LOCALLY DEFINABLE C*G MANIFOLD STRUCTURES OF
LOCALLY DEFINABLE C"G MANIFOLDS
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ABSTRACT. Let G be a finite abelian group and 1 < r < co. We prove that every locally
definable C"G manifold admits a unique locally definable C'">°G manifold structure up
to locally definable C*°G diffeomorphism.

1. INTRODUCTION!

Let G be a finite group and 1 < r < co. Let M be an o-minimal exponential expansion
(R, +,-,>,€",...) of the standard structure R = (R, +, -, <) of the field R of real numbers
admits the C'* cell decomposition and has piecewise controlled derivatives.

In this paper we consider existence of locally definable C*°G manifold structures of a
locally definable C"G manifold and uniqueness of locally definable C"*°G manifold struc-
ture up to locally definable C>°G diffeomorphism. If G is a finite abelian group and
1 < s < r < oo, then unique existence of locally definable C"G manifold structure of a
locally definable C*G manifold is studied in [11].

Let 0 < r < o0. A locally definable C" manifold is a C" manifold admitting a
countable system of charts whose gluing maps are of class definable C”. If this system is
finite, then it is called a de finable C™ mani fold. Definable C"G manifolds are studied in
5], [6], [7], [8], [9] - A locally definable C" manifold is af fine if it can be imbedded into
some R™ in a locally definable C™ way. We can define locally definable C"G manifolds
and affine locally definable C"G manifolds in a similar way of equivariant definable cases.
Locally definable C"G manifolds are generalizations of definable C”G manifolds and they
are studied in [11] when r is a positive integer.

In this paper everything is considered in M, any map is continuous and every manifold
does not have boundary unless otherwise stated.

Theorem 1.1. Let G be a finite group and 1 < r < oo. Then every affine locally
definable C"G manifold is locally definably C"G diffeomorphic to some locally definable
C*°G manifold.

Theorem 1.2. Let G be a finite group. Then for any two affine locally definable C*
G manifolds, they are C'G diffeomorphic if and only if they are locally definably C*G
diffeomorphic.

If M is polynomially bounded, then Theorem 1.2 is not always true. Even in the
non-equivariant Nash category, there exist two affine Nash manifolds such that they are
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not Nash diffeomorphic but C* diffeomorphic [14], and that for any two affine Nash
manifolds, they are locally Nash diffeomorphic if and only if they are Nash diffeomorphic.

Existence of C*G manifold structures of proper C°°G manifolds and uniqueness of
them are studied in [3] and [4], respectively, when G is a C* Lie group. Moreover if G is
a compact C* Lie group, then for any two C*“G manifolds, they are C*°G diffeomorphic
if and only if they are C“G diffeomorphic [13]. Theorem 1.1 and 1.2 are locally definable
C versions of [2] and [3], respectively, when G is a finite group.

The above theorems are locally definable C* versions of results of [10].

In the non-equivariant setting, we have the following.

Theorem 1.3. If 1 <r < oo, then every n-dimensional locally definable C™ manifold X
is locally definably C™ imbeddable into R**1,

The above theorem is the locally definable version of Whitney’s imbedding theorem
(e.g. 2.14 [2]). The definable C" version of Theorem 1.1 is known in [8] when r is a
non-negative integer.

If M =R and r = oo, then Theorem 1.3 is not true. The assumption that M is
exponential is necessary.

As a corollary of Theorem 1.3, we have the following.

Theorem 1.4. Let G be a finite abelian group and 1 < r < oo. Then every locally
definable C"G manifold is affine.

By Theorem 1.1-1.4, we have the following theorem.

Theorem 1.5. Let G be a finite abelian group and 1 < r < oo. Then every locally
definable C"G manifold admits a unique locally definable C*°G manifold structure up to
locally definable C°G diffeomorphism.

