
ON LOVELY PAIRS OF GEOMETRIC STRUCTURES
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Abstract. We study the theory of lovely pairs of geometric structures, in
particular o-minimal structures. We characterize �linear" theories in terms
of properties of the corresponding theory of the lovely pair. For o-minimal
theories, we use Peterzil-Starchenko's trichotomy theorem to characterize for
su�ciently general points, the local geometry around it in terms of the thorn
U rank of its type.

1. Introduction

This paper brings together results on dense pairs by van den Dries [9] and lovely
pairs of rank one simple theories developed by Vassiliev [24].

In [24] the second author of this paper studies lovely pairs of an SU-rank one
simple theory T and, provided T eliminates the quanti�er ∃∞, shows that the theory
TP of lovely pairs of T exists and it is simple. In this paper we start with geometric
theories , i.e. theories whose models are geometric structures, that is, models where
acl satis�es the exchange property and that eliminate the quanti�er ∃∞. We show
that the theory of lovely pairs of models of a geometric theory T exists; that is,
we note that lovely pairs exist, and prove that any two lovely pairs of models of
such a theory T are elementarily equivalent, and that the saturated models of their
common theory TP are again lovely pairs.

In [24], Vassiliev characterizes the geometry associated to a rank one structure
in terms of the properties of the corresponding pair. We follow the ideas from [24]
and in Section 4 we study the relations between geometric structures with a �linear"
geometry and model theoretic properties of the corresponding pair. We prove:

Theorem 1 Let T be a geometric theory. Then the following are equivalent.

(i) acl = aclP in TP (on the home sort)
(ii) For some (any) lovely pair (M,P ) of models of T , the localization of the

pregeometry (M, aclL) at P (M) is modular.
(iii) For any two sets A and B in a model of T there is C |̂ ∅AB such that

A |̂
acl(AC)∩acl(BC)

B.

(iv) for any a, b, c1, . . . , cn in a model of T , if a ∈ acl(b, c1, . . . , cn), then there is
~u |̂ ∅ ab~c such that a ∈ acl(bd~u) for some d ∈ acl(~c~u).
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In [9] van den Dries studies dense pairs of o-minimal theories that expand the
theory of ordered abelian groups, generalizing the classical work of Robinson on the
theory of real closed �elds with a predicate for a real dense closed sub�eld [23]. He
shows that the theory of dense pairs is complete and gives a description of de�nable
sets. It is well known that dense o-minimal theories eliminate the quanti�er ∃∞ and
that the algebraic closure in models of such a theory satisfy the exchange principle,
that is, they are geometric structures. In this paper we show that the theory of
lovely pairs of models of o-minimal theories expanding the theory of ordered abelian
groups agrees with the corresponding theory of dense pairs. Part of the goals of
this paper is to extend the description of de�nable sets provided in [9] to the larger
class of all lovely pairs of dense o-minimal structures (see section 5).

Berenstein, Ealy and Gunaydin showed in [5] that the theory of dense pairs of
o-minimal theories that expand the theory of ordered abelian groups is super-rosy
of rank ≤ ω. The tools used in the proof depended mainly on the description
of de�nable sets given by van den Dries in [9]. Since such a description can be
extended to the larger class of lovely pairs of dense o-minimal theories, the proof
found in [5] can be adapted to show that the theory of any lovely pairs of a dense
o-minimal theory is super-rosy of rank ≤ ω. A more general result was proved
recently by Boxall [2]; he showed that for any rosy theory of thorn rank one (with
elimination of ∃∞), the corresponding theory of lovely pairs is super-rosy of rank
≤ ω.

Finally, following ideas of Buechler and Vassiliev [3, 24], combined with the tri-
chotomy theorem by Peterzil-Starchenko, we study the relation between the rank
of a generic type and the local geometry of the underlying o-minimal structure:

Theorem 2 Let M be an o-minimal structure whose theory extends DLO, let
P (M) �M and assume that (M,P (M)) is a lovely pair.

(1) If a ∈M is trivial, Uþ(tpP (a)) ≤ 1 (= 1 i� a 6∈ dcl(∅)).
(2) If a 6∈ P (M) is non-trivial, then Uþ(tpP (a)) ≥ 2.
(3) IfM has global addition (i.e. expands the theory of ordered abelian groups)

and does not interpret an in�nite �eld, then (M,P ) has þ-rank 2.
(4) If M induces the structure of an o-minimal expansion of a real closed �eld

in a neighborhood of a 6∈ P (M), then Uþ(tpP (a)) = ω.

This paper is organized as follows. In Section 2 we study the theory TP of
lovely pairs associated to a geometric theory T . In section 3 we characterize the
de�nable sets of such pairs. In section 4 we discuss linearity in the context of
geometric structures and prove Theorem 1. In section 5 we generalize van den
Dries' description of de�nable sets in dense pairs to the class of lovely pairs of
o-minimal structures extending DLO. Finally in section 6 we show Theorem 2.

We assume throughout this paper that the reader is familiar with the basic ideas
of rosy theories presented in [19], [1]. We follow the notation from [5], we write
capital letters such as C,D,X, Y for de�nable sets and sometimes we write C~b to

emphasize that C is de�nable over ~b. We may write ~b ∈ C~y to mean that ~b is a
tuple of the same arity as ~y whose components belong to C.
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2. Lovely pairs of geometric structures

We begin by translating to the setting of geometric structures, the de�nitions
used by Vassiliev in [24]. Let T be a complete theory in a language L such that for
any model M |= T , the algebraic closure satis�es the Exchange Property and that
eliminates the quanti�er ∃∞ (see [17, Def. 2.1]). We call such a theory geometric
(see [13]). Examples includes rosy rank one theories that eliminate ∃∞ such as
strongly minimal theories, SU -rank one simple theories and dense o-minimal the-
ories; as well as more geometric structures such as the p-adics. We will assume,
to simplify the presentation of the results, that T eliminates quanti�ers in the lan-
guage L. Let P be a new unary predicate and let LP = L ∪ {P}. Let T ′ be the
LP -theory of all structures (M,P ), where M |= T and P (M) is an L-algebraically
closed subset of M . Let Tpairs be the theory of elementary T -pairs, that is, the
theory of structures of the form (M,P (M)) where P (M) �M and M |= T .

Notation 2.1. Let (M,P (M)) |= T ′ and let A ⊂M . We write P (A) for P (M)∩A.

Notation 2.2. Throughout this section independence means acl-independent, where
acl stands for the algebraic closure in the sense of L. We write tp(~a) for the L-
type of a and dcl for the de�nable closure in the language L. Similarly we write
dclP , aclP , tpP (~a) for the de�nable closure, the algebraic closure and the type in the
language LP . For A ⊂ B sets and q ∈ Sn(B), we say that q is free over A or that
q is a free extension of q �A if for any (all) ~c |= q, ~c is independent from B over A.

De�nition 2.3. We say that a structure (M,P (M)) is a lovely pair of models of
T if

(1) (M,P (M)) |= T ′

(2) (Density/coheir property) If A ⊂ M is algebraically closed and �nite di-
mensional and q ∈ S1(A) is non-algebraic, there is a ∈ P (M) such that
a |= q.

(3) (Extension property) If A ⊂M is algebraically closed and �nite dimensional
and q ∈ S1(A) is non-algebraic, there is a ∈ M , a |= q and a 6∈ acl(A ∪
P (M)).

Lovely pairs of geometric structures had been previously studied, from the per-
spective of fusions, by Martin Hils [14].

Lemma 2.4. Let (M,P (M)) |= T ′. Then (M,P (M)) is a lovely pair of models of
T if and only if:

(2') (Generalized density/coheir property) If A ⊂ M is �nite dimensional and
q ∈ Sn(A) is free over P (A), then there is ~a ∈ P (M)n such that ~a |= q.

(3') (Generalized extension property) If A ⊂ M is �nite dimensional and q ∈
Sn(A), then there is ~a ∈ Mn realizing q such that tp(~a/A ∪ P (M)) is free
over A.

