I, H,(X;Z/kZ) % H(X;Z/KZ) o Hf_l(X;Z/kZ) — ..
In particular, if p = 2, then a = 3 and
- — HN(X;Z/KZ) Rk H,(X;Z/kZ) = H (X, Z/KZ) % HY (X5 Z/KZ) — ...

18 exact.

Definable fiber bundles are introduced in [§].

Proposition 2.3. Let X be a definable set with a free definable Cy-action. Then (X, ,
X/C, Cy) is a principal definable Cy-fiber bundle, where m : X — X /C} denotes the orbit
map. In particular m: X — X/Cy is a definable covering map.

Let p: E — X be a definable map. We say that p has the definable homotopy li fting
property if for any definable set Y, each definable homotopy A : Y x [0,1] — X and a
definable map F' : Y — FE such that po F(y) = h(y,0) for all y € Y, there exists a
definable homotopy H : Y x [0,1] — E such that po H = h and H(y,0) = F(y) for all
yevy.
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Theorem 2.4 (4.10 [1]). Every definable covering map has the definable homotopy lifting
property.

Corollary 2.5. Let X be a definable set with a free definable Cy-action. Then the orbit
map 7 : X — X/Cy has the definable homotopy lifting property.

Proposition 2.6. Under the assumptions in Theorem 1.3, for every q, HX(Y,Z/kZ) =
H,(Y/Ch Z,/KZ).

Proof. We first show that the map o : C(Y;Z/kZ) — C(Y;Z/kZ) and the map
7. C(Y;Z/kZ) — C(Y/Cy; Z/KZ) induced from the orbit map 7 : Y — Y/Cj have the
same kernel. Let o be a singular s-simplex of Y. We need only to consider elements of
C(Cyro), since C(Y) = Bpojea(s)/c, C(Cro), where A(s) is the set of singular s-simplexes
of Y and A(s)/Cy is its orbit set under the induced action.

Since a(>_n;g'c) = (3. ni)a(o), a(>_nig'c) = 0 if and only if > n; = 0, and similarly
.3 nigio) = (3 ni)m oo =0 if and only if > n; = 0; therefore, both kernels coincide.

We next show that 7, is surjective; namely, there is a definable lift 7 : A®* — Y of
T A® — Y/Cy, where A® denotes the affine span of (s + 1)-points which are affine
independent. Since A® is definably contractible, there is a definable homotopy H' : A® x
[0,1] — A® such that H'(—,0) = ¢, and H'(—, 1) = idas, where ¢, denotes the constant
map whose value is eg € A®. Then the composition H = 7 o H' is a definable homotopy
from the constant map c;(,) to 7. Let 3 be a point of ¥ such that 7(yy) = 7(eo), and
¢y ¢ A° — Y the constant map whose value is yo. Since H(—,0) = 7 o ¢y, it follows
from Corollary 2.5 that there exists a definable lift H : A% x [0,1] — Y of H such that
H(—,0) = ¢,,. Then 7 := H(—,1) is a definable lift of 7 = H(—,1).

Since 7, is surjective, aC(Y;Z/kZ) and C(Y/C,;Z/kZ) are isomorphic as chain com-
plexes. Accordingly their homology groups are also isomorphic. 0

The topological version of Proposition 2.6 is studied in 5.33 [9)].

Proof of Theorem 1.3. Assume that there exists a definable Cy-map f : X — Y
under the conditions of Theorem 1.3. Since X is definably connected, f(X) is definable
connected. Hence f(X) is contained in a definably connected component of Y. Therefore
it is sufficient to prove the case where Y is definably connected.

We first prove the case where & = 2. Since f is a definable Cy-map, af; = fia.

For simplicity, we abbreviate the coefficient Z/27Z in the definable homology. By The-
orem 2.2, we have a commutative diagram

— HeL(X) B OHAX) B OHN(X) B HA(X) B HO (X) —
L I A
— HeL (V) B omHNY) B omHL,(v) B HA(Y) B HO,(Y) -
SOHNX) S omx) S oEe(x) B HN(X) B HN(X) S H(X) — 0
ol fol ol ol £l ol £l

DY ,L-Y Y

— HY(Y) S H(Y) & HPY) = HY) S H(Y)
with exact rows.

