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Abstract. We prove that in theories without the tree property of the second
kind (which include dependent and simple theories) forking and dividing over
models are the same, and in fact over any extension base. As an application
we show that dependence is equivalent to bounded forking assuming NTP2.

1. Introduction

Background.
The study of forking in the dependent setting was initiated by Shelah in full gen-
erality [Sheb] and by Dolich in the case of nice o-minimal theories [Dol04]. A lot
of further results appear in [Adlb], [HP], [OUb] and [Sta]. The main trouble is
that apparently non-forking independence outside of the simple context no longer
corresponds to a notion of dimension in any possible way. Moreover it is neither
symmetric nor transitive (at least in the classical sense). However in dependent the-
ories it corresponds to invariance of types, which is undoubtedly a very important
concept, and it is a meaningful combinatorial tool.

Main results.
The crucial property of forking in simple theories is that it equals dividing (thus
the useful concept - forking - becomes somewhat more understandable in real-life
situations). It is known that there are dependent theories in which forking does
not equal dividing in general (for example in circular order over the empty set, see
section 5). However there is a natural restatement of the question due to Anand
Pillay: whether forking and dividing are equal over models? After failing to �nd a
counter-example we decided to prove it instead. And so the main theorem of the
paper is:

Theorem 1.1. Let T be an NTP2 theory (a class which includes dependent and
simple theories). Then forking and dividing over models is the same.

In fact, a more general result is attained. Namely that:

Theorem 1.2. Let T be NTP2. Then for a set A, the following are equivalent:

(1) A is an extension base for |̂ f (non-forking) (see de�nition 2.11).

(2) |̂ f has left extension over A (see de�nition 2.9).

(3) Forking equals dividing over A.

So theorem 1.1 is a corollary of 3.9 (as type over models are �nitely satis�able,
so (1) is true), and of course,
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Corollary 1.3. If T is NTP2 and all sets are extension bases for non-forking,
then forking equals dividing. (This class contains simple theories, o-minimal and
c-minimal theories).

A short overview of what follows.
In section 2 we recall brie�y the de�nitions and notions needed.
In section 3, after proving the easy direction of theorem 1.1, we prove the so-called
broom lemma, which is the technical key to the rest of the paper. Essentially it says
that if a formula is covered by �nitely many formulas arranged in a "nice position",
then we can throw away the dividing ones, by passing to an intersection of �nitely
many conjugates.
We then use the broom lemma to show that in NTP2 theories there is still some
symmetry going on over sets which satisfy the conditions of theorem 3.9 (in partic-
ular - models). More precisely, every type has a global non-forking (even invariant)
non-coforking extension (we called it a strictly invariant extension - see de�nition
3.12). This gives us a right analogue of Kim's lemma in the NTP2 context over
such sets and allows to deduce that in NTP2 theories forking equals dividing over
such sets.
We also give some corollaries, among them that in dependent theories forking is
type de�nable, has left extension over models (answering a question of Itai Ben
Yaacov), and that if p is a global ϕ type which is invariant over a model, then it
can be extended to a global type invariant over the same model (strengthening a
result that appeared in [HP]).
In section 4 we show that assuming NTP2, dependence of a theory is equivalent
to boundedness of non-forking, which is a generalization of a well-known analogous
result describing the subclass of stable theories inside the class of simple theories
and gives a partial answer to a question of Hans Adler from [Adlb]). Finally in
section 5 we present 2 examples that show why we assume NTP2 and work over
models. One of them is a variant of an example due to Martin Ziegler of a theory
in which forking does not equal dividing over models (and more). In the end we
ask some questions and propose further research directions.
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ments, Martin Ziegler for allowing us to include his example, Itai Ben Yaacov,
Frank Wagner, the entire Lyon logic group for a very fruitful atmosphere, and the
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The �rst author thanks Berlin logic group for organizing the seminar on NIP which
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2. Preliminaries

Here we give here all the de�nitions and claims needed for the rest of the paper.

Notation 2.1.