Proof. We prove (2') and leave (3') to the reader. Let ~b |= q, we may write ~b =
(b1, . . . , bk, bk+1, . . . , bn) and we may assume that b1, . . . , bk are acl(A)-independent
and bk+1, . . . , bn ∈ acl(A, b1, . . . , bk). Since q is free over P (A), we have that
bk+1, . . . , bn ∈ acl(P (A), b1, . . . , bk). Since (M,P (M)) is a lovely pair, applying
k times the density property we can �nd a1, . . . , ak ∈ P (M) such that

tp(a1, . . . , ak/ acl(A)) = tp(b1, . . . , bk/ acl(A)).
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Now let ak+1, . . . , an ∈M be such that tp(a1, . . . , an/A) = tp(b1, . . . , bn/A). Then
ak+1, . . . , an ∈ acl(P (A), a1, . . . , ak) and since P (M) is algebraically closed we get
~a = (a1, . . . , an) ∈ P (M). �

The previous lemma shows that we could follow the approach from [4] and de�ne,
for κ ≥ |T |+, the class of κ-lovely pairs, as the pairs satisfying condition (1) together
with the the clauses (2') and (3') above replacing the condition A ⊂ M is �nite
dimensional by A ⊂M of cardinality < κ.

Note that if (M,P (M)) is a lovely pair, the extension property implies thatM is
ℵ0-saturated. If (M,P (M)) is a κ-lovely pair, the extension property implies that
M is κ-saturated and that M \ P (M) is non-empty. Assume now that T is an o-
minimal theory extending DLO and that (M,P (M)) is a lovely pair of models of T .
Let a, b ∈ M be such that a < b; then the partial type a < x < b is non-algebraic
and by the density property it is realized in P (M). Thus, the density property
implies that P (M) is dense in M .

Lemma 2.5. Any lovely pair of models of T is an elementary T -pair.

Proof. We apply the Tarski-Vaught test. Let (M,P (M)) be a lovely T -pair, let

ϕ(x, ~y) be an L-formula and let ~b ∈ P (M)~y. Assume that there is a ∈ M such

that M |= ϕ(a,~b). If a is algebraic over ~b, since P (M) is algebraically closed, we

get a ∈ P (M). If a is not algebraic over ~b, the type tp(a/~b) is not algebraic and

by the density property there is a′ ∈ P (M) such that a′ |= tp(a/~b); in particular,

M |= ϕ(a′,~b). �

We follow now section 3 of [4]. The existence of κ-lovely pairs follows from [4,
Lemma 3.5]. The proof presented there does not use the Independence Theorem,
in fact, it only uses transitivity and the existence of non-forking extensions. Ex-
changing the word (non-forking) independence for algebraic independence gives a
proof in our setting.

De�nition 2.6. Let A be a subset of a lovely pair (M,P (M)) of models of T . We
say that A is P -independent if A is independent from P (M) over P (A).

Lemma 2.7. Let (M,P (M)) and (N,P (N)) be lovely pairs of models of T . Let

~a, ~b be �nite tuples of the same length from M , N respectively, which are both P -

independent. Assume that ~a, ~b have the same quanti�er free LP -type. Then ~a, ~b
have the same LP -type.

Proof. Let f be a partial LP -isomorphism sending the tuple ~a to the tuple ~b. It
su�ces to show that for any ~c ∈ Nn, we can �nd a partial isomorphism g extending
f whose domain includes ~c. Replacing ~c for a longer tuple if necessary, we may
assume that ~a~c is P -independent. Let ~c1 = P (c) and let ~c2 be the remaining part
of ~c. Let p = tp(~c1/~a), since ~c1 ∈ P (M) and ~a is P -independent, we get that ~c1 is

independent from ~a over P (~a). Let p′ = f(tp(~c1/~a)), which is a type over ~b. Since

~c1 |̂
P (~a)

~a, we get that p′ is free over P (~b) and by the generalized density property

we can �nd ~d1 ∈ P (M) such that ~d1 |= p′. In particular, qftpP (~c1,~a) = qftpP (~d1,~b).
Let f̂ be a partial LP -isomorphism sending the tuple ~c1~a to the tuple ~d1

~b. Now

let q = tp(~c2/~a~c1) and let q′ = f̂(tp(~c2/~c1~a)), which is a type over ~d1
~b. By the

generalized extension property there is ~d2 |= q′ such that ~d2 |̂ ~b~d1
P (M)~b~d1.
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Claim. P (~d2) = ∅
Otherwise there is d ∈ P (~d2) and thus d ∈ acl(P (~b)~d1), so f̂−1(d) ∈ acl(P (~a)~c1)

and we get that P (~c2) 6= ∅, a contradiction.

Thus qftpP (~c1~c2,~a) = qftpP (~d1
~d2,~b)

�

The previous result has the following consequence:

Corollary 2.8. All lovely pairs of models of T are elementarily equivalent.

We write TP for the common complete theory of all lovely pairs of models of T .
To axiomatize TP we follow the ideas of [24, Prop 2.15]. Here we use for the �rst

time that T eliminates ∃∞. Recall that whenever T eliminates ∃∞ the expression

the formula ϕ(x,~b) is nonalgebraic is �rst order.

Theorem 2.9. Assume T eliminates ∃∞. Then the theory TP is axiomatized by:

(1) T ′

(2) For all L-formulas ϕ(x, ~y)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ P )).

(3) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x 6∈ P ) ∧
∀w1 . . .∀wm ∈ P¬ψ(x,w1, . . . , wm, ~y))

Furthermore, if (M,P (M)) |= TP is |T |+-saturated, then (M,P (M)) is
a lovely pair.

The second scheme of axioms corresponds to the density property and the third
scheme to the extension property.

Proof. Let T0 be the theory axiomatized by the scheme of axioms described above.
Claim Any lovely T -pair is a model of T0.
Let (M,P (M)) be a lovely T -pair. Clearly it is a model of T ′. Now let ϕ(x, ~y)

be a formula, let ~b ∈ M~y and assume that ϕ(x,~b) is non-algebraic. Let B = acl(~b)
and let p(x) be a non algebraic L-type over B extending ϕ(x,~b). Since (M,P (M))
is a lovely pair, by the density property p(x) is realized in P (M) and thus the
second axiom holds. Now assume that ψ(x, ~z, ~y) is a formula such that there is n
with the property that for all ~z, ~y there are at most n realizations of ψ(x, ~z, ~y).
Let ϕ(x, ~y) be a formula and ~b ∈ M~y be such that ϕ(x,~b) is non-algebraic. Let

B = acl(~b) and let p(x) be a non algebraic L-type over B extending ϕ(x,~b). By the
extension property there is c ∈M realizing p and independent from P (M) over B.
For ~d ∈ P (M)~z, c is not algebraic over ~d~b, so M |= ¬ψ(c, ~d,~b) and the third axiom
holds.
Claim Any |T |+-saturated model of T0 is a lovely pair.
Let (M,P (M)) |= T0 be |T |+-saturated and let A ⊂ M be algebraically closed

and �nite dimensional. Let p(x) be a non-algebraic L-type over A. First consider
the LP partial type p(x)∧P (x). By the second axiom this partial type is �nitely re-
alizable and by |T |+-saturation it is realized in (M,P (M)). Thus (M,P (M)) satis-
�es the density property. Now consider the partial type p(x)∪{∀~w ∈ P¬ψ(x, ~w,~a) :
ψ is as in (3), ~a ∈ A~y}. By the third axiom this type is �nitely realizable in
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(M,P (M)) and by |T |+-saturation it is realized in (M,P (M)). Thus (M,P (M))
satis�es the extension property. �

We now compare lovely pairs with the dense pairs studied by van den Dries in
[9]. We start by recalling some de�nitions from that paper:

Assume that L = {<, 0, 1,+,−, . . . } and that T is an o-minimal L-theory that
extends the theory of ordered abelian groups with a positive element 1.

De�nition 2.10. A dense pair is an elementary pair (so P (M) � M) such that
P (M) 6= M and P (M) is dense in M .