2. LOCALLY DEFINABLE C"(G MANIFOLDS

Let f : U — R be a definable C'**° function on a definable open subset U C R". We say
that f has controlled derivatives if there exist a definable continuous function v : U — R,
real numbers C1, Cs, . .. and positive integers E, Es, ... such that |Df(z)| < Cjoqu(z)"el

for all z € U and a € (NU{0})", where D* = 2 and la) = o + -+ a,. We say

o o
Oz, "...0x,"

that M has piecewise controlled derivatives if for every definable C* function f : U — R
defined in a definable open subset U of R", there exist definable open sets Uy,..., U, C U
such that dim(U — U._,U;) < n and each f|U; has controlled derivatives.

A subset X of R” is called locally de fin-able if for every x € X there exists a definable
open neighborhood U of z in R"™ such that X N U is definable in R™. Clearly every
definable set is locally definable. Remark that any open subset of R" is locally definable
and that every compact locally definable set is definable. A more general setting of locally
definable sets is studied in [1].

Let U C R™ and V' C R™ be locally definable sets. We call a map f : U — V locally
de finable if for any x € U there exists a definable open neighborhood W, of x in R™ such
that f|U N W, is definable.

Note that for any locally definable map f between locally definable sets X and Y, if X
is compact, then f(X) is a definable set and f: X — f(X) (CY) is a definable map.
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Remark that the maps fi, fo : R — R defined by fi(z) = sinz, fo(z) = cosz, respec-
tively, are analytic but not definable in any o-minimal expansion of R. However they are
locally definable in R,,,. Remark further that the field Q@ (C R) of rational numbers is
not a locally definable subset of R.

Proposition 2.1 ([11]). Let X, Y and Z be locally definable sets and let f: X — Y and
g:Y — Z be locally definable maps. Then go f: X — Z is locally definable.

We can define locally definable groups and affine locally definable groups in a similar
way of definable cases. But we do not give their definitions here because we restrict our
attention to finite groups.

A representation map of G is a group homomorphism from G to some O(n). A
representation of G means the representation space of a representation map of GG. Recall
the definition of locally definable C"G manifolds [11].

Definition 2.2 ([11]). Let 1 <r < w.

(1) A locally definable C" submanifold of a representation Q of G is called a locally
definable C"G submanifold of €2 if it is G invariant.

(2) A locally definable C"G manifold is a pair (X,0) consisting of a locally definable
C™ manifold X and a group action # of G on X such that # : G x X — X is a locally
definable C™ map. For simplicity of notation, we write X instead of (X, #). Clearly each
definable C"G manifold is a locally definable C"G manifold.

(3) Let X and Y be locally definable C"G manifolds. A locally definable C" map is called
a locally de finable C"G map if it is a G map. We say that X and Y are locally de finably
C"G dif feomorphic if there exist locally definable C"G maps f : X - Y andh:Y — X
such that foh =1id and ho f = id.

(4) A locally definable C"G manifold is said to be af fine if it is locally definably C"G
diffeomorphic to a locally definable C"G submanifold of some representation of G.

Note that we can define locally definable G manifolds for a locally definable group G,
but in this paper we do not use these notions.
Recall existence of definable C"G tubular neighborhoods.

Theorem 2.3 ([9], [6]). Let r be a non-negative integer, oo or w. Then every definable
C"G submanifold X of a representation €2 of G has a definable C"G tubular neighborhood
(U,0x) of X in Q, namely U is a G invariant definable open neighborhood of X in Q0 and
Ox : U — X is a definable C"G map with Ox|X = idx.

Let G ={g1,...,9m} and let f be a C"G map from a C"G manifold M to a represen-
tation €2 of G. Then the averaging map A : M — ) is

AP = =3 (gio)

By using [7], we have the following lemma.

Proposition 2.4 ([7]). (1) A(f) is equivariant, and A(f) = f if [ is equivariant.

(2) If f is a polynomial map, then so is A(f).

(3) If 0 < r < oo and f lies in the set C"(M,Q) of C" maps from M to Q, then
A(f) e C"(M, Q).
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(4) A:C"(M,Q) — C"(M,Q), f — A(f) (0 <r < o0) is continuous in the C" Whitney
topology.

(5) If M is a definable C"G manifold, f is a definable C™ map and 0 < r < w, then A(f)
is a definable C"G map.

(6) If M is a locally definable C"G manifold, f is a locally definable C™ map and 0 < r <
w, then A(f) is a locally definable C"G map.

