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Résumé. Les sous-ensembles convexes (c'est-à-dire clos par symérie) d'un groupe sont 
apparus dans POIZAT 2018, motivés par FRECON 2018 dont la démonstration par contradiction 
consiste en la construction d'un ensemble convexe de dimension deux ("un plan"), puis à 
montrer que ce plan ne peut exister.  Dans un groupe de rang de Morley fini sans involutions, 
à un ensemble convexe définissable sont associées des symétries et des translations, qu'on 
entreprend ici d'étudier dans l'abstrait, sans référence à un groupe qui les enveloppe ; cela 
nous conduit à introduire axiomatiquement des structures que nous appelons symétrons.  
 Le Z*-Theorem de Glauberman permet d'élucider complètement les symétrons finis : 
chacun est isomorphe à l'ensemble des symétries associées à une partie convexe d'un groupe 
fini sans involutions, qui est loin d'être uniquement déterminée : de fait, il existe des groupes 
finis non isomorphes qui ont les mêmes symétries, et aussi des symétrons finis qui ne sont pas 
isomorphes aux symétries d'un groupe,. 
 La situation est plus incertaine dans le cas des symétrons de rang de Morley fini, ou 
même algébriques, qui sont l'objet d'étude principal de cet article. Mais bien qu'un symétron 
soit une structure nettement plus faible qu'un groupe, nous pouvons étendre aux symétrons 
des résultats bien connus à propos des groupes de rang de Morley fini : condition de chaîne, 
décomposition en composantes connexes, caractérisation des parties définissables génériques, 
génération elliptique, etc.. En outre, sous l'hypothèse de la Conjecture d'Algébricité, nous 
généralisons le Théorème de Glauberman au contexte de rang de Morley fini. 
 
Abstract. The convex subsets of a group appeared in POIZAT 2018, motivated by FRECON 
2018 whose proof by contradiction consists in the construction of a convex set of dimension 
two ("a plane"), and then in showing that such a plane cannot exist. 
 In a group of finite Morley rank without involutions, to a definable convex subset are 
associated symmetries and translations, that we undertake here to study in the abstract, 
without mentionning a group envelopping them. For this reason we introduce axiomatically a 
certain kind of structures that we call symmetrons.  
 Glauberman's Z*-Theorem allows to elucidate completely the finite symmetrons: each 
of them is isomorphic to the set of symmetries associated to a convex subset of a finite group 
without involutions, which is far from being uniquely determined. In fact, there exist non-
isomorphic finite groups which have the same symmetries, and also finite symmetrons which 
are not isomorphic to the symmetries of a group. 
 The situation is not so clear in the case of symmetrons of finite Morley rank, or even 
algebraic, which are the main objects of study of this paper. But in spite of the fact that a 
symmetron be a structure much weaker that a group, we can extend to symmetrons some 
well-known results concerning groups of finite Morley rank: chain condition, decomposition 
into connected components, characterisation of the generic definable subsets, elliptic 
generation, etc.. Moreover, assuming the Algebricity Conjecture, we generalize Glauberman's 
Theorem to the finite Morley rank context. 
 

                                                
1 Institut Camille Jordan, Université Claude Bernard, 43, boulevard du 11 novembre 1918, 
69622 Villeurbanne-cedex, France ; poizat@math.univ-lyon1.fr 



2 

Mots-clefs. Involutions, symétries, groupes finis, groupes de rang de Morley fini. 
 

Key-words. Involutions, symmetries, finite groups, groups of finite Morley rank. 
 
1. Symétrons  
 Nous appelons protosymétron une structure dans le langage d'une fonction 
binaire  s(x,y)  satisfaisant aux équations suivantes : 
 

1. s(x,x) = x     2.  s(s(x,y),y) = x       3.  s(s(x,z),s(y,z)) = s(s(x,y),z)  . 
 

 A  y  fixé, la fonction unaire  s(x,y)  est appelée symétrie de centre  y ,  
s(x,y)  étant le symétrique de  x  par rapport à  y  ; nous noterons également  
sy(x)  cette symétrie de centre  y . 
 Les deux premières équations signifient que chaque symétrie est une 
application involutive qui fixe son centre, et la dernière que chaque symétrie est 
un automorphisme de la structure ; elle équivaut, en posant  u = s(x,z) , à 
l'équation  s(u,s(y,z)) = s((s(u,z),y)z) , qui signifie que la symétrie  sz  conjugue 
la symétrie de centre  y  et la symétrie de centre  sz(y) . 
 Par exemple l'application  s(x,y) = x  définit un protosymétron sur 
n'importe quel ensemble, pour lequel chaque symétrie est l'application-identité. 
Plus substantiellement, n'importe quel groupe est un protosymétron pour 
l'opération  s(x,y) = y.x-1.y . 
 Pour une raison que nous éclaircirons plus tard, les sous-structures d'un 
protosymétron  S , c'est-à-dire ses sous-ensembles clos pour l'opération  s(x,y) , 
sont qualifiées de sous-ensembles convexes de  S . 
 Les permutations de  S  qui sont produits de deux symétries sont appelées 
translations primaires, et leur ensemble est noté  T1(S)  ;  Tn(S)  note l'ensemble 
des produits de  2n  symétries, et la réunion des  Tn(S)  est l'ensemble  T(S)  des 
translations de  S  ; le groupe engendré par les symétries est  ST(S) = T(S) ∪ 
su.T(S)  pour n'importe quelle symétrie  su , les produits d'un nombre impair de 
symétries étant appellés inversions de  S .  
 Chaque  Tn(S)  est normal dans  ST(S) . 
 Nous dirons que  T(S)  est borné si  T(S) = Tn(S)  pour  n  assez grand ; ce 
terme est préférable à définissable, car les  Tn(S)  ne sont pas en général inclus 
naturellement dans un même ensemble définissable. 
 

 Un protosymétron est dit injectif si chacune de ses symétries n'a qu'un seul 
point fixe, c'est-à-dire s'il satisfait à l'axiome universel :  s(x,y) = x  ⇒  x = y . Si 
à un point  y  du protosymétron injectif  S  on associe la symétrie de centre  y , 
on obtient un isomorphisme entre  S  et l'ensemble  Σ  de ses symétries, où  
s(σ,τ)  est interprétée par la conjugaison  τ.σ.τ  de  σ  par  τ , à l'intérieur du 
groupe des permutations de  S .  
 Un protosymétron injectif non réduit à un point correspond donc à la 
donnée, dans un groupe, d'un ensemble d'involutions clos par conjugaison et ne 
commutant pas deux-à-deux. Ce n'est pas a priori une structure bien exigeante 
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car,  étant donnés deux points, il peut y avoir plusieurs, ou aucune, symétries qui 
les échangent. 
 Un protosymétron est dit surjectif si, pour chaque couple de points  x  et  
y , il existe une symétrie qui les échange.  
 Le protosymétron d'un groupe  G  est injectif si et seulement si  G  ne 
contient pas d'involutions, c'est-à-dire pas de points d'ordre deux différents de 
l'élément neutre ; en effet,  a.u  est un point fixe de la symétrie  a.x-1.a  si et 
seulement si  u2 = 1 . Il est surjectif si et seulement si tout point de  G  est un 
carré ; en effet  a.x-1.a = y  si et seulement si  (a.x-1)2 = y.x-1 . 
 Si  S  est un protosymétron injectif, pour chacun de ses points  u  nous 
notons  Su  le translaté  su.Σ = Σ.su  de  Σ  par la symétrie  su  ; il est formé des 
translations primaires de la forme  su.sv , où de façon équivalente  sw.su = 
su.(su.sw.su)  ;  Su  est une partie convexe du groupe  T(S) , sur laquelle 
l'application  y.x-1.y  définit un protosymétron isomorphe à  S  ; elle engendre  
T(S) , tout point de  T1(S)  étant produit de deux points de  Su , puisque  sv.sw = 
su.su.sv.su.su.sw = (su.su.sv.su).(su.sw) . Dans  Σ , qui se compose d'involutions, les 
symétries sont des conjugaisons ; mais ce qui est transporté par translation, c'est 
la symétrie, pas la conjugaison ! 
 On voit donc qu'un protosymétron injectif est isomorphe à celui défini par 
une partie convexe et génératrice de son groupe de translations. 
 

 Remarque. Les groupes  ST(S) ,  ST(Σ)  et  ST(Su)  sont isomorphes, mais pas 
identiques. Si  t = s1. ... .sn  est un produit de  n  symétries de  S , chacune agit 
par conjugaison sur  Σ , sur lequel l'action de  t  est  t.σ.t-1 .  
 Son action sur  Su = su.Σ = Σ.su  comme composé de symétries est  
sutsu.suσ.t-1 , ou, si on préfère l'autre côté,  t.τsu.sut-1su  ; en particulier, quand  t  
est la symétrie  s , c'est  sussu.suσ.s = sus.(suσ)-1.sus . Si  t  commute avec  su , il 
agit par conjugaison sur   Su  ; c'est ainsi que  su  inverse  Su . 
 

 Nous appellerons symétron un protosymétron pour lequel, étant donnés  x  
et  y , il existe un unique  z  tel que  s(x,z) = y  ; nous qualifions ce point  z  de 
milieu de  x  et de  y . Un symétron est à la fois injectif et surjectif. 
 Un simple comptage montre qu'un protosymétron surjectif fini est en fait 
un symétron, et le Lemme 1(vii) qui suit affirme qu'il en est de même d'un 
protosymétron injectif fini.  
 Les symétries du groupe  G  forment un symétron si et seulement si 
chaque point de  G  a une unique racine carrée ; nous dirons qu'un tel groupe est 
médial. Nous dirons aussi qu'un groupe est sous-médial si la racine carrée y est 
unique à condition d'exister, c'est-à-dire si  x2 = y2  implique  x = y . 
 En résumé, la donnée d'un symétron équivaut à celle, dans un groupe, d'un 
ensemble  Σ  d'involutions vérifiant les deux conditions suivantes : 
(i) pour tous  a  et  b  dans  Σ ,  a.b.a  est dans  Σ  ; 
(ii) pour tous  a  et  b  dans  Σ , il existe un unique  c  dans  Σ  tel que  c.a.c = b . 
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 Le groupe  ST(Σ)  est alors le quotient par son centre du groupe engendré 
par  Σ . 
 Elle équivaut également à la donnée d'une partie convexe  X  d'un groupe 
telle que, pour tous  a  et  b  dans  X , il existe un unique  c  dans  X  tel que  
c.a-1.c = b . 
 Il est avantageux de décrire les symétrons dans le langage des deux 
fonctions binaires  m(x,y)  et  s(x,y)  (milieu et symétrie) ; bien sûr, chacune 
permet de définir l'autre, mais il faut faire ainsi si nous voulons une classe 
équationelle, et la stabilité par sous-structure. Dans ce langage, un symétron sera 
donc une structure satisfaisant aux cinq équations suivantes : 
 

1.  m(x,x) = x  ;  2. m(x,y) = m(y,x)  ;  3.  s(x,m(x,y)) = y  ;  4.  m(x,s(x,y)) = y  ; 
 

5. s(m(x,y),z) = m(s(x,z),s(y,z)) .   
 