(1) Our big saturated monster will be denoted by C, and no distinction is made
between tuples and single elements unless stated explicitly.
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(2) If 〈ai |i < λ 〉 is a sequence then a<i is the set {aj |j < i}.
(3) a ≡A b will mean tp (a/A) = tp (b/A).

We start by recalling some standard de�nitions.

De�nition/Claim 2.2.

(1) AutfL (C/A) is the subgroup of all automorphisms of C generated by the
set {f ∈ Aut (C/M) |A ⊆M some small model}.

(2) We say that a and b have the same Lascar strong type over A (lstp (a/A) =
lstp (b/A)) if there is some automorphism f ∈ AutfL (C/A) taking a to b.

(3) Having the same Lascar strong type over A is the same as being in the
transitive closure of the relation E (a, b) = there exists some indiscernible
sequence over A, I, such that aI, bI are both indiscernible sequences over
A.

De�nition 2.3.

(1) A formula ϕ (x, a) divides over A i� it k-divides for some k i� there is some
sequence 〈ai |i < ω 〉 with ai ≡A a for all i, such that {φ(x, ai) |i < ω } is
k-inconsistent (see de�nition 2.7).

(2) A formula ϕ (x, a) forks over A if for some n there are φ0(x, a0), ..., φn(x, an)
such that ϕ(x, a) `

∨
i<n φi(x, ai), and each φi (x, ai) divides over A.

(3) A (partial) type divides/forks over A if some formula in it divides/forks
over A.

(4) A formula ϕ (x, a) quasi (Lascar) divides over A if there are 〈ai |i < m 〉 for
somem < ω such that ai ≡A a (lstp (ai/A) = lstp (a/A)) and {ϕ (x, ai) |i < n}
is inconsistent.

Fact 2.4. [Cas07, Lemma 3.1] tp (a/Ab) does not divide over A (a |̂ d
A
b) i� for

every indiscernible sequence over A, I, with b ∈ I, there is J ≡Ab I such that J is
Aa indiscernible.

De�nition 2.5. A theory T has the independence property if there is a formula
φ(x, y) and tuples {ai |i < ω }, {bu |u ⊆ ω } such that φ(ai, bu) if and only if i ∈ u. T
is dependent i� it does not have the independence property (also known as NIP ).

De�nition/Claim 2.6. We recall

(1) The alternation number of a formula: alt (ϕ (x, y)) =

= max {n < ω |∃ 〈ai |i < ω 〉 indiscernible, ∃b : ϕ (ai, b)↔ ¬ϕ (ai+1, b) for i < n− 1}

(2) T is dependent i� every formula has �nite alternation rank.
(3) If I = 〈ai |i < ω 〉 is an indiscernible sequence, and C is any set, then we

de�ne the average type Av (I, C) ∈ S (C) as

{ϕ (x, c) |c ∈ C, |= ϕ (ai, c) for all i big enough}

It is well de�ned when T is dependent.

De�nition 2.7. A theory T has TP2 (the tree property of the second kind) if there

exists a formula φ(x, y), a number k < ω and an array of elements
〈
aji |i, j < ω

〉
such that:
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• Every row (j) is k-inconsistent:
For all j < ω and ∀i0 < i1 < ... < ik < ω,

φ(x, aji0) ∧ φ(x, aji1) ∧ ... ∧ φ(x, ajik) = ∅
• Every vertical path is consistent:
∀f : ω → ω

∧
j<ω φ(x, ajf(j)) 6= ∅

We say that T is NTP2 when it does not have TP2.

Fact 2.8. Every dependent theory as well as every simple one is NTP2.

Proof. Exercise. �

Since some of our proofs and theorems require certain abstract properties of pre-
independence relations we de�ne them here. By a pre-Independence relation we
shall mean a ternary relation |̂ between subsets of the monster model, which
satis�es one or more of the properties below. For a more general de�nition of a
pre-independence relation see e.g. [Adlb, Section 5]. Note that since normally our
relation is not symmetric many properties can be postulated both on the left side
and on the right side.

