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Abstract. Let G be a finite abelian group and 1 ≤ r < ∞. We prove that every locally
definable CrG manifold admits a unique locally definable C∞G manifold structure up
to locally definable C∞G diffeomorphism.

1. Introduction1

Let G be a finite group and 1 ≤ r < ∞. Let M be an o-minimal exponential expansion
(R, +, ·, >, ex, . . . ) of the standard structure R = (R, +, ·, <) of the field R of real numbers
admits the C∞ cell decomposition and has piecewise controlled derivatives.

In this paper we consider existence of locally definable C∞G manifold structures of a
locally definable CrG manifold and uniqueness of locally definable C∞G manifold struc-
ture up to locally definable C∞G diffeomorphism. If G is a finite abelian group and
1 ≤ s < r < ∞, then unique existence of locally definable CrG manifold structure of a
locally definable CsG manifold is studied in [11].

Let 0 ≤ r ≤ ∞. A locally definable Cr manifold is a Cr manifold admitting a
countable system of charts whose gluing maps are of class definable Cr. If this system is
finite, then it is called a definable Cr manifold. Definable CrG manifolds are studied in
[5], [6], [7], [8], [9] . A locally definable Cr manifold is affine if it can be imbedded into
some Rn in a locally definable Cr way. We can define locally definable CrG manifolds
and affine locally definable CrG manifolds in a similar way of equivariant definable cases.
Locally definable CrG manifolds are generalizations of definable CrG manifolds and they
are studied in [11] when r is a positive integer.

In this paper everything is considered in M, any map is continuous and every manifold
does not have boundary unless otherwise stated.

Theorem 1.1. Let G be a finite group and 1 ≤ r < ∞. Then every affine locally
definable CrG manifold is locally definably CrG diffeomorphic to some locally definable
C∞G manifold.

Theorem 1.2. Let G be a finite group. Then for any two affine locally definable C∞

G manifolds, they are C1G diffeomorphic if and only if they are locally definably C∞G
diffeomorphic.

If M is polynomially bounded, then Theorem 1.2 is not always true. Even in the
non-equivariant Nash category, there exist two affine Nash manifolds such that they are
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not Nash diffeomorphic but C∞ diffeomorphic [14], and that for any two affine Nash
manifolds, they are locally Nash diffeomorphic if and only if they are Nash diffeomorphic.

Existence of CωG manifold structures of proper C∞G manifolds and uniqueness of
them are studied in [3] and [4], respectively, when G is a Cω Lie group. Moreover if G is
a compact Cω Lie group, then for any two CωG manifolds, they are C∞G diffeomorphic
if and only if they are CωG diffeomorphic [13]. Theorem 1.1 and 1.2 are locally definable
C∞ versions of [2] and [3], respectively, when G is a finite group.

The above theorems are locally definable C∞ versions of results of [10].
In the non-equivariant setting, we have the following.

Theorem 1.3. If 1 ≤ r ≤ ∞, then every n-dimensional locally definable Cr manifold X
is locally definably Cr imbeddable into R2n+1.

The above theorem is the locally definable version of Whitney’s imbedding theorem
(e.g. 2.14 [2]). The definable Cr version of Theorem 1.1 is known in [8] when r is a
non-negative integer.

If M = R and r = ∞, then Theorem 1.3 is not true. The assumption that M is
exponential is necessary.

As a corollary of Theorem 1.3, we have the following.

Theorem 1.4. Let G be a finite abelian group and 1 ≤ r ≤ ∞. Then every locally
definable CrG manifold is affine.

By Theorem 1.1-1.4, we have the following theorem.

Theorem 1.5. Let G be a finite abelian group and 1 ≤ r < ∞. Then every locally
definable CrG manifold admits a unique locally definable C∞G manifold structure up to
locally definable C∞G diffeomorphism.

2. Locally definable CrG manifolds

Let f : U → R be a definable C∞ function on a definable open subset U ⊂ Rn. We say
that f has controlled derivatives if there exist a definable continuous function u : U → R,
real numbers C1, C2, . . . and positive integers E1, E2, . . . such that |Dαf(x)| ≤ C|α|u(x)E|α|

for all x ∈ U and α ∈ (N∪ {0})n, where Dα = ∂|α|

∂x
α1
1 ...∂xαn

n
and |α| = α1 + · · ·+ αn. We say

that M has piecewise controlled derivatives if for every definable C∞ function f : U → R
defined in a definable open subset U of Rn, there exist definable open sets U1, . . . , Ul ⊂ U
such that dim(U − ∪l

i=1Ui) < n and each f |Ui has controlled derivatives.
A subset X of Rn is called locally defin-able if for every x ∈ X there exists a definable

open neighborhood U of x in Rn such that X ∩ U is definable in Rn. Clearly every
definable set is locally definable. Remark that any open subset of Rn is locally definable
and that every compact locally definable set is definable. A more general setting of locally
definable sets is studied in [1].