 Les équations  3  et  4  signifient que, à  x  fixé, milieu et symétrie sont 
des fonctions unaires inverses l'une de l'autre ; la première signifie qu'une 
symétrie ne fixe que son centre, et la seconde qu'elle est involutive ; quant à la 
dernière, elle signifie que chaque symétrie est un automorphisme de la structure. 
 Dans le langage du milieu, les axiomes de symétron sont les suivants : 
 

m(x,x) = x  ;  m(x,y) = m(y,x)  ; pour tous  x  et  z  il existe un unique  y  tel que  
m(x,y) = z  ; quant à la cinquième condition, elle est remplacée par l'Axiome du 
losange : si  z = m(x,u) = m(y,v) , alors  m(m(x,u),m(y,v)) = z . 
 

 Si  X  est un sous-ensemble du symétron  S , son symétriseur  Sym(X)  est 
l'ensemble de ses centres de symétrie, c'est-à-dire l'ensemble des  u  tels que  
su(X) = X  ;  X  est convexe s'il est inclus dans son symétriseur ;  Sym(X)  est 
lui-même convexe, puisque la symétrie de centre  su(v)  est  su.sv.su . On 
remarque que, si  X  est non vide,  Sym(X)  s'injecte dans  X  ; en effet, fixant  a  
dans  X , à chaque  y  de  Sym(X)  nous associons  x = sy(a)  ; comme  y  est le 
milieu de  x  et de  a , il s'agit bien d'une injection. 
  

Lemme 1.  Dans un protosymétron injectif  S  : 
(i) Deux symétries ne commutent que si elles sont égales. 
(ii) Une translation ou une inversion fixe le point  u  si et seulement si elle 
commute avec  su , et alors elle normalise  Su . 
(iii) Il n'y a pas de translations primaires involutives (autres que l'identité). 
(iv) Toute puissance d'une translation primaire est une translation primaire ; 
plus précisément, si  t  est dans  Su ,  tn  aussi. 
(v) Le centre de  T(S)  est formé des translations qui sont inversées par 
conjugaison par chaque symétrie ; il ne contient pas d'involutions. 
(vi)  S  est un symétron si et seulement si, pour chaque  u , chaque point de  Su  a 
une unique racine carrée dans  Su . 
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(vii) Si  S  est oméga-stable ou si  T1(S)  est périodique,  S  est un symétron ; de 
plus chaque point de  T1(S)  a alors une unique racine carrée dans  T1(S) , qui 
est son unique racine carrée dans  T(S)  si ce dernier n'a pas d'involutions.   
 

Démonstration.  (i) Elles ont même point fixe. 
(ii) La conjuguée de  su  par cette application est une symétrie, qui fixe  u . Nous 
avons remarqué que son action sur  Su  se fait alors par conjugaison. 
(iii) Si  (su.sv)2  vaut l'identité,  su  et  sv  commutent, et sont égales.  
(iv) (su.sv)n = su.sv.(su.sv)n-1  ; or  sv.(su.sv)n-1 , étant exprimé par un mot 
symétrique de longueur impaire, est une symétrie. 
(v)  Soient  t  une translation centrale et  su  une symétrie ; posons  t' = su.t.su  ; 
comme  t  commute avec  sv.su , chaque symétrie  sv  échange  t  et  t'  ; les 
symétries induisent donc un même automorphisme involutif  σ  sur le centre de  
T(S)  ;  t.σ(t)  est fixé par  σ , commute avec tous les  su , et vaut donc l'identité, 
si bien que  σ(t) = t-1 . Réciproquement, si la translation  t  est inversée par 
chaque symétrie, elle commute avec chaque translation, et si de plus  t = t-1  elle 
fixe chaque point de  S  et vaut l'identité. 
(vi)  sv = sw.su.sw  si et seulement si  su.sv = su.(sw.su.sw) = (su.sw)2 . 
(vii)  Nous considérons  a = su.sv  et l'ensemble  C  des points de  Su  qui 
commutent avec tous les points de  Su  qui commutent avec  a  ;  C  est un 
ensemble convexe commutatif qui contient  a  et  1 , si bien que ses carrés 
forment un groupe ; comme il ne contient pas d'involutions, ce groupe est  
2-divisible : c'est évident dans le cas périodique, et dans le cas oméga-stable cela 
vient de ce qu'il est définissable. Par conséquent, si  α  est dans  C , on trouve  β  
dans  C  tel que  α2 = β4 , si bien que, puisque  α  et  β  commutent,  α-1.β2  est 
d'ordre  2  ; comme c'est un point de  T1(S) , qui ne contient pas d'involutions,  α 
= β2  ; on voit donc que  C  est en fait un groupe commutatif médial. 
 Par conséquent  a  possède une racine carrée  b  dans  C  ; si  b'  est une 
racine carrée de  a  dans  Su ,  b  et  b'  commutent, si bien que  b-1.b'  est d'ordre 
deux ; comme c'est un point de  T1(S) ,  b = b' . 
 Supposons que  a  ait aussi une racine carrée  c  dans  Sv , ce qui implique 
que  a  est dans  Su ∩ Sv  ; comme  a  appartient à un groupe commutatif  C  
inclus dans  Su , et à un autre  C'  inclus dans  Sv , et que  C ∩ C'  est définissable 
dans le cas oméga-stable, ce dernier est  2-divisible, et l'unique racine carrée  b  
de  a  dans  Su  est aussi son unique racine carrée  c  dans  Sv .  
 Comme  T1(S)  est normal, tout point de  ST(S)  qui commute avec un 
point  a  de  T1(S)  commute aussi avec son unique racine carrée  b  située dans  
T1(S) , et les autres racines carrées de  a  sont de la forme  b.i , où  i  est une 
involution qui commute avec  a . Fin 
 

Lemme 2.  Dans un symétron  S  : 
(i) Une inversion ou translation involutive a au moins un point fixe, et si elle 
n'en a qu'un seul c'est une symétrie. 
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(ii) Si une translation primaire a un point fixe, elle vaut l'identité.  
(iii) Etant donné trois points  u , x  et  y  de  S , il existe un unique  v  dans  S  tel 
que  su.sv(x) = y . 
(iv) Les translations primaires sont les commutateurs des symétries ;  T(S)  est 
le groupe dérivé de  ST(S) . 
(v) Le centre de  T(S)  est l'intersection des  Su . 
(vi) Une inversion ou translation inversée par  su  est produit d'un point de  Su  
par un élément d'ordre deux qui commute avec ce dernier. 
 

Démonstration. (i) Soit  t  involutif dans  ST(S)  ; pour chaque  x  de  S ,  t  
échange  x  et  t(x) , et fixe leur milieu  u  ; si  u  est son unique point fixe,  t  est 
égale à  su .  
(ii) Supposons que  su.sv  fixe  x , dont nous notons  y  l'image par  sv  ; ces deux 
symétries échangent  x  et  y , ont toutes deux pour centre le milieu de  x  et de  
y , et sont donc égales.  
(iii)  Cela signifie encore que  sv.su(y) = x , soit encore que  v  est le milieu de  
su(y)  et de  x . 
(iv)  su.sv = su.(sw.su.sw) = [su.sw] , où  w  est le milieu de  u  et de  v . 
(v) Soient  t  une translation centrale et  u  un point de  S  ; comme  su  inverse  
t ,  su.t  est une involution ; si  v  est un de ses points fixes, sv.su.t = su.t.sv , soit 
encore, en faisant commuter  t  et  sv.su ,  sv.su.sv = t-1.su.t , si bien que  v  est le 
milieu de  u  et du centre  t-1(u)  de la symétrie  t-1.su.t  ; l'involution  su.t , n'ayant 
qu'un seul point fixe, est donc une symétrie, ce qui signifie que  t  est dans  Su . 
Réciproquement, si  t  est dans chaque  Su , il est inversé par toutes les  su . 
(vi) Si la conjugaison par  su  inverse  t ,  su.t  est une involution, et a un point 
fixe  v , si bien que  sv.su.t = su.t.sv , soit encore  t.sv.su.t  = su.sv  ; dans  ST(S) , 
su.sv  est un point fixe de la symétrie de centre  t , et  t = su.sv.i  où  i2 = 1  ; 
comme  su.t.su = t-1 ,  i  commute avec  su.sv . Fin 
 

Corollaire 3.  Dans un symétron  S  : 
(i) S'il n'y a pas de translations involutives,  Su  est l'ensemble des translations 
inversées par  su , et les seules involutions de  ST(S)  sont les symétries. 
(ii) Si  T(S)  est sous-médial, chaque inversion a au plus un point fixe. 
(iii) Si  T(S)  est médial, chaque inversion a exactement un point fixe. 
(iv) Si chaque inversion a au plus un point fixe, il n'y a pas de translations 
involutives, et même chaque translation a les mêmes points fixes que son carré.  
 

Démonstration. (i) Le premier point est conséquence du Lemme 2(vi) ; et donc 
si  t  est une translation telle que  su.t  soit involutive,  t  est dans  Su . 
(ii) & (iii)  Soient  s  une symétrie et  t  et  θ  deux translations ; on suppose que  
s.θ  est une involution qui commute avec  s.t  :  s.t.s.θ = s.θ.s.t = θ-1.t , soit 
encore  t.s.t.s = t.θ-1.t.θ-1 , si bien que  t.θ-1  est racine carrée dans  T(S)  de  t.s.t.s  
(lequel est un point de  T(S)  qui est le carré de  t.s  dans  ST(S) ). Par ailleurs, si  
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t.θ-1  est l'unique racine carrée dans  T(S)  de  t.s.t.s , elle commute avec  t.s , si 
bien que  (t.θ-1)-1.(t.s) = θ.s  est une involution, ainsi que sa conjuguée  s.θ . 
(iv) Si la translation  t  échange  x  et  t(x) , de milieu  u , ce sont des points fixes 
de l'inversion  t.su , qui sont donc égaux. Fin  
 

Lemme préparatoire. Soient  G  un groupe commutatif sans involutions et  X  
une partie de  G  contenant l'élément neutre ; on suppose que  G  est périodique, 
ou bien qu'il est oméga-stable et que  X  est définissable. Alors, si  X  est 
convexe, ou bien s'il est clos par prise de milieu, c'est un sous-groupe de  G . 
 