De�nition 2.9. The following are the properties we consider for a pre-independence
relation for this paper (below A,B,C,D are sets or tuples)

(1) Invariance: If A |̂
C
B and A′B′C ′ ≡ ABC then A′ |̂

C′ B
′.

(2) Monotonicity: If A |̂
C
B and A′ ⊆ A,B′ ⊆ B then A′ |̂

C
B′.

(3) Base monotonicity: If A |̂
C
BD then A |̂

CB
D.

(4) (Right) extension: if A |̂
C
B and D ⊇ B is some set then there is D′ ≡BC

D such that A |̂
C
D′.

(5) Transitivity on the left: A1 |̂ C B and A2 |̂ CA1
BA1 implies A1A2 |̂ C B.

(6) Stronger than invariance: if A |̂
C
B then A |̂ i

C
B which means: there is

a global extension of tp (A/BC), p ∈ S (C) such that p is strongly Lascar
invariant over C (every automorphism from AutfL (C/C) �xes p).

(7) Preservation of indiscernibles: if I is a C-indiscernible sequence and A |̂
C
I

then I is AC-indiscernible.
(8) Left extension: if A |̂

C
B and D ⊇ A then there is D′ ≡AC D such that

D′ |̂
C
B.

Note 2.10. If |̂ satis�es extension then (6) and (7) are equivalent for it.

De�nition 2.11.

(1) A set A is an extension base for |̂ (or, if |̂ is clear from the context, we
shall omit it), if for all a, a |̂

A
A.

(2) A set A is a good extension base for |̂ , if every B ⊇ A is an extension
base for |̂ .

(3) A set A is a left extension base for |̂ , if it is an extension base and |̂ has
left extension over A.

Fact 2.12. T arbitrary.

(1) Co-inheritance: (denoted by |̂ u) - a |̂ u
C
b i� tp (a/bC) is �nitely satis�able

in C. It satis�es (1) - (7), and also (8) when C is a model.
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(2) If |̂ is any pre-independence relation satisfying (1) - (5), and C is a good
extension base for it, then it also satis�es left extension over C. So a good
extension base for |̂ is a left extension base for it.

(3) Invariance - |̂ i (see (6) in 2.9) satis�es (1) - (7).

(4) Non-forking ( |̂ f ) - a |̂ f
C
b i� tp (a/bC) does not fork over C - satis�es (1)

- (5).

(5) T dependent: Non-forking also satis�es (6) (so (7)), in fact |̂ f = |̂ i.

Proof. �

(1) The fact that indu satis�es (1) - (7) can be seen in e.g. [Adlb, section 5].

For left extension over models: Consider inheritance ( |̂ h) over a model

M : A |̂ h
M
B i� tp (A/BM) is a heir over M , i� B |̂ u

M
A. It is well known

that |̂ h satis�es extension and existence over models. So if A |̂ u
M
B and

A ⊆ C, then B |̂ h
M
A, so by extension we can �nd C ′ ≡MA C such that

B |̂ h
M
C ′, so C ′ |̂ u

M
B.

(2) Assume C is a good extension base. Assume that A |̂
C
B (so by extension

and invariance A |̂
C
CB) and A ⊆ D is some set. As CA is an extension

base, D |̂
CA

CA and by extension and invariance there is some D′ ≡CA D
such that D′ |̂

CA
BCA so D′ |̂

CA
B by monotonicity, so AD′ |̂

C
B by

transitivity on the left.
(3) Can be checked directly, and also appears in [Adlb, section 5] .
(4) Can be checked directly, and also appears in [Adlb, section 5] and [Adla].
(5) Appears in [Sheb, 5.4] (and also in [Adlb]). In fact, p is a global non-forking

type over C i� p is strongly Lascar invariant over C, so |̂ f = |̂ i.

De�nition 2.13. For the sake of this paper, we shall call theories where every
set is an extension base for |̂ , |̂ -extensible theories. Note that for dependent

theories, being |̂ i-extensible is the same as being |̂ f -extensible.

Example 2.14. [HP, 2.14] c-minimal and o-minimal theories are |̂ f -extensible
dependent theories.

