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GARETH BOXALL

Abstract. Generalising work from [2] and [6], we give sufficient condi-

tions for a theory TP to inherit NIP from T , where TP is an expansion

of the theory T by a unary predicate P . We apply our result to theories,

studied in [1], of the real field with a subgroup of the unit circle.

1. Introduction

We consider the situation where T is a complete one-sorted theory with
infinite models, L is the language of T , P is a new unary predicate, LP =
L ∪ {P}, M |= T and TP is the complete theory of some expansion of M
to LP . Our main result provides sufficient conditions for TP to inherit NIP
from T . It is a common generalisation of two other recent results, one of
Berenstein, Dolich and Onshuus in [2] and one of Günaydın and Hieronymi
in [6]. With respect to the result from [2], our generalisation removes the
assumption that P (M) be algebraically closed. With respect to the result
from [6], it has the advantage that it works outside the setting where T is
o-minimal. We apply our result to theories of the real field with a predicate
for a subgroup of the unit circle which were studied by Belegradek and Zilber
in [1]. Similar theories were studied by van den Dries and Günaydın in [5]
and by Berenstein, Ealy and Günaydın in [3] and shown to have NIP in [6].

This short paper has evolved over a period of time and benefited from
many useful conversations, comments and corrections for which I thank
Hans Adler, John Baldwin, Oleg Belegradek, Alexander Berenstein, Dugald
Macpherson, Boris Zilber and the referee. Above all I would like to thank
my PhD supervisor Anand Pillay for much generous assistance with this
material, including suggesting the main approach used.

2. A general result

First order logic is used throughout. The expansion of M to LP is written
as (M,P (M)). We work in LP (or TP ) except where we specifically indicate
L (or T ). For example, acl denotes algebraic closure in the sense of TP

while aclL denotes algebraic closure in the sense of T . Similarly tp(ā/B) is
a complete type in the sense of TP while tpL(ā/B) is a complete type in the
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sense of T . Otherwise our notation is fairly standard. We abbreviate A∪B
to AB and sometimes sets are treated as tuples or vice versa. For a tuple of
variables x̄ = x1...xn we abbreviate P (x1) ∧ ... ∧ P (xn) to P (x̄). Our main
result is the following.

Theorem 2.1. TP has NIP if, for any (M,P (M)) ≺ (N,P (N)) ≺ (M,P (M)) |=
TP such that all three models are sufficiently saturated, the following condi-
tions are satisfied:
(i) aclL is a pregeometry on M ,
(ii) if b ∈ M \ aclL(NP (M)) then tp(b/N) is implied by tpL(b/N) in con-
junction with the information that b /∈ aclL(NP (M)),
(iii) for every finite n ≥ 1 and f̄ ∈ P (M)n, there exist κ ≤ |M | and f̂ ∈
P (M)κ such that f̄ ⊆ f̂ and, for every f̂ ′ |= tp(f̂/M), tp(f̂ ′/N) is implied
by tpL(f̂ ′/N) in conjunction with tp(f̂ ′/M),
(iv) T has NIP .

The thinking behind condition (iii) should become clear in the light of
Sections 3 and 4. However it would probably be helpful at this stage to
mention a neater version of it which is sufficient for some interesting appli-
cations:

(iii)′ for every finite n ≥ 1 and f̄ ∈ P (M)n, tp(f̄/N) is implied by tpL(f̄/N)
in conjunction with the information that f̄ ∈ P (M)n.

Clearly when (iii)′ replaces (iii) in the assumptions of Theorem 2.1, these
assumptions are if anything strengthened. We shall comment further on
(iii)′ in Section 3.

The independence property (the negation of NIP) was introduced by She-
lah in [8]. Our proof of Theorem 2.1 uses the following fact due to a combi-
nation of Shelah and Poizat. Details are given in chapter 12 of [7].

Fact 2.2. The following conditions are equivalent and T has NIP if and
only if they are true:
(1) for every M ≺ N |= T such that both models are sufficiently saturated,
there are no more than 2|M | complete one-types q(x) over N such that q(x)
is finitely realisable in M ,
(2) for every finite n ≥ 1 and every M ≺ N |= T such that both models
are sufficiently saturated, there are no more than 2|M | complete n-types q(x̄)
over N such that q(x̄) is finitely realisable in M .

We conclude this section with a proof of Theorem 2.1. Let (M,P (M)) ≺
(N,P (N)) ≺ (M,P (M)) |= TP be such that all three models are sufficiently
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saturated. Let b ∈ M and suppose tp(b/N) is finitely realisable in M . We
show that there are no more than 2|M | choices for tp(b/N).