Démonstration.  Si  X  est convexe, comme il est commutatif ses carrés forment 
un groupe  H , qui, sous les hypothèses, est clos par extraction de l'unique racine 
carrée dans  G  ; donc  X = H . 
 Si  X  est clos par milieu, il faut montrer que  X  est clos par somme.  
 On note  G  additivement. Si  a  est dans  X ,  a/2  l'est aussi, car c'est le 
milieu de  0  et  de  a . Dans le cas périodique, l'intersection de  X  et du groupe 
(fini) engendré par  a  est clos pour l'injection  x/2 , donc aussi pour son inverse, 
si bien que  2a  est dans  X . Si  a  et  b  sont dans  X , ce dernier contient 
également le double de leur milieu, qui est  a+b . 
 Dans le cas oméga-stable, comme la division par  2  est injective, et que 
les types génériques (c'est-à-dire de rang de Morley maximal) de  X  sont en 
nombre fini, si  x  est un point générique de  X  (pris dans une extension 
élémentaire de  G ),  2x  l'est aussi. Si  x  est générique sur  a ,  (x+a)/2 , ayant 
même rang de Morley que  x , est un point générique de  X , ainsi que son 
double  x + a . Comme à  x  fixé la relation  z = x + y  établit une bijection entre 
le type de  z  et celui de  y , si  z  et  y  sont génériques indépendants, z - y  est 
générique. De plus tout générique est de cette forme, et si  x  est générique dans  
X ,  -x  l'est aussi. Soient alors  a  et  b  deux points de  X  et  x  générique sur  
{a, b}  ;  a - x  et  b + x  le sont aussi, et le milieu de leurs doubles, qui vaut  
a + b , est dans  X . Fin 
 

Théorème 4. On considère une partie non vide  X  du symétron  S , et on 
suppose soit que  T1(S)  est périodique, soit que  S  est oméga-stable et que  X  
est définissable (si  S  est fini, chacune des deux hypothèses est vérifiée). 
(i) Si  X  est convexe, il est clos par prise de milieu, et égal à son symétriseur. 
(ii) Si  X  est clos par prise de milieu, il est convexe. 
 

Démonstration. (i) & (ii) On considère  u  et  v  dans  X  ; dans le premier cas, 
il faut voir que  X  contient le milieu de  u  et de  v , et dans le deuxième qu'il 
contient le symétrique de  u  par rapport à  v . On remplace  S  par  Σ , puis on 
translate par  su , et on note  Y  l'ensemble des  su.sw , où  w  parcourt  X  ;  
posant  a = su.sv ,  il faut voir dans le premier cas que le milieu de  1  et de  a , 
c'est-à-dire l'unique racine carrée de  a  contenue dans  Su , est dans  Y , et dans 
le second cas que  a2  est dans  Y .  
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 Nous avons vu, dans la démonstration du Lemme 1(vii), que les points de  
Su  commutant avec tous les points de  Su  qui commutent avec  a  forment un 
groupe commutatif médial  C , qui est définissable dans le second cas. En posant  
Z = C∩Y  on est ramené au lemme préparatoire. 
 Si  X  convexe il est inclus dans  Sym(X)  ; s'il est non vide et clos par 
prise de milieu,  Sym(X)  est inclus dans  X , chacun de ses points étant au 
milieu de deux points de  X .  Fin 
 

 Nous avons remarqué qu'un symétron peut être vu comme une structure 
dans le langage de la fonction-milieu  m(x,y) , ou bien dans celui de la fonction-
symétrie  s(x,y) = sy(x) , qui sont interdéfinissables ; dans les cas favorables 
considérés dans Théorème 4, la notion de sous-structure ne dépend pas de ce 
choix de langage. Mais, dans le cas général, pour obtenir un symétron induit sur 
une sous-structure  X  de  S , nous devons supposer que  X  est à la fois convexe 
et clos par prise de milieu : nous dirons dans ce cas qu'il est un sous-symétron de  
S  ;  T(X)  est alors une section de  T(S) . 
 Pour un symétron oméga-stable, nous obtenons la condition de chaîne 
descendante sur les convexes définissables ; en effet, si  X  est strictement inclus 
dans  Y , nous prenons  a  dans  Y-X  ; comme  X  est close par prise de milieu, 
la symétrie  sa(x)  définit une injection définissable de  X  dans  Y-X , si bien 
que le rang de Morley de  X  est strictement inférieur à celui de  Y , ou sinon le 
degré de Morley de  X  est strictement inférieur à celui de  Y . 
 
2. L'exemple primordial : les groupes de rang de Morley fini sans 
involutions 
 Soit  G  un groupe. Nous avons considéré les inversions et les translations 
associées à son protosymétron, qui sont produits de symétries ; nous notons  
ST(G)  et  T(G)  les deux groupes qu'elles forment. 
 Il est par ailleurs des translations et inversions plus générales, associées à 
la structure de groupe, qui sont les applications de la forme  a.x-1.b  et  a.x.b  ; 
nous notons  STg(G)  et  Tg(G)  les groupes correspondants. Un calcul rapide 
montre que les inversions et translations de groupe sont des automorphismes du 
protosymétron de  G , dont elles permutent les parties convexes. 
 Le groupe  Tg(G)  correspond à une action sur  G  du groupe  G×Gi , où  
Gi  est le groupe isomorphe à  G  par l'application inverse, dans lequel le produit 
de  a  par  b  est  b.a  ; comme  a.x.b = a'.x.b'  pour tout  x  si et seulement  a' = 
c.a  et  b' = c-1.b  pour un  c  central dans  G , le noyau de cette action est le 
groupe formé des  (c,c-1)  où  c  parcourt le centre de  G . L'ensemble  T1(G)  est 
formé des translations qui s'écrivent  ab.x.ba . 
 La symétrie de centre  y  a même sens dans  G  et dans son groupe inverse  
Gi , l'opération binaire  y.x-1.y  étant la même dans ces deux groupes. 
 Nous notons   ε   l'automorphisme involutif du groupe  G×Gi  qui échange 
les deux coordonnées, c'est-à-dire que  ε(a,b) = ε(b-1,a-1) ; l'ensemble de ses 
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points fixes est le groupe formé des  (a,a-1) , et les points qu'il inverse forment le 
convexe diagonal des  (a,a) . Le groupe  STg(G)  correspond à une action du 
produit semi-direct de  G×Gi  par l'échange des coordonnées. 
 Quand le groupe  G  est médial et que  u  représente le passage à l'inverse 
(qui est la symétrie centrée sur l'élément neutre),  Su  est formé des symétries qui 
s'écrivent  a.x.a  ; en posant  x = 1  on voit que cette écriture est unique, si bien 
que l'isomorphisme entre  Su  et le symétron de  G  identifie ce dernier au 
convexe diagonal.  
 

Lemme 5. (i) Le groupe  ST(G)  est formé des  a.x±1.b , où  a  et  b  sont congrus 
modulo le dérivé  G'  de  G . 
(ii) Si  G  est engendré par son dérivé et par les carrés de ses éléments centraux, 
ce groupe est égal à  STg(G) , étant formé de tous les  a.x±1.b . 
(iii) Si  G  est égal à son dérivé et a un centre trivial, ce groupe est isomorphe 
au produit semi-direct de  G×Gi  par l'échange des coordonnées. 
(iv) Si le dérivé  G'  de  G  est définissable,  T(G)  est définissable ; si tout 
élément de  G'  est produit d'un nombre fixé de commutateurs,  T(G)  est borné. 
Les réciproques sont vraies quand le centre de  G  est trivial. 
(v) Le groupe  T(X)  des translations d'une partie convexe définissable  X  d'un 
groupe de rang de Morley fini  G  est borné (et définissable !). 
(vi) Dans un groupe de rang de Morley fini, chaque élément du dérivé est 
produit d'un nombre borné de commutateurs. 
 

Démonstration. (i) Un produit de symétries s'écrit  a1.a2. ... .an.x±1.an. ... .a2.a1 . 
Pour la réciproque,  a.b.a-1b-1.x.a-1b-1.b.a = [a,b].x , si bien que  ab.x±1.ca  est un 
produit de symétries si  b  et  c  sont dans  G' .  
(ii) Si  a = α2γ  et  b = β2δ , où  α  et  β  sont centraux tandis que  γ  et  δ  sont 
dans le dérivé,  a.x±1.b = (αβ).γ.x±1.δ.(αβ) .  
(iii) Dans ces conditions,  a.x.b = c.x.d  seulement si  a = c  et  b = d . 
(iv) D'après (i), les translations de  T(G)  sont celles qui s'écrivent   ga.x.a  , où  
g  est dans  G' , si bien que  T(G)  est définissable si  G'  l'est. Pour l'aspect borné 
des choses, nous avons vu lors de la démonstration de (i) qu'une translation par 
un commutateur est produit de trois translations de la forme  α.x.α , si bien que, 
si  g  est produit de  n  commutateurs, la translation  ga.x.a  est produit de  3n + 1  
ou  3n + 2  symétries suivant la parité de  n . 
 Si le centre de  G  est trivial, l'écriture de ces translations est unique, et  
g.x  est dans  T(X)  si et seulement si  g  est dans  G'  ; si elle est produit de  n+1  
symétries,  g  est de la forme  g = a1. ... .an.an+1  où  an+1.an. ... .a1 = 1 , c'est-à-dire 
que  g = a1. ... . an.a1

-1. ... .an
-1  ; en faisant commuter  an

-1  et  a1
-1. ... .an-1

-1 , on 
montre alors par récurrence sur  n  que  g  est produit de  n  commutateurs.  
(v) Après translation on peut supposer que  X  contient l'élément neutre ; les 
couples  (a,a) , où  a  parcourt  X , forment une partie convexe définissable du 
groupe  G×Gi  contenant  (1,1) , qui, d'après la Proposition 13 de POIZAT 2018, 



10 

engendre de façon bornée un sous-groupe  Γ  définissable (il revient au même de 
considérer les couples  (a,a-1)  dans  G×G ) ; vu comme ensemble d'applications 
de  G  dans  G , le groupe engendré par les symétries centrées en  X  est formé 
des  α.x±1.β  avec  (α,β)  dans  Γ  ; pour obtenir les translations de  X , on 
quotiente les  α.x.β  par celles d'entre elles qui valent l'identité sur  X . 
(vi) On reprend les démonstrations précédentes en se plaçant non pas dans le 
groupe  Tg(G) , mais dans le groupe  G×Gi , et en considérant le groupe 
engendré par le convexe diagonal. Fin 
 

