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Résumé. Les sous-ensembles convexes (c'est-a-dire clos par symérie) d'un groupe sont
apparus dans POIZAT 2018, motivés par FRECON 2018 dont la démonstration par contradiction
consiste en la construction d'un ensemble convexe de dimension deux ("un plan"), puis a
montrer que ce plan ne peut exister. Dans un groupe de rang de Morley fini sans involutions,
a un ensemble convexe définissable sont associées des symétries et des translations, qu'on
entreprend ici d'étudier dans l'abstrait, sans référence a un groupe qui les enveloppe ; cela
nous conduit a introduire axiomatiquement des structures que nous appelons symétrons.

Le Z*-Theorem de Glauberman permet d'élucider compleétement les symétrons finis :
chacun est isomorphe a I'ensemble des symétries associées a une partie convexe d'un groupe
fini sans involutions, qui est loin d'étre uniquement déterminée : de fait, il existe des groupes
finis non isomorphes qui ont les mémes symétries, et aussi des symétrons finis qui ne sont pas
isomorphes aux symétries d'un groupe,.

La situation est plus incertaine dans le cas des symétrons de rang de Morley fini, ou
méme algébriques, qui sont 1'objet d'étude principal de cet article. Mais bien qu'un symétron
soit une structure nettement plus faible qu'un groupe, nous pouvons étendre aux symétrons
des résultats bien connus a propos des groupes de rang de Morley fini : condition de chaine,
décomposition en composantes connexes, caractérisation des parties définissables génériques,
génération elliptique, etc.. En outre, sous 1'hypothése de la Conjecture d'Algébricité, nous
généralisons le Théoréme de Glauberman au contexte de rang de Morley fini.

Abstract. The convex subsets of a group appeared in PoizAT 2018, motivated by FRECON
2018 whose proof by contradiction consists in the construction of a convex set of dimension
two ("a plane"), and then in showing that such a plane cannot exist.

In a group of finite Morley rank without involutions, to a definable convex subset are
associated symmetries and translations, that we undertake here to study in the abstract,
without mentionning a group envelopping them. For this reason we introduce axiomatically a
certain kind of structures that we call symmetrons.

Glauberman's Z*-Theorem allows to elucidate completely the finite symmetrons: each
of them is isomorphic to the set of symmetries associated to a convex subset of a finite group
without involutions, which is far from being uniquely determined. In fact, there exist non-
isomorphic finite groups which have the same symmetries, and also finite symmetrons which
are not isomorphic to the symmetries of a group.

The situation is not so clear in the case of symmetrons of finite Morley rank, or even
algebraic, which are the main objects of study of this paper. But in spite of the fact that a
symmetron be a structure much weaker that a group, we can extend to symmetrons some
well-known results concerning groups of finite Morley rank: chain condition, decomposition
into connected components, characterisation of the generic definable subsets, elliptic
generation, etc.. Moreover, assuming the Algebricity Conjecture, we generalize Glauberman's
Theorem to the finite Morley rank context.
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1. Symétrons
Nous appelons protosymétron une structure dans le langage d'une fonction
binaire s(x,y) satisfaisant aux équations suivantes :

I. s(x,x) =x 2. s(s(x,y),y) =x 3. s(s(x,2),s(y,z)) = s(s(x,y),z) .

A y fixé, la fonction unaire s(x,y) est appelée symétrie de centre vy ,
s(x,y) ¢étant le symétrique de X par rapport a y ; nous noterons également
sy(Xx) cette symétrie de centre vy .

Les deux premieres équations signifient que chaque symétrie est une
application involutive qui fixe son centre, et la derniére que chaque symétrie est
un automorphisme de la structure ; elle équivaut, en posant u = s(x,z) , a
I'équation s(u,s(y,z)) = s((s(u,z),y)z) , qui signifie que la symétrie s, conjugue
la symétrie de centre y et la symétrie de centre s,(y) .

Par exemple l'application s(x,y) = x définit un protosymétron sur
n'importe quel ensemble, pour lequel chaque symétrie est 1'application-identité.
Plus substantiellement, n'importe quel groupe est un protosymétron pour
l'opération s(x,y) =y.x".y.

Pour une raison que nous éclaircirons plus tard, les sous-structures d'un
protosymétron S, c'est-a-dire ses sous-ensembles clos pour l'opération s(x,y) ,
sont qualifiées de sous-ensembles convexes de S .

Les permutations de S qui sont produits de deux symétries sont appelées
translations primaires, et leur ensemble est noté¢ T(S) ; T.(S) note I'ensemble
des produits de 2" symétries, et la réunion des T,(S) est 'ensemble T(S) des
translations de S ; le groupe engendré par les symétries est ST(S) = T(S) U
su. T(S) pour n'importe quelle symétrie s, , les produits d'un nombre impair de
symétries étant appellés inversions de S .

Chaque T,(S) est normal dans ST(S).

Nous dirons que T(S) est borné si T(S) = T,(S) pour n assez grand ; ce
terme est préférable a définissable, car les T,(S) ne sont pas en général inclus
naturellement dans un méme ensemble définissable.

Un protosymétron est dit injectif si chacune de ses symétries n'a qu'un seul
point fixe, c'est-a-dire s'il satisfait a 'axiome universel : s(x,y)=x = x=y.Si
a un point y du protosymétron injectif S on associe la symétrie de centre y ,
on obtient un isomorphisme entre S et l'ensemble X de ses symétries, ou
s(o,T) est interprétée par la conjugaison t.0.t de o par T, a l'intérieur du
groupe des permutations de S .

Un protosymétron injectif non réduit a un point correspond donc a la
donnée, dans un groupe, d'un ensemble d'involutions clos par conjugaison et ne
commutant pas deux-a-deux. Ce n'est pas a priori une structure bien exigeante



car, étant donnés deux points, il peut y avoir plusieurs, ou aucune, symétries qui
les échangent.

Un protosymétron est dit surjectif si, pour chaque couple de points x et
y , il existe une symétrie qui les échange.

Le protosymétron d'un groupe G est injectif si et seulement si G ne
contient pas d'involutions, c'est-a-dire pas de points d'ordre deux différents de
I'élément neutre ; en effet, a.u est un point fixe de la symétrie a.x'.a si et
seulement si u® = 1 . Il est surjectif si et seulement si tout point de G est un
carré ; en effet ax'.a=y sietseulementsi (a.x') =yx".

Si S est un protosymétron injectif, pour chacun de ses points u nous
notons S, le translat¢ s,.X =Z.s, de X par la symétrie s, ; il est formé des
translations primaires de la forme s,.s, , ou de facon équivalente sy.s, =
Su-(Su-Sw-Su) 3 Sy est une partie convexe du groupe T(S), sur laquelle
l'application y.x"'.y définit un protosymétron isomorphe & S ; elle engendre
T(S) , tout point de T,(S) étant produit de deux points de S, , puisque s,.Sy, =
Su-Su-Sy-Su-Su-Sw = (Su-Su-Sy-Su)-(Su.Sw) . Dans X, qui se compose d'involutions, les
symétries sont des conjugaisons ; mais ce qui est transporté par translation, c'est
la symétrie, pas la conjugaison !

On voit donc qu'un protosymétron injectif est isomorphe a celui défini par
une partie convexe et génératrice de son groupe de translations.

Remarque. Les groupes ST(S), ST(X) et ST(S,) sont isomorphes, mais pas
identiques. Si t =s;. ... .5, est un produit de n symétries de S, chacune agit
par conjugaison sur X , sur lequel l'action de t est t.o.t" .

Son action sur S, = s,.Z = Z.s, comme composé¢ de symétries est
$,18,.8,0.t" , ou, si on préfere l'autre coté, tT8,.8,t"'S, ; en particulier, quand t
est la symétrie s, c'est $,85,.5,0.8 = sus.(suo)'].sus . S1 t commute avec s, , il
agit par conjugaison sur S, ; c'est ainsi que s, inverse S, .

Nous appellerons symétron un protosymétron pour lequel, étant donnés x
et y, il existe un unique z tel que s(x,z) =y ; nous qualifions ce point z de
milieu de x etde y.Un symétron est a la fois injectif et surjectif.

Un simple comptage montre qu'un protosymétron surjectif fini est en fait
un symétron, et le Lemme 1(vii) qui suit affirme qu'il en est de méme d'un
protosymétron injectif fini.

Les symétries du groupe G forment un symétron si et seulement si
chaque point de G a une unique racine carrée ; nous dirons qu'un tel groupe est
médial. Nous dirons aussi qu'un groupe est sous-médial si la racine carrée y est
unique a condition d'exister, c'est-a-dire si x> =y” implique x=y.

En résumé, la donnée d'un symétron équivaut a celle, dans un groupe, d'un
ensemble X d'involutions vérifiant les deux conditions suivantes :

(1) pour tous a et b dans X, a.b.a estdans X ;
(i1) pour tous a et b dans X, il existe un unique ¢ dans X tel que c.a.c=b.



Le groupe ST(Z) est alors le quotient par son centre du groupe engendré
par X .

Elle équivaut également a la donnée d'une partie convexe X d'un groupe
telle que, pour tous a et b dans X, il existe un unique c¢ dans X tel que
ca'c=b.