Note that such a theory T extends DLO so any lovely T -pair (M,P (M)) is a
dense pair. It is proved in [9, Theorem 2.5] that the common theory of dense pairs
is complete, and thus it coincides with TP . Thus, the study of TP can be seen as a
generalization of van den Dries' work on dense pairs of o-minimal structures.

3. Definable sets

Fix T a geometric theory and let (M,P (M)) |= TP . Our next goal is to obtain
a description of de�nable subsets of M and P (M) in the language LP .

We start by considering the LP -de�nable subsets of M ; we follow the ideas from
[4, Corollary 3.11]. We will extend the language adding new relation symbols. Let
L′P be LP together with new relation symbols Rϕ(~y) for each L-formula ϕ(~x, ~y). Let
T ′P be the theory TP together with the sentences ∀~y(Rϕ(~y) ↔ ∃~x(P (~x)∧ ϕ(~x, ~y))).
Since TP is a complete theory so is T ′P . We will show that T ′P has quanti�er
elimination. We should point out that this result is also proved in [9, Theorem 2.5]
for dense pairs of o-minimal structures that extends the theory of ordered abelian
groups.

Lemma 3.1. Let (M,P (M)), (N,P (N)) be lovely pairs. Let ~a, ~b be tuples of the
same arity from M , N respectively. Then the following are equivalent:

(1) ~a, ~b have the same quanti�er-free L′P -type.
(2) ~a, ~b have the same LP -type.

Proof. Clearly (2) implies (1). Assume (1). Since L has quanti�er elimination,

tp(~a) = tp(~b). Since the algebraic closure has �nite character, there is A ⊂ P (M)
�nite such that ~a is independent from P (M)) over A. Let q(~z,~a) be the L-type
of A over ~a. Since the quanti�er free L′P -type of ~a agrees with the quanti�er free

L′P -type of ~b, q(~z,~b) is a free extension of tp(A). Since (N,P (N)) is a lovely pair,

by the generalized density property q(~z,~b) is realized in P (N), say by B.

Claim ~b is free from P (N) over B.
Say ~b = (b1, . . . , bn) and assume that for some k ≤ n, (b1, . . . , bk) are B-

independent and ~b ∈ acl(B, b1, . . . , bk). If the claim does not hold, dim(~b/B ∪
P (N)) < k say bk ∈ acl(b1, . . . , bk−1, B, P (N)). Let d1, . . . , dm ∈ P (N) such that
bk ∈ acl(b1, . . . , bk−1, B, d1, . . . , dm). Since the quanti�er free L′P type of ~a,A agrees

with the quanti�er free L′P type of ~b,B, there are c1, . . . , cm ∈ P (M) such that
ak ∈ acl(a1, . . . , ak−1, A, d1, . . . , dm), a contradiction.

Also note that ~aA, ~bB have the same quanti�er free LP -type, so the result follows
from Lemma 2.7. �

Corollary 3.2. The theory T ′P admits quanti�er elimination.
6



Now we are interested in the LP -de�nable subsets of P (M). For this material
we follow the presentation from [9, Theorem 2].

Lemma 3.3. Let (M0, P (M0)) � (M1, P (M1)) and assume that (M1, P (M1)) is
|M0|-saturated. The M0 (seen as a subset of M1) is a P -independent set.

Proof. Assume not. Then there are a1, . . . , an ∈ M0 \ P (M0) such that an ∈
acl(a1, . . . , an−1, P (M1)) and an 6∈ acl(a1, . . . , an−1, P (M0)). Let ϕ(x, ~y, ~z) be a

formula and ~b ∈ P (M1)~z be a tuple such that

ϕ(an, a1, . . . , an−1,~b) ∧ ∃≤nxϕ(x, a1, . . . , an−1,~b)

holds. Since (M0, P (M0)) � (M1, P (M1)) there is ~b′ ∈ P (M0)~y such that

ϕ(an, a1, . . . , an−1,~b
′) ∧ ∃≤nxϕ(x, a1, . . . , an−1,~b

′)

holds, so an ∈ acl(a1, . . . , an−1, P (M0)), a contradiction. �

Proposition 3.4. Let (M,P (M)) be a lovely pair and let Y ⊂ P (M)n be LP -
de�nable. Then there is X ⊂Mn L-de�nable such that Y = X ∩ P (M)n.

Proof. Let (M1, P (M1)) � (M,P (M)) be κ-saturated where κ > |M |+ |L| and let

~a,~b ∈ P (M1)n such that tp(~a/M) = tp(~b/M). We will prove that tpP (~a/M) =
tpP (~b/M) and the result will follow by compactness. Since ~a,~b ∈ P (M1)n, we get

by lemma 3.3 that M~a, M~b are P -independent sets and thus by Lemma 2.7 we get

tpP (~a/M) = tpP (~b/M). �

De�nable equivalence relations in TP are studied by Boxall in [2].
When T is an SU -rank one theory, the theory TP also eliminates the quanti�er

∃∞.

Question 3.5. Does TP eliminate the quanti�er ∃∞?

We provide a positive answer when T is an o-minimal extension of DLO in
Corollary 5.6

4. Linearity and the geometric properties of the pair

Our next goal is to investigate the connection between the properties of the
theory TP and the geometry associated to the base theory T . Our goal is to
generalize (at least partially) the following result from [24] (Theorem 5.13).

Fact 4.1. Let T be a supersimple SU-rank 1 theory (with quanti�er elimination).
Then the following are equivalent:

(i) acl = aclP in TP (on the home sort)
(ii) TP has SU-rank ≤ 2 (= 2 i� T has non-trivial geometry)
(iii) For some (any) lovely pair (M,P ) of models of T , the localization of the

pregeometry (M, aclL) at P (M) is modular.
(iv) T is linear (meaning the canonical base of any plane curve has SU-rank

≤ 1)
(v) TP is model complete.

In the SU-rank 1 case, linearity is in fact equivalent to 1-basedness: for any two
sets A and B, A |̂

acleq(A)∩acleq(B)
B, or equivalently, for any set A and a tuple ~a,

cb(~a/A) ∈ acleq(~a). Condition (ii) and (iv) have no natural analogue for lovely pairs
7



of geometric structures. Even if we assume that T is a þ-rank one theory, there is
no notion of canonical base, and thus we cannot expect a direct generalization of
the above theorem.

Remark 4.2. If T is a þ-rank 1 theory (eliminating ∃∞) with almost canonical
bases, as de�ned in [20] (for each type q(x,A) over an algebraically closed set A,
there is the smallest algebraically closed subset of A over which q does not þ-fork),
then one can de�ne the 1-basedness and linearity as in the SU-rank 1 case, and the
equivalence of conditions (i), (iii), (iv) and (v) in fact 4.1 still holds in this context.

We will explore the relation between conditions (i), (ii), (iii) and (v) for geometric
structures. We also add another two equivalent conditions which could be taken
as the new de�nitions of one-basedness and linearity in the absence of canonical
bases. Then we study the special case when T is a rank one rosy theory. Most of
the proof is a direct generalization of the proof of Fact 4.1, but we will recall some
of the steps if necessary.

Theorem 4.3. Let T be a geometric theory. Then the following are equivalent.

(i) acl = aclP in TP (on the home sort)
(ii) For some (any) lovely pair (M,P ) of models of T , the localization of the

pregeometry (M, aclL) at P (M) is modular.
(iii) For any two sets A and B in a model of T there is C |̂ ∅AB such that

A |̂
acl(AC)∩acl(BC)

B.

(iv) For any a, b,~c in a model of T , if a ∈ acl(b,~c), then there is ~u |̂ ∅ ab~c such
that a ∈ acl(bd~u) for some d ∈ acl(~c~u).

Proof. The proof of (i→ ii) and (ii→ i) is the same as the proof of (i→ iii) and
(iii→ i) in Fact 4.1.

(ii → iii) Embed AB into a lovely pair (M,P ) so that AB |̂ ∅ P (M). Take

C = P (M).