De�nition 2.15.

(1) A global |̂ -free type over A is a global type p such that for any B ⊇ A,
and c |= p|B , c |̂ AB .

(2) A Morley sequence 〈ai |i < ω 〉 for |̂ , with base A over B ⊇ A is an indis-
cernible sequence over B, such that for all i, ai |̂ ABa<i.

Remark 2.16.

(1) If N is |A|+ saturated and p ∈ S (N) has a global A invariant extension
(every automorphism from Aut (C/C) �xes it), then it is unique. So if |̂ is

stronger than invariance ( |̂ i), and c |̂
A
N where N is |M |+ saturated for

some model M ⊇ A, then tp (c/N) has a unique global |̂ free extension
over A (see e.g. [Usvb, Lemma 2.23]).

(2) If p is a global |̂ free type over A which is also invariant over B ⊇ A (so
this is true if |̂ satis�es (6), and B contains a model containing A), then
p generates a Morley sequence with base A over B as follows: let a0 |= p|B
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and inductively ai+1 |= p|Ba<i+1 . In addition, there is a global |̂ -free over
A type P (ω), such that I |= p(ω)|B i� if I is a Morley sequence generated
by p over B. For more on that see [HP, Lemma 2.3] .

3. Main results

3.1. Consequences of forking equals dividing.
Here we prove the easy direction of theorem 1.2 ((3) implies (2) and (1)) i.e. we
prove that:

Theorem 3.1. Let T be any theory. Then for a set A, if forking equals dividing

over A, then A is an extension base for |̂ f (non-forking) and |̂ f has left extension
over A.

In fact we have some more consequences on the behavior of forking over A if
forking equals dividing over A. So for this section, assume that forking equals
dividing over A.

Claim 3.2. A is an extension base for non-forking.

Proof. No type divides over its domain. �

Claim 3.3. We have left extension for non-forking over A.

Proof. Suppose a |̂
A
b and we have some c. We want to �nd some c′ ≡Aa c such

that c′a |̂
A
b. Let p = tp (c/Aa). If no such c′ exists, then it means that

p (x) ∪ {¬ϕ (x, a, b) |ϕ is over A and ϕ (x, y, b) divides over A}

is inconsistent. If not, then p (x) `
∨
i<m ϕi (x, a, b) for some m < ω and ϕi (x, y, z)

such that ϕi (x, y, b) divides over A. Let ϕ (x, y, z) =
∨
i<m ϕi (x, y, z). So ϕ (x, y, b)

forks over A, hence divides over A, and p (x) ` ϕ (x, a, b). ϕ (x, y, b) divides over
A, but a |̂

A
b so by 2.4 ϕ (x, y, b) divides over Aa, so there is some indiscernible

sequence over Aa, 〈bi |i < ω 〉 such that bi ≡Aa b that witnesses dividing. As p ∈
S (Aa), p ` ϕ (x, a, bi) for each i, but this is a contradiction, as p is itself consistent
of course. �

Note 3.4. This last claim answers (modulo theorem 1.1) a question of Itai Ben-
Yaacov which appeared in a preprint of his [BY].

Claim 3.5. Non-forking is non-degenerate over A, i.e. a |̂ f
A
a i� a ∈ acl (A).

Proof. One always have that a |̂
A
a implies a ∈ acl (A) (if a /∈ acl (A), then it has

unbounded many conjugates, so we can �nd an in�nite indiscernible sequence over
A, 〈ai |i < ω 〉, and it would witness the dividing of x = a over A, i.e. tp (a/aA)
forks over A).
On the other hand, assume that tp (a/Aa) forks over A. Hence it divides over A, so
there is some formula over A, ϕ (x, a), such that |= ϕ (a, a) and ϕ (x, a) divides over
A. So it follows that ϕ (x, a) ∧ x = a has these properties as well. So this means
that there is an indiscernible sequence over A, 〈ai |i < ω 〉 which witnesses dividing
of ϕ (x, a) ∧ x = a. If a ∈ acl (A), then for in�nitely many i s ai is constant, say c.
So it follows that ϕ (x, c)∧ x = c is inconsistent, so ¬ϕ (c, c). But c ≡A a, so this is
a contradiction. �
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Claim 3.6. Non-forking is rigid, i.e a |̂ f
A
b i� a |̂ f

acl(A)
b i� a |̂ f

A
acl (Ab) i�

acl (Aa) |̂ f
A
b i� acl (Aa) |̂

acl(A)
acl (Ab).