Il est avantageux de décrire les symétrons dans le langage des deux
fonctions binaires m(x,y) et s(x,y) (milieu et symétrie) ; bien siir, chacune
permet de définir l'autre, mais il faut faire ainsi si nous voulons une classe
équationelle, et la stabilité par sous-structure. Dans ce langage, un symétron sera
donc une structure satisfaisant aux cinq équations suivantes :

I. m(x,x)=x ; 2. m(x,y)=m(y,X) ; 3. sxm(x,y)) =y ; 4. m(xs(x,y) =y ;
5. s(m(x,y),z) = m(s(x,z),5(y,2)) .

Les équations 3 et 4 signifient que, a x fixé, milieu et symétrie sont
des fonctions unaires inverses l'une de l'autre ; la premiere signifie qu'une
symétrie ne fixe que son centre, et la seconde qu'elle est involutive ; quant a la
derniére, elle signifie que chaque symétrie est un automorphisme de la structure.

Dans le langage du milieu, les axiomes de symétron sont les suivants :

m(x,x) =x ; m(x,y) =m(y,x) ; pourtous x et z il existe un unique y tel que
m(x,y) =z ; quant a la cinquiéme condition, elle est remplacée par 1'Axiome du
losange : s1 z=m(x,u) = m(y,v), alors m(m(x,u),m(y,v)) =z.

Si X est un sous-ensemble du symétron S, son symétriseur Sym(X) est
I'ensemble de ses centres de symétrie, c'est-a-dire l'ensemble des u tels que
su(X) =X ; X est convexe s'il est inclus dans son symétriseur ; Sym(X) est
lui-méme convexe, puisque la symétrie de centre su(v) est s..8,.8; . On
remarque que, si X est non vide, Sym(X) s'injecte dans X ; en effet, fixant a
dans X, a chaque y de Sym(X) nous associons x =sy(a) ; comme y estle
milieu de x etde a, il s'agit bien d'une injection.

Lemme 1. Dans un protosymétron injectif S :

(1) Deux symétries ne commutent que si elles sont egales.

(1) Une translation ou une inversion fixe le point u si et seulement si elle
commute avec S,, et alors elle normalise S, .

(i11) Il n'y a pas de translations primaires involutives (autres que l'identité).

(iv) Toute puissance d'une translation primaire est une translation primaire ;
plus précisément, si t estdans S,, t" aussi.

(v) Le centre de T(S) est formé des translations qui sont inversées par
conjugaison par chaque symétrie ; il ne contient pas d'involutions.

(vi) S est un symétron si et seulement si, pour chaque 1, chaque point de S, a
une unique racine carrée dans S, .



(vil) Si S est oméga-stable ou si T\(S) est périodique, S est un symétron ; de
plus chaque point de T\(S) a alors une unique racine carrée dans T((S), qui
est son unique racine carrée dans T(S) si ce dernier n'a pas d'involutions.

Démonstration. (i) Elles ont méme point fixe.

(i1) La conjuguée de s, par cette application est une symétrie, qui fixe u. Nous
avons remarqué que son action sur S, se fait alors par conjugaison.

(111) S1 (su.sv)2 vaut l'identité, s, et s, commutent, et sont égales.

(V) (5u.5)" = SuSw.(Su.8y)™' 5 or  sy.(s.S)"' , étant exprimé par un mot
symétrique de longueur impaire, est une symétrie.

(v) Soient t une translation centrale et s, une symétrie ; posons t' = s,.t.s, ;
comme t commute avec s,.S, , chaque symétrie s, échange t et t' ; les
symétries induisent donc un méme automorphisme involutif o sur le centre de
T(S) ; t.o(t) estfixé par o, commute avec tous les s, , et vaut donc l'identité,
si bien que o(t) = t' . Réciproquement, si la translation t est inversée par
chaque symétrie, elle commute avec chaque translation, et si de plus t=t" elle
fixe chaque point de S et vaut l'identité.

(Vi) Sy = Sy.Su.Sw Sl etseulement si S,.Sy = Syu.(Sw-Su-Sw) = (su.sw)2 )

(vil) Nous considérons a = s,.s, et l'ensemble C des points de S, qui
commutent avec tous les points de S, qui commutent avec a ; C est un
ensemble convexe commutatif qui contient a et 1, si bien que ses carrés
forment un groupe ; comme il ne contient pas d'involutions, ce groupe est
2-divisible : c'est évident dans le cas périodique, et dans le cas oméga-stable cela
vient de ce qu'il est définissable. Par conséquent, si o est dans C, on trouve f3
dans C tel que o =", si bien que, puisque o et p commutent, o' .p> est
d'ordre 2 ; comme c'est un point de T,(S), qui ne contient pas d'involutions, o
=B* ; on voit donc que C est en fait un groupe commutatif médial.

Par conséquent a posseéde une racine carrée b dans C ;si b' estune
racine carrée de a dans S,, b et b' commutent, si bien que b'b' est d'ordre
deux ; comme c'est un point de T;(S), b=Db'".

Supposons que a ait aussi une racine carrée ¢ dans S, , ce qui implique
que a estdans S, N S, ; comme a appartient a un groupe commutatif C
inclus dans S, , etaun autre C' inclusdans S, ,etque C N C' est définissable
dans le cas oméga-stable, ce dernier est 2-divisible, et I'unique racine carrée b
de a dans S, est aussi son unique racine carrée ¢ dans S, .

Comme T(S) est normal, tout point de ST(S) qui commute avec un
point a de T;(S) commute aussi avec son unique racine carrée b située dans
Ti(S) , et les autres racines carrées de a sont de la forme b.i, ou 1 est une
involution qui commute avec a . Fin

Lemme 2. Dans un symétron S :
(1) Une inversion ou translation involutive a au moins un point fixe, et si elle
n'en a qu'un seul c'est une symétrie.



(11) Si une translation primaire a un point fixe, elle vaut l'identite.

(111) Etant donné trois points u, X et y de S, il existe un unique v dans S tel
que s.5,(X)=y.

(iv) Les translations primaires sont les commutateurs des symétries ; T(S) est
le groupe deérivé de ST(S) .

(v) Le centre de T(S) est l'intersection des S, .

(vi) Une inversion ou translation inversée par s, est produit d'un point de S,
par un éléement d'ordre deux qui commute avec ce dernier.

Démonstration. (i) Soit t involutif dans ST(S) ; pour chaque x de S, t
échange x et t(x), et fixe leur milieu u ; si u est son unique point fixe, t est
¢gale a s, .

(i1) Supposons que s,.s, fixe x, dont nous notons y l'image par s, ; ces deux
symétries échangent x et y , ont toutes deux pour centre le milieu de x et de
y , et sont donc égales.

(i11) Cela signifie encore que s,.s,(y) = X, soit encore que v est le milieu de
su(y) etde x.

(V) Su.Sy = Su.(Sw-Su-Sw) = [Su-Sw] , o W est le milieude u etde v.

(v) Soient t une translation centrale et u un point de S ; comme s, inverse
t, s,.t estune involution ; si v est un de ses points fixes, s,.s,.t = s,.t.s, , soit
encore, en faisant commuter t et S,.S,, Sy.Su.Sy = 5.t , S1 bien que v estle
milieu de u et du centre t'(u) de la symétrie t'.s,.t ; l'involution s,.t, n'ayant
qu'un seul point fixe, est donc une symétrie, ce qui signifie que t est dans S, .
Réciproquement, si t est dans chaque S, , il est inversé par toutes les s, .

(vi) Si la conjugaison par s, inverse t, s,t estune involution, et a un point
fixe v, sibien que s,.s,.t = s,.t.s,, soit encore t.s,.s,.t =s.s, ; dans ST(S),
su.Sy est un point fixe de la symétrie de centre t, et t= s,.s,.1 ou =1 ;
comme S,.t.s, = t! , 1 commute avec S,.S, . Fin

Corollaire 3. Dans un symétron S :

(1) S'il n'y a pas de translations involutives, S, est l'ensemble des translations
inversées par S,, et les seules involutions de ST(S) sont les symétries.

(1) Si T(S) est sous-médial, chaque inversion a au plus un point fixe.

(111) Si T(S) est médial, chaque inversion a exactement un point fixe.

(iv) Si chaque inversion a au plus un point fixe, il n'y a pas de translations
involutives, et méme chaque translation a les mémes points fixes que son carre.

Démonstration. (i) Le premier point est conséquence du Lemme 2(vi) ; et donc
si t est une translation telle que s,.t soit involutive, t est dans S, .

(i1) & (ii1)) Soient s une symétrie et t et O deux translations ; on suppose que
5.0 est une involution qui commute avec s.t : s.t.s.0 = s.0.s.t = 0.t , soit
encore t.s.ts=t0".t.0", sibien que t.07 estracine carrée dans T(S) de t.s.t.s
(lequel est un point de T(S) qui est le carré de t.s dans ST(S) ). Par ailleurs, si



t.0" est I'unique racine carrée dans T(S) de t.s.ts, elle commute avec t.s, si
bien que (t.67)".(t.s)=0.s est une involution, ainsi que sa conjuguée s.0 .

(iv) Si la translation t échange x et t(x), de milieu u, ce sont des points fixes
de l'inversion t.s, , qui sont donc égaux. Fin

Lemme préparatoire. Soient G un groupe commutatif sans involutions et X
une partie de G contenant l'éléement neutre ; on suppose que G est périodique,
ou bien qu'il est oméga-stable et que X est définissable. Alors, si X est
convexe, ou bien s'il est clos par prise de milieu, c'est un sous-groupe de G .