Remarques. (i) Le Lemme 5(vi) est un résultat bien connu de Zil'ber ; on le 
montre habituellement (POIZAT 1985, p. 89 ; BOROVIK & NESIN 1994, p. 87-88) 
en s'appuyant sur le fait qu'un groupe qui n'a qu'un nombre fini de commutateurs 
a un dérivé fini (ROSENLICHT 1961) ; la démonstration offerte ici repose sur le 
fait plus simple qu'un ensemble convexe fini, contenant l'élément neutre, 
engendre un groupe fini. La philosophie de l'histoire, c'est que, pour tout groupe  
G ,  G'  et le groupe engendré par le convexe diagonal sont interdéfinissables. 
(ii) Dans un groupe de rang de Morley fini (ou même seulement stable), s'il n'y a 
qu'un nombre fini de commutateurs, chaque point n'a qu'un nombre fini de 
conjugués et centralise la composante (centralisateur-)connexe du groupe. Or il 
est facile de voir que si le centre du groupe  G  est d'indice fini dans  G , le 
groupe dérivé de  G  est fini. En effet, dans le groupe G×Gi / Z , ou  Z  est formé 
des  (γ,γ)  où  γ  est central dans  G , le convexe diagonal  C  a une image finie, 
engendrant un groupe fini ; il existe donc  g1 , ... gn  dans  G'  et  a1 , ... an  dans  
G  tel que tout point du groupe engendré par  C  soit de la forme   (g1.a1.γ,a1.γ)  
ou ... ou  (gn.an.γ,an.γ)  avec  γ  central, soit encore de la forme  (g1.x,x)  ou ... ou  
(gn.x,x)  ;  (h,1)  ne peut être dans ce groupe que si  h  est l'un des  gi .  
 

 Un groupe  G  médial, ou même seulement sous-médial, ne contient pas 
d'involutions, puisque  1  y est l'unique racine carrée de  1  ; réciproquement les 
groupes sans involutions périodiques, et en particulier finis, ou oméga-stables 
sont médiaux (en effet, dans ces groupes chaque point a une racine carrée de 
même centralisateur ; voir POIZAT 2018) ; c'est donc le cas des groupes 
périodiques simples construits dans OLSHANSKII 1982. Nous verrons que la 
structure de ses symétries, c'est-à-dire la loi binaire  y.x-1.y , ne détermine pas 
nécessairement  G , même à isomorphie près. 
 Si le groupe médial  G  est commutatif, l'inversion  a.x-1.b  est la symétrie  
c.x-1.c , où  c  est la racine carrée de  ab  ; chaque translation est alors produit de 
deux symétries. 
 

Remarque. Dans le langage des groupes et de la racine carrée, les groupes 
médiaux forme une variété, définie par les équations :  (x1/2)2 = x ,  (x2)1/2 = x ,  
(y.x.y-1)1/2 = y.x1/2.y-1  ; en effet la deuxième équation impose qu'il n'y a pas 
d'involutions, et la troisième que  x  et  x1/2  ont même centraliseur.  
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Exemple 1.  Le produit semi-direct du groupe additif des entiers par lui-même, 
dont la loi de groupe est  (x,u).(y,v) = (x + (-1)u.y, u + v) , n'a pas d'involutions, 
mais n'est pas sous-médial ; c'est un groupe superstable. 
 

Lemme 6. Dans un groupe médial  G  : 
(i) Chaque centralisateur est clos par extraction de racine carrée ; le quotient 
de  G  par son centre est médial. 
(ii) Aucun point  ≠ 1  n'est conjugué de son inverse. 
(iii) Le groupe  Tg(G)  de toutes les translations est médial ; chaque translation 
a les mêmes points fixes que son carré ; si  X  est une partie convexe non-vide 
de  G , le groupe  T(X)  est sous-médial (en particulier si  X = G ).   
(iv) Une inversion a un unique point fixe. Si  X  est une partie convexe de  G , 
les inversions de  ST(X)  ont au plus un point fixe. 
 

Démonstration. (i) Si  x  conjugue  y  et  z , il doit aussi conjuguer leurs 
uniques racines carrées  y1/2  et  z1/2  ; par conséquent, si  x  commute avec  y , il 
commute avec  y1/2 . 
 Supposons que  x2 = y2.z , où  z  est central ; comme  z1/2  est aussi central,  
x2 = (y.z1/2)2 , et  x = y.z1/2 . 
(ii)  (xa)2 = a2  si et seulement si  a  conjugue  x  et son inverse ; en fait, cette 
condition signifie que  G  est sous-médial. 
(iii) La translation  a1/2.x.b1/2  est racine carrée de la translation  a.x.b , et il faut 
voir que c'est son unique racine carrée ; supposons que  a2.x.b2 = α2.x.β2  pour 
tout  x  ; alors  a2 = c.α2  et  b2 = c-1.β2  où  c  est central ; d'après (i),  c1/2  est 
aussi central ; comme les racines carrées sont uniques,   a = c1/2.α ,  b = c-1/2.β , 
et  a.x.b = α.x.β  pour tout  x .  
 Si  a2.x.b2 = x ,  x  conjugue  b-2  et  a2 , ainsi que leurs uniques racines 
carrées respectives  b-1  et  a .  
 Quitte à la translater, on peut supposer que  X  contient  1 . Une 
translation  α.x.β  vaut alors l'identité sur  X  si et seulement si  α = β-1  et 
centralise  X . Si donc les carrés des deux translations  a.x.b  et  a'.x.b' , produits 
d'un nombre pair de symétries centrées en  X , ont même action sur  X , il existe  
c  centralisant  X  tel que  a2 = a'2.c  et  b2 = c-1.b'2  ; comme  c  centralise aussi  
a ,  b ,  a'  et  b' , qui sont produits d'éléments de  X ,  a2 = (a'.c1/2)2  et  b2 = 
(b'.c1/2)2  ; comme  G  est médial, a = a'.c1/2  et b = b'.c1/2 , si bien que  a.x.b  et  
a'.x.b'  ont même action sur  X . 
(iv)  a.x-1.b = x  signifie que  x  est le milieu de  a  et  de  b . Si  a.x-1.b  est 
involutive,  ab-1.x.a-1b  vaut l'identité, ce qui implique que  c = ab-1  est central, et  
que  a.x-1.b  est la symétrie de centre  b.c1/2 . 
 Si  i  est produit d'un nombre impair de symétries centrées en  X , elle a un 
unique point fixe  u , et sa restriction à  X  a zéro ou un point fixe suivant que  u  
est dans  X  ou pas. Fin 
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Remarque. Si  G  est périodique sans involutions, il en est de même de ses 
sections ; si  G  est oméga-stable sans involutions, il en est de même de ses 
sections définissables. Si  X  est une partie convexe non vide de  G , définissable 
dans le deuxième cas, elle est close par prise de milieu d'après le Théorème 4, et 
toute inversion produit de symétries ayant leur centre dans  X  a son point fixe 
dans  X  : c'est une conséquence du Corollaire 3(iii) et du Lemme 6. 
 
4. Symétrons abéliens 
 Nous commençons cette section en vérifiant que, si  G  est un groupe 
médial, le centre du groupe des translations  T(G)  du symétron associé est 
formé des  a.x.a , où  a  parcourt le deuxième centre de  G .  
 En effet, considérons deux translations de  T(G) , qui sont de la forme  
a.x.a.g  et  α.x.α.γ  avec  g  et  γ  dans  G'  ; elles commutent si et seulement si, 
pour tout  x ,  α.a.x.a.g.α.γ = a.α.x.α.γ.a.g , soit encore x-1.α-1.a-1.α.a.x = 
α.γ.a.g.α-1.a-1 , ce qui implique que le commutateur  [α,a]  est central ; si pour  a  
et  g  donnés cela se produit pour tout  α  et  γ ,  a  est dans le deuxième centre, 
et par conséquent commute avec les commutateurs ; comme  α.a = a.α.β  pour 
un  β  central, l'égalité se transforme en  a.α.β.x.g.a.α.γ = a.α.x.a.α.β.γ.g , et 
finalement en g.a.α.γ = a.α.γ.g , ce qui signifie que  g  est central ; finalement  
a.x.a.g = a.g1/2.x.a.g1/2  a bien la forme indiquée. 
 Par conséquent  T(G)  est commutatif si et seulement si  G  est nilpotent 
de classe  2  (comme par exemple l'est le groupe  U3(K)  des matrices 
triangulaires unipotentes d'ordre  3 , sur un corps  K  de caractéristique  ≠ 2 ) ;  
T(G)  est alors isomorphe au groupe  G* , défini sur le même ensemble que  G , 
mais dont la multiplication est  a*b = a.b.[b,a]1/2  : on voit sans peine que  G*  est 
un groupe commutatif médial qui a les mêmes symétries que  G , c'est-à-dire que  
a*b-1

*a = a.b-1.a . Le groupe  ST(G)  est isomorphe au produit semi-direct de  G*  
par le passage à l'inverse, et les symétries sont les involutions de  ST(G)  ; elles 
forment une cossette modulo  G* , ce qui signifie que le produit de trois 
symétries est une symétrie. 
 Nous observons que le groupe  T(S)  des translations d'un symétron  S  ne 
peut être  2-nilpotent que s'il est commutatif ; en effet, comme le centre de  T(S)  
est médial, on montre comme ci-dessus que  T(T(S))  est alors commutatif. 
 Tout cela est un prélude à la caractérisation des symétrons dont le groupe 
de translations est commutatif, que nous appelons symétrons abéliens : 
 

Théorème 7. Pour un symétron  S , les choses suivantes sont équivalentes : 
(i) Tout produit de trois symétries est une symétrie (soit encore que les symétries 
forment une cossette, ensemble fermé sous l'opération ternaire  x.y-1.z , dans le 
groupe qu'elles engendrent). 
(ii) Tout produit de trois symétries est une involution. 
(iii)  T1(S)  est un groupe (égal à T(S) ). 
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(iv)  T1(S)  est une partie convexe de  T(S) . 
(v) Pour un, ou pour chaque  u  de  S ,  Su  est un groupe. 
(vi) Pour un, ou pour chaque  u  de  S ,  Su  est commutatif. 
(vii) Pour un, ou pour chaque  u  de  S ,  T1(S) = Su . 
 Et quand c'est le cas,  T(S) = T1(S)  est un groupe commutatif médial, 
dont  S  est l'ensemble des symétries,  et  ST(S)  est isomorphe au produit de  
T(S)  par le passage à l'inverse. 
 