Case 1: Suppose b /∈ aclL(NP (M)). By condition (ii), tp(b/N) is implied
by tpL(b/N) in conjunction with the information that b /∈ aclL(NP (M)).
Clearly tpL(b/N) is finitely realisable in M . By condition (iv) and Fact
2.2(1), there are no more than 2|M | choices for tpL(b/N). Therefore there
are, in this case, no more than 2|M | choices for tp(b/N).

Case 2: Suppose b ∈ aclL(NP (M)). Let āc̄f̄ be a tuple such that ā ∈Mk,
c̄ ∈ N l and f̄ ∈ P (M)n, for some k, l, n < ω, and b ∈ aclL(āc̄f̄). We may
assume c̄ is of minimal length. Suppose c̄ is not empty (that is to say
l 6= 0). It follows by condition (i) that c̄ is not aclL-independent over ābf̄ .
Let ϕ(x̄, y, z̄, w̄) be an L-formula which is realised by ā, b, c̄, f̄ and which
witnesses the fact that c̄ is not aclL-independent over ābf̄ . Since tp(b/āc̄)
is finitely realisable in M , the formula ψ(ā, y, c̄) ≡ (∃w̄)[P (w̄)∧ϕ(ā, y, c̄, w̄)]
is realisable in M and so c̄ is not aclL-independent over MP (M). This
contradicts the minimality of the length of c̄. Therefore c̄ is empty. Therefore
b ∈ aclL(Mf̄).

Let κ and f̂ be as in condition (iii). Let p(yŵ) = r(y) ∧ s(yŵ) where
r(y) = tp(b/N) and s(yŵ) = tp(bf̂/M). Then p(yŵ) is finitely realisable
in M . By a well known argument (you extend a filter-base to an ultrafilter
and extract what you want from that), p(yŵ) extends to a complete type
p′(yŵ) over N which is finitely realisable in M . Let b′f̂ ′ |= p′(yŵ). Then
tp(b′/N) = tp(b/N), tp(f̂ ′/M) = tp(f̂/M) and b′ ∈ aclL(Mf̂ ′).

By condition (iii), tp(f̂ ′/N) is implied by tpL(f̂ ′/N) in conjunction with
tp(f̂ ′/M). Clearly tpL(f̂ ′/N) is finitely realisable in M . By condition (iv)
and Fact 2.2(2), there are no more than (2|M |)|M | choices for tpL(f̂ ′/N).
Therefore there are no more than (2|M |)|M |× (2|M |)|M | choices for tp(f̂ ′/N).
Therefore there are, in this case, no more than (2|M |)|M |× (2|M |)|M |×|M |×
|M | = 2|M | choices for tp(b/N).

Adding the two cases together, there are no more than 2|M | choices for
tp(b/N). Therefore TP has NIP, by Fact 2.2(1).

3. Comparison with results in [2] and [6]

Theorem 2.7 of [2] makes use of the notion of P -independence which is
defined as follows and makes sense provided aclL is a pregeometry.

Definition 3.1. A set A ⊆ M is said to be P -independent if A is aclL-
independent from P (M) over A ∩ P (M).

We shall also want to speak of P -tp(ā) by which we mean the information
that tells us which members of the tuple ā belong to P (M). The following
is Theorem 2.7 from [2].



4 GARETH BOXALL

Theorem 3.2. TP has NIP if, for all (M,P (M)) |= TP , the following
conditions are satisfied:
(a) aclL is a pregeometry on M ,
(b) for every finite n ≥ 1, if ā, b̄ ∈ Mn are such that both ā and b̄ are
P -independent then tp(ā) = tp(b̄) provided both tpL(ā) = tpL(b̄) and P -
tp(ā) = P -tp(b̄),
(c) aclL(P (M)) = P (M),
(d) T has NIP.

The following result establishes that Theorem 2.1 is a generalisation of
Theorem 3.2. The proof is a standard argument in this area. We include it
for the sake of completeness. Note that when we speak of P -independence
we mean with respect to the larger model (M,P (M)).

Proposition 3.3. The assumptions of Theorem 3.2 excluding (c) imply the
assumptions of Theorem 2.1 even when (iii)′ replaces (iii).