Démonstration. Si X est convexe, comme il est commutatif ses carrés forment
un groupe H, qui, sous les hypothéses, est clos par extraction de I'unique racine
carrée dans G ;donc X=H.

Si X est clos par milieu, il faut montrer que X est clos par somme.

On note G additivement. Si a est dans X, a/2 l'est aussi, car c'est le
milieu de 0 et de a. Dans le cas périodique, l'intersection de X et du groupe
(fini) engendré par a est clos pour l'injection x/2 , donc aussi pour son inverse,
si bien que 2a estdans X . Si a et b sont dans X , ce dernier contient
¢galement le double de leur milieu, qui est a+b .

Dans le cas oméga-stable, comme la division par 2 est injective, et que
les types génériques (c'est-a-dire de rang de Morley maximal) de X sont en
nombre fini, si X est un point générique de X (pris dans une extension
¢lémentaire de G ), 2x l'est aussi. Si x est générique sur a, (x+a)/2, ayant
méme rang de Morley que x , est un point générique de X , ainsi que son
double x +a.Comme a x fixé la relation z=x +y établit une bijection entre
letypede z etceluide y,si z et y sont génériques indépendants, z - y est
générique. De plus tout générique est de cette forme, et si x est générique dans
X, -x l'est aussi. Soient alors a et b deux points de X et x générique sur
{a,b} ; a-x et b+ x le sont aussi, et le milieu de leurs doubles, qui vaut
atb,estdans X . Fin

Théoréme 4. On considere une partie non vide X du symétron S , et on
suppose soit que T\(S) est périodique, soit que S est oméga-stable et que X
est définissable (si S est fini, chacune des deux hypothéses est vérifiée).

(1) Si X est convexe, il est clos par prise de milieu, et égal a son symétriseur.
(11) Si X est clos par prise de milieu, il est convexe.

Démonstration. (i) & (i1) On considére u et v dans X ; dans le premier cas,
il faut voir que X contient le milieu de u et de v, et dans le deuxiéme qu'il
contient le symétrique de u par rapport a v . On remplace S par Z, puis on
translate par s, , et on note Y l'ensemble des s,.sy , ou w parcourt X ;
posant a = s,.s,, il faut voir dans le premier cas que le milieude 1 etde a,
c'est-a-dire 1'unique racine carrée de a contenue dans S, , est dans Y , et dans
le second cas que a” estdans Y .



Nous avons vu, dans la démonstration du Lemme 1(vii), que les points de
S. commutant avec tous les points de S, qui commutent avec a forment un
groupe commutatif médial C, qui est définissable dans le second cas. En posant
Z =CNY on est ramené au lemme préparatoire.

Si X convexe il est inclus dans Sym(X) ; s'il est non vide et clos par
prise de milieu, Sym(X) est inclus dans X, chacun de ses points étant au
milieu de deux points de X . Fin

Nous avons remarqué qu'un symétron peut €tre vu comme une structure
dans le langage de la fonction-milieu m(x,y) , ou bien dans celui de la fonction-
symétrie s(X,y) = sy(X) , qui sont interdéfinissables ; dans les cas favorables
considérés dans Théoréme 4, la notion de sous-structure ne dépend pas de ce
choix de langage. Mais, dans le cas général, pour obtenir un symétron induit sur
une sous-structure X de S, nous devons supposer que X est a la fois convexe
et clos par prise de milieu : nous dirons dans ce cas qu'il est un sous-symétron de
S ; T(X) estalors une section de T(S) .

Pour un symétron oméga-stable, nous obtenons la condition de chaine
descendante sur les convexes définissables ; en effet, si X est strictement inclus
dans Y , nous prenons a dans Y-X ; comme X est close par prise de milieu,
la symétrie s,(x) définit une injection définissable de X dans Y-X, si bien
que le rang de Morley de X est strictement inférieur a celui de Y , ou sinon le
degré de Morley de X est strictement inférieur a celui de Y .

2. L'exemple primordial : les groupes de rang de Morley fini sans
involutions

Soit G un groupe. Nous avons considéré les inversions et les translations
associées a son protosymétron, qui sont produits de symétries ; nous notons
ST(G) et T(G) les deux groupes qu'elles forment.

Il est par ailleurs des translations et inversions plus générales, associées a
la structure de groupe, qui sont les applications de la forme a.x'.b et axb ;
nous notons ST, (G) et Ty(G) les groupes correspondants. Un calcul rapide
montre que les inversions et translations de groupe sont des automorphismes du
protosymétron de G, dont elles permutent les parties convexes. _

Le groupe Ty(G) correspond a une action sur G du groupe GxG', ou
G' est le groupe isomorphe & G par l'application inverse, dans lequel le produit
de a par b est b.a ; comme a.x.b=a'x.b' pour tout x si et seulement a'=
ca et b'=c'b pourun c central dans G, le noyau de cette action est le
groupe formé des (c,c') ou ¢ parcourt le centre de G . L'ensemble Ty(G) est
formé des translations qui s'écrivent ab.x.ba .

- La symétrie de centre y a méme sens dans G et dans son groupe inverse
G', l'opération binaire y.x'.y étant la méme dans ces deux groupes.

Nous notons & l'automorphisme involutif du groupe GxG' qui échange

les deux coordonnées, c'est-a-dire que ¢€(a,b) = s(b'],a'l) ; I'ensemble de ses



points fixes est le groupe formé des (a,a™'), et les points qu'il inverse forment le
convexe diagonal des (a,a) . Le groupe STy (G) correspond a une action du
produit semi-direct de GxG' par 1'échange des coordonnées.

Quand le groupe G est médial et que u représente le passage a l'inverse
(qui est la symétrie centrée sur 1'élément neutre), S, est formé des symétries qui
s'écrivent a.x.a ; en posant X =1 on voit que cette écriture est unique, si bien
que l'isomorphisme entre S, et le symétron de G identifie ce dernier au
convexe diagonal.

Lemme 5. (i) Le groupe ST(G) est formé des a.x*'b, oii a et b sont congrus
modulo le deérivée G' de G .

(11) Si G est engendré par son derivé et par les carrés de ses éléements centraux,
ce groupe est égal a STy(Q), étant formé de tous les ax*b.

(ii1) Si G est égal a son dérivé et a un centre trivial, ce groupe est isomorphe
au produit semi-direct de GxG' par l'échange des coordonnées.

(iv) Si le derivée G' de G est définissable, T(G) est définissable ; si tout
element de G' est produit d'un nombre fixé de commutateurs, T(G) est borné.
Les réciproques sont vraies quand le centre de G est trivial.

(v) Le groupe T(X) des translations d'une partie convexe définissable X d'un
groupe de rang de Morley fini G est borné (et définissable !).

(vi) Dans un groupe de rang de Morley fini, chaque éléement du dérivé est
produit d'un nombre borné de commutateurs.

Démonstration. (i) Un produit de symétries s'écrit aj.a,. ... .a,.X* .4y, ... .a2.; .
Pour la réciproque, a.b.a’'b”'.x.a'b"'.b.a =[a,b].x, si bien que ab.x*'.ca est un
produit de symétries si b et ¢ sont dans G'.
(i) Si a=o’ et b=p>, o0 a et B sont centraux tandis que y et & sont
dans le dérivé, a.x*'.b=(ap).y.x=".8.(ap).
(ii1) Dans ces conditions, a.x.b =c.x.d seulementsi a=c et b=d.
(iv) D'apres (i), les translations de T(G) sont celles qui s'écrivent ga.x.a , ou
g estdans G', sibien que T(G) est définissable si G' 1'est. Pour l'aspect borné
des choses, nous avons vu lors de la démonstration de (i) qu'une translation par
un commutateur est produit de trois translations de la forme a.x.a , si bien que,
si g est produit de n commutateurs, la translation ga.x.a est produitde 3n+ 1
ou 3n+ 2 symétries suivant la parité de n.

Si le centre de G est trivial, I'écriture de ces translations est unique, et
g.x estdans T(X) sietseulementsi g estdans G' ;si elle est produit de n+1
symétries, g estde la forme g=a;. ... .a,a,4; OU aps.ay. ....a; = 1, c'est-a-dire
que g=aj. .... an.al'l. .an'1 ; en faisant commuter an'] et al'l. .an_l'l , on
montre alors par récurrence sur n que g est produit de n commutateurs.
(v) Aprés translation on peut supposer que X contient I'élément neutre ; les
couples (a,a) , ou a parcourt X, forment une partie convexe définissable du
groupe GxG' contenant (1,1), qui, d'aprés la Proposition 13 de POIZAT 2018,



engendre de fagon bornée un sous-groupe I' définissable (il revient au méme de
considérer les couples (a,a”') dans GxG ) ; vu comme ensemble d'applications
de G dans G, le groupe engendré par les symétries centrées en X est formé
des o.x*'.p avec (a.f) dans I ; pour obtenir les translations de X , on
quotiente les a.x.p par celles d'entre elles qui valent I'identité sur X .

(vi) On reprend les démonstrations précédentes en se placant non pas dans le
groupe T,(G) , mais dans le groupe GxG' , et en considérant le groupe
engendré par le convexe diagonal. Fin

Remarques. (i) Le Lemme 5(vi) est un résultat bien connu de Zil'ber ; on le
montre habituellement (POIZAT 1985, p. 89 ; BOROVIK & NESIN 1994, p. 87-88)
en s'appuyant sur le fait qu'un groupe qui n'a qu'un nombre fini de commutateurs
a un dérivé fini (ROSENLICHT 1961) ; la démonstration offerte ici repose sur le
fait plus simple qu'un ensemble convexe fini, contenant 1'élément neutre,
engendre un groupe fini. La philosophie de I'histoire, c'est que, pour tout groupe
G, G' etle groupe engendré par le convexe diagonal sont interdéfinissables.