(iii→ iv) By (iii), there is a set U such that ab~c |̂ ∅ U such that

ab |̂
acl(abU)∩acl(~cU)

~c.

If either a or b is in acl(~cU), or a ∈ acl(b), then the conclusion of (iv) follows im-
mediately. Suppose neither a nor b is in acl(~cU) and a and b are not interalgebraic.
Then ab is not independent from ~c over empty set, and thus there is a non-algebraic
d ∈ acl(abU) ∩ acl(~cU). Suppose d ∈ acl(bU). Then b ∈ acl(dU) ⊂ acl(~cU), a con-
tradiction. Thus d 6∈ acl(bU), and by exchange, a ∈ acl(bdU). Now, d ∈ acl(~cU),
and we can assume that U is a �nite tuple. This gives us the desired ~u.

(iv → ii) Let (M,P ) be any lovely pair of models of T . We claim that the quotient
pregeometry (M, acl(− ∪ P (M))) is projective, i.e. for any a, b, c1, . . . , cn ∈ M , if
a ∈ acl(b~cP (M)), then there is d ∈ acl(~cP (M)) such that a ∈ acl(bdP (M)). By
enlarging ~c with elements of P (M) if necessary, we may assume that a ∈ acl(b~c).
Now, let ~u ∈ M be as in (iv). Since ~u |̂ ∅ ab~c, we may assume, by the coheir

property, that ~u ∈ P (M), and thus there is d ∈ acl(~c~u) ⊂ acl(~cP (M)) such that
a ∈ acl(bd~u) ⊂ acl(bdP (M)), as needed. Now, for any pregeometry, modularity is
equivalent to projectivity, and thus (ii) holds. �
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We will refer to a geometric theory satisfying the equivalent conditions above as
linear. This agrees with the terminology in the simple case, and as we point out
later,in the o-minimal case. Note that linearity is weaker than local modularity:
we localize at a set of large cardinality to obtain modularity. There are examples
of linear SU-rank 1 and o-minimal structures which are not locally modular.

Note that the proof of (v → iv) in Fact 4.1 (Theorem 5.13 in [24]) actually shows
(v → iii). The proof is still valid in the context of geometric structures, and thus
we have:

Proposition 4.4. Let T be a geometric theory (with quanti�er elimination). Then
if TP is model complete, then T is linear.

De�nition 4.5. Let (M,P ) |= TP and let A ⊂ M . We call acl(A ∪ P (M)) the
small closure of A.

Note that the geometry of M is linear if scl is modular. Following the proof in
[24], we get the following description of the quotient geometry (i.e. the geometry
of the small closure on the home sort) and the geometry of the base theory in the
linear case.

Proposition 4.6. Suppose T satis�es the equivalent conditions of theorem 4.3
above, and that (M,P ) is a lovely pair of models of T . Then

(1) The associated geometry of (M, acl(− ∪ P (M)) is a disjoint union of pro-
jective geometries over division rings and/or a trivial geometry.

(2) The associated geometry of (M,acl) is a disjoint union of �subgeometries"
of projective geometries over division rings.

We now concentrate on rank one rosy theories that eliminate ∃∞. The �rst
ingredient to understand lovely pairs in this setting is the following result of G.
Boxall (generalizing previous work of the second author [24]):

Fact 4.7. (Boxall [2]) Suppose T is a þ-rank 1 theory that eliminates ∃∞. Then
TP is superrosy of þ-rank ≤ ω. Moreover:

(1) Any de�nable �large" set in a lovely pair (M,P ) (i.e. a set de�nable over A
such that it has a realization in M\ acl(P (M) ∪A)) does not þ-divide over
∅.

(2) Any in�nite de�nable subset of P (M) does not þ-divide over ∅. In partic-
ular, P (M) has þ-rank 1 in (M,P ).

The following proposition generalizes the direction (i→ ii) in the Fact 4.1.

Proposition 4.8. Let T be a theory of þ-rank one eliminating ∃∞. If T is linear,
then TP has þ-rank ≤ 2.

Proof. We follow the proof of (i→ ii) in Fact 4.1. Let (M,P ) be a lovely pair and
assume that aclP = acl in (M,P ). Let A ⊂ B ⊂ M and a ∈ acl(AP (M))\ acl(B).
By Fact 4.7(1), it su�ces to show that tpP (a/B) does not þ-fork over A. Let
~b = (b1, . . . , bn) ∈ P (M)n be a minimal tuple in P (M) such that a ∈ acl(A~b).
Then b1, . . . , bn−1 are acl-independent over Aa. Since aclP = acl, we can �nd
b′1 . . . b

′
n−1 |= tpP (b1 . . . bn−1/Aa) acl-independent over Ba. Take b′n such that

b′1 . . . b
′
n |= tpP (b1 . . . bn/Aa). Then b′n ∈ P (M) and a ∈ acl(Ab′1 . . . b

′
n). Note

that b′1, . . . , b
′
n are acl-independent over B, since otherwise b′n ∈ acl(b′1 . . . b

′
n−1B),
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and thus a ∈ acl(b′1 . . . b
′
n−1B) as well, contradicting the choice of b′1, . . . , b

′
n−1 and

the fact that a 6∈ acl(B).
Thus a ∈ acl(Ab′1 . . . b

′
n), where b′1, . . . , b

′
n ∈ P (M) and are acl-independent

(and thus aclP -independent) over B. By Fact 4.7(2) P (M) has þ-rank 1, so
tpP (b′1 . . . b

′
n/B) does not þ-fork over ∅. Thus tpP (a/B) does not þ-fork over A,

as needed. �

Question 4.9. Does the converse of Proposition 4.8 hold?

The main obstacle for answering the question above is understanding þ-forking
in the pair. In particular:

Question 4.10. Let T be a theory of þ-rank one. Let (M,P ) be a lovely pair
of models of T and assume that there are A ⊂ B ⊂ M and a ∈ M such that
a ∈ scl(B) \ scl(A). Does tpP (a/B) þ-fork over A?

5. More on definable sets: the o-minimal case

Fix T an o-minimal theory that expands DLO. In particular, T eliminates the
quanti�er ∃∞.

De�nition 5.1. Let (M,P (M)) be a lovely pair of models of T . An LP -de�nable
set D ⊂ Mk is small if and only if there is some m, and an L-de�nable function
f : Mm → Mk such that D ⊂ f(P (M)m). Let F be a cell and let S ⊂ F be
de�nable. We say S is large in F if F \ S is small. A de�nable subset D ⊂ Mk is
basic small if it is small and of the form ∃y1 ∈ P . . . ∃yn ∈ Pϕ(~x, ~y), where ϕ(~x, ~y)
is an L-formula.

The de�nition above is what is called P (M)-bound in [5] and it turns out to
be equivalent to the notion of small set from [5] (see Corollary 2.16). Note that
if D1, D2 ⊂ Mk are small their union is also small. Note that by the extension
property no open interval is small.

We need to re�ne the description of LP -de�nable subsets of M that we obtained
in the previous section. In particular, we want to generalize Theorem 4 of [9] to
general lovely pairs of o-minimal structures. We will follow the strategy from [9]
and we start by reproving Lemma 4.3 of [9]. The proof we present is the one given
in [9], we include it for completeness.

Lemma 5.2. Let X ⊂ M be small. Then X is a �nite union of sets of the form
f(P (M)m ∩ E) where E is an L-de�nable open cell in Mm and f : E → M is
L-de�nable and continuous.