Proof. First note that ϕ (x, b) divides over A i� it divides over acl (A) (why? the
"if" direction is clear. The "only if" one follows from the fact that if I is an
indiscernible sequence over A then it is also indiscernible over acl (A) - any two
increasing sequences from I have the same Lascar strong type, hence the same
strong type over A). In particular, it follows that forking equals dividing over
acl (A).
Assume now that a |̂ f

A
b. By extension, there is some c ≡Ab acl (Ab) such that

a |̂ f
A
c, but then c = acl (Ab) as a set, so by base monotonicity, a |̂ f

acl(A)
b. In the

same way, by left extension, we have acl (Aa) |̂ f
A
b.

From this it is easy to conclude. �

3.2. The Broom lemma.
We start the proof of the 2nd direction of theorem 1.2 by eliminating the main
technical obstacle.

Lemma 3.7. Suppose that |̂ satis�es (1) - (7) from 2.9 and (8) over A, and that

α (x, e) ` ψ (x, c) ∨
∨
i<n ϕi (x, ai), where

(1) For i < n, ϕi (x, ai) is k dividing, as witnessed by the indiscernible sequence
Ii = 〈ai,l |l < ω 〉 where ai,0 = ai.

(2) For each i < n and 1 ≤ l, ai,l |̂ A ai,<lI<i.
(3) c |̂

A
I<n.

then for some m < ω and {ei |i < m} with ei ≡A e,
∧
i<m α (x, ei) ` ψ (x, c). In

particular, if ψ = ⊥, then α (x, e) quasi divides over A.

Proof. By induction on n. For n = 0 there is nothing to prove. Assume that
the claim is true for n and we prove it for n + 1. Let b0 = an,0 . . . an,k−2, b1 =
an,1 . . . an,k−1. By preservation of indiscernibles, as c |̂

A
In−1, we have

cb1 ≡A cb0
We build by induction on 0 ≤ j < k sequences

〈
I l,j<n |1 ≤ l ≤ j

〉
(so I l,j<n =

I l,j0 . . . I l,jn−1) such that:

(1) I0,j
<n = I<n.

(2) I l,j<ncan,l ≡A I
0,j
<ncan,0 for all 0 ≤ l ≤ j and

(3) For all 0 ≤ l < j, cIj,j<nI
j−1,j
<n . . . I l+1,j

<n |̂
A
I l,j<n and c |̂ A I

j,j
<n (which already

follows from (2)).

For j = 0, use (1).
So suppose we have this sequence for j and build it for j + 1 < k.
By (1), let I0,j+1

<n = I<n.
As cb1 ≡A cb0 we can �nd some:

Jj+1,j+1
<n Jj,j+1

<n . . . J1,j+1
<n cb1 ≡A Ij,j<nI

j−1,j
<n . . . I0,j

<ncb0

As cb1 |̂ A an,0Ii<n (by transitivity on the left), by left extension, we can �nd〈
I l,j+1
<n |1 ≤ l ≤ j + 1

〉
Ij+1,j+1
<n Ij,j+1

<n . . . I1,j+1
<n cb1 ≡A Jj+1,j+1

<n Jj,j+1
<n . . . J1,j+1

<n cb1
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and
〈
I l,j+1
<n |1 ≤ l ≤ j + 1

〉
cb1 |̂ A an,0Ii<n.