(i1) Dans un groupe de rang de Morley fini (ou méme seulement stable), s'il n'y a
qu'un nombre fini de commutateurs, chaque point n'a qu'un nombre fini de
conjugués et centralise la composante (centralisateur-)connexe du groupe. Or il
est facile de voir que si le centre du groupe G est d'indice fini dans G, le
groupe dérivé de G est fini. En effet, dans le groupe GxG'/ Z , ou Z est formé
des (y,y) ou y estcentral dans G, le convexe diagonal C a une image finie,
engendrant un groupe fini ; il existe donc g, , ... g, dans G' et a,, ... a, dans
G tel que tout point du groupe engendré par C soit de la forme (g;.a,.y,a,.y)
ou...ou (g,.a.y,a,y) avec y central, soit encore de la forme (g,.x,x) ou ... ou
(g,-x,X) ; (h,1) ne peut étre dans ce groupe que si h estlundes g, .

Un groupe G médial, ou méme seulement sous-médial, ne contient pas
d'involutions, puisque 1 y est l'unique racine carrée de 1 ; réciproquement les
groupes sans involutions périodiques, et en particulier finis, ou oméga-stables
sont médiaux (en effet, dans ces groupes chaque point a une racine carrée de
méme centralisateur ; voir PoizAT 2018) ; c'est donc le cas des groupes
périodiques simples construits dans OLSHANSKII 1982. Nous verrons que la
structure de ses symétries, c'est-a-dire la loi binaire y.x.y, ne détermine pas
nécessairement G , méme a isomorphie pres.

Si le groupe médial G est commutatif, I'inversion a.x'.b est la symétrie
c.x'.c,ou c estlaracine carrée de ab ; chaque translation est alors produit de
deux symétries.

Remarque. Dans le langage des groupes et de la racine carrée, les groupes
> PP . L 122 NI _
médiaux forme une variété, définie par les équations : (x )" =x, X)) =x,

SN2 12 -l \ : o :
(yxy " = yx".y"' ; en effet la deuxiéme équation impose qu'il n'y a pas

. . . s 12 A .
d'involutions, et la troisiéme que x et x '~ ont méme centraliseur.
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Exemple 1. Le produit semi-direct du groupe additif des entiers par lui-méme,
dont la loi de groupe est (x,u).(y,v) = (x + (-1)".y, u + v) , n'a pas d'involutions,
mais n'est pas sous-médial ; c'est un groupe superstable.

Lemme 6. Dans un groupe médial G :

(1) Chaque centralisateur est clos par extraction de racine carrée ; le quotient
de G par son centre est médial.

(11) Aucun point # 1 n'est conjugué de son inverse.

(111) Le groupe To(G) de toutes les translations est médial ; chaque translation
a les mémes points fixes que son carré ; si X est une partie convexe non-vide
de G, le groupe T(X) est sous-médial (en particulier si X =G ).

(iv) Une inversion a un unique point fixe. Si X est une partie convexe de G,
les inversions de ST(X) ont au plus un point fixe.

Démonstration. (i) Si x conjugue y et z, il doit aussi conjuguer leurs
- - : 12 112 : - )
uniques racines carrées y = et z '~ ; par conséquent, si X commute avec y, il
12
commute avec y .
2_ 2 \ 12 -
Supposons que X" =y".z,ou z estcentral ; comme z '~ est aussi central,
2 _ 1/2\2 Y
X =(yz" ) ,et x=y.z".
.. 2 2 . . . . . .
(i) (xa)” = a” si et seulement si a conjugue X et son inverse ; en fait, cette
condition signifie que G est sous-médial.
- 12 112 . . : :
(ii1) La translation a “.x.b" est racine carrée de la translation a.x.b, et il faut
. : : . 2 12 2 . a2
voir que c'est son unique racine carrée ; supposons que a".x.b” = a".x.~ pour
2 2 2_ 12 s R
tout x ;alors a”=c.a” et b"=c . ou c estcentral ; d'apres (i), ¢~ est
: : . : 12 172
aussi central ; comme les racines carrées sont uniques, a=c¢ .o, b=c .,
et a.x.b=o.x.p pourtout x.
. 2 2 _ . 2 2 . . . .
Si a”.x.b”=x, x conjugue b™“ et a”, ainsi que leurs uniques racines
4 . -1
carrées respectives b et a.
Quitte a la translater, on peut supposer que X contient 1 . Une
. . ., . . -1
translation o.x.f3 vaut alors l'identité sur X si et seulement si o =37 et
centralise X . Si donc les carrés des deux translations a.x.b et a'.x.b', produits
d'un nombre pair de symétries centrées en X , ont méme action sur X , il existe
. 2 I '2 2 — -] '2 . . .
c centralisant X tel que a"=a".c et b"=c .b" ; comme c¢ centralise aussi
: : 1 2 1242 2
a, b, a'" et b', quisont produits d'éléments de X, a" = (a'.c™)” et b =
1/242 L1 12 12 e
(b'.c ; comme G est médial, a=a'.c’™” etb=Db'.c’”, si bien que a.x.b et
a'.x.b' ont méme action sur X .
. -1 . . o . -1
(iv) a.x".b = x signifie que x estle milieu de a et de b.Si ax .b est
. . -1 3 . ., .. . -1
involutive, ab™.x.a"b vaut l'identité, ce qui implique que ¢ =ab™ est central, et
-1 4 M
que a.x .b estla symétrie de centre b.c
Si 1 est produit d'un nombre impair de symétries centrées en X, elle a un
unique point fixe u, et sa restriction a X a zéro ou un point fixe suivant que u
est dans X ou pas. Fin
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Remarque. Si G est périodique sans involutions, il en est de méme de ses
sections ; si G est oméga-stable sans involutions, il en est de méme de ses
sections définissables. Si X est une partie convexe non vide de G, définissable
dans le deuxiéme cas, elle est close par prise de milieu d'aprés le Théoréme 4, et
toute inversion produit de symétries ayant leur centre dans X a son point fixe
dans X : c'est une conséquence du Corollaire 3(iii) et du Lemme 6.

4. Symétrons abéliens

Nous commengons cette section en vérifiant que, si G est un groupe
médial, le centre du groupe des translations T(G) du symétron associé est
formé des a.x.a, ou a parcourt le deuxieme centre de G.

En effet, considérons deux translations de T(G) , qui sont de la forme
a.x.a.g et a.x.o.y avec g et y dans G' ;elles commutent si et seulement si,
pour tout X , o.a.X.a.g.o.y = a.o.x.o.y.a.g , soit encore x'.o'.al.oa.x =
o.y.a.g.o'.a’ | ce qui implique que le commutateur [o,a] est central ; si pour a
et g donnés cela se produit pour tout o et y, a est dans le deuxieme centre,
et par conséquent commute avec les commutateurs ; comme o.a = a.o.f3 pour
un [ central, 1'égalité se transforme en a.a.f.x.g.a.o.y = a.o.x.a.o.p.y.g , et
finalement en g.a.o..y = a.o.y.g , ce qui signifie que g est central ; finalement
a.x.a.g =a.g"”x.a.g" abien la forme indiquée.

Par conséquent T(G) est commutatif si et seulement si G est nilpotent
de classe 2 (comme par exemple l'est le groupe U3(K) des matrices
triangulaires unipotentes d'ordre 3 , sur un corps K de caractéristique #2 ) ;
T(G) est alors isomorphe au groupe G* , défini sur le méme ensemble que G,

mais dont la multiplication est asb = a.b.[b,a]"* : on voit sans peine que G* est
un groupe commutatif médial qui a les mémes symétries que G, c'est-a-dire que
asb'vxa=ab'la.Le groupe ST(G) est isomorphe au produit semi-direct de G*
par le passage a l'inverse, et les symétries sont les involutions de ST(G) ; elles
forment une cossette modulo G* , ce qui signifie que le produit de trois
symétries est une symétrie.

Nous observons que le groupe T(S) des translations d'un symétron S ne
peut étre 2-nilpotent que s'il est commutatif ; en effet, comme le centre de T(S)
est médial, on montre comme ci-dessus que T(T(S)) est alors commutatif.

Tout cela est un prélude a la caractérisation des symétrons dont le groupe
de translations est commutatif, que nous appelons symétrons abéliens :

Théoréme 7. Pour un symétron S, les choses suivantes sont équivalentes :

(1) Tout produit de trois symétries est une symétrie (soit encore que les symétries
forment une cossette, ensemble fermé sous l'opération ternaire x.y'.z, dans le
groupe qu'elles engendrent).

(11) Tout produit de trois symétries est une involution.

(i11) Ty(S) est un groupe (égal a T(S) ).
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(iv) Ty(S) est une partie convexe de T(S) .
(v) Pour un, ou pour chaque u de S, S, estun groupe.
(vi) Pour un, ou pour chaque u de S, S, est commutatif.
(vii) Pour un, ou pour chaque u de S, T(S)=S,.

Et quand c'est le cas, T(S) = Ti(S) est un groupe commutatif médial,
dont S est l'ensemble des symétries, et ST(S) est isomorphe au produit de
T(S) par le passage a l'inverse.