Let K be a subgroup of G. Suppose that S is an affine definable C*° K manifold. Then
we know that the twisted product G X, S with the standard action G x (G xg S) —
G xk S, (9,19, 8]) — l9¢, s] is a definable C*°G manifold [9].

We need the following proposition to prove Theorem 1.1.

Proposition 2.5. Let X be a locally definable C*°G manifold. Suppose that K is a
subgroup of G and N is an affine definable C*°K manifold. If f : N — X is a locally
definable C*K map, then

u(f): G xx N — X, u([g,n]) = gf(n)
1s a locally definable C*°G map.

Proof. By the property of quotient manifolds, u(f) is a C°°G map. Thus it suffices to
prove that u(f) is locally definable. Let m be the orbit map G x N — G xx N. Then 7
is a definable C° map. Take x € G xx N and y € 7 }(z) C G x N. By the assumption
and the definition of the G action on G X N, i(f) : G x N — X, u(f)(g.n) = gf(n) is a
locally definable C*°G map. Hence there exist definable open neighborhoods U of y and
V' of T(f)(y), respectively, such that f(f)(U) C V and n(f)|U : U — V is a definable
C® map. In particular, fi(f)|U : U — V is definable. Hence 7(U) is open and definable.
Since the graph of u(f)|w(U) : m#(U) — V C X is the image of that of 7i(f)|U by 7 x idy,
w(f)|m(U) is definable. O

Definition 2.6. Let X be a definable C*°G manifold.
(1) We say that a K invariant definable C*° submanifold S of X is a definable K slice
if GS is open in X, S is affine as a definable C"°° K manifold, and

p:GxgS—GS (CX), g,z — gx

is a definable C*°G diffeomorphism.

(2) A definable C*K slice S is called linear if there exist a representation Q of K and a
definable C" K imbedding j : {2 — X such

that j(Q) = S.

(3) We say that a definable C*°K slice (resp. a linear definable C*K slice) S is a
definable C™ slice (resp. a linear definable C* slice) at x in X if K =G, and z € S
(resp. K = G,, x € S and j(0) = z).

Recall existence of definable C'* slices [9] to prove Theorem 1.2 .

Theorem 2.7 ([9]). Let X be an affine definable C*G manifold, v € X. Then there

exists a linear definable C°G slice at v in X.
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3. PROOF OF THEOREM 1.1

The following lemma is obtained by 2.2.8 [2] and Proposition 2.4.

Lemma 3.1. Let K be a finite group. Suppose that f is a definable C*°K map between
definable C*°K manifolds M and N. Suppose further that V is an open K invariant
subset of M and that P is a K invariant definable C* submanifold of N with f(V) C P.
Then there ezist an open neighborhood N of f|V in the set Def2(V, P) of definable C*K
maps from V' to P such that for any h € N, the map E(h) : M — N,

h(x), reV
E(h)(w):{ fga:;, reM-V

is a definable C*°K map and E : N — Def2(M,N),h — E(h) is continuous in the C*
Whitney topology.

Proposition 3.2. Let X be a locally definable C°G manifold and Y an affine defin-
able C°G manifold in a representation € of G. Then every C°G map f : X — Y is
approximated by a locally definable C*°G map h : X — Y in the C* Whitney topology.

In the Nash case, if 1 < r < oo, then locally C™ Nash diffeomorphisms are essentially
different from C" Nash diffeomorphisms because there exist two affine Nash manifolds such
that they are C*° diffeomorphic but not Nash diffeomorphic [14], and that every C" Nash
diffeomorphism between affine Nash manifolds is approximated by a Nash diffeomorphism
[15].

Proposition 3.3 ([12]). Every affine definable C*°G manifold is definably C*G diffeo-

morphic to a definable C*°G submanifold closed in some representation 2 of G.

For the proof of Proposition 3.3, we need the condition that M is exponential, admits
the C'*° cell decomposition and has piecewise controlled derivatives.