Now to check that we have our conditions satis�ed:
For (2), �rst of all, I<ncan,0 ≡A I1,j+1

<n can,1 by the equations above. For 1 ≤ l ≤ j

I<ncan,0 ≡A I l,j<ncan,l
by the hypothesis regarding j. By the equation above,

I l,j<ncan,l ≡A I
l+1,j+1
<n can,l+1

and so we have (2) for 1 ≤ l ≤ j + 1. (3) follows from the construction and invari-
ance of |̂ and the induction hypothesis about j. This completes the construction,

and so for j = k − 1 we have
〈
I l,k−1
<n |0 ≤ l ≤ k − 1

〉
. We shall now use only this

last sequence.

There are some 〈el |l < k 〉 such that e0 = e and for 0 < l, elI
l,k−1
<n can,l ≡A

eI<ncan,0, so applying some automorphism �xing Ac, we replace an,0 by an,l, e

by el and I<n by I l,k−1
<n . So

α (x, el) ` ψ (x, c) ∨
∨
i<n

ϕi

(
x, al,k−1

i

)
∨ ϕn (x, an,l)

where al,k−1
i starts I l,k−1

i . Hence α0 =
∧
l<k α (x, el) implies the conjunction of

these formulas. But as In witnesses that ϕn (x, an) is k dividing, we have the
following:

α0 ` ψ (x, c) ∨
∨

i<n,l<k

ϕi

(
x, al,k−1

i

)
De�ne a new formulas ψr (x, cr) = ψ (x, c)∨

∨
i<n,r≤l<k ϕi

(
x, al,k−1

i

)
for r ≤ k. By

induction on r ≤ k, we �nd αr such that αr is a conjunction of conjugates over A
of α (x, e), and αr ` ψr (x, cr). It will follow of course, that αk ` ψ (x, c) as desired.
For r = 0, we already found α0. Assume we found αr, so we have

αr ` ψr+1
(
x, cr+1

)
∨
∨
i<n

ϕi

(
x, ar,k−1

i

)
One can easily see that the hypothesis of the lemma is true for this implication

(using c = cr+1, and Ii = Ir,k−1
i ) so by the induction hypothesis (on n), there is

some αr+1(which is a conjunction of conjugates of αr over A) such that αr+1 `
ψr+1

(
x, cr+1

)
. �

Remark 3.8. The name of this lemma is due to its method of proof, which reminded
the authors (and also Itai Ben Yaacov who thought of the name) of a sweeping
operation.

3.3. Working Abstractly.
In this section we shall prove the following theorem:

Theorem 3.9. Let T be NTP2. Then for A, (1) implies (2) where:

(1) There exists a pre-independence relation |̂ that satis�es (1) - (7) from 2.9

and (8) over A, and A is an extension base for it.
(2) forking equals dividing over A.

If T is dependent then they are equivalent.
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So assume T is NTP2, and that |̂ is a pre-independence relation satisfying
(1) - (7) from 2.9 and that A is an extension base for |̂ . We do not assume left
extension until later.

Claim 3.10. Assume ϕ (x, a) divides over A. Then there is a model A ⊆ M
and a global |̂ -free type over A, p ∈ S (C), extending tp (a/M), such that any
(some) Morley sequence generated by p over M witnesses that ϕ (x, a) divides.
(i.e. {ϕ (x, ai) |i < ω } is inconsistent whenever 〈ai |i < ω 〉 is a Morley sequence
generated by p over M).

Proof. Let I = 〈bi |i < ω 〉 be an A-indiscernible sequence that witnesses k dividing
of ϕ (x, a) (so tp (bi/A) = tp (a/A)). Let M be some small model containing A,

and let N be an |M |+ saturated model containing M . Let λ =
(
2|N |+|T |

)+
, and

let I ′ = 〈bi |i < λ 〉 be an indiscernible sequence over A with the same EM type as
I. As A is an extension base, I ′ |̂

A
A, so by invariance and extension , we may

assume that I ′ |̂
A
N . As λ is longer than the number of types on N , there are

in�nitely many indexes such that tp (bi/N) is the same, wlog the �rst ω. Call this

type p′. As N was saturated enough, and |̂ is stronger than invariance ( |̂ i),
there is a unique extension of p′ to a global type p which is |̂ free over A. Let
q′ = tp (〈bi |i < ω 〉 /N), and let q be it's unique global extension to an |̂ free type
over A. So q|xi