Démonstration. Ce qui se passe pour un u se passe pour chacun d'eux, puisque
les s, sont conjuguées.

(v) signifie que, pour tous u, v, w il existe t tel que s,.Sy.Su.Sw = Su.S¢ »
ce qui est équivalent a (1) ; (vi) signifie que, pour tous u, v et W, S,.5,.8u.8y =
Su-Sw-Su-Sy , C€ qui est équivalent a (i1).

(1) implique (i1), qui implique (vi), qui implique que T(S) est commutatif,
soit encore, puisque S, agit transitivement, que T(S) =S, = T(S), c'est-a-dire
(v) et (vii) ; st (vii) est vérifié, pour chaque u, v et w il existe t tel que s,.Sy
= 8u.5¢ , et (1) est vérifié.

Reste a voir que (iv) implique (iii1) : soient a, b, ¢, d dans S, et m le
milieude a et de b ; S,.8p.8¢.S¢ = Sa-Sm-Sa-Sm-Sc-Sd = Sa-Sm-(Sa-Sm-Sc-Sd-Sm-Sa)-Sa-Sm_ ;
comme T;(S) est clos par conjugaison, il est clos par symétrie si et seulement
s'il est clos par produit.

Par ailleurs nous savons que dans S, il y a existence et unicité de la
racine carrée. Fin

Lemme 8. Un symétron engendré par deux points est abélien.

Démonstration. Si S est engendré par u et v, S, estengendré par 1 et a=
su.Sy ; comme S, est clos par puissances et extraction d'unique racine carrée, le
groupe engendré par les racines 2".iémes de a est commutatif et médial, et en
fait égal a S, . Fin

On voit donc que le symétron libre a deux générateurs est celui des
symétries du groupe additif des rationnels de la forme m/2", et qu'un symétron
fini engendré par deux points est celui des symétries d'un groupe cyclique
d'ordre impair.

Question 1. Est-ce qu'un symétron minimal, c'est-a-dire un symétron infini dont
tous les sous-ensembles définissables propres sont finis ou cofinis, est abélien ?
Quid d'un symétron fortement minimal ?

La raison pour laquelle les sous-symétrons ont été qualifiés de convexes
dans PoizAT 2018 est que ce sont les ensembles dans lesquels deux points
quelconques sont reliés par un sous-symétron abélien.

Nous concluons la section par un exemple de symétron non abélien.
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Exemple 2. Soient K un corps de caractéristique # 2, et M un sous-groupe
multiplicatif non trivial et médial de K* . Le produit semi-direct G de K’ par
M est isomorphe au groupe des fonctions affines x.t+y, ou x parcourt M et

y parcourt K, ou encore au groupe des matrices de la forme m(x,y) = | )6 ¥1| .

C'est un groupe médial ; puisque M est non-trivial, chaque m(1,y) est
un commutateur, G' est isomorphe & K, et le centre de G est trivial.

Chaque point de T(G) s'écrit de manieére unique m(u,a).g.m(u,b) ; pour
les multiplier, on effectue la multiplication directe sur la premiére coordonnée et
la multiplication inverse sur la seconde ; en remplagant cette derniére par son
inverse, on voit que T(G) est isomorphe au produit semi-direct de l'espace
vectoriel K'xK" par le groupe des matrices diagonales |5 31\ .

Supposons maintenant que le corps K possede un automorphisme
involutif o qui inverse chaque point de M . Le convexe S des points inversés
par I'automorphisme de G induit par o est défini par la condition o(y) =-y ;
il est clos par prise de milieu : c'est un sous-symétron de G . Vérifions que S
engendre G :prenons a#1 dans M ;le conjugué de m(1l,y) par m(a,0) est
m(l,a’.y) ; K est un espace vectoriel de dimension 2 sur le corps L des
invariants de o ; l'ensemble E des y tels que o(y) = -y est un espace
vectoriel de dimension un sur L, ainsi que a>.E ; comme ils sont distincts, leur
somme vaut K , si bien que le groupe engendré par S contient toutes les
matrices m(1,y), d'ou la conclusion.

Par conséquent les translations de S sont les applications de la forme
a.x.o(a') avec a dans G, et le groupe T(S) est isomorpheda G .

Comme exemple d'application, on considére K = F,5 , qui est engendré
par une racine cubique de l'unité j ; son automorphisme o échange j et j*.
On prend pour M le groupe {1, j, j°} , qui est d'ailleurs la seule possibilité ; S
a quinze points, et son groupe de translations G en a septante-cinq ; S n'est pas
isomorphe au symétron d'un groupe médial, car tous les groupes d'ordre quinze
sont commutatifs.

4. Symétrons finis et localement finis

Si le symétron S est fini, son nombre d'é¢léments n est impair, puisque
les symétries n'ont qu'un seul point fixe ; si t est une translation primaire, t™
aussi, et elle vaut I'identité dés qu'elle a un point fixe : cela veut dire que tous ses
cycles ont méme nombre d'éléments, qui est un diviseur de n .

Quand n = p est un nombre premier, chaque translation primaire t # 1
estd'ordre p ;si t=s.s,,les t" parcourent S,, et chaque s, estde la forme
s..t” ; comme s, inverse t par conjugaison, chaque point de ST(S) est de la
forme t" ou s,.t".On voit que S est isomorphe au symétron des symétries du
groupe cyclique d'ordre p ; plus généralement, le symétron du groupe cyclique
d'ordre n est caractérisé par le fait qu'il a une translation primaire d'ordre n .
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En fait, la structure des symétrons finis est totalement €lucidée par le
résultat suivant, qui s'appuie sur un grand théoréme de la théorie des groupes
finis : chacun est isomorphe au symétries d'une partie convexe d'un groupe fini
sans involutions.

Théoréme 9. Un symétron fini n'a pas de translations involutives.

Démonstration. Soit s une symétrie du symétron fini S ; dans G = ST(S),
elle ne commute avec aucune de ses conjuguées si ce n'est elle-méme, si bien
que le Z*-Theorem de GLAUBERMAN 1966 affirme qu'elle est centrale modulo
le plus grand sous-groupe normal d'ordre impair de G ; dans notre cas
particulier o G est engendré par les conjuguées de s, ce dernier est T(S) .

Si o est une translation de S, s.a est une involution si et seulement si
a est inversée par s , et alors elle conjugue s sur s.o’ ; comme il y a
existence et unicité de la racine carrée dans T(S), S est bien un symétron. Fin

Nous dirons qu'un symétron est localement fini si chacune de ses parties
finies est contenue dans un sous-symétron fini.

Théoréme 10. (i) Un symétron est localement fini si et seulement si son groupe
de translations est localement fini.

(i) Un symétron localement fini n'a pas de translations involutives (son groupe
de translations est donc médial, et localement résoluble).

(111) Un groupe médial est localement fini en tant que groupe si et seulement s'il
l'est en tant que symétron.

Démonstration. (i) Supposons S localement fini ; des symétries s;, ... s, sont
contenues dans une partie convexe finie F de X ; comme un produit
d'¢léments de F , s'il ne vaut pas l'identité, peut s'écrire comme un produit
d'¢léments de F distincts, F engendre un groupe fini ; ST(S) , et son sous-
groupe T(S), sont donc localement finis.

Supposons T(S) localement fini ; comme il est d'indice un ou deux dans
ST(S) , ce dernier est aussi localement fini. Des symétries s, , ... s, engendrent
donc un groupe fini G ; I'ensemble des symétries contenues dans G est clos
par conjugaison, c'est-a-dire par symétrie, et d'apres le Théoréme 4 est clos par
prise de milieu : c'est un sous-symétron de S, qui est bien localement fini.

(ii) Soit t une translation telle que t* = Id , engendrée par les symétries s, , ...
Sn , et soit s une symétrie quelconque ; les centres des symétries s;, ... s, et s
engendrent un symétron fini, qui, d'apres le Théoréme 9, n'a pas de translations
involutives. La restriction de t a ce dernier vaut l'identité, et t fixe le centre de
s ; comme cela a lieu pour tout s, t vaut l'identité. La derniére assertion est
conséquence du Théoréme de Feit et Thompson.

(ii1) Si le groupe G est localement fini, le groupe des translations de son
symétron, qui est une section de GxG , est localement fini. Si le symétron de G
est localement fini, chaque translation a.x.a, qui est produit de deux symétries,
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est d'ordre fini ; mais, comme il n'y a pas d'involutions dans G, a".x.a" ne peut
valoir l'identité que si a" = 1, si bien que G est périodique. Si g est dans le
dérivé G' de G, la translation g.x est un produit de symétries, si bien que G'
est localement fini ; comme par ailleurs G/G' est localement fini, G est
localement fini. Fin

Théoréme 11. (i) Toute structure définissable dans un corps algébriquement
clos satisfait les énoncés vrais dans chaque structure localement finie (elle est
"pseudo-localement-finie").

(1) Soient G un groupe algébrique simple (sur un corps algébriquement clos),
et ... Oj, ... une famille d'automorphismes de G ; si la structure (G, ... O, ...)
a un rang de Morley fini, elle est pseudo-localement-finie.

(1)) Le groupe des translations d'un symétron algébrique, c'est-a-dire
definissable dans un corps algébriquement clos, est sous-médial, et chacune de
ses inversions a un unique point fixe.