Proof. Suppose the assumptions of Theorem 3.2 are satisfied with the pos-
sible exception of (c). Let (M,P (M)) ≺ (N,P (N)) ≺ (M,P (M)) |= TP be
such that all three models are sufficiently saturated. Conditions (i) and (iv)
follow immediately. Since (N,P (N)) ≺ (M,P (M)) it is clear that, for every
finite tuple ā from N , there is a finite tuple ḡ from P (N) such that āḡ is
P -independent. Let b ∈M \ aclL(NP (M)). For every P -independent tuple
ā from N , it is clear that bā is also P -independent. It follows by condition
(b) that tp(b/N) is implied by tpL(b/N) in conjunction with the informa-
tion that b /∈ aclL(NP (M)). So condition (ii) is satisfied. Let n ≥ 1 be
finite and f̄ ∈ P (M)n. For every P -independent tuple ā from N it is clear
that f̄ ā is also P -independent. It follows by condition (b) that tp(f̄/N) is
implied by tpL(f̄/N) in conjunction with the information that f̄ ∈ P (M)n.
So condition (iii)′ is satisfied. �

Theorem 3.2 is used in [2] to show that if T has NIP and is a geometric
theory and TP is the theory of lovely pairs of models of T , as defined in [4],
then TP has NIP. This provides an interesting class of examples to which
Theorem 2.1 applies even when condition (iii) is replaced by (iii)′.

The following is Theorem 3.1 from [6].

Theorem 3.4. Suppose T is o-minimal. TP has NIP if, for all (M,P (M)) |=
TP , the following conditions are satisfied:
(e) for every finite n ≥ 1, every definable subset of P (M)n is a boolean
combination of sets of the form X ∩ Y where X is ∅-definable and Y is
L-definable,
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(f) every definable X ⊆M is definable by a boolean combination of formulas
of the form (∃z̄)[P (z̄) ∧ ϕ(x, z̄)] where ϕ(x, z̄) is an L-formula possibly with
parameters,
(g) every open definable X ⊆M is a finite union of intervals.

The following result establishes that Theorem 2.1 is a generalisation of
Theorem 3.4. The proof borrows from the argument used in [6] to prove
Theorem 3.4.

Proposition 3.5. Suppose T is o-minimal. The assumptions of Theorem
3.4 imply the assumptions of Theorem 2.1.

Proof. Suppose the assumptions of Theorem 3.4 are satisfied. Let (M,P (M)) ≺
(N,P (N)) ≺ (M,P (M)) |= TP be such that all three models are sufficiently
saturated. Conditions (i) and (iv) are well known consequences of T be-
ing o-minimal. Let b ∈ M \ aclL(NP (M)). By condition (f) and the fact
that (N,P (N)) ≺ (M,P (M)), to know tp(b/N) it is enough to know which
formulas of the form ψ(y, ā) ≡ (∃z̄)[P (z̄) ∧ ϕ(y, ā, z̄)] belong to tp(b/N),
where ϕ(ȳ, x̄, z̄) is an L-formula with no parameters and ā ∈ N |x̄|. Knowing
that b /∈ aclL(NP (M)), it is enough to consider the case where, for each
f̄ ∈ P (M)|z̄|, ϕ(y, ā, f̄) defines a possibly empty open interval in M . In this
case the set defined by ψ(y, ā) is an open subset of M . By condition (g) this
set is L-definable and so, since (N,P (N)) ≺ (M,P (M)), it is L-definable
over N . Therefore tp(b/N) is implied by tpL(b/N) in conjunction with the
information that b /∈ aclL(NP (M)). So condition (ii) is satisfied.

Let n ≥ 1 be finite and f̄ ∈ P (M)n. Let Z ⊆ P (M)n be definable
over N such that f̄ ∈ Z. By condition (e), Z is a boolean combination
of sets of the form X ∩ Y where X is ∅-definable and Y is L-definable.
Since (N,P (N)) ≺ (M,P (M)), we may assume Y is L-definable over N . It
follows that tp(f̄/N) is implied by tpL(f̄/N) in conjunction with tp(f̄/∅).
So condition (iii) is satisfied with f̂ = f̄ . �

4. An example

We now consider a class of theories studied by Belegradek and Zilber in
[1]. Let R be the real field and S the unit circle thought of as a subgroup
of the multiplicative group of the complex field C. Let Γ(R) ≤ S be a sub-
group. Let Γ(R)[n] = {gn : g ∈ Γ(R)}. Assume Γ(R) satisfies the following
three conditions:

• |Γ(R)| = ℵ0,
• |Γ(R)/Γ(R)[n]| < ℵ0 for every finite n ≥ 1,
• for every finite n ≥ 1, if X = Y ∩ Γ(R)n for some algebraic set Y ⊆ Cn
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then X is definable over parameters in the group (Γ(R), ·) by a positive
quantifier-free formula.