Proof. Since X is small, X ⊂ f(P (M)m) for some L-de�nable function f fromMm

into M . Thus we may write X = f(X ′) for some LP -de�nable set X ′ ⊂ P (M)m.
By Proposition 3.4 we have X ′ = P (M)m ∩ Y for some L-de�nable Y ⊂Mm. The
rest of the proof is by induction on m. The case m = 0 is trivial, as X is either
empty or a single point. So assume the result holds for values lower than m and
we will prove it for m. We can subdivide Y into smaller cells E so that f �E is
continuous. If E is an open cell in Mm we get the conclusion of the lemma. If E
is not open and dim(E) = d < m, there are indices 1 ≤ i1 < i2 < · · · < id ≤ m
such that the projection map π : Mm → Md, π(x1, . . . , xn) = (xi1 , . . . , xid

) is
homeomorphism from E onto the open cell E′ = π(E) of Md. Let µ : Md → Mm

be a de�nable map such that µ(π(x)) = x for all x ∈ E. Then f(P (M)m ∩ E) =
10



(f ◦µ)(P (M)d ∩E′ ∩µ−1(P (M)m)) and by Proposition 3.4 there is an L-de�nable
set F ′ ⊂ E′ such that P (M)d∩E′∩µ−1(P (M)m) = P (M)d∩F ′. By the induction
hypothesis, f(P (M)m ∩ E) = (f ◦ µ)(P (M)d ∩ F ′) is of the desired form. �

Lemma 5.3. Let C ⊂Mk be a cell. Then there is a partition C1, . . . , Cn of C into
cells such that Ci ∩ P (M)k is either empty or a dense subset of Ci.

Proof. The proof is by induction on k. The result is clear for k = 0. Assume now
that the result holds for values smaller than or equal to k and we will prove it for
k + 1. First assume that C is the set of realizations of the formula f(y1, . . . , yk) <
x < g(y1, . . . , yk) for ~y in a cell D and f , g continuous functions. By induction
hypothesis we need to consider two cases. If D ∩ P (M)k is dense in D, then
C ∩ P (M)k+1 is dense in C. If D ∩ P (M)k is empty, then so is C ∩ P (M)k+1.

Now assume that C is of the form x = f(y1, . . . , yk) for ~y in a cell D and f
a continuous function. Then there is d ≤ k and there are indices 1 ≤ i1 < i2 <
· · · < id ≤ k + 1 such that the projection map π : Mk+1 →Md, π(x1, . . . , xk+1) =
(xi1 , . . . , xid

) is homeomorphism from C onto the open cell C ′ = π(C) of Md. Let
µ : Md →Mm be a de�nable map such that µ(π(x)) = x for all x ∈ C. Note that
µ is a de�nable function. Then P (M)k+1 ∩ C = µ(P (M)d ∩ C ′ ∩ µ−1(P (M)k+1))
and by Proposition 3.4 there is an L-de�nable set F ⊂ C ′ such that P (M)d ∩
C ′ ∩ µ−1(P (M)) = P (M)d ∩ F . By the induction hypothesis we can �nd a �nite
partition F into cells {Fj : j ≤ n1} such that either Fj ∩P (M)d = ∅ or Fj ∩P (M)d

is dense in Fj . Furthermore, we can extend the partition {Fj : j ∈ J} to a partition
{C ′i : i ≤ n2} of C ′ with the same properties. Since µ is a homeomorphism,
{µ(C ′j) : j ∈ J} forms a partition of C into cells. Let Cj = µ(C ′j). Note that if

Ck ∩ P (M)k+1 6= ∅, then π(Ck) ∩ P (M)d ∩ µ−1(P (M)k+1) 6= ∅, so π(Ck) = Fj for
some j such that Fj∩P (M)d is dense in Fj . Then µ(Fj∩P (M)d) is a dense subset of
Cj . Since P (M)d∩Fj ⊂ P (M)d∩C ′∩µ−1(P (M)k+1), µ(Fj∩P (M)d) ⊂ P (M)k+1,
so Cj ∩ P (M)k+1 is a dense subset of Cj . �

Now we generalize Lemma 2.15 from [5]:

Proposition 5.4. Let D ⊂M be de�nable in (M,P (M)) over ~d. Then there is a
partition −∞ = a0 < · · · < an = ∞ and basic small dense sets S1, . . . , Sn such that
D∩ [ai−1, ai] is either contained in the set Si or contains the set S

c
i ∩ [ai−1, ai], and

each Si is de�ned from ~d.

Proof. We �rst show the result for sets D de�ned by formulas of the form

∃y1 . . .∃ynP (y1) ∧ · · · ∧ P (yn) ∧ ϕ(y1, . . . , yn, x),

where ϕ(y1, . . . , yn, x) is a cell.
Assume the cell de�ned by ϕ(y1, . . . , yn, x) is of the form f(y1, . . . , yn) < x <

g(y1, . . . , yn) for ~y in a cell C and f , g continuous functions. Then, by Lemma 5.3,
after subdividing C if necessary, we obtain two cases. If P (M)n ∩C is empty, then
D is empty. If P (M)n ∩ C is dense in C, then D is an open interval.

Now assume that the cell de�ned by ϕ(y1, . . . , yn, x) is of the form x = f(y1, . . . , yn)
for ~y in a cell C and f is a continuous function, which is either constant, strictly
increasing or strictly decreasing. As above, after subdividing C if necessary, we
obtain the following cases. If P (M)n ∩C is empty, then D is empty. If P (M)n ∩C
is dense in C and f is constant, then D is a point. If f is strictly monotone, then
D is a dense small subset of f(C).
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Clearly if the conclusion of the Proposition holds for a set D, then it also holds
for the complement of D. By Corollary 3.2 and cell decomposition, it remains to

see what happens with intersections. Assume that D1, D2 are de�nable over ~d and
that there is a partition −∞ = a0 < · · · < an = ∞ and basic small dense sets
S11, . . . , S1n, S21, . . . , S2n as prescribed by the Proposition for D1, D2 respectively.
If D1 ∩ [ai−1, ai] ⊂ Si1, then (D1 ∩ D2) ∩ [ai−1, ai] ⊂ Si1. On the other hand, if
D1 ∩ [ai−1, ai] ⊃ Sc

i1 ∩ [ai−1, ai], D2 ∩ [ai−1, ai] ⊃ Sc
i2 ∩ [ai−1, ai], then D1 ∩D2 ∩

[ai−1, ai] ⊃ (Si1 ∪ Si2)c ∩ [ai−1, ai]. �

Proposition 5.5. If X ⊂ M is LP -de�nable and small, then there is a partition
−∞ = b0 < b1 < · · · < bk+1 = ∞ of M such that for each i = 0, . . . , k, either
X∩(bi, bi+1) = ∅, or X∩(bi, bi+1) as well as (bi, bi+1)\X are dense in (bi, bi+1). If
X ⊂ M is LP -de�nable then there is a partition −∞ = b0 < b1 < · · · < bk+1 = ∞
of M such that for each i = 0, . . . , k, either X ∩ (bi, bi+1) = ∅, or X ∩ (bi, bi+1) =
(bi, bi+1) or X ∩ (bi, bi+1) as well as (bi, bi+1) \X are dense in (bi, bi+1).

Proof. Let X ⊂ M be small. By Lemma 5.2 we can write X as a �nite union of
sets f(P (M)m ∩E) where E ⊂Mm is an open cell and f is L-de�nable continuous
function. If X is a single point there is nothing to prove, so we may assume that
f(E) is an interval possibly with endpoints. The set f(P (M)m ∩ E) is dense in
f(E) and by the extension property f(E) \ f(P (M)m ∩ E) is also dense in f(E).
The second part of the Proposition follows from the �rst part and from Proposition
5.4. �

As in [9, Corollary 4.5] we get from the previous results that TP eliminates the
quanti�er ∃∞.

Corollary 5.6. Let S ⊂ Mm+n be LP -de�nable in (M,P (M)) and assume that
for each ~a ∈ Mm the �ber S~a = {~y ∈ Mn : (~a, ~y) ∈ S} if �nite. Then there is a
natural number k such that for all ~a ∈Mm, |S~a| ≤ k.

Proof. It su�ces to prove the property for the case n = 1. By Proposition 5.4 an
LP -de�nable subset of M is �nite if and only if it is discrete. If the sets S~a are not
uniformly bounded, by compactness in an elementary extension there is a set S~b
which is in�nite. Since being discrete is an elementary property, S~b can be chosen
to be discrete, a contradiction. �

Dolich, Miller and Steinhorn showed [7] that whenever T extends the theory is
an expansion of an o-minimal ordered group, TP has o-minimal open core. Their
proof uses a criterion that depends on the existence of a global group operation.