Démonstration. (i) Un énoncé trés semblable est montré dans PoizAT 2001. Par
¢limination des imaginaires, on peut supposer que la structure est définie sur une
partie constructible, c'est-a-dire combinaison booléenne d'ensembles définis par
des équations polynomiales, de K" ; ses relations et ses fonctions sont
¢galement constructibles. Pour elle, la satisfaction d'un énoncé ¢ se traduit par
la satisfaction par les coefficients des polyndmes mis en jeu d'une formule (a)
du langage des corps. Comme le corps K algébriquement clos satisfait a
(3 x) @(x) , cet énoncé est également vrai, pour un certain nombre premier p ,
dans la cl6ture algébrique L des corps finis de caractéristique p . Soient donc
b dans L satisfaisant 2 ¢(b), et k un sous-corps fini de L contenant b ;
comme tout point hors de k peut étre déplacé par un k-automorphisme de L,
les fonctions de la structure associée a b ne peuvent faire sortir de k , et cette
derniére est localement finie.
(i1) Ce résultat sera utilis¢ dans la Section 8. Soit ¢ un automorphisme de G,
qui est un groupe (infini) de matrices M(K) a coefficients dans le corps
algébriquement clos K ; comme les borels de G ne sont pas nilpotents, la
méthode de Zil'ber permet de définir dans G une copie K; de K : il existe un
isomorphisme 0; , définissable dans K , du corps K sur le corps K; ; cet
isomorphisme induit naturellement, par un simple transport de structure, un
isomorphisme T; entre G=M(K) et M(K;) ; par ailleurs, en conjugant par o,
on obtient un isomorphisme o entre K; et un corps K, définissable dans G
de facon homologue : il existe aussi un isomorphisme 0, , définissable dans K,
entre K et K, .

D'aprées la version modele-théorique du Théoréeme de Borel-Tits (POIZAT
1988, Po1zAT 1987 p.149-153), 7, est définissable dans G , si bien qu'il se
transporte par o en un isomorphisme T, entre G et M(K,) , également
définissable dans G . On voit que o se décompose entre 1'isomorphisme naturel
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de M(K) sur M(K,) induit par 0.0, , suivi de l'isomorphisme semi-algébrique
"' . On voit aussi que (G,0) est définissable dans (K,0),ou 0 = 0,".0.0, ;
par ailleurs, comme 0,.0," est définissable dans G , la copie (K1,61.62'1.6) de
(K,0) est définissable dans (G,0) .

Si (G,0) est de rang de Morley fini, (K,0) l'est aussi ; en caractéristique
nulle le corps des invariants de 0 est algébriquement clos, et 8 vaut l'identité ;
en caractéristique p , l'application de Frobenius est un automorphisme pour
(K,0) , et WAGNER 2001 affirme que le modele premier de la théorie de cette
structure est porté par la cloture algébrique du corps premier ; on conclut comme
en (1), et le méme argument est valable s'il y a plusieurs automorphismes.

(111) est conséquence de (i), du théoréme précédent et du Lemme 5. Fin

Remarque. Une description plus précise, bien connue des géomeétres, des
automorphismes semi-algébriques d'un groupe algébrique simple est nécessaire
pour montrer le fait suivant : Dans un contexte de rang de Morley fini, si G est
un groupe algébrique simple et H un groupe définissable d'automophismes de
G, H° est formé d'automorphismes intérieurs. Cela est dli au fait qu'un groupe
algébrique simple a trés peu d'automorphismes extérieurs (voir POIzZAT 1987
p.98, et surtout ABC 2008 p. 134) ; plus précisément, en caractéristique nulle, le
groupe des automorphismes intérieurs de G est d'indice fini dans le groupe de
ses automorphismes algébriques ; en caractéristique p , i1l est d'indice
dénombrable dans le groupe des automorphismes semi-algébriques, et comme le
contexte implique que les automorphismes définissables du corps de base K
forment une famille dénombrable (ils sont tous définissables sans paramétres),
les automorphismes intérieurs contenus dans H en forment un sous-groupe
définissable d'indice dénombrable, méme si la structure est saturée.

5. Symétrons oméga-stables et types génériques

Pour la démonstration du Théoréme 4, nous avons choisi une méthode
plus directe que celle de la Proposition 11 de PoizAT 2018 ; cela nous permet
d'expliciter plus simplement le lien entre un symétron oméga-stable S et ses
types génériques.

Si p estun 1-type complet sur S, et si a est un point de S, nous
notons s,(p) le type sur S des s,(x) ou x réalise p.Si q estun autre type,
I'ensemble Sym(p<>q) des a de S tels que s.(p) =q, qui est aussi celui des a
de S tels que s.(q) = p , est définissable puique les types le sont, et c'est un
sous-symétron de S : en effet, si a et b sont dans Sym(p<>q), x réalise p
sur {a, b} et y estle symétrique de x parrapporta b, s,(b) estle milieu de
sa(x) et de s,(y) . En particulier Sym(p) = Sym(p<>p) est un convexe
définissable ; il en est de méme, si p;, ... p, est un ensemble fini de types, de
I'ensemble Sym(py, ... pn) des a de S qui les permutent par symétrie.
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Théoréme 12. Dans un symétron oméga-stable, toute partie convexe
definissable non vide est le symétriseur de ses types génériques (c'est-a-dire de
rang de Morley maximum) ; elle se décompose de maniere unique en un nombre
fini, qui est impair, de sous-ensembles définissables convexes disjoints de degre
de Morley un, que nous appelons ses composantes connexes.

Démonstration. Notre ensemble convexe X est contenu dans le symétriseur
Sym(py, ... pn) de ses types génériques ; par ailleurs, si a est dans ce dernier, il
est au milieu de deux réalisations de types génériques, si bien qu'il y a égalité.

Notons X; l'ensemble des points a de X tels que s.(p;) =p;, ce qui
équivaut a s,(p;) = p1 ; les X; forment une partition de X en sous-ensembles
convexes. Chacun ne peut contenir qu'un seul type générique : en effet, si a est
générique dans X; et x est une réalisation de p; générique sur a, y = s,(X)
est une réalisation de p; générique sur a, et comme a est le milieu de x et de
y,a et y se correspondent par une bijection définissable avec x comme
paramétre ; x et y sont donc génériques et indépendants, et le type de a est
déterminé. Il faut donc que chaque X; contienne un type générique.

Si q est le type générique de X, ce dernier est le symétriseur de q, et si
p est un autre générique, il n'est pas possible que q soit au milieu de deux
réalisations de p, si bien que les génériques # q sont appari€s deux par deux
sous l'action de la symétrie par q ; le nombre n est donc impair.

Si X=Y,UY,U..UY, estune autre partition de X en ensembles
convexes de degré de Morley un, et si RM(Yy) = RM(X) , Yy estle
symétriseur de son générique, et c'est donc l'un des X; ; comme il n'y a rien en
dehors de la réunion des Xj, c'est la méme partition, a permutation pres. Fin

On voit qu'on obtient une structure de symétron sur les types génériques
de S ;en effet,si x et y sont génériques et indépendants et z = s,(y) , les
trois points x, y et z sont deux a deux génériques et indépendants, et les
types de x et de y déterminent celui de z ; de méme, si x et z sont
génériques et indépendants et y est le milieu de x etde z, les trois points x,
y et z sont deux a deux génériques et indépendants, et les types de x etde z
déterminent celuide y .

Théoréme 13. Si X est une partie définissable du symétron oméga-stable S ,
elle est générique (c'est-a-dire RM(X) = RM(S) ) si et seulement si S est
recouvert par un nombre fini de translatées de X par des points de T\(S) .

Démonstration. Si X vérifie le critére, elle est générique car ses translatées
ont méme rang de Morley. Supposons réciproquement X générique ; soit X
une réalisation d'un de ses types génériques p ; solent g un autre type
générique, y une réalisation de q indépendante de x, et z le milieu de x et
de y, qui vérifie s(x,z)=y ;comme x et z d'une part, y et z d'autre part,
sont indépendants, s(p,z) = q , et comme cette propriété s'exprime grace aux
définitions des types p et q, on trouve a dans S tel que s(p,a) =q . En
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conséquence, une réunion Y des translatées de X par un nombre fini de
symétries contient tous les types génériques de S.

Soit maintenant x une réalisation d'un type r quelconque, et y
générique sur X ; s(x,y) est générique, et donc satisfait Y ; par conséquent il
existe a dans S tel que s(r,a) satisfasse Y . Autrement dit tout type peut étre
envoy¢ par symétrie dans Y ; par compacité, cela signifie qu'un nombre fini de
symétrisées de Y recouvrent S . Fin

6. Génération elliptique

Nous disons qu'un sous-goupe H d'un groupe G est elliptiquement
engendré par une partiec X de G si chaque point de H est produit de n
éléments de X U X' pour un entier n fixé (nous n'exigeons pas que H soit
tous le groupe engendré par X).

Nous avons fait allusion, dans notre Lemme 5, a la Proposition 13 de
PoizAT 2018, qui s'appuie sur une version particuliecrement commode du
Théoréme des Indécomposables de Zil'ber, précisément parce qu'elle ne
mentionne pas d'indécomposables, et qui peut étre démontrée en adaptant au cas
des groupes le Théoréme 14 qui suit : si X est une partie définissable du
groupe de rang de Morley fini G, il existe un plus grand sous-groupe e(X)
definissable, connexe et elliptiquement engendré par X ; de plus X normalise
e(X), et le quotient X/e(X) est fini.

Question 2. Un groupe infini de rang de Morley fini peut-il étre finiment
engendré ? (Comme ce n'est pas possible pour un groupe abélien ou algébrique,
une réponse positive contredirait la Conjecture d'Algébricité).