Proof of Proposition 3.2. By Proposition 3.3, replacing € if necessary, we may as-
sume that Y a definable C"*°G submanifold closed in 2. By a way similar to find a C'*°
partition of unity of C'°° manifold, we have a locally definable C'*° partition of unity
{#;}52, subordinates to some locally finite open definable cover {X;}22, of X such that
X = UjZ supp ¢; and 7] is compact. For any j, take an open neighborhood U; of supp ¢;
in X such that U; is compact. Applying the polynomial approximation theorem, we have
a locally definable C*° map h; : U; — € which approximates f|U;. By Theorem 2.3, one
can find a definable C*°G tubular neighborhood (U, p) of Y in Q. If our approximation is
sufficiently close, then po Z;’il ¢;h; is a (non-equivariant) C'*° approximation of f. Since
G is a finite group, applying Proposition 2.4, we have the required locally definable C*G
map h as a C'™ Whitney approximation of f. O

Proof of Theorem 1.1. Using Lemma 3.1 and Proposition 3.2, a similar proof of 1.1
[11] proves Theorem 1.1. O
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4. PROOF OF THEOREM 1.2

In this section we prove the following theorem.

Theorem 4.1. Let G be a finite group and let r be a positive integer. Suppose that Y
and Z are affine locally definable C°G manifolds and there exists a C"G diffeomorphism
f Y — Z. Then there exists a locally C*°G diffeomorphism h .Y — Z which is G
homotopic to f.

Theorem 1.2 follows from Theorem 4.1.

Let K be a subgroup of GG and let X be an affine definable C"*°GG manifold. By Theorem
2.7, there exists a linear definable C'°K slice S, namely there exists a definable C*°K
diffeomorphism ¢ from some representation €2 of K to S such that GS is open in X, and
that p: G xx Q — GS (C X), u(i)([g,z]) = gi(z) is a definable C*°G diffeomorphism.

For simplicity, we use the following notations. Set B, := {x € Q|||z|| < s}, B == {z €
Ql||z|] < s}, s >0,B:= By, and B°:
= By, and let denote Dy, DS, D and D° by i(By),i(B?),i(B), and i(B°), respectively.
Let GD (resp. GD°) denote the closed unit tube (resp. the open unit tube) and let G Dj
(resp. GD?) stand for the closed tube (resp. the open tube) of radius s.

To prove Theorem 4.1 we prepare two preliminary results.

Lemma 4.2. Let Q2 and E be representations of G and let M (resp. N) be a definable
C>*G submanifold of Q (resp. Z). Suppose that F is a G invariant definable subset of M
and that o« : M — N is a C®°G map such that «|F : F — N is definable. Let N be a
neighborhood of o in the set CX (M, N) of C*G maps from M to N and let Vy, and V;
be compact G invariant definable subsets of M such that Vi is properly contained in the
interior Int Vo of Vo. Then there exists k € N such that:

(a) K|FUV) : FUV] — N is definable.

(b) Kk =a on M — Int V;

(¢) k is G homotopic to a relative to M — Int Vs,

Proof. Take a non-negative definable C* function f : M — R such that f =0 on V)
and f =1 on M —Int V5. Notice that if M is polynomially bounded, then such an f does
not necessarily exist. Since G is a finite group and by Proposition 2.4, we may assume
that f is G invariant.

We approximate « by a polynomial G map (3 on V5 using the polynomial approximation
theorem and Proposition 2.4. By Theorem 2.3, one can find a definable C*°G tubular
neighborhood (U, p) of N in =. If the approximation is sufficiently close, then one can
define k : M — N,k(z) = p(f(z)a(z) + (1 — f(z))B(x)). Then  is a C*°G map, and
r satisfies Properties (a) and (b). If this approximation is sufficiently close, then k € N
because k and « coincide with outside of a compact set V5.

The map H : M x [0,1] — N defined by H(x,t) = p((1 — t)a(z) + tk(z)) gives a G
homotopy relative to M — Int V5 from « to k. 0

Proposition 4.3. Let Q and = be representations of G. Let M C ), N C = be affine
locally definable C*°G manifolds and A a closed G invariant locally definable subset of M.
Suppose that f : M — N is a C*°G diffeomorphism such that f|A : A — N is locally
definable, and that x € M. Suppose further that j : Q' — S is a linear definable C* slice
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at x in Q. If GD1gN M is compact, then there exists a C*°G diffeomorphism h : M — N
such that:

(1) AU (GDN M) : AU(GD N M) — N is locally definable.