Let U ⊂ Rn and V ⊂ Rm be locally definable sets. We call a map f : U → V locally
definable if for any x ∈ U there exists a definable open neighborhood Wx of x in Rn such
that f |U ∩ Wx is definable.

Note that for any locally definable map f between locally definable sets X and Y , if X
is compact, then f(X) is a definable set and f : X → f(X) (⊂ Y ) is a definable map.
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Remark that the maps f1, f2 : R → R defined by f1(x) = sin x, f2(x) = cos x, respec-
tively, are analytic but not definable in any o-minimal expansion of R. However they are
locally definable in Ran. Remark further that the field Q (⊂ R) of rational numbers is
not a locally definable subset of R.

Proposition 2.1 ([11]). Let X, Y and Z be locally definable sets and let f : X → Y and
g : Y → Z be locally definable maps. Then g ◦ f : X → Z is locally definable.

We can define locally definable groups and affine locally definable groups in a similar
way of definable cases. But we do not give their definitions here because we restrict our
attention to finite groups.

A representation map of G is a group homomorphism from G to some O(n). A
representation of G means the representation space of a representation map of G. Recall
the definition of locally definable CrG manifolds [11].

Definition 2.2 ([11]). Let 1 ≤ r ≤ ω.
(1) A locally definable Cr submanifold of a representation Ω of G is called a locally
definable CrG submanifold of Ω if it is G invariant.
(2) A locally definable CrG manifold is a pair (X, θ) consisting of a locally definable
Cr manifold X and a group action θ of G on X such that θ : G × X → X is a locally
definable Cr map. For simplicity of notation, we write X instead of (X, θ). Clearly each
definable CrG manifold is a locally definable CrG manifold.
(3) Let X and Y be locally definable CrG manifolds. A locally definable Cr map is called
a locally definable CrG map if it is a G map. We say that X and Y are locally definably
CrG diffeomorphic if there exist locally definable CrG maps f : X → Y and h : Y → X
such that f ◦ h = id and h ◦ f = id.
(4) A locally definable CrG manifold is said to be affine if it is locally definably CrG
diffeomorphic to a locally definable CrG submanifold of some representation of G.

Note that we can define locally definable G manifolds for a locally definable group G,
but in this paper we do not use these notions.

Recall existence of definable CrG tubular neighborhoods.

Theorem 2.3 ([9], [6]). Let r be a non-negative integer, ∞ or ω. Then every definable
CrG submanifold X of a representation Ω of G has a definable CrG tubular neighborhood
(U, θX) of X in Ω, namely U is a G invariant definable open neighborhood of X in Ω and
θX : U → X is a definable CrG map with θX |X = idX .

Let G = {g1, . . . , gm} and let f be a CrG map from a CrG manifold M to a represen-
tation Ω of G. Then the averaging map A : M → Ω is

A(f)(x) =
1

m

m∑
i=1

g−1
i f(gix).

By using [7], we have the following lemma.

Proposition 2.4 ([7]). (1) A(f) is equivariant, and A(f) = f if f is equivariant.
(2) If f is a polynomial map, then so is A(f).
(3) If 0 ≤ r ≤ ∞ and f lies in the set Cr(M, Ω) of Cr maps from M to Ω, then
A(f) ∈ Cr(M, Ω).
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(4) A : Cr(M, Ω) → Cr(M, Ω), f 7→ A(f) (0 ≤ r ≤ ∞) is continuous in the Cr Whitney
topology.
(5) If M is a definable CrG manifold, f is a definable Cr map and 0 ≤ r ≤ ω, then A(f)
is a definable CrG map.
(6) If M is a locally definable CrG manifold, f is a locally definable Cr map and 0 ≤ r ≤
ω, then A(f) is a locally definable CrG map.

Let K be a subgroup of G. Suppose that S is an affine definable C∞K manifold. Then
we know that the twisted product G ×K S with the standard action G × (G ×K S) →
G ×K S, (g, [g′, s]) 7→ [gg′, s] is a definable C∞G manifold [9].

We need the following proposition to prove Theorem 1.1.