By definition, (iX); = 0 and (i¥)y = 0. Thus (o) : Ho(X) — HZ(X) and (a)), :

Ho(Y) — H§(Y) are isomorphisms. By assumption, Ho(X) = Z/2Z. Hence Hy(X) =

[e3%

= H(Y) — 0
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HO(X) = 7/2Z. Similarly, Hy(Y) = HS(Y) = Z/2Z. Since (f.)o : Ho(X) — Ho(Y)
is an isomorphism and (a;)o o (fi)o = (f*)o 0 (a)o, (fM)o @ HF(X) — Hg(Y) is an
isomorphism. Since (iX)y = 0, we have Im (9%X); = Ker (iX)y = H$(X). Thus we see
that (97 )10(f%)1 = (f*)o0(9F)1 : HX(X) — H§(Y) is a non-zero homomorphism. Hence
(f)1: HM(X) — H(Y) is a non-zero homomorphism. Using the assumptions on X, we
see that (0))y : H(X) — H{ ((X) is an isomorphism for each 1 < ¢ < n. Using this
fact and by induction, we have the claim that (fg), : HY(X) — HZ(Y) is a non-zero
homomorphism for each 0 < ¢ < n.

By Proposition 2.6, H®,,(Y) = H,1(Y/Cp). Thus H*,(Y) = 0. Hence (i}), :
H2(Y) — H,(Y) is injective and (i¥), o (f), : H*(X) — H,(Y) is a non-zero homo-
morphism.

On the other hand, since H,(X) = 0, (iY), o (f*)n = (fi)n © (iX), = 0. This contra-
diction proves the theorem in this case.

Next we prove the case where k > 2. For simplicity, we abbreviate the coefficient Z/kZ
in the definable homology. By Theorem 2.2, we have two commutative diagrams

—  HZ(X) é H,(X) ﬁ_fi HP(X) a_fi HS (X)) —
fel . 2 fel
iY 5)’ aY

— HY) = H,(Y) = HY) = H*,Y) —

—  H¥(X) i Hy(X) B HP(X) oz HS(X) = Ho(X) o HJ(X) — 0
T fel
— HY) = By B oy 5 oHY) S B0 S BN - 0
and
om0 B o) Bomx) S omex) B omt(x) -
T T
— HeL (V) B HP(Y) B H.(Y) S HAY) B HP (V) -
~EH) B mx) S oEsx) B HAX) B OH(X) S HR(X) — 0
2 fel fel 2 fel fel fol

S OHNY) B omy) S omry) B EIY) D B S HSY) — 0
with exact rows.

We easily see that (iX)g = 0 and (i¥)o = 0. Thus (6X) : Ho(X) — HY(X) and (8Y), :
Hy(Y) — HJ(Y) are isomorphisms. Since (f,)o : Ho(X) — Hy(Y') is an isomorphism, we
have the claim that (f7), : HJ(X) — HJ(Y) is an isomorphism. Similarly we see that
(f¥o : HS(X) — H§(Y) is an isomorphism from the second diagram. Since H;(X) =0
and (iX)y = 0, (9X); : H’(X) — H$(X) is an isomorphism. Similarly (8/X); : H*(X) —
Hg(X) is an isomorphism. Since (1)1 0 (f)1 = (f&)o © (35)1 and (92 )1 o (fo) =
(190 © (@)1, (/) = HE(X) — H(Y) and (f9), « HF(X) — HY(Y) are non-ero
homomorphisms. By induction, we have the claim that (f{), : H(X) — HZ(Y) and
(f%),: HY(X) — H, f (Y) are non-zero homomorphism for each 0 < ¢ < n. By Proposition
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2.6, H*,,(Y) & H,11(Y/C,). Hence HY,,(Y/Cp) = 0 and (j)), : H(Y) — H,(Y) is
injective. Therefore (), o (f?), is a non-zero homomorphism.

On the other hand, (57), o (%), = (fi)n © (jX)n = 0 because H,(X) = 0. This is a
contradiction. Therefore the proof is complete. O

Proof of Theorem 1.5. Suppose that f(x) # f(gx) for any z € X. Then the map
F: X — Y* defined by F(x) = (f(x), f(9x),..., f(¢* 'z)) is a definable Cy-map. This

contradicts Theorem 1.3. 0

Proof of Theorem 1.1 and Theorem 1.2. Similar proofs of Theorem 1.3 and Theorem

1.5 prove Theorem 1.1 and Theorem 1.2, respectively. 0
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