(2) h=f onM—GDSNM.

(3) h is G homotopic to f relative to M — GDS N M.

The condition that GDiy N M is compact is not essential. By Theorem 2.7, one can
find a linear definable C" slice S at x € M in ). Since S is a linear definable C*° slice
in €2, there exists a definable C*° K diffeomorphism j from some representation 2’ of G,
onto S such that j(0) = z, GS is open in 2, and that

w(g) : G xg, ¥ —GS (C2),

n(i)(lg, x]) = gi(x)
is a definable C'*°G diffeomorphism. Notice that M is locally compact. Thus replacing
smaller S, if necessary, GD1y N M is compact because M is locally compact.

Proof of Proposition 4.3. Since GD19N M is compact and A is closed in M, ANGD1q
(= AN (GDyyN M)) is a compact G invariant locally definable subset of GS N M. Thus
ANGDy is a G invariant definable subset of (2. Hence

E = p(j) (AN GDy)
is a G invariant definable subset of G xg, . Let L = j71(Dj, N M). The map

a:=fou(j)|Gxg, L:Gxg, L —E

is a C*°G diffeomorphism onto an open G invariant subset V := f(GDj,NM) of N. Since
ANGDyy is compact and f|A is locally definable, f|[(ANGD1o) : ANGDyy — f(ANG D)
C N C = is definable. The map o|(F N (G X, L)) : EN(G X, L) — Z is definable
because u(j) and f|(ANGDyg) : ANG Do — = are definable. Since V' is contained in a G
invariant compact set f(GDjpN M), and since N is a locally definable C*°G submanifold
of =, there exists a G invariant definable set W of = such that V' C W C N and that
W is open in N. Notice that W is an affine definable C°°G manifold. Since G X, L is
contained in a G invariant compact subset of G X, j 7' (D N M), G Xg, L is an affine
definable C"°G manifold. Applying Lemma 4.2 to « : G X, L — W, there exists a C*G
map 3 : G Xg, L — W as a O™ Whitney approximation of « such that:
(2) BI(G xa, (AN DY) U(BAL)): G xq, (AN D) U (BAL)) — W

(C N) is definable.
(b) f=aon G x¢g, (L—BsNL).
(c) B is G homotopic to « relative to G x¢, (L — BS N L).
Then the map h: M — N defined by

_ [ Bou(j) (=), x€GDsNM
h(m)—{f(xﬁfj xxej\;—Mr?GDg

is well-defined, and it is a C*°G diffeomorphism if our approximation is sufficiently

close. Since h|(ANGDs) and h|(GDN M) are definable, and since h|(AN(M —GDsNM))
(= fI(AN (M — GDs N M))) is locally definable, h|AU (GD N M) is locally definable by
Proposition 2.1. By the construction of h, h satisfies Properties (2) and (3). O
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Proof of Theorem 4.1. Using Proposition 4.3, a similar proof of 4.1 [11] proves The-
orem 4.1. 0

5. PROOF OF THEOREM 1.3 AND 1.4

Proof of Theorem 1.3. By Whitney’s imbedding Theorem (e.g. 2.14 [2]), there exists
a C* imbedding f : X — R?"*!. By Proposition 3.2 and since C°° imbeddings from X
to R?"*1 are open in the set C(X,R?"™!) of C* maps from X to R?"™! we have the
required a locally definable C* imbedding h : X — R?"+1, 0J

Proof of Theorem 1.4. Let G = {g¢1,...,9m} and X a locally definable C>*G
manifold of dimension n. By Theorem 1.3, there exists a locally definable C*° imbed-
ding f : X — R¥. Let Q be the representation of G whose underlying space is
REnHm — R2n41 5 .. R2*+! and its action is defined by the permutation of coordi-

nates (o1,...,%m) = (To@1), .-, Tom)) induced from (ggi,...,99m) = (Go(1)s- - -+ Go(m))-
Then F : X — Q, F(z) = (f(q12), ..., f(gmx)) is the required locally definable C*G
imbedding. 0
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