= p for all i < ω.
Now let

〈
d̄n |n < ω

〉
be a Morley sequence generated by q overM , i.e. d̄n |= q|Md̄<n

.
In the array 〈dni |n, i < ω 〉, every row 〈dni |i < ω 〉 is indiscernible with the same
type over A as 〈bi |i < ω 〉 (the original sequence witnessing diving), and for every

η : ω → ω,
〈
dnη(n) |n < ω

〉
|= p(ω) � M .

So we have an array 〈ϕ (x, dni ) |i, n < ω 〉 such that every row is k inconsistent,
so by the de�nition of an NTP2 theory, it must be that for all/any η : ω →
ω,
{
ϕ
(
x, d

η(i)
i

)
|i < ω

}
is inconsistent, so it follows that any Morley sequence

generated by p over M witnesses dividing over A of ϕ (x, a).
Let a′ |= p|M , so a′ ≡A a, so there is some automorphism σ �xing A taking a′ to
a. σ (p) is also |̂ free over A, and any Morley sequence generated by σ (p) over
σ (M) witnesses dividing over A of ϕ (x, a), and a |= σ (p) |σ(M). So wlog σ is id,
and we are done. �

Remark. The above claim and proof, with some modi�cations and generalizations
is due to Usvyatsov and Onshuus in [OUa]. It should be noted that H.Adler and
A.Pillay were the �rst to realize that NTP2 is all the assumption one needs.

From here on assume that |̂ has left extension over A.

Corollary 3.11. Forking over A implies quasi dividing over A.

Proof. Suppose α (x, e) forks over A, then α (x, e) `
∨
i<n ϕi (x, ai) where for all

i < n, ϕi (x, ai) divides over A. By claim 3.10, for each i, there is some pi which is
a global |̂ free extension of tp (ai/A), and a model Mi ⊇ A as above. So let I0 be
some indiscernible sequence witnessing dividing of ϕ0 (x, a0). For 0 < i, let Ii be
a Morley sequence generated by pi as follows: a

i
0 = ai |= pi|Mi , and for all j > 0,

aij |= pi|MiI<iai
<j
. This will set us in the situation of the broom lemma 3.7 hence α

quasi divides. �
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De�nition 3.12. We say that tp (a/Bb) is strictly invariant over B (denoted by

a |̂ ist
B
b) if there is a global extension p, which is strongly Lascar invariant over B

(so a |̂ i
B
b) and for any C ⊇ B, if c |= p|C then C |̂ f

B
c.

Remark 3.13. |̂ ist satis�es extension, invariance and monotonicity.

Claim 3.14. If ϕ (x, a) divides over B, and p is a global |̂ ist free type extending
tp (a/B), and M ⊇ B is some model, then any (some) Morley sequence generated
by p over M witnesses dividing of ϕ (x, a).

Proof. Suppose ϕ (x, a) divides over B. Suppose M ⊇ B is a model and N is

|M |+saturated. Let b |= p|N . So ϕ (x, b) divides over B and suppose I is an indis-

cernible sequence starting with b which witnesses k dividing. So b |̂ ist
B
N , hence

N |̂ f
B
b and by 2.4, there is I ′ ≡Bb I that is indiscernible over N . Denote I ′ =

〈bi |i < ω 〉. For each i < ω, bi |= p|N . Consider q = tp (I ′/N) and generate a se-
quence 〈Ii |i < ω 〉 in N as follows: Ii |= q|MI<i . Denote Ii =

〈
aij |j < ω

〉
.〈Ii |i < ω 〉

is not necessarily a Morley sequence as we do not know that I ′ |̂ ist
B
N . Never-

theless for each η : ω → ω,
〈
aiη(i) |i < ω

〉
is a Morley sequence of type p(ω)|M

(because p isM invariant). If
{
ϕ
(
x, ai0

)
|i < ω

}
was consistent, than every vertical

path in the array
〈
ϕ
(
x, aij

)
|i, j < ω

〉
is consistent, but we know that every row is

k inconsistent so this is a contradiction to NTP2. �

Claim 3.15. If B is an extension base for |̂ ist , then forking equals dividing over
B.