Dans le cadre d'un symétron S , nous dirons que X engendre
elliptiquement le sous-symétron S' si chaque point de S' s'obtient a partir de
X par symétries et prises de milieu en moins de n étapes, pour un n fixé.
Voici ce que devient le Théoréme de Zilber dans ce contexte :

Théoréme 14. Dans un symétron S de rang de Morley fini :

(1) Deux sous-symétrons définissables connexes non disjoints engendrent un
sous-symétron définissable connexe, et ce de facon elliptique.

(1) Une famille arbitraire de sous-symétrons définissables connexes deux-a-
deux non disjoints engendre un sous-symétron définissable connexe, qui est en
fait elliptiquement engendré par un nombre fini d'entre eux.

(1) Si X est un sous-ensemble définissable de S , la relation " x et y
appartiennent a un méme convexe connexe definissable elliptiquement engendreé
par X " est une relation d'équivalence sur le symétron engendré par X, qui n'a
qu'un nombre fini de classes sur X .

Démonstration. (i) Soint A et B nos deux convexes, et a un de leurs points
communs ; on considére un type p de rang maximal obtenu a partir de points X
satisfaisant a la formule définissant AUB par symétries et prises de milieu ;
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sa(p) ne contient qu'un nombre fini de types p;, ... pm de méme rang que p,
si bien qu'on obtient une partition de A en un nombre fini A; U ... U A, de
sous-symétrons définissables, ou A; = Sym(p<>p;) N A : étant connexe, A est
en fait I'un d'entre eux. On voit donc que A est inclus dans le symétron
définissable S' formé des u tels que su(p) = s.p) ; il en est de méme de B ;
comme chaque point de S' est au milieu d'une réalisation de p et d'une
réalisation de s,(p), S' est elliptiquement engendré par A U B . Par ailleurs,
A comme B sont inclus dans la méme composante connexe de S', si bien que
S' est connexe, et que c'est le symétron engendré par A et B.

(i1) C'est le convexe de rang maximal engendré par un nombre fini d'entre eux.
(i11)) Si a est dans le symétron engendré par X , un convexe définissable
connexe elliptiquement engendré par X , et de rang de Morley maximum, est
maximum d'aprés (i) ; en conséquence la relation E de 1'énoncé est bien
transitive.

On considere un type p de rang maximal engendré par X ; sx(p) estun
ensemble fini py, ... pm, €t X est partitionné par les Xj; = S; N X, ou S;j;
parcourt l'ensemble des composantes connexes des Sym(p<>p;) ; deux points
dans un méme Xj; sont équivalents. Fin

Remarque. Si C est une classe de E , c'est-a-dire un sous-symétron
définissable connexe elliptiquement engendré par X , et a est un point de
T(X), s(X,a) estaussi une classe de E.Si C et C' sont deux classes de E,
les milieux d'un point de C et d'un point de C' forment donc le convexe
Sym(C<=C") des centres des symétries qui échangent C et C' ; par conséquent
toutes les classes de E ont méme rang de Morley, si bien que Sym(C<>C'") est
une classe modulo E ; il en suit que, si a et b sont congrus modulo E ,
s(C,a) = s(C,b) . La conclusion est que symétrie et milieu passent au quotient
modulo E , et que T(X)/E est un symétron. On voit que T(X) est
elliptiquement engendré par X si et seulement si T(X)/E est fini.

Question 3. Un symétron infini de rang de Morley fini peut-il étre finiment
engendré ?

8. Une démonstration hypothétique

Traduit dans notre langage, le Théoréme 1 de GLAUBERMAN 1966 affirme
que si, dans un groupe, S est un symétron fini formé d'involutions, c'est-a-dire
un ensemble d'involutions clos par conjugaison et ne commutant pas deux-a-
deux, les produits des paires d'éléments de S engendrent un groupe sans
involutions ; c'est un peu plus fort que de dire que S n'a pas de translations
involutives, car T(S) est le quotient de ce groupe par le centralisateur de S . La
question de l'extension de ce résultat au contexte de rang de Morley fini est
posée dans BOROVIK-NESIN 1994 p. 355, mais il est remarquable que ce
théoréme ne soit pas mentionné dans ABC 2008.
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Si on ajoute au cocktail le Théoreme de Feit et Thompson, on obtient un
corollaire indifférent a I'existence d'un centre : le groupe ST(S) est résoluble ;
c'est sous cette forme édulcorée (qui néanmoins s'oppose a l'existence de
groupes finis simples sans involutions) que nous allons tout d'abord généraliser
le Théoréeme de Glauberman sous I'hypothése de la Conjecture d'Algébricité,
c'est-a-dire en admettant que tout groupe simple de rang de Morley fini est un
groupe algébrique (sur un corps algébriquement clos).

Nous commengons par quelques préliminaires, en considérant un groupe
de rang de Morley fini ayant une partie définissable S clos par conjugaison et
formé d'involutions ne commutant pas deux-a-deux. Le groupe G engendré par
S est définissable ; en effet, si G° est le plus grand sous-groupe définissable
connexe elliptiquement engendré par S, G/S est fini et clos par conjugaison, et
engendre un groupe fini puisque dans un produit d'éléments de G/S on peut
¢liminer les répétitions. Notons H° le plus grand sous-groupe définissable
connexe engendré par les paires d'éléments de S ; comme S.S est normalisé
par S, H° aussi, et S/H° est fini, si bien que H° = G° , que le groupe
engendré par S.S est définissable et a méme composante connexe que celui
engendré par S .

Nous devons aussi reprendre brievement la description bien connue des
sous-groupes diédraux d'un groupe oméga-stable, qui reproduit ce qui se passe
dans un groupe périodique (voir BOROVIK-POIZAT 1990, BOROVIK-NESIN 1994
p- 173) ; cela contribuera d'ailleurs a éclairer les démonstrations des premieres
sections de cet article, basées sur le fait que deux symétries d'un symétron
oméga-stable sont toujours contenues dans un groupe définissable. Soient 1 et ]
deux éléments de S distincts ; nous notons d(i, j) le plus petit sous-groupe
définissable contenant 1 et j, et d(i.j) le plus petit sous-groupe définissable
contenant leur produit 1.j ; du simple fait que 1 et j sont des involutions, d(i.j)
est le produit d'un groupe cyclique d'ordre 2" et d'un groupe commutatif Dy
divisible par 2 ; comme 1 inverse d(i.j) par conjugaison, ses conjugués dans
d(i, j) sont les points de la forme 1.a”, ou a est dans d(i.j), si bien que si
d(i.j) contenait une involution k, ik serait conjugué de 1 ou bien de j, ce
que contredit la condition de non-commutativité. Dans notre contexte, cette
condition équivaut donc au fait que, pour tous 1 et j dans S, d(i.j) ne
contient pas d'involutions ; cela a pour conséquence que, si H est un sous-
groupe définissable propre normal dans G, S/H est aussi un symétron formé
d'involutions ; on remarque aussi que 1 et j sont conjugués dans d(i, j) , ce qui
est conforme a notre Lemme 1(vii).

Théoréme 15. Sous I'hypothese de la Conjecture d'Algébricité, dans un groupe
de rang de Morley fini, un sous-ensemble définissable d'involutions formant un
symétron engendre un groupe résoluble.

Démonstration. Comme G/G° est résoluble d'aprés le Théoreme de
Glauberman, il suffit de montrer que G° I'est ; nous le supposons infini.
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Montrons d'abord que le groupe G engendré par notre symétron S n'est
pas connexe ; sinon, comme G serait égal a son dérivé, en quotientant par un
groupe normal définissable maximal, on est ramen¢ au cas ou il est simple, soit
encore algébrique par hypothése ; comme S est une classe de conjugaison de
G, on contredit notre Théoréme 11.

On remarque ensuite que les points de S qui sont congrus a l'un d'entre
eux modulo G° forment un ensemble convexe, si bien que, si S est connexe,
G est le produit semi-direct de G° par un point s de S ;l'ensemble S;= s.S
est alors formé des points de la forme s.(x.s.x') =x°x" ou x parcourt G°, si
bien qu'une copie du symétron est définissable dans la structure formée du
groupe G° et de son automorphisme o induit par s .

Dans un premier temps, on suppose S connexe. Si G° n'est pas
résoluble, on note R° son plus grand sous-groupe définissable résoluble
connexe normal, et R l'ensemble des éléments centraux modulo R°; R est
normalisé par G°, et aussi par s, et le quotient G°/R est semi-simple : s'il
n'est pas trivial ses groupes normaux minimaux N, ... N, sont définissables et
simples, et le groupe qu'ils engendrent est de la forme N;x ... xN,. Si s
¢change deux N;, on obtient un sous-groupe définissable de la forme NxN sur
lequel o agit par échange des coordonnées, si bien que les symétries de N
forment une partie définissable convexe de S ; comme ce doit étre un symétron,
il est nécessaire que N n'ait pas d'involutions, ce qui est impossible pour un
goupe algébrique simple. Sinon s les normalise tous, et au prix d'un quotient on
est ramené au cas ou il n'y en n'a qu'un, soit N , qui par hypothése est
algébrique ; d'aprés la remarque qui suit le Théoréme 11, chaque point de G°
agit par automorphisme intérieur sur N, dont le centralisateur est trivial, si bien
que G°=N ; (G°0) est pseudo-localement fini d'aprés le Théoréme 11, et le
groupe des translations du symétron S, , qui est isomorphe a G°, ne doit pas
contenir d'involutions, ce qui est impossible pour une groupe algébrique simple.