Proposition 2.5. Let X be a locally definable C∞G manifold. Suppose that K is a
subgroup of G and N is an affine definable C∞K manifold. If f : N → X is a locally
definable C∞K map, then

µ(f) : G ×K N → X,µ([g, n]) = gf(n)

is a locally definable C∞G map.

Proof . By the property of quotient manifolds, µ(f) is a C∞G map. Thus it suffices to
prove that µ(f) is locally definable. Let π be the orbit map G × N → G ×K N . Then π
is a definable C∞ map. Take x ∈ G ×K N and y ∈ π−1(x) ⊂ G × N . By the assumption
and the definition of the G action on G × N , µ(f) : G × N → X, µ(f)(g, n) = gf(n) is a
locally definable C∞G map. Hence there exist definable open neighborhoods U of y and
V of µ(f)(y), respectively, such that µ(f)(U) ⊂ V and µ(f)|U : U → V is a definable
C∞ map. In particular, µ(f)|U : U → V is definable. Hence π(U) is open and definable.
Since the graph of µ(f)|π(U) : π(U) → V ⊂ X is the image of that of µ(f)|U by π× idV ,
µ(f)|π(U) is definable. ¤

Definition 2.6. Let X be a definable C∞G manifold.
(1) We say that a K invariant definable C∞ submanifold S of X is a definable K slice
if GS is open in X, S is affine as a definable C∞K manifold, and

µ : G ×K S → GS (⊂ X), [g, x] 7→ gx

is a definable C∞G diffeomorphism.
(2) A definable C∞K slice S is called linear if there exist a representation Ω of K and a
definable CrK imbedding j : Ω → X such
that j(Ω) = S.
(3) We say that a definable C∞K slice (resp. a linear definable C∞K slice) S is a
definable C∞ slice (resp. a linear definable C∞ slice) at x in X if K = Gx and x ∈ S
(resp. K = Gx, x ∈ S and j(0) = x).

Recall existence of definable C∞ slices [9] to prove Theorem 1.2 .

Theorem 2.7 ([9]). Let X be an affine definable C∞G manifold, x ∈ X. Then there
exists a linear definable C∞G slice at x in X.
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3. Proof of Theorem 1.1

The following lemma is obtained by 2.2.8 [2] and Proposition 2.4.

Lemma 3.1. Let K be a finite group. Suppose that f is a definable C∞K map between
definable C∞K manifolds M and N . Suppose further that V is an open K invariant
subset of M and that P is a K invariant definable C∞ submanifold of N with f(V ) ⊂ P .
Then there exist an open neighborhood N of f |V in the set Def∞

K (V, P ) of definable C∞K
maps from V to P such that for any h ∈ N, the map E(h) : M → N,

E(h)(x) =

{
h(x), x ∈ V
f(x), x ∈ M − V

is a definable C∞K map and E : N → Def∞
K (M,N), h 7→ E(h) is continuous in the C∞

Whitney topology.

Proposition 3.2. Let X be a locally definable C∞G manifold and Y an affine defin-
able C∞G manifold in a representation Ω of G. Then every C∞G map f : X → Y is
approximated by a locally definable C∞G map h : X → Y in the C∞ Whitney topology.

In the Nash case, if 1 ≤ r < ∞, then locally Cr Nash diffeomorphisms are essentially
different from Cr Nash diffeomorphisms because there exist two affine Nash manifolds such
that they are C∞ diffeomorphic but not Nash diffeomorphic [14], and that every Cr Nash
diffeomorphism between affine Nash manifolds is approximated by a Nash diffeomorphism
[15].

Proposition 3.3 ([12]). Every affine definable C∞G manifold is definably C∞G diffeo-
morphic to a definable C∞G submanifold closed in some representation Ω of G.

For the proof of Proposition 3.3, we need the condition that M is exponential, admits
the C∞ cell decomposition and has piecewise controlled derivatives.