Question 5.7. If T is o-minimal, does TP have o-minimal open core?

6. More on Geometry: the o-minimal case

Here we again �x an o-minimal theory T , expanding DLO. Our goal in this
subsection is to study, for (M,P (M)) a lovely pair and a ∈M , the relation between
properties of the pair and the local L-structure thatM induces on a neighborhood of
a. A key tool in this section is the Trichotomy Theorem of Peterzil and Starchenko
[21, 22]. We recall from de�nitions and results from [21]:

De�nition 6.1. Let M be an o-minimal structure and let a ∈ M . We say that
a is non-trivial if there is an in�nite open interval I containing a and a de�nable
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continuous function F : I×I →M such that F is strictly monotone in each variable.
A point which is not non-trivial is called trivial. Now assume that (G,+, 0) ⊂ M
is a convex type-de�nable ordered group and that p > 0 belongs to G. Then the
structure ([−p, p], <,+, 0) is called a group interval.

Fact 6.2. (Trichotomy Theorem) LetM be an ω1-saturated structure. Given a ∈M
one and only one of the following holds:

(1) a is trivial.
(2) the structure thatM induces in some convex neighborhood of a is an ordered

vector space over a division ring. Furthermore, there is a closed interval
containing a on which a group interval is de�nable.

(3) The structure that M induces on some open interval around a is an o-
minimal expansion of a real closed �eld.

We start with relating thorn-forking and small sets:

Lemma 6.3. Let M be an o-minimal structure and assume that (M,P ) |= TP is

su�ciently saturated. Let ϕ(x,~b) be a formula that thorn-forks over ∅. Then ϕ(x,~b)
de�nes a small set.

Proof. Now assume for a contradiction that ϕ(x,~b) is not a small set. By Propo-
sition 5.4 there is some open interval I~b such that D~b is large in I~b. Suppose that

θ(~y,~c) is such that for any ~b1, . . . ,~bk di�erent realizations of θ(~y,~c), one has

D~b1
∩ · · · ∩D~bk

= ∅.

Claim J := I~b1 ∩ · · · ∩ I~bk
= ∅.

Otherwise J is an open interval (d1, d2). Let S~b be a small set such that D~b =
Ib \S~b. Then (D~b1

∩ · · ·∩D~bk
)∩ (d1, d2) = J \ (S~b1

∪ · · ·∪S~bk
) 6= ∅ by the extension

property.

Thus, if ψ(x,~b) de�nes I~b, we see that ψ(x,~b) also þ-divides. But since intervals
are L-de�nable, this contradicts Fact 4.7. �

We begin with analysing the þ-rank around trivial points.

Lemma 6.4. Let a ∈ M be such that the structure induced by M on a is triv-
ial in the sense of Peterzil-Starchenko. Let b1, . . . bn ∈ M and assume that a ∈
dcl(b1, . . . , bn). Then there is i ≤ n such that a ∈ dcl(bi).

Proof. We may reduce the problem to n = 2. Assume, in order to get a contra-
diction, that there are b, c ∈ M are such that a ∈ dcl(b, c) \ (dcl(b) ∪ dcl(c)). By
the exchange property, it is clear that c ∈ dcl(a, b) \ (dcl(a) ∪ dcl(b)). Let f(x, y)
be a ∅-de�nable function such that c = f(a, b). Consider now f(x, b). Since T is
o-minimal and c 6∈ dcl(b), by the Monotonicity Theorem [10] f(x, b) is continuous
and monotone in a neighborhood (a1, a2) of a. By reducing the interval (a1, a2) if
necessary, we may assume that dim(a1, a2/{a, b}) = 2. Without loss of generality,
we may assume that f(x, b) is increasing. Since b 6∈ dcl(a, a1, a2), there is an open
neighborhood (b1, b2) around b such that for all b′ ∈ I, f(x, b′) : (a1, a2) → M is
continuous and increasing. In a similar way, after possibly reducing (a1, a2) and
(b1, b2), we may assume that f(a′, y) : (b1, b2) →M is continuous and monotone for
all a′ ∈ (a1, a2). By Lemma 2.16 [10], we get that f(x, y) : (a1, a2)× (b1, b2) → M
is continuous.
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Finally, using similar ideas as above and reducing (a1, a2) further if necessary,
we may assume there is a continuous monotone function h(y, c) : (a1, a2) → (b1, b2)
de�ned over c. Then the function f(x, h(y, c)) : (a1, a2)×(a1, a2) →M is continuous
and monotone on each variable. This contradicts the triviality of a. �

We are ready to prove our �rst result:

Proposition 6.5. Suppose (M,P ) be a lovely pair of models of an o-minimal theory
T . Let a ∈ M and assume that the structure induced by M on a is trivial in the
sense of Peterzil-Starchenko sense. Then Uþ(tp(a)) ≤ 1.

Proof. If a ∈ scl(∅) then by Lemma 6.4 there is b ∈ P (M) such that a ∈ dcl(b). By
Fact 4.7, þ-rk(P (M)) = 1 and we get Uþ(tp(a)) ≤ 1. So assume that a 6∈ scl(∅) and
that B ⊂M is such that tp(a/B) þ-forks over ∅. Then by Lemma 6.3, a ∈ scl(B),
so a ∈ dcl(B ∪P (M)). Since M is trivial in a neighborhood of a and a 6∈ P (M) by
Lemma 6.4 we get that a ∈ dcl(B) so Uþ(tp(a/B)) = 0 and Uþ(tp(a)) ≤ 1. �

Now we �nd lower bounds on the rank of non-trivial elements in the pair.

Proposition 6.6. Suppose (M,P ) is a lovely pair of models of an o-minimal theory
T , and a ∈M\P (M) is non-trivial. Then we have Uþ(tp(a)) ≥ 2.

Proof. In this case, by [21], in M there is a de�nable group interval (I,+, <) of
an ordered divisible abelian group (G,+, <), where I = (−q, q) and contains a.
Although the group G may not be de�nable inM , any �linear equation" is de�nable
in M . Namely, if λ1, . . . , λn ∈ Q, not all equal to zero, then the equation

λ1x1 + . . .+ λnxn = 0

is de�nable for x1, . . . , xn ∈ I, even if λixi is not in I for some i. Indeed, the
equation is equivalent to

λ1

|λ1|+ . . .+ |λn|
x1 + . . .+

λn

|λ1|+ . . .+ |λn|
xn = 0,

which is de�nable in (I,+, <).
Adding q as a constant, we may assume that I is ∅-de�nable (in T ). We can also

assume that a > 0. Let σ > 0 be such that a+σ ∈ I. Take c ∈ (a, a+ σ
2 ) such that

c a generic element of I ∩ P (M), and let e = 2c − a. Then e ∈ I and e 6∈ P (M).
We claim that tp(a/e) þ-forks over ∅. Let E(x, y) be de�ned by

x = y ∨ (x, y ∈ I ∧ ∃c1, c2 ∈ P ∩ I x− y + c2 − c1 = 0) .

Note that for b, b′ ∈ I, E(b, b′) means that b− b′ = c1 − c2 for some c1, c2 ∈ P ∩ I,
where the di�erence is taken in G, and may not actually be in I. But as noted
above, x − y + c1 − c2 = 0 is de�nable in (I,+, <). We claim that E is an LP -
de�nable equivalence relation. To check transitivity, let b, b′, b′′ ∈ I be distinct, and
c1, c2, c3, c4 ∈ P ∩ I, such that

b− b′ = c1 − c2

and
b′ − b′′ = c3 − c4.