Démonstration. Ce qui se passe pour un  u  se passe pour chacun d'eux, puisque 
les  su  sont conjuguées. 
 (v) signifie que, pour tous  u , v , w  il existe  t  tel que  su.sv.su.sw = su.st , 
ce qui est équivalent à (i) ; (vi) signifie que, pour tous  u ,  v  et  w , su.sv.su.sw = 
su.sw.su.sv , ce qui est équivalent à (ii). 
 (i) implique (ii), qui implique (vi), qui implique que  T(S)  est commutatif, 
soit encore, puisque  Su  agit transitivement, que  T(S) = Su = T1(S) , c'est-à-dire 
(v) et (vii) ; si (vii) est vérifié, pour chaque  u ,  v  et  w  il existe  t  tel que sv.sw 
= su.st , et (i) est vérifié. 
 Reste à voir que (iv) implique (iii) : soient  a ,  b ,  c ,  d  dans  S , et  m  le 
milieu de  a  et  de  b  ;  sa.sb.sc.sd = sa.sm.sa.sm.sc.sd = sa.sm.(sa.sm.sc.sd.sm.sa).sa.sm  ; 
comme  T1(S)  est clos par conjugaison, il est clos par symétrie si et seulement 
s'il est clos par produit. 
 Par ailleurs nous savons que dans  Su  il y a existence et unicité de la 
racine carrée. Fin 
 

Lemme 8. Un symétron engendré par deux points est abélien. 
 

Démonstration. Si  S  est engendré par  u  et  v ,  Su  est engendré par  1  et  a = 
su.sv  ; comme  Su  est clos par puissances et extraction d'unique racine carrée, le 
groupe engendré par les racines  2n.ièmes de  a  est commutatif et médial, et en 
fait égal à  Su . Fin 
 

 On voit donc que le symétron libre à deux générateurs est celui des 
symétries du groupe additif des rationnels de la forme  m/2n , et qu'un symétron 
fini engendré par deux points est celui des symétries d'un groupe cyclique 
d'ordre impair. 
 

Question 1. Est-ce qu'un symétron minimal, c'est-à-dire un symétron infini dont 
tous les sous-ensembles définissables propres sont finis ou cofinis, est abélien ? 
Quid d'un symétron fortement minimal ? 
 

 La raison pour laquelle les sous-symétrons ont été qualifiés de convexes 
dans POIZAT 2018 est que ce sont les ensembles dans lesquels deux points 
quelconques sont reliés par un sous-symétron abélien. 
 

 Nous concluons la section par un exemple de symétron non abélien. 
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Exemple 2. Soient  K  un corps de caractéristique  ≠  2 , et  M  un sous-groupe 
multiplicatif non trivial et médial de  K* . Le produit semi-direct  G  de  K+  par  
M  est isomorphe au groupe des fonctions affines  x.t + y , où  x  parcourt  M  et  
y  parcourt  K , ou encore au groupe des matrices de la forme  m(x,y) =  x0   

y
x  -1 . 

 C'est un groupe médial ; puisque  M  est non-trivial, chaque  m(1,y)  est 
un commutateur,  G'  est isomorphe à  K+ , et le centre de  G  est trivial. 
 Chaque point de  T(G)  s'écrit de manière unique  m(µ,a).g.m(µ,b)  ; pour 
les multiplier, on effectue la multiplication directe sur la première coordonnée et 
la multiplication inverse sur la seconde ; en remplaçant cette dernière par son 
inverse, on voit que  T(G)  est isomorphe au produit semi-direct de l'espace 
vectoriel  K+×K+ par le groupe des matrices diagonales  µ0      

0
µ     -1| . 

 Supposons maintenant que le corps  K  possède un automorphisme 
involutif  σ  qui inverse chaque point de  M . Le convexe  S  des points inversés 
par l'automorphisme de  G  induit par  σ  est défini par la condition  σ(y) = -y  ; 
il est clos par prise de milieu : c'est un sous-symétron de  G . Vérifions que  S  
engendre  G  : prenons  α ≠ 1  dans  M  ; le conjugué de  m(1,y)  par  m(α,0)  est  
m(1,α2.y)  ;  K  est un espace vectoriel de dimension  2  sur le corps  L  des 
invariants de  σ  ; l'ensemble  E  des  y  tels que  σ(y) = -y  est un espace 
vectoriel de dimension un sur  L , ainsi que  a2.E  ; comme ils sont distincts, leur 
somme vaut  K , si bien que le groupe engendré par  S  contient toutes les 
matrices  m(1,y) , d'où la conclusion. 
  Par conséquent les translations de  S  sont les applications de la forme  
a.x.σ(a-1)  avec  a  dans  G , et le groupe  T(S)  est isomorphe à  G . 
 Comme exemple d'application, on considère  K = F25 , qui est engendré 
par une racine cubique de l'unité  j  ; son automorphisme  σ  échange  j  et  j2 . 
On prend pour  M  le groupe  {1, j, j2} , qui est d'ailleurs la seule possibilité ;  S  
a quinze points, et son groupe de translations  G  en a septante-cinq ;  S  n'est pas 
isomorphe au symétron d'un groupe médial, car tous les groupes d'ordre quinze 
sont commutatifs. 
 
4. Symétrons finis et localement finis 
 Si le symétron  S  est fini, son nombre d'éléments  n  est impair, puisque 
les symétries n'ont qu'un seul point fixe ; si  t  est une translation primaire,  tm  
aussi, et elle vaut l'identité dès qu'elle a un point fixe : cela veut dire que tous ses 
cycles ont même nombre d'éléments, qui est un diviseur de  n . 
 Quand  n = p  est un nombre premier, chaque translation primaire  t ≠ 1  
est d'ordre  p  ; si  t = su.sv , les  tm  parcourent  Su , et chaque  sw  est de la forme  
su.tm  ; comme  su  inverse  t  par conjugaison, chaque point de  ST(S)  est de la 
forme  tm  ou  su.tm . On voit que  S  est isomorphe au symétron des symétries du 
groupe cyclique d'ordre  p  ; plus généralement, le symétron du groupe cyclique 
d'ordre  n  est caractérisé par le fait qu'il a une translation primaire d'ordre  n . 
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 En fait, la structure des symétrons finis est totalement élucidée par le 
résultat suivant, qui s'appuie sur un grand théorème de la théorie des groupes 
finis : chacun est isomorphe au symétries d'une partie convexe d'un groupe fini 
sans involutions. 
 

Théorème 9. Un symétron fini n'a pas de translations involutives. 
 

Démonstration. Soit  s  une symétrie du symétron fini  S  ; dans  G = ST(S) , 
elle ne commute avec aucune de ses conjuguées si ce n'est elle-même, si bien 
que le  Z*-Theorem de GLAUBERMAN 1966 affirme qu'elle est centrale modulo 
le plus grand sous-groupe normal d'ordre impair de  G  ; dans notre cas 
particulier où  G  est engendré par les conjuguées de  s , ce dernier est  T(S) .  
 Si  α  est une translation de  S ,  s.α  est une involution si et seulement si  
α  est inversée par  s , et alors elle conjugue  s  sur  s.α2  ; comme il y a 
existence et unicité de la racine carrée dans  T(S) ,  S  est bien un symétron. Fin 
 

 Nous dirons qu'un symétron est localement fini si chacune de ses parties 
finies est contenue dans un sous-symétron fini.  
 

Théorème 10. (i) Un symétron est localement fini si et seulement si son groupe 
de translations est localement fini. 
(ii) Un symétron localement fini n'a pas de translations involutives (son groupe 
de translations est donc médial, et localement résoluble). 
(iii) Un groupe médial est localement fini en tant que groupe si et seulement s'il 
l'est en tant que symétron. 
 

Démonstration. (i) Supposons  S  localement fini ; des symétries  s1 , ... sn  sont 
contenues dans une partie convexe finie  F  de  Σ  ; comme un produit 
d'éléments de  F , s'il ne vaut pas l'identité, peut s'écrire comme un produit 
d'éléments de  F  distincts,  F  engendre un groupe fini ;  ST(S) , et son sous-
groupe  T(S) , sont donc localement finis. 
 Supposons  T(S)  localement fini ; comme il est d'indice un ou deux dans  
ST(S) , ce dernier est aussi localement fini. Des symétries  s1 , ... sn  engendrent 
donc un groupe fini  G  ; l'ensemble des symétries contenues dans  G  est clos 
par conjugaison, c'est-à-dire par symétrie, et d'après le Théorème 4 est clos par 
prise de milieu : c'est un sous-symétron de  S , qui est bien localement fini. 
(ii) Soit  t  une translation telle que  t2 = Id , engendrée par les symétries  s1 , ... 
sn , et soit  s  une symétrie quelconque ; les centres des symétries  s1 , ...  sn  et  s  
engendrent un symétron fini, qui, d'après le Théorème 9, n'a pas de translations 
involutives. La restriction de  t  à ce dernier vaut l'identité, et  t  fixe le centre de  
s  ; comme cela a lieu pour tout  s ,  t  vaut l'identité. La dernière assertion est 
conséquence du Théorème de Feit et Thompson. 
(iii) Si le groupe  G  est localement fini, le groupe des translations de son 
symétron, qui est une section de  G×G , est localement fini. Si le symétron de  G  
est localement fini, chaque translation  a.x.a , qui est produit de deux symétries, 
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est d'ordre fini ; mais, comme il n'y a pas d'involutions dans  G ,  an.x.an  ne peut 
valoir l'identité que si  an = 1 , si bien que  G  est périodique. Si  g  est dans le 
dérivé  G'  de  G , la translation  g.x  est un produit de symétries, si bien que  G'  
est localement fini ; comme par ailleurs  G/G'  est localement fini,  G  est 
localement fini. Fin 
 

Théorème 11. (i) Toute structure définissable dans un corps algébriquement 
clos satisfait les énoncés vrais dans chaque structure localement finie (elle est 
"pseudo-localement-finie"). 
(ii) Soient  G  un groupe algébrique simple (sur un corps algébriquement clos), 
et  ... σi , ... une famille d'automorphismes de  G  ; si la structure  (G, ... σi , ...)  
a un rang de Morley fini, elle est pseudo-localement-finie. 

(iii) Le groupe des translations d'un symétron algébrique, c'est-à-dire 
définissable dans un corps algébriquement clos, est sous-médial, et chacune de 
ses inversions a un unique point fixe. 
 