Let L = {<,+, ·, 0, 1, Re(g), Im(g)}g∈Γ(R) where Re(g) and Im(g) are
suggestively named constant symbols for the real part and the imaginary
part of each member of Γ(R). Let T be the resulting L-theory of R. Let
Re : S → R be the function which assigns to each member of S its real part.
Let P be a new unary predicate and LP = L ∪ {P}. Interpret P such that
P (R) = Re(Γ(R)). Let TP be the resulting LP -theory of R. Let Γ be a new
binary predicate and LΓ = L ∪ {Γ}. Let the suggestively named Γ(R) be
the interpretation of Γ in R. Let TΓ be the resulting LΓ-theory of R. As is
noted in [1], Γ(R) = Re−1(Re(Γ(R))) and so TP and TΓ are definitionally
equivalent.
TΓ was studied by Belegradek and Zilber in [1]. They gave axioms for it

and proved a near model completeness result. Expecting a positive answer,
they asked if TΓ has NIP. We use Theorem 2.1 to obtain a positive answer.

We check that TP satisfies the assumptions of Theorem 2.1. Let (M,P (M)) ≺
(N,P (N)) ≺ (M,P (M)) |= TP be such that all three models are sufficiently
saturated. Since T is an expansion by constants of the theory of real-closed
ordered fields, it is well known that conditions (i) and (iv) are satisfied. We
deduce conditions (ii) and (iii) from the results in [1]. The argument over-
laps with the reasoning in [1]. Since the predicate Γ is ∅-definable in TP we
shall feel free to use it. Re will now denote the real part map from the unit
circle in the big model (M,P (M)). So Γ(M) = Re−1(P (M)). Since L con-
tains constant symbols for all real parts and all imaginary parts of members
of Γ(R), we may assume Γ(R) ≤ Γ(M). Let Γ(M)d be the largest divisible
subgroup of Γ(M). As is observed in [1], Γ(M)d has a direct complement
H in Γ(M) such that |H| ≤ 2ℵ0 . Let Γ(M)T

d be the torsion subgroup of
Γ(M)d. Clearly |Γ(M)T

d | ≤ ℵ0. Let K = {h · g : h ∈ H and g ∈ Γ(M)T
d }.

Given the sufficient saturation of M , we may assume K ≤ Γ(M).
The following is proved in [1] by means of a back-and-forth argument.

Theorem 4.1. Let F ≤ Γ(M) be a subgroup with the following properties:
(α) F = {k · d : k ∈ K and d ∈ D} for some divisible subgroup D ≤ Γ(M),
(β) |F | ≤ 2ℵ0,
(γ) Γ(R) ≤ F .

Let n ≥ 1 be finite and let ā ∈Mn be aclL-independent over P (M). Then
tp(F ā) is implied by the information so far mentioned in conjunction with
tpL(F ā).

Let b ∈M \aclL(NP (M)). Let F ≤ Γ(N) satisfy conditions (α), (β) and
(γ) and let ā be a finite tuple from N such that ā is aclL-independent over
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P (M). It follows from Theorem 4.1 that tp(b/F ā) is implied by tpL(b/F ā)
in conjunction with the information that b /∈ aclL(NP (M)). It is then clear
that tp(b/N) is implied by tpL(b/N) in conjunction with the information
that b /∈ aclL(NP (M)). So condition (ii) is satisfied.

Let n ≥ 1 be finite and f̄ ∈ P (M)n. Let F ≤ Γ(M) satisfy conditions (α),
(β) and (γ) and be such that f̄ ⊆ Re(F ). Let F̃ ≤ Γ(N) satisfy conditions
(α), (β) and (γ) and let ā be a finite tuple from N such that ā is aclL-
independent over P (M). It is clear that the subgroup {c · d : c ∈ F and d ∈
F̃} also satisfies conditions (α), (β) and (γ) and that this is a consequence
of tp(F/M) in conjuction with tp(F̃ /M). It follows from Theorem 4.1 that
tp(F/F̃ ā) is implied by tpL(F/F̃ ā) in conjunction with tp(F/M). It is then
clear that tp(F/N) is implied by tpL(F/N) in conjunction with tp(F/M).
Clearly this remains true when F is replaced by any F ′ |= tp(F/M). So
condition (iii) is satisfied with κ ≤ 2ℵ0 and f̂ = Re(F ).
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