By density of P in M , we may assume that c1 = b + ε, c2 = b′ + ε, c3 = b′ + δ,
c4 = b′′ + δ for arbitrarily small ε, δ > 0. Working in the vector space, we have:

b− b′′ = (b− b′) + (b′ − b′′) = (c1 − c2) + (c3 − c4) = c1 − (c4 + c2 − c3).
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Note that c2 − c3 = ε− δ can be made small enough so that d = c4 + c2 − c3 ∈ I.
Now, x− c2 + c3− c4 = 0 is de�nable in (I,+, <), and thus d ∈ dcl(c2, c3, c4), hence
d ∈ P (M). Thus b− b′′ = c1 − d with c1, d ∈ P ∩ I, which shows E(b, b′′).

Let φ(x, y/E) be the formula saying that x ∈ I and for some y′ ∈ I in the E-class

of y, we have
x+ y′

2
∈ P .

Claim. If for some a, b1, b2 ∈ I, we have
a+ b1

2
∈ P (M) and

a+ b2
2

∈ P (M),

then E(b1, b2).

Proof of the Claim: Let c1 =
a+ b1

2
and c2 =

a+ b2
2

. Note that c1, c2 ∈
I ∩ P (M). Working in the abelian group, we have b1 − b2 = 2c1 − 2c2. By density
of P (M), we can choose ε > 0 such that b2 +ε ∈ I ∩P (M). Taking ε small enough,
we may also assume that b1 + ε ∈ I. Now, working in the abelian group again, we
have:

(b1 + ε)− (b2 + ε) = b1 − b2 = 2c1 − 2c2,

and thus

b1 + ε = (b2 + ε) + 2c1 − 2c2.

Since b1 + ε, b2 + ε, c1, c2 ∈ I, we conclude, as above, that b1 + ε ∈ dcl(b2 + ε, c1, c2)
and therefore b1 + ε ∈ P (M). Thus

b1 − b2 = (b1 + ε)− (b2 + ε),

where b1 + ε, b2 + ε ∈ I ∩ P , which means E(b1, b2).

Thus for any two distinct b1/E, b2/E |= tp(e/E), φ(x, b1/E) ∧ φ(x, b2/E) is in-
consistent. This witnesses þ-forking of tpP (a/e). Since a 6∈ aclP (e), we have
Uþ(tpP (a)) ≥ 2.

�

Proposition 6.7. Let (M,P ) be a lovely pair of models of an o-minimal theory,
let a ∈ M and assume that the structure induced in an open interval around a is
an o-minimal expansion of a real closed �eld de�ned over some �nite set A. Then
whenever a 6∈ scl(A), Uþ(tpP (a/A)) = ω.

Proof. By Fact 4.7 Uþ(tpP (a/A)) ≤ ω.
To show the other direction, let us assume that a 6∈ scl(A) and we show that for

every n ≥ 0, there exists B ⊃ A such that Uþ(tpP (a/B)) = n. Let I = (a1, a2) be
the underlying set for the �eld, we may assume that a1, a2 ∈ A. Let c1, . . . , cn ∈ I
be such that c1 6∈ scl(a,A), c2 6∈ scl(a,A, c1), . . . , cn 6∈ scl(a,A, c1, . . . , cn1) (these
elements exist by the extension property). Now let g1, . . . , gn ∈ P (M) ∩ I be non-
algebraic elements which are independent from each other and independent from
a,A, c1, . . . , cn (these elements exist by the density property).
Claim gi ∈ dcl(c1g1 + · · ·+ cngn, c1, . . . , cn, A) for i ≤ n.
Consider the equation c1x1 + · · · + cnxn = c1g1 + · · · + cngn. If the equa-

tion has a solution (g′1, . . . , g
′
n) in (P (M) ∩ I)n di�erent from (g1, . . . , gn) we get

c1(g1 − g′1) + · · · + cn(gn − g′n) = 0 and gj − g′j 6= 0 for some j ≤ n. Then
cj ∈ scl(A, c1, . . . , cj−1, cj+1, . . . , cn) and this is a contradiction. Thus (g1, . . . , gn)
is the unique solution of the equation in (P (M) ∩ I)n, which proves the claim.
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Let d = a + c1g1 + · · · + cngn and B = A ∪ {d, c1, . . . , cn}. Then a and c1g1 +
· · · + cngn are interde�nable over B and by the claim both these elements are in-
terde�nable with {g1, . . . , gn} over B. Thus Uþ(tp(a/B)) = Uþ(tp(g1, . . . , gn/B)).
On the other hand, a 6∈ scl{c1, . . . , cn, A}, so d 6∈ scl{c1, . . . , cn, A} and

d
þ

|̂ {c1, . . . , cn, g1, . . . , gn} ∪A.

This implies that Uþ(tpP (g1, . . . , gn/B)) = Uþ(tpP (g1, . . . , gn/{c1, . . . , cn} ∪A)) =
n and thus Uþ(tpP (a/B)) = n as we wanted. �

We now turn our attention to the linear case, aiming at proving that the Uþ-rank
is ≤ 2. We need an extra assumption in order to study the structure: the existence
of a global addition operation. First we prove the following lemma.

Lemma 6.8. Let (V,+, λ(x))λ∈D be an ordered vector space over an ordered divi-
sion ring D, and let U be a convex neighborhood of 0 in V . Then the pregeometry
induced by dcl (equivalently, linear span) on U is projective (modular).

Proof. Suppose u ∈ dcl(v, w1, . . . , wn), where u, v, w1, . . . , wn ∈ U . We need to �nd
w ∈ dcl(w1, . . . , wn)∩U such that u ∈ dcl(v, w). Now, u = βv+λ1w1 + . . .+λnwn,
and we may assume that not all λi are equal to 0. Let λ = |λ1|+ . . .+ |λn| and let

w =
λ1

λ
w1 + . . .+

λn

λ
wn.

Then w ∈ U , w ∈ dcl(w1, . . . , wn) and u = βv + λw ∈ dcl(v, w), as needed. �

Proposition 6.9. Suppose T is an o-minimal expansion of an ordered divisible
abelian group, which is linear in the sense of the trichotomy theorem (no de�nable
�eld). Then T is linear as a geometric theory.

Proof. Suppose (M,P ) is an ω+-saturated lovely pair of models of T . We will prove
that the geometry of localization of M at P is projective. It su�ces to show that
for dcl-independent a1, . . . , an, b ∈ (M,P ) if c ∈ dcl(b~a), then there is d ∈ dcl(~aP )
such that c ∈ dcl(bdP ).

So let a1, . . . , an, b be dcl-independent and c = f(b,~a) for some L-de�nable func-
tion f(x, ~y). We may assume that f is continuous at (b,~a). Note that the expanded
structure (M, b~a) is still o-minimal and linear in the sense of the trichotomy the-
orem. Thus on some convex neighborhood U of 0 the structure induced by b~a-
de�nable relations is that of a vector space over a division ring. Choose ε > 0 such
that (−ε, ε) ⊂ U and ε 6∈ dclL(b~a). By lemma 6.8, the pregeometry induced by
dcl(−, b~a) on U is projective (modular), and we have: whenever u, v, ~w ∈ (−ε, ε) and
u ∈ dcl(v, ~w, b,~a), there is r (∈ U) such that r ∈ dcl(~w, b,~a) and u ∈ dcl(v, r, b,~a).

Consider g(y, ~z, b,~a) = f(y+b, z1+a1, . . . , zn+an)−f(b,~a). Since f is continuous
at (b,~a) there is 0 < ρ ≤ ε such that if v, ~w ∈ (−ρ, ρ) then g(y, ~z, b,~a) ∈ (−ε, ε).
Thus for v, ~w ∈ (−ρ, ρ) we have g(v, ~w, b,~a) = h(v, r, b,~a) where r = s(~w, b,~a)
for some L-de�nable functions h and s. We may assume that ρ is independent
from a1, . . . , an, b. By compactness, there are L-de�nable functions h1, . . . , hm and
s1, . . . , sk such that for any v, ~w ∈ (−ρ, ρ) g(v, ~w, b,~a) = hi(v, sj(~w, b~a), b,~a) for
some i ≤ m, j ≤ k.