Démonstration. (i) Un énoncé très semblable est montré dans POIZAT 2001. Par 
élimination des imaginaires, on peut supposer que la structure est définie sur une 
partie constructible, c'est-à-dire combinaison booléenne d'ensembles définis par 
des équations polynomiales, de  Kn  ; ses relations et ses fonctions sont 
également constructibles. Pour elle, la satisfaction d'un énoncé  ϕ  se traduit par 
la satisfaction par les coefficients des polynômes mis en jeu d'une formule  ϕ(a)  
du langage des corps. Comme le corps  K  algébriquement clos satisfait à  
(∃ x) ϕ(x) , cet énoncé est également vrai, pour un certain nombre premier  p , 
dans la clôture algébrique  L  des corps finis de caractéristique  p . Soient donc  
b  dans  L  satisfaisant à  ϕ(b) , et  k  un sous-corps fini de  L  contenant  b  ; 
comme tout point hors de  k  peut être déplacé par un  k-automorphisme de  L , 
les fonctions de la structure associée à  b  ne peuvent faire sortir de  k , et cette 
dernière est localement finie. 
(ii) Ce résultat sera utilisé dans la Section 8. Soit  σ  un automorphisme de  G , 
qui est un groupe (infini) de matrices  M(K)  à coefficients dans le corps 
algébriquement clos  K ; comme les borels de  G  ne sont pas nilpotents, la 
méthode de Zil'ber permet de définir dans  G  une copie  K1  de  K  : il existe un 
isomorphisme  θ1 , définissable dans  K , du corps  K  sur le corps  K1  ; cet 
isomorphisme induit naturellement, par un simple transport de structure, un 
isomorphisme  τ1  entre  G = M(K)  et  M(K1)  ; par ailleurs, en conjugant par σ , 
on obtient un isomorphisme  σ  entre  K1  et un corps  K2  définissable dans  G  
de façon homologue : il existe aussi un isomorphisme  θ2 , définissable dans  K , 
entre  K  et  K2 . 
 D'après la version modèle-théorique du Théorème de Borel-Tits (POIZAT 
1988, POIZAT 1987 p.149-153),  τ1  est définissable dans  G , si bien qu'il se 
transporte par  σ  en un isomorphisme  τ2  entre  G  et  M(K2) , également 
définissable dans  G . On voit que  σ  se décompose entre l'isomorphisme naturel 



17 

de  M(K)  sur  M(K2)  induit par  σ.θ1 , suivi de l'isomorphisme semi-algébrique  
τ2

-1 . On voit aussi que  (G,σ)  est définissable dans  (K,θ) , où  θ = θ2
-1.σ.θ1  ; 

par ailleurs, comme  θ1.θ2
-1  est définissable dans  G , la copie  (K1,θ1.θ2

-1. σ)  de  
(K,θ)  est définissable dans  (G,σ) . 
 Si  (G,σ)  est de rang de Morley fini,  (K,θ)  l'est aussi ; en caractéristique 
nulle le corps des invariants de  θ  est algébriquement clos, et  θ  vaut l'identité ; 
en caractéristique  p , l'application de  Frobenius est un automorphisme pour  
(K,θ) , et  WAGNER 2001 affirme que le modèle premier de la théorie de cette 
structure est porté par la clôture algébrique du corps premier ; on conclut comme 
en (i), et le même argument est valable s'il y a plusieurs automorphismes. 
(iii) est conséquence de (i), du théorème précédent et du Lemme 5. Fin 
 

Remarque. Une description plus précise, bien connue des géomètres, des 
automorphismes semi-algébriques d'un groupe algébrique simple est nécessaire 
pour montrer le fait suivant : Dans un contexte de rang de Morley fini, si  G  est 
un groupe algébrique simple et  H  un groupe définissable d'automophismes de  
G ,  H°  est formé d'automorphismes intérieurs. Cela est dû au fait qu'un groupe 
algébrique simple a très peu d'automorphismes extérieurs (voir POIZAT 1987 
p.98, et surtout ABC 2008 p. 134) ; plus précisément, en caractéristique nulle, le 
groupe des automorphismes intérieurs de  G  est d'indice fini dans le groupe de 
ses automorphismes algébriques ; en caractéristique  p , il est d'indice 
dénombrable dans le groupe des automorphismes semi-algébriques, et comme le 
contexte implique que les automorphismes définissables du corps de base  K  
forment une famille dénombrable (ils sont tous définissables sans paramètres), 
les automorphismes intérieurs contenus dans  H  en forment un sous-groupe 
définissable d'indice dénombrable, même si la structure est saturée. 
 
5. Symétrons oméga-stables et types génériques 

 Pour la démonstration du Théorème 4, nous avons choisi une méthode 
plus directe que celle de la Proposition 11 de POIZAT 2018 ; cela nous permet 
d'expliciter plus simplement le lien entre un symétron oméga-stable  S  et ses 
types génériques. 
 Si  p  est un  1-type complet sur  S , et si  a  est un point de  S , nous 
notons  sa(p)  le type sur  S  des  sa(x)  où  x  réalise  p . Si  q  est un autre type, 
l'ensemble  Sym(p↔q)  des  a  de  S  tels que  sa(p) = q , qui est aussi celui des  a  
de  S  tels que  sa(q) = p , est définissable puique les types le sont, et c'est un 
sous-symétron de  S  : en effet, si  a  et  b  sont dans  Sym(p↔q) ,  x  réalise  p  
sur  {a, b}  et  y  est le symétrique de  x  par rapport à  b ,  sa(b)  est le milieu de  
sa(x)  et de  sa(y) . En particulier  Sym(p) = Sym(p↔p)  est un convexe 
définissable ; il en est de même, si  p1 , ... pn  est un ensemble fini de types, de 
l'ensemble  Sym(p1, ... pn)  des  a  de  S  qui les permutent par symétrie.  
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Théorème 12. Dans un symétron oméga-stable, toute partie convexe 
définissable non vide est le symétriseur de ses types génériques (c'est-à-dire de 
rang de Morley maximum) ; elle se décompose de manière unique en un nombre 
fini, qui est impair, de sous-ensembles définissables convexes disjoints de degré 
de Morley un, que nous appelons ses composantes connexes. 
 

Démonstration. Notre ensemble convexe  X  est contenu dans le symétriseur 
Sym(p1, ... pn)  de ses types génériques ; par ailleurs, si  a  est dans ce dernier, il 
est au milieu de deux réalisations de types génériques, si bien qu'il y a égalité. 
 Notons  Xi  l'ensemble des points  a  de  X  tels que  sa(p1) = pi , ce qui 
équivaut à  sa(pi) = p1 ; les  Xi  forment une partition de  X  en sous-ensembles 
convexes. Chacun ne peut contenir qu'un seul type générique : en effet, si  a  est 
générique dans  Xi  et  x  est une réalisation de  p1  générique sur  a ,  y = sa(x)  
est une réalisation de  pi  générique sur  a , et comme  a  est le milieu de  x  et  de  
y , a  et  y  se correspondent par une bijection définissable avec  x  comme 
paramètre ;  x  et  y  sont donc génériques et indépendants, et le type de  a  est 
déterminé. Il faut donc que chaque  Xi  contienne un type générique.  
 Si  q  est le type générique de  Xi , ce dernier est le symétriseur de  q , et si  
p  est un autre générique, il n'est pas possible que  q  soit au milieu de deux 
réalisations de  p , si bien que les génériques  ≠ q  sont appariés deux par deux 
sous l'action de la symétrie par  q  ; le nombre  n  est donc impair. 
 Si  X = Y1 ∪ Y2 ∪ ... ∪ Ym  est une autre partition de  X  en ensembles 
convexes de degré de Morley un, et si  RM(Yk) = RM(X) ,  Yk  est le 
symétriseur de son générique, et c'est donc l'un des  Xi  ; comme il n'y a rien en 
dehors de la réunion des  Xi , c'est la même partition, à permutation près. Fin 
 

 On voit qu'on obtient une structure de symétron sur les types génériques 
de  S  ; en effet, si  x  et  y  sont génériques et indépendants et  z = sx(y) ,  les 
trois points  x ,  y  et  z  sont deux à deux génériques et indépendants, et les 
types de  x  et de  y  déterminent celui de  z  ; de même, si  x  et  z  sont 
génériques et indépendants et  y  est le milieu de  x  et de  z , les trois points  x ,  
y  et  z  sont deux à deux génériques et indépendants, et les types de  x  et de  z  
déterminent celui de  y . 
 

Théorème 13. Si  X  est une partie définissable du symétron oméga-stable  S , 
elle est générique (c'est-à-dire  RM(X) = RM(S) ) si et seulement si  S  est 
recouvert par un nombre fini de translatées de  X  par des points de  T1(S) . 
 

Démonstration.  Si  X  vérifie le critère, elle est générique car ses translatées 
ont même rang de Morley. Supposons réciproquement  X  générique ; soit  x  
une réalisation d'un de ses types génériques  p  ; soient  q  un autre type 
générique,  y  une réalisation de  q  indépendante de  x , et  z  le milieu de  x  et 
de  y , qui vérifie  s(x,z) = y  ; comme  x  et  z  d'une part,  y  et  z  d'autre part, 
sont indépendants,  s(p,z) = q , et comme cette propriété s'exprime grâce aux 
définitions des types  p  et  q , on trouve  a  dans  S  tel que  s(p,a) = q . En 
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conséquence, une réunion  Y  des translatées de  X  par un nombre fini de 
symétries contient tous les types génériques de  S . 
 Soit maintenant  x  une réalisation d'un type  r  quelconque, et  y  
générique sur  x  ;  s(x,y)  est générique, et donc satisfait  Y  ; par conséquent il 
existe  a  dans  S  tel que  s(r,a)  satisfasse  Y . Autrement dit tout type peut être 
envoyé par symétrie dans  Y  ; par compacité, cela signifie qu'un nombre fini de 
symétrisées de  Y  recouvrent  S . Fin 
 
6. Génération elliptique 
 Nous disons qu'un sous-goupe  H  d'un groupe  G  est elliptiquement 
engendré par une partie  X  de  G  si chaque point de  H  est produit de  n  
éléments de  X ∪ X-1  pour un entier  n  fixé (nous n'exigeons pas que  H  soit 
tous le groupe engendré par  X ). 
 Nous avons fait allusion, dans notre Lemme 5, à la Proposition 13 de 
POIZAT 2018, qui s'appuie sur une version particulièrement commode du 
Théorème des Indécomposables de Zil'ber, précisément parce qu'elle ne 
mentionne pas d'indécomposables, et qui peut être démontrée en adaptant au cas 
des groupes le Théorème 14 qui suit : si  X  est une partie définissable du 
groupe de rang de Morley fini  G , il existe un plus grand sous-groupe  e(X)  
définissable, connexe et elliptiquement engendré par  X  ; de plus  X  normalise  
e(X) , et le quotient  X/e(X)  est fini. 
 