Revenons au cas général, et considérons la décomposition de S en
composantes connexes S=S; U ... U Sy ;chaque S; engendre un groupe réso-
luble G; ; comme G permute les S; par conjugaison, les G;° les fixent, et se
normalisent les uns les autres ; ils engendrent donc un groupe connexe résoluble
H , qui est bien siir normal dans G . Comme S/H est fini, H=G° . Fin

Ce théoréme implique, sous la Conjecture d'Algébricité, que le groupe des
translations d'un symétron S borné de rang de Morley fini est résoluble ;
comme T(S) est le dérivé de ST(S) , cela interdit a une symétrie d'étre une
translation, sauf si S est réduit & un point.

Sa démonstration est trés peu satisfaisante ; c'est comme si, dans le cas
fini, on s'appuyait sur la classification pour montrer le Théoréme de
Glauberman ! Une réponse positive a la question qui suit montrerait que le seul
obstacle au Théoréme 15 serait I'existence de groupes simples sans involutions.
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Question 4. ABC 2008 contient-il suffisamment de matériaux pour éliminer
inconditionnellement les groupes simples avec involutions qui apparaissent dans
la démonstration du Théoréme 15 ?

Le dernier théoréme de la section est inconditionnel, son corrolaire
conditionnel étant que la Conjecture d'Algébricité implique qu'un symétron
borné de rang de Morley fini n'a pas de translations involutives, qu'il est
isomorphe au symétron d'une partie définissable convexe d'un groupe de rang de
Morley fini sans involutions.

Théoréme 16. Si le groupe des translations d'un symétron borné de rang de
Morley fini est résoluble, il ne contient pas d'involutions.

Démonstration. Soit S l'ensemble des symétries de ce symétron, qui
engendrent un groupe définissable G ; comme ST(S) est le quotient de G par
son centre, G est résoluble. Soit N le dérivé de G°, qui est définissable ; il
n'est pas possible que S soit inclus dans G°, car sinon G°/N serait réduit a
deux points.

Dans un premier temps, on quotiente par N pour se ramener au cas ou
G° est commutatif ; on décompose S en ses composantes connexes S, ... Sq,
qui sont chacune dans une méme cossette modulo G° ; on en déduit que les
paires de points de chaque S; engendrent un groupe commutatif H; connexe
sans involutions ; comme dans la démonstration du théoréme précédent, les H;
engendrent G°, et le groupe dérivé de G n'a pas d'involutions.

Revenons au cas général ; G'/N n'ayant pas d'involutions, tous les 2-
¢léments de G' sont dans N, et comme ce dernier est nilpotent, il n'a qu'un seul
2-sylow X (voir POIZAT & WAGNER 2000). Chaque point 1 de S est contenu
dans un 2-sylow X; de G, qui ne peut en contenir un deuxiéme j puisque 1]
n'est pas un 2-¢élément ; 1 est donc central dans X, qui est le groupe engendré
par ¥ et i.On voit donc que S centralise X, qui est central dans G, et que
G'/Z(G) n'a pas d'involutions. Fin

9. Symétrons quotients

Comme les symétrons forment une variét€ (dans le langage de la symétrie
et du milieu), 1'i'mage d'un symétron par un homomorphisme f est un symétron
f(S) ; I'équivalence f(x) =1f(y) est alors appelée congruence (de symétron).

Par exemple, si G est un groupe médial et H est un sous-groupe normal
de G, lI'équivalence modulo H est une congruence de symétron a condition
que G/H soit médial.

On voit qu'une classe C de la congruence E est un sous-symétron de
S ; elle détermine E , puisque les autres classes de E s'obtiennent par
symétries a partir de C.

Comme les points de ST(S) sont définis par des termes, le groupe
ST(S/E) est une image du groupe ST(S), par un homomorphisme surjectif dont
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le noyau Ker(E) détermine lui aussi la congruence, ainsi d'ailleurs que
Ker(E)NT,(S) ; nous appellerons T-noyau l'intersection de T(S) avec le noyau.

Si N est un sous-groupe normal de ST(S) , par passage au quotient on
obtient une structure de protosymétron (surjectif) sur S/N ; la condition pour
que ce quotient soit un protosymétron injectif est qu'aucun élément de T,(S) ne
devienne une involution modulo N (c'est-a-dire que, si t* est dans NNT,(S), t
y est aussi) ; pour que ce soit un symétron, il faut en outre que tout point t de
T,(S) qui commute modulo N avec une symétrie soit dans N (c'est-a-dire que,
si [t,s,] estdans N, t y est aussi) ; cela suffit car, si dans le quotient s,
conjugue s, et s, 8.8, commute modulo N avec s, .

Si T,(S) est périodique, ou bien si S est oméga-stable et NNT,(S) est
définissable, ces deux conditions sont toujours réalisées ; en effet, dans le
premier cas le groupe engendré par le produit s,.s, de deux symétries est
cyclique d'ordre impair, et dans le deuxieéme cas ce produit est contenu dans un
sous-groupe définissable médial de T,(S) , si bien que dans le quotient s, et s,
sont égales ou ne commutent pas ; ce quotient est donc un protosymétron
injectif, et un symétron d'apres le Lemme 6.

On observe que les groupes qui définissent la méme congruence que N
sont ceux qui sont compris entre le groupe engendré par NNT,(S) et le noyau.

Lemme 17. Si S est un sous-symétron définissable d'un groupe médial de rang
de Morley fini G et E est une congruence définissable de S , le groupe des
translations de S/E est médial.

Démonstration. Dans ce contexte, un groupe définissable est médial dés qu'il
n'a pas d'involutions. On sait par le Lemme 3 que le groupe T des translations
de S est une section définissable de GxG', et qu'il respecte 'équivalence E ;
le groupe des translations de S/E est isomorphe a T/Tg, ou Tg est le groupe
des translations de S qui fixent chaque classe de E ; comme c'est une section
définissable du groupe médial T, il n'a pas d'involutions. Fin

Si S est un symétron oméga-stable, sa partition en composantes connexes
est une congruence, dont le noyau est formé des points qui fixent chaque type
générique de S . Sous les hypotheéses du Lemme 15, on peut se passer du
Théoreme de Glauberman pour montrer que le groupe des translations de ce
symétron fini n'a pas d'involutions.

Plus généralement, 1'équivalence décrite dans le Théoreme 14(iii) est une
congruence de symétron.

Question 5. Cette relation d'équivalence E est-elle toujours la trace sur S(X)
d'une congruence définissable entre €léments du plus petit sous-symétron
définissable contenant X ?

Exemple 3. La relation d'équivalence dont les classes sont les orbites du centre
C du groupe des translations du symétron S est une congruence de symétron.
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En effet, si s,.s,.s, =s,.t, ou t estcentrale, comme les symétries inversent les
points de C, t".s .t"s t"*s .t =5, , sibien que t".s.t"* estle milieu de
s, etde s, ,etqu'il ya unicité du milieu modulo C . Cependant, T(S/C) , étant
le quotient de T(S) par les translations qui fixent modulo C chaque symétrie,
n'est pas en général égal a T(S)/C . On vérifie sans peine que le T-noyau est
compris entre C et le deuxieme centre de T(S) , et qu'il contient strictement C
quand S est le symétron d'un groupe médial 3-nilpotent non 2-nilpotent.

10. Axiomatisation

Nous avons rencontré au cours de cet article un certain nombre de
conditions qui éliminent les translations involutives ; il semble que la plus forte
- la médialité du groupe des translations - ne puisse s'exprimer au premier ordre,
car on ne voit pas comment affirmer I'existence d'une racine carrée d'un point de
T, sans préciser dans quel T, elle se trouve. Par contre, les conditions
suivantes correspondent a la satisfaction d'une infinité d'axiomes du premier
ordre (un axiome par longueur possible des mots). On exclut de la discussion les
symétrons réduits a un point.

A. Translations et inversions sont disjointes, c'est-a-dire qu'une symétrie ne peut
étre une translation, qu'une inversion ne peut étre égale a 1'identité.

B. Les inversions ou translations involutives sont les symétries.
C. Pas de translations involutives.

D. Chaque translation a les méme points fixes que son carré.

E. Deux translations de méme carré sont égales.

F. Chaque inversion a au plus un point fixe.

G. Chaque inversion a exactement un point fixe.

I1 est clair que G implique F, que D implique C, et que C implique A ; par
ailleurs, nous avons vu dans le Corollaire 8 que E implique F et D, et que C
implique B.

L'introduction de cette cascade d'axiomes pose la question de leur
indépendance, et de leur indépendance dans des contextes particuliers. Nous
remarquons qu'ils sont tous vérifiés dans le cas d'une partie définissable convexe
d'un groupe de rang de Morley fini sans involutions, mais nous ne savons pas si
le groupe des translations d'un symétron de rang de Morley fini est toujours
borné (voir le Lemme 5(v)), méme dans le cas d'un symétron définissable dans
un corps algébriquement clos.

Pour ces éventuels symétrons de rang de Morley fini non bornés, se
posera aussi la question de 1'égalité des rangs de Morley, de Cantor et de Lascar
(ce n'est pas le cas pour les symétrons bornés, qui ne sont que des groupes dans
un langage augment¢ ; voir la préface de POizAT 1987).
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