Proof of Proposition 3.2. By Proposition 3.3, replacing Ω if necessary, we may as-
sume that Y a definable C∞G submanifold closed in Ω. By a way similar to find a C∞

partition of unity of C∞ manifold, we have a locally definable C∞ partition of unity
{ϕj}∞j=1 subordinates to some locally finite open definable cover {Xj}∞j=1 of X such that

X = ∪∞
j=1supp ϕj and Xj is compact. For any j, take an open neighborhood Uj of supp ϕj

in X such that Uj is compact. Applying the polynomial approximation theorem, we have
a locally definable C∞ map hj : Uj → Ω which approximates f |Uj. By Theorem 2.3, one
can find a definable C∞G tubular neighborhood (U, p) of Y in Ω. If our approximation is
sufficiently close, then p◦

∑∞
j=1 ϕjhj is a (non-equivariant) C∞ approximation of f . Since

G is a finite group, applying Proposition 2.4, we have the required locally definable C∞G
map h as a C∞ Whitney approximation of f . ¤

Proof of Theorem 1.1. Using Lemma 3.1 and Proposition 3.2, a similar proof of 1.1
[11] proves Theorem 1.1. ¤
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4. Proof of Theorem 1.2

In this section we prove the following theorem.

Theorem 4.1. Let G be a finite group and let r be a positive integer. Suppose that Y
and Z are affine locally definable C∞G manifolds and there exists a CrG diffeomorphism
f : Y → Z. Then there exists a locally C∞G diffeomorphism h : Y → Z which is G
homotopic to f .

Theorem 1.2 follows from Theorem 4.1.
Let K be a subgroup of G and let X be an affine definable C∞G manifold. By Theorem

2.7, there exists a linear definable C∞K slice S, namely there exists a definable C∞K
diffeomorphism i from some representation Ω of K to S such that GS is open in X, and
that µ : G ×K Ω → GS (⊂ X), µ(i)([g, x]) = gi(x) is a definable C∞G diffeomorphism.

For simplicity, we use the following notations. Set Bs := {x ∈ Ω|||x|| ≤ s}, B◦
s := {x ∈

Ω|||x|| < s}, s > 0, B := B1, and B◦ :
= B◦

1 , and let denote Ds, D
◦
s , D and D◦ by i(Bs), i(B

◦
s ), i(B), and i(B◦), respectively.

Let GD (resp. GD◦) denote the closed unit tube (resp. the open unit tube) and let GDs

(resp. GD◦
s) stand for the closed tube (resp. the open tube) of radius s.

To prove Theorem 4.1 we prepare two preliminary results.

Lemma 4.2. Let Ω and Ξ be representations of G and let M (resp. N) be a definable
C∞G submanifold of Ω (resp. Ξ). Suppose that F is a G invariant definable subset of M
and that α : M → N is a C∞G map such that α|F : F → N is definable. Let N be a
neighborhood of α in the set C∞

G (M,N) of C∞G maps from M to N and let V1 and V2

be compact G invariant definable subsets of M such that V1 is properly contained in the
interior Int V2 of V2. Then there exists κ ∈ N such that:
(a) κ|F ∪ V1 : F ∪ V1 → N is definable.
(b) κ = α on M − Int V2

(c) κ is G homotopic to α relative to M − Int V2

Proof . Take a non-negative definable C∞ function f : M → R such that f = 0 on V1

and f = 1 on M − Int V2. Notice that if M is polynomially bounded, then such an f does
not necessarily exist. Since G is a finite group and by Proposition 2.4, we may assume
that f is G invariant.

We approximate α by a polynomial G map β on V2 using the polynomial approximation
theorem and Proposition 2.4. By Theorem 2.3, one can find a definable C∞G tubular
neighborhood (U, p) of N in Ξ. If the approximation is sufficiently close, then one can
define κ : M → N, κ(x) = p(f(x)α(x) + (1 − f(x))β(x)). Then κ is a C∞G map, and
κ satisfies Properties (a) and (b). If this approximation is sufficiently close, then κ ∈ N
because κ and α coincide with outside of a compact set V2.

The map H : M × [0, 1] → N defined by H(x, t) = p((1 − t)α(x) + tκ(x)) gives a G
homotopy relative to M − Int V2 from α to κ. ¤

Proposition 4.3. Let Ω and Ξ be representations of G. Let M ⊂ Ω, N ⊂ Ξ be affine
locally definable C∞G manifolds and A a closed G invariant locally definable subset of M .
Suppose that f : M → N is a C∞G diffeomorphism such that f |A : A → N is locally
definable, and that x ∈ M . Suppose further that j : Ω′ → S is a linear definable C∞ slice
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at x in Ω. If GD10 ∩M is compact, then there exists a C∞G diffeomorphism h : M → N
such that:

(1) h|A ∪ (GD ∩ M) : A ∪ (GD ∩ M) → N is locally definable.
(2) h = f on M − GD◦

2 ∩ M .
(3) h is G homotopic to f relative to M − GD◦

2 ∩ M .