Question 2. Un groupe infini de rang de Morley fini peut-il être finiment 
engendré ? (Comme ce n'est pas possible pour un groupe abélien ou algébrique, 
une réponse positive contredirait la Conjecture d'Algébricité). 
 

 Dans le cadre d'un symétron  S , nous dirons que  X  engendre 
elliptiquement le sous-symétron  S'  si chaque point de  S'  s'obtient à partir de  
X  par symétries et prises de milieu en moins de  n  étapes, pour un  n  fixé. 
Voici ce que devient le Théorème de Zilber dans ce contexte : 
 

Théorème 14. Dans un symétron  S  de rang de Morley fini : 
(i) Deux sous-symétrons définissables connexes non disjoints engendrent un 
sous-symétron définissable connexe, et ce de façon elliptique. 
(ii) Une famille arbitraire de sous-symétrons définissables connexes deux-à-
deux non disjoints engendre un sous-symétron définissable connexe, qui est en 
fait elliptiquement engendré par un nombre fini d'entre eux. 
(iii) Si  X  est un sous-ensemble définissable de  S , la relation  " x  et  y   
appartiennent à un même convexe connexe définissable elliptiquement engendré 
par  X " est une relation d'équivalence sur le symétron engendré par  X , qui n'a 
qu'un nombre fini de classes sur  X . 
 

Démonstration. (i) Soint  A  et  B  nos deux convexes, et  a  un de leurs points 
communs ; on considère un type  p  de rang maximal obtenu à partir de points  x  
satisfaisant à la formule définissant  A∪B  par symétries et prises de milieu ;  
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sA(p)  ne contient qu'un nombre fini de types  p1 , ...  pm  de même rang que  p , 
si bien qu'on obtient une partition de  A  en un nombre fini  A1 ∪ ... ∪ Am  de 
sous-symétrons définissables, où  Ai = Sym(p↔pi) ∩ A  : étant connexe,  A  est 
en fait l'un d'entre eux. On voit donc que  A  est inclus dans le symétron 
définissable  S'  formé des  u  tels que  su(p) = sa(p)  ; il en est de même de  B  ; 
comme chaque point de  S'  est au milieu d'une réalisation de  p  et d'une 
réalisation de  sa(p) ,  S'  est elliptiquement engendré par  A ∪ B . Par ailleurs,  
A  comme  B  sont inclus dans la même composante connexe de  S' , si bien que  
S'  est connexe, et que c'est le symétron engendré par  A  et  B . 
(ii) C'est le convexe de rang maximal engendré par un nombre fini d'entre eux. 
(iii) Si  a  est dans le symétron engendré par  X , un convexe définissable 
connexe elliptiquement engendré par  X , et de rang de Morley maximum, est 
maximum d'après (i) ; en conséquence la relation  E  de l'énoncé est bien 
transitive. 
 On considère un type  p  de rang maximal engendré par  X  ;  sX(p)  est un 
ensemble fini  p1, ... pm , et  X  est partitionné par les  Xij = Sij ∩ X , où  Sij  
parcourt l'ensemble des composantes connexes des  Sym(p↔pi) ; deux points 
dans un même  Xij  sont équivalents. Fin 
 

Remarque. Si  C  est une classe de  E , c'est-à-dire un sous-symétron 
définissable connexe elliptiquement engendré par  X , et  a  est un point de  
T(X) ,  s(X,a)  est aussi une classe de  E . Si  C  et  C'  sont deux classes de  E , 
les milieux d'un point de  C  et d'un point de  C'  forment donc le convexe  
Sym(C↔C')  des centres des symétries qui échangent  C  et  C'  ; par conséquent 
toutes les classes de  E  ont même rang de Morley, si bien que  Sym(C↔C')  est 
une classe modulo  E  ;  il en suit que, si  a  et  b  sont congrus modulo  E ,  
s(C,a) = s(C,b) . La conclusion est que symétrie et milieu passent au quotient 
modulo  E , et que  T(X)/E  est un symétron. On voit que  T(X)  est 
elliptiquement engendré par  X  si et seulement si  T(X)/E  est fini. 
 

Question 3. Un symétron infini de rang de Morley fini peut-il être finiment 
engendré ? 
 
8. Une démonstration hypothétique 
 Traduit dans notre langage, le Théorème 1 de GLAUBERMAN 1966 affirme 
que si, dans un groupe,  S  est un symétron fini formé d'involutions, c'est-à-dire 
un ensemble d'involutions clos par conjugaison et ne commutant pas deux-à-
deux, les produits des paires d'éléments de  S  engendrent un groupe sans 
involutions ; c'est un peu plus fort que de dire que  S  n'a pas de translations 
involutives, car  T(S)  est le quotient de ce groupe par le centralisateur de  S . La 
question de l'extension de ce résultat au contexte de rang de Morley fini est 
posée dans BOROVIK-NESIN 1994 p. 355, mais il est remarquable que ce 
théorème ne soit pas mentionné dans ABC 2008. 
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 Si on ajoute au cocktail le Théorème de Feit et Thompson, on obtient un 
corollaire indifférent à l'existence d'un centre : le groupe  ST(S)  est résoluble ; 
c'est sous cette forme édulcorée (qui néanmoins s'oppose à l'existence de 
groupes finis simples sans involutions) que nous allons tout d'abord généraliser 
le Théorème de Glauberman sous l'hypothèse de la Conjecture d'Algébricité, 
c'est-à-dire en admettant que tout groupe simple de rang de Morley fini est un 
groupe algébrique (sur un corps algébriquement clos). 
 Nous commençons par quelques préliminaires, en considérant un groupe 
de rang de Morley fini ayant une partie définissable  S  clos par conjugaison et 
formé d'involutions ne commutant pas deux-à-deux. Le groupe  G  engendré par  
S  est définissable ; en effet, si  G°  est le plus grand sous-groupe définissable 
connexe elliptiquement engendré par  S ,  G/S  est fini et clos par conjugaison, et 
engendre un groupe fini puisque dans un produit d'éléments de  G/S  on peut 
éliminer les répétitions. Notons  H°  le plus grand sous-groupe définissable 
connexe engendré par les paires d'éléments de  S  ; comme  S.S  est normalisé 
par  S ,  H°  aussi, et  S/H°  est fini, si bien que  H° = G° , que le groupe 
engendré par  S.S  est définissable et a même composante connexe que celui 
engendré par  S . 
 Nous devons aussi reprendre brièvement la description bien connue des 
sous-groupes diédraux d'un groupe oméga-stable, qui reproduit ce qui se passe 
dans un groupe périodique (voir BOROVIK-POIZAT 1990, BOROVIK-NESIN 1994 
p. 173) ; cela contribuera d'ailleurs à éclairer les démonstrations des premières 
sections de cet article, basées sur le fait que deux symétries d'un symétron 
oméga-stable sont toujours contenues dans un groupe définissable. Soient  i  et  j  
deux éléments de  S  distincts ;  nous notons  d(i, j)  le plus petit sous-groupe 
définissable contenant  i  et  j , et  d(i.j)  le plus petit sous-groupe définissable 
contenant leur produit  i.j  ; du simple fait que  i  et  j  sont des involutions,  d(i.j)  
est le produit d'un groupe cyclique d'ordre  2n  et d'un groupe commutatif  Dij  
divisible par  2  ; comme  i  inverse  d(i.j)  par conjugaison, ses conjugués dans  
d(i, j)  sont les points de la forme  i.α2 ,  où  α  est dans  d(i.j) , si bien que si  
d(i.j)  contenait une involution  k ,  i.k  serait conjugué de  i  ou bien de  j , ce 
que contredit la condition de non-commutativité. Dans notre contexte, cette 
condition équivaut donc au fait que, pour tous  i  et  j  dans  S ,  d(i.j)  ne 
contient pas d'involutions ; cela a pour conséquence que, si  H  est un sous-
groupe définissable propre normal dans  G ,  S/H  est aussi un symétron formé 
d'involutions ; on remarque aussi que  i  et  j  sont conjugués dans  d(i, j) , ce qui 
est conforme à notre Lemme 1(vii). 
 

Théorème 15. Sous l'hypothèse de la Conjecture d'Algébricité, dans un groupe 
de rang de Morley fini, un sous-ensemble définissable d'involutions formant un 
symétron engendre un groupe résoluble. 
 

Démonstration. Comme  G/G°  est résoluble d'après le Théorème de 
Glauberman, il suffit de montrer que  G°  l'est ; nous le supposons infini. 
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 Montrons d'abord que le groupe  G  engendré par notre symétron  S  n'est 
pas connexe ; sinon, comme  G  serait égal à son dérivé, en quotientant par un 
groupe normal définissable maximal, on est ramené au cas où il est simple, soit 
encore algébrique par hypothèse ; comme  S  est une classe de conjugaison de  
G , on contredit notre  Théorème 11.   
 On remarque ensuite que les points de  S  qui sont congrus à l'un d'entre 
eux modulo  G°  forment un ensemble convexe, si bien que, si  S  est connexe,  
G  est le produit semi-direct de  G°  par un point  s  de  S  ; l'ensemble  Ss =  s.S  
est alors formé des points de la forme  s.(x.s.x-1)  = xs.x-1  où  x  parcourt  G° , si 
bien qu'une copie du symétron est définissable dans la structure formée du 
groupe  G°  et de son automorphisme  σ  induit par  s . 
 Dans un premier temps, on suppose  S  connexe. Si  G°  n'est pas 
résoluble, on note  R°  son plus grand sous-groupe définissable résoluble 
connexe normal, et  R  l'ensemble des éléments centraux modulo  R° ;  R  est 
normalisé par  G° , et aussi par  s , et le quotient  G°/R  est semi-simple : s'il 
n'est pas trivial ses groupes normaux minimaux  N1 , ... Nn  sont définissables et 
simples, et le groupe qu'ils engendrent est de la forme  N1× ... ×Nn . Si  s  
échange deux  Ni , on obtient un sous-groupe définissable de la forme  N×N  sur 
lequel  σ  agit par échange des coordonnées, si bien que les symétries de  N  
forment une partie définissable convexe de  S  ; comme ce doit être un symétron, 
il est nécessaire que  N  n'ait pas d'involutions, ce qui est impossible pour un 
goupe algébrique simple. Sinon  s  les normalise tous, et au prix d'un quotient on 
est ramené au cas où il n'y en n'a qu'un, soit  N , qui par hypothèse est 
algébrique ; d'après la remarque qui suit le Théorème 11, chaque point de  G°  
agit par automorphisme intérieur sur  N , dont le centralisateur est trivial, si bien 
que  G° = N  ;  (G°,σ)  est pseudo-localement fini d'après le Théorème 11, et le 
groupe des translations du symétron  Sσ , qui est isomorphe à  G° , ne doit pas 
contenir d'involutions, ce qui est impossible pour une groupe algébrique simple.  
 Revenons au cas général, et considérons la décomposition de  S  en 
composantes connexes   S = S1 ∪ ... ∪ Sd  ; chaque  Si  engendre un groupe réso-
luble  Gi  ; comme  G  permute les  Sj  par conjugaison, les  Gi°  les fixent, et se 
normalisent les uns les autres ; ils engendrent donc un groupe connexe résoluble  
H , qui est bien sûr normal dans  G . Comme  S/H  est fini,  H = G° . Fin 
 

 Ce théorème implique, sous la Conjecture d'Algébricité, que le groupe des 
translations d'un symétron  S  borné de rang de Morley fini est résoluble ; 
comme  T(S)  est le dérivé de  ST(S) , cela interdit à une symétrie d'être une 
translation, sauf si  S  est réduit à un point. 
 Sa démonstration est très peu satisfaisante ; c'est comme si, dans le cas 
fini, on s'appuyait sur la classification pour montrer le Théorème de 
Glauberman ! Une réponse positive à la question qui suit montrerait que le seul 
obstacle au Théorème 15 serait l'existence de groupes simples sans involutions. 
 