So b,~a satisfy

θ(y, ~x, ρ) = ∀y′, ~x′ ∈ (−ρ, ρ)
∨

i≤m,j≤k

g(y′, ~x′, y, ~x) = hi(y′, sj(~x′, y, ~x), y, ~x).
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Since ρ, a1, . . . , an, b are dclL-independent, there is δ > 0 such that such that for
any b∗, a∗1, . . . , a

∗
n such that |a∗i − ai| < δ, |b∗ − b| < δ we have |= θ(b∗,~a∗, ρ). We

may also assume that δ < ρ. By density, choose b∗,~a∗ ∈ P . Thus

∀y′, ~x′ ∈ (−ρ, ρ)
∨

i≤m,j≤k

g(y′, ~x′, b∗,~a∗) = hi(y′, sj(~x′, b∗,~a∗), b∗,~a∗).

Let v = b− b∗, wi = ai − a∗i . Then v, wi ∈ (−ρ, ρ). Then

g(v, ~w, b∗,~a∗) = hi(v, sj(~w, b∗,~a∗), b∗,~a∗),

for some i, j, and thus

g(b− b∗, a1 − a∗1, . . . , an − a∗n, b
∗,~a∗) =

f(b− b∗ + b∗, a1 − a∗1 + a∗1, . . . , an − a∗n + a∗n)− f(b∗,~a∗) =

hi(b− b∗, sj(a1 − a∗1, . . . , an − a∗n, b
∗,~a∗), b∗,~a∗).

Hence

c = f(b,~a) = f(b∗,~a∗) + hi(b− b∗, sj(a1 − a∗1, . . . , an − a∗n, b
∗,~a∗), b∗,~a∗).

Let d = sj(a1 − a∗1, . . . , an − a∗n, b
∗,~a∗). Then d ∈ dcl(~aP ) and c ∈ dcl(bdP ), as

needed. �

Remark 6.10. Given any u, v ∈M dclL-independent over P ,

u+ v ∈ dcl(uvP )\(dcl(uP ) ∪ dcl(vP )).

Thus in the quotient geometry closure of any two points contains a third one. Thus
the quotient geometry (geometry of the small closure) is a single projective geometry
over a division ring.

We are ready to summarize the results from this section:

Theorem 6.11. Let M be an o-minimal structure whose theory extends DLO, let
P (M) �M and assume that (M,P (M)) is a lovely pair.

(1) If a ∈M is trivial, Uþ(tpP (a)) ≤ 1 (= 1 i� a 6∈ dcl(∅)).
(2) If a 6∈ P (M) is non-trivial, then Uþ(tpP (a)) ≥ 2.
(3) If M has global addition (i.e. expands the theory of ordered abelian groups)

and does not interpret an in�nite �eld, then (M,P ) has þ-rank 2.
(4) If M induces the structure of an o-minimal expansion of a real closed �eld

in a neighborhood of a 6∈ P (M), then Uþ(tpP (a)) = ω.

Proof. (1) By Proposition 6.5.
(2) By Proposition 6.6.
(3) By Propositions 6.9 and 4.3.
(4) By Proposition 6.7. �

Now, we will give an example of a lovely pair in the trivial case.

Lemma 6.12. The structure (R, <,Q) is a lovely pair.
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Proof. We �rst show that the Density property holds. Let A ⊂ R be �nite, say
A = {a1, . . . , ak} with a1 < a2 < · · · < ak and let q ∈ S1(A) be non-algebraic.
Then q is describing an open interval, either (−∞, a1), (ai, ai+1) for some i, or
(ak,∞). Since Q is dense in R there is c ∈ P (R) = Q such that c |= q.

Now we show that the Extension property holds. Let A ⊂ R be �nite, say
A = {a1, . . . , ak} with a1 < a2 < · · · < ak and let q ∈ S1(A) be non-algebraic.
Then q describes an open interval with endpoints in the set A. Since R \ (A ∪ Q)
is dense in R, we can �nd a realization of q in R \ (A ∪Q). �

It is easy to check that the pair (R, <,Q) is an expansion of (R, <) with a generic
predicate (in the sense of Chatzidakis, Pillay [6]). It is proved in [6, Corollary 2.6
part 3] that for such expansions, the algebraic closure in the extended language
Lp coincides with the algebraic closure in the language L. In particular, algebraic
independence inside the structure (R, <,Q) satis�es the usual properties of an inde-
pendence relation for real elements. On the other side, Sergio Fratarcangeli showed
in [12] that expansions of o-minimal structures with a generic predicate eliminate
imaginaries. Thus algebraic independence inside the structure (R, <,Q) de�nes an
independence relation that extends to an independence relation for all elements in
(R, <,Q)eq and thus TP is rosy and aclL-independence coincides with thorn-forking
independence in the sense of TP . Furthermore þ-rank(Th((R, <,Q))) = 1, as we
expected from Theorem 6.11.

Note that Proposition 4.8 and Theorem 6.11(4) show that our notion of linearity
de�ned in the context of geometric structures, in the o-minimal case implies linearity
in the sense of Trichotomy (non-de�nability of a �eld, or equivalently, the CF
property from [18]), and by Proposition 6.9, the two notions coincide for expansions
of ordered divisible abelian groups. Note that in [18], theories of o-minimal groups
satisfying the CF property were called linear, which agrees with our terminology.
The following is proved in [18, Theorem 1.3]:

Fact 6.13. Any linear o-minimal theory of a (divisible ordered abelian) group is a
reduct of a theory of an ordered vector space over an ordered division ring (possibly
with constants). Conversely, any such reduct is linear.

Here T being a reduct of T ′ means that any de�nable relation in T is de�nable in
T ′. Note that a similar connection with vector spaces (but on the level of associated
geometry) holds in the general case of geometric structures, as shown in Proposition
4.3 and Remark 6.10.

The following example of a reduct of an ordered vector space from [18, Example
4.5] illustrates the di�erence between the (local) modularity and linearity, and shows
how taking the quotient over a dense substructure leads to modularity.

Example 6.14. Let R = (R,+, <, f |(−1,1)) where f is de�ned by f(x) = πx.

Clearly, f |(−1,1) can be extended to all of R by f(x) = nf
(x
n

)
for x ∈ (−n, n),

however this extension is not uniformly de�nable, and thus in a ω+-saturated model
R∗ of T = Th(R), we cannot de�ne f(x) for �in�nite" elements. As the theory of
a reduct of a vector space over Q(π), T is a linear (CF) theory, but is not modular
(or even locally modular). It is also shown in [20] that T does not have almost
canonical bases.

The non-modularity of (R∗,dcl) can be witnessed by considering

a = f(b+ c1) + c2,
18



where b, c1 are in�nite elements such that b+ c1 ∈ (−1, 1), and b, c1 and c2 are in-
dependent.While a ∈ dcl(b, c1, c2), there is no c ∈ dcl(c1, c2) such that a ∈ dcl(b, c).

Suppose now, that b, c1, c2 are also independent over P (R∗). By density, we can
take c′1 ∈ P (R∗) such that c1−c′1 ∈ (−1, 1) and we still have b+c′1 ∈ (−1, 1). Then
a = f(b+ c′1 + c1 − c′1) + c2 = f(b+ c′1) + f(c1 − c′1) + c2. Now,

c = f(c1 − c′1) + c2 ∈ dcl(c1c2P (R∗)),

and a ∈ dcl(bcP (R∗)). Thus taking a quotient over P �removes" this particular
non-modularity.

In [8], the geometry of a nontrivial linear Lascar strong type D of SU-rank 1
in a simple theory has been extended to a projective geometry over a division
ring, �recovering" the missing points by adding canonical bases of surfaces in D3.
In the absence of canonical bases, one can still recover the projective geometry
over division ring, by taking a quotient over P in a lovely pair. Another possible
approach is to go beyond �rst order, by adding quotients by equivalence relations
de�ned by in�nite disjunctions (see [16]), e.g. considering the E-class of c1c2 above,
where

E(x1x2, x
′
1x
′
2) =

∞∨
n=1

x1 − x′1 ∈ (−n, n) ∧ n · f
(
x1 − x′1

n

)
= x2 − x′2.
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