The condition that GD10 ∩ M is compact is not essential. By Theorem 2.7, one can
find a linear definable Cr slice S at x ∈ M in Ω. Since S is a linear definable C∞ slice
in Ω, there exists a definable C∞K diffeomorphism j from some representation Ω′ of Gx

onto S such that j(0) = x, GS is open in Ω, and that

µ(j) : G ×Gx Ω′ → GS ( ⊂ Ξ),

µ(j)([g, x]) = gj(x)

is a definable C∞G diffeomorphism. Notice that M is locally compact. Thus replacing
smaller S, if necessary, GD10 ∩ M is compact because M is locally compact.

Proof of Proposition 4.3. Since GD10∩M is compact and A is closed in M , A∩GD10

(= A ∩ (GD10 ∩ M)) is a compact G invariant locally definable subset of GS ∩ M . Thus
A ∩ GD10 is a G invariant definable subset of Ω. Hence

E := µ(j)−1(A ∩ GD10)

is a G invariant definable subset of G ×Gx Ω′. Let L = j−1(D◦
10 ∩ M). The map

α := f ◦ µ(j)|G ×Gx L : G ×Gx L → Ξ

is a C∞G diffeomorphism onto an open G invariant subset V := f(GD◦
10∩M) of N . Since

A∩GD10 is compact and f |A is locally definable, f |(A∩GD10) : A∩GD10 → f(A∩GD10)
⊂ N ⊂ Ξ is definable. The map α|(E ∩ (G ×Gx L)) : E ∩ (G ×Gx L) → Ξ is definable
because µ(j) and f |(A∩GD10) : A∩GD10 → Ξ are definable. Since V is contained in a G
invariant compact set f(GD10 ∩M), and since N is a locally definable C∞G submanifold
of Ξ, there exists a G invariant definable set W of Ξ such that V ⊂ W ⊂ N and that
W is open in N . Notice that W is an affine definable C∞G manifold. Since G ×Gx L is
contained in a G invariant compact subset of G ×Gx j−1(D20 ∩ M), G ×Gx L is an affine
definable C∞G manifold. Applying Lemma 4.2 to α : G×Gx L → W , there exists a C∞G
map β : G ×Gx L → W as a C∞ Whitney approximation of α such that:
(a) β|(G ×Gx (j−1(A ∩ D◦

10) ∪ (B ∩ L))) : G ×Gx (j−1(A ∩ D◦
10) ∪ (B ∩ L)) → W

(⊂ N) is definable.
(b) β = α on G ×Gx (L − B◦

2 ∩ L).
(c) β is G homotopic to α relative to G ×Gx (L − B◦

2 ∩ L).
Then the map h : M → N defined by

h(x) =

{
β ◦ µ(j)−1(x), x ∈ GD5 ∩ M
f(x), x ∈ M − M ∩ GD◦

5

is well-defined, and it is a C∞G diffeomorphism if our approximation is sufficiently
close. Since h|(A∩GD5) and h|(GD∩M) are definable, and since h|(A∩(M−GD5∩M))
(= f |(A ∩ (M − GD5 ∩ M))) is locally definable, h|A ∪ (GD ∩ M) is locally definable by
Proposition 2.1. By the construction of h, h satisfies Properties (2) and (3). ¤
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Proof of Theorem 4.1. Using Proposition 4.3, a similar proof of 4.1 [11] proves The-
orem 4.1. ¤

5. Proof of Theorem 1.3 and 1.4

Proof of Theorem 1.3. By Whitney’s imbedding Theorem (e.g. 2.14 [2]), there exists
a C∞ imbedding f : X → R2n+1. By Proposition 3.2 and since C∞ imbeddings from X
to R2n+1 are open in the set C∞(X, R2n+1) of C∞ maps from X to R2n+1, we have the
required a locally definable C∞ imbedding h : X → R2n+1. ¤

Proof of Theorem 1.4. Let G = {g1, . . . , gm} and X a locally definable C∞G
manifold of dimension n. By Theorem 1.3, there exists a locally definable C∞ imbed-
ding f : X → R2n+1. Let Ω be the representation of G whose underlying space is
R(2n+1)m = R2n+1 × · · · × R2n+1 and its action is defined by the permutation of coordi-
nates (x1, . . . , xm) 7→ (xσ(1), . . . , xσ(m)) induced from (gg1, . . . , ggm) = (gσ(1), . . . , gσ(m)).
Then F : X → Ω, F (x) = (f(g1x), . . . , f(gmx)) is the required locally definable C∞G
imbedding. ¤
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