23 

Question 4. ABC 2008 contient-il suffisamment de matériaux pour éliminer 
inconditionnellement les groupes simples avec involutions qui apparaissent dans 
la démonstration du Théorème 15 ? 
 

 Le dernier théorème de la section est inconditionnel, son corrolaire 
conditionnel étant que la Conjecture d'Algébricité implique qu'un symétron 
borné de rang de Morley fini n'a pas de translations involutives, qu'il est 
isomorphe au symétron d'une partie définissable convexe d'un groupe de rang de 
Morley fini sans involutions. 
 

Théorème 16. Si le groupe des translations d'un symétron borné de rang de 
Morley fini est résoluble, il ne contient pas d'involutions. 
 

Démonstration. Soit  S  l'ensemble des symétries de ce symétron, qui 
engendrent un groupe définissable  G  ; comme  ST(S)  est le quotient de  G  par 
son centre,  G  est résoluble. Soit  N  le dérivé de  G° , qui est définissable ; il 
n'est pas possible que  S  soit inclus dans  G° , car sinon  G°/N  serait réduit à 
deux points. 
 Dans un premier temps, on quotiente par  N  pour se ramener au cas où  
G°  est commutatif ; on décompose  S  en ses composantes connexes  S1 , ... Sd , 
qui sont chacune dans une même cossette modulo  G°  ; on en déduit que les 
paires de points de chaque  Si  engendrent un groupe commutatif  Hi  connexe 
sans involutions ; comme dans la démonstration du théorème précédent, les  Hi  
engendrent  G° , et le groupe dérivé de  G  n'a pas d'involutions. 
 Revenons au cas général ;  G'/N  n'ayant pas d'involutions, tous les  2-
éléments de  G'  sont dans  N , et comme ce dernier est nilpotent, il n'a qu'un seul  
2-sylow  Σ  (voir POIZAT & WAGNER 2000). Chaque point  i  de  S  est contenu 
dans un  2-sylow  Σi  de  G , qui ne peut en contenir un deuxième  j  puisque  ij  
n'est pas un  2-élément ;  i  est donc central dans  Σi , qui est le groupe engendré 
par  Σ  et  i . On voit donc que  S  centralise  Σ , qui est central dans  G , et que  
G'/Z(G)  n'a pas d'involutions. Fin 
   
9. Symétrons quotients 
 Comme les symétrons forment une variété (dans le langage de la symétrie 
et du milieu), l'image d'un symétron par un homomorphisme  f  est un symétron  
f(S)  ; l'équivalence  f(x) = f(y)  est alors appelée congruence (de symétron). 
 Par exemple, si  G  est un groupe médial et  H  est un sous-groupe normal 
de  G , l'équivalence modulo  H  est une congruence de symétron à condition 
que  G/H  soit médial. 

 On voit qu'une classe  C  de la congruence  E  est un sous-symétron de  
S  ; elle détermine  E , puisque les autres classes de  E  s'obtiennent par 
symétries à partir de  C . 
 Comme les points de  ST(S)  sont définis par des termes, le groupe  
ST(S/E)  est une image du groupe  ST(S) , par un homomorphisme surjectif dont 
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le noyau  Ker(E)  détermine lui aussi la congruence, ainsi d'ailleurs que  
Ker(E)∩T1(S) ; nous appellerons  T-noyau l'intersection de  T(S)  avec le noyau. 
 Si  N  est un sous-groupe normal de  ST(S) , par passage au quotient on 
obtient une structure de protosymétron (surjectif) sur  S/N  ; la condition pour 
que ce quotient soit un protosymétron injectif est qu'aucun élément de  T1(S)  ne 
devienne une involution modulo  N  (c'est-à-dire que, si  t2  est dans  N∩T1(S) ,  t  
y est aussi) ; pour que ce soit un symétron, il faut en outre que tout point  t  de  
T1(S)  qui commute modulo  N  avec une symétrie soit dans  N  (c'est-à-dire que, 
si  [t,su]  est dans  N ,  t  y est aussi) ; cela suffit car, si dans le quotient  sw  
conjugue  su  et  sv ,  sw.sm(u,v)  commute modulo  N  avec  su .  
 Si  T1(S)  est périodique, ou bien si  S  est oméga-stable et  N∩T1(S)  est 
définissable, ces deux conditions sont toujours réalisées ; en effet, dans le 
premier cas le groupe engendré par le produit  su.sv  de deux symétries est 
cyclique d'ordre impair, et dans le deuxième cas ce produit est contenu dans un 
sous-groupe définissable médial de  T1(S) , si bien que dans le quotient  su  et  sv  
sont égales ou ne commutent pas ; ce quotient est donc un protosymétron 
injectif, et un symétron d'après le Lemme 6. 
 On observe que les groupes qui définissent la même congruence que  N  
sont ceux qui sont compris entre le groupe engendré par  N∩T1(S)  et le noyau. 
 

Lemme 17.  Si  S  est un sous-symétron définissable d'un groupe médial de rang 
de Morley fini  G  et  E  est une congruence définissable de  S , le groupe des 
translations de  S/E  est médial. 
 

Démonstration. Dans ce contexte, un groupe définissable est médial dès qu'il 
n'a pas d'involutions. On sait par le Lemme 3 que le groupe  T  des translations 
de  S  est une section définissable de  G×Gi , et qu'il respecte l'équivalence  E  ; 
le groupe des translations de  S/E  est isomorphe à  T/TE , où  TE  est le groupe 
des translations de  S  qui fixent chaque classe de  E  ; comme c'est une section 
définissable du groupe médial  T , il n'a pas d'involutions.  Fin 
 

 Si  S  est un symétron oméga-stable, sa partition en composantes connexes 
est une congruence, dont le noyau est formé des points qui fixent chaque type 
générique de  S . Sous les hypothèses du Lemme 15, on peut se passer du 
Théorème de Glauberman pour montrer que le groupe des translations de ce 
symétron fini n'a pas d'involutions. 
 Plus généralement, l'équivalence décrite dans le Théorème 14(iii) est une 
congruence de symétron. 
 

Question 5. Cette relation d'équivalence  E  est-elle toujours la trace sur  S(X)  
d'une congruence définissable entre éléments du plus petit sous-symétron 
définissable contenant  X  ? 
 

Exemple 3. La relation d'équivalence dont les classes sont les orbites du centre  
C  du groupe des translations du symétron  S  est une congruence de symétron. 
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En effet, si  su.sv.su = sw.t ,  où  t  est centrale, comme les symétries inversent les 
points de  C ,  t1/4.su.t-1/4.sv.t1/4.su.t-1/4 = sw , si bien que  t1/4.su.t-1/4  est le milieu de  
sv  et de  sw , et qu'il y a unicité du milieu modulo  C . Cependant,  T(S/C) , étant 
le quotient de  T(S)  par les translations qui fixent modulo  C  chaque symétrie, 
n'est pas en général égal à  T(S)/C . On vérifie sans peine que le  T-noyau est 
compris entre  C  et le deuxième centre de  T(S) , et qu'il contient strictement  C  
quand  S  est le symétron d'un groupe médial  3-nilpotent non  2-nilpotent. 
 
10. Axiomatisation  
 Nous avons rencontré au cours de cet article un certain nombre de 
conditions qui éliminent les translations involutives ; il semble que la plus forte 
- la médialité du groupe des translations - ne puisse s'exprimer au premier ordre, 
car on ne voit pas comment affirmer l'existence d'une racine carrée d'un point de  
Tn  sans préciser dans quel  Tm  elle se trouve. Par contre, les conditions 
suivantes correspondent à la satisfaction d'une infinité d'axiomes du premier 
ordre (un axiome par longueur possible des mots). On exclut de la discussion les 
symétrons réduits à un point. 
 

A. Translations et inversions sont disjointes, c'est-à-dire qu'une symétrie ne peut 
être une translation, qu'une inversion ne peut être égale à l'identité. 
 

B. Les inversions ou translations involutives sont les symétries. 
 

C. Pas de translations involutives. 
 

D. Chaque translation a les même points fixes que son carré. 
 

E. Deux translations de même carré sont égales. 
 

F. Chaque inversion a au plus un point fixe. 
 

G. Chaque inversion a exactement un point fixe. 
 

 Il est clair que G implique F, que D implique C, et que C implique A ; par 
ailleurs, nous avons vu dans le Corollaire 8 que E implique F et D, et que C 
implique B. 
 L'introduction de cette cascade d'axiomes pose la question de leur 
indépendance, et de leur indépendance dans des contextes particuliers. Nous 
remarquons qu'ils sont tous vérifiés dans le cas d'une partie définissable convexe 
d'un groupe de rang de Morley fini sans involutions, mais nous ne savons pas si 
le groupe des translations d'un symétron de rang de Morley fini est toujours 
borné (voir le Lemme 5(v)), même dans le cas d'un symétron définissable dans 
un corps algébriquement clos.  
 Pour ces éventuels symétrons de rang de Morley fini non bornés, se 
posera aussi la question de l'égalité des rangs de Morley, de Cantor et de Lascar 
(ce n'est pas le cas pour les symétrons bornés, qui ne sont que des groupes dans 
un langage augmenté ; voir la préface de POIZAT 1987). 
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