Proof. Suppose ϕ (x, a) `
∨
j<n ϕj (x, aj), each ϕj (x, aj) divides over B. Let ā =

aa0 . . . an−1 Let M ⊇ B be a model, and N ⊇ M an |M |+ saturated model. By

existence, ā |̂ ist
B
B, so by extension and invariance, we may assume that ā |̂ ist

B
N .

Let q be the global unique type extending tp (ā/N), |̂ free over B. Let
〈
āi |i < ω

〉
be a Morley sequence generated by q over M . So for each i < ω, ϕ (x, ai) `∨
j<n ϕj

(
x, aij

)
. By 3.14 each indiscernible sequence

〈
aij |j < ω

〉
witnesses that

ϕj (x, aj) divides over B (notice that it does not necessarily starts with aj). If
{ϕ (x, ai) |i < ω } was consistent, than we would have a contradiction (if ϕ (c, ai)
for all i, then there is some j < n such that ϕj

(
c, aij

)
for in�nitely many i s ).

Hence ϕ (x, a) divides over B. �

Claim 3.16. A is an extension base for |̂ ist .

Proof. We want to show that for any a, a |̂ ist
A
A. So let q = tp (a/A). We shall

show that the following set is consistent

q ∪ {¬ψ (x, d) |ψ is over A and ψ (a, y) forks over A}
∪ {ϕ (x, e)↔ ϕ (x, f) |ϕ is over A and lstp (e/A) = lstp (f/A)}

Because if it is consistent, then we let p be a global type containing it, and it will
satisfy the requirements.
So suppose not, then q `

∨
i ¬ (ϕi (x, ei)↔ ϕi (x, fi))∨ψ (x, d) where lstp (ei/A) =

lstp (fi/A) and ψ (a, y) forks over A. Because ψ (a, y) forks over A, it quasi divides
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over A (by 3.11). So there are a1, . . . , an such that ai ≡A a and {ψ (ai, y) |i < n}
is inconsistent. Let r = tp (a1, . . . , an/A). So

r|xj
= q `

∨
i

¬ (ϕi (xj , ei)↔ ϕi (xj , fi)) ∨ ψ (xj , d)

for j < n. So

r `
∧
j

[∨
i

¬ (ϕi (xj , ei)↔ ϕi (xj , fi)) ∨ ψ (xj , d)

]

But ¬∃y
(∧

j ψ (xj , y)
)
∈ r, so r `

∨
i,j ¬ (ϕi (xj , ai)↔ ϕi (xj , bi)). But this is a

contradiction, as r is over A, and as A is an extension base for |̂ , there is a global
invariant type extending r. �

Remark 3.17. Alex Usvyatsov noticed that one can use the broom lemma to prove
that types over models can be extended to global non-forking heirs (see [Usva]). A
very similar proof as the above proof can show that they can also be extended to
global non-coforking coheirs - p is a global non-coforking coheir over M , if for any

C ⊇M , c |= p|C , c |̂ uM C and C |̂ f
M
c (so they are also strictly invariant types).

Corollary 3.18. Forking equals dividing over A.

Proof. Just combine the last two claims. �

By this we have proved one direction of theorem 3.9. As for the other one:

Claim 3.19. (T dependent) (2) implies (1) in 3.9.

Proof. |̂ f satis�es all of the demands: as forking equals dividing over A and types

never divide over their domain, A is an extension base for |̂ f . |̂ f is the same as

|̂ i in dependent theories and by 3.3, we have left extension over A. �

Remark 3.20.

(1) Strictly invariant types are a special case of strictly non-forking types. We

say that tp (a/Bb) strictly does not fork over B (denoted by a |̂ st
B
b) if there

is a global extension p, which does not fork over B, and for any C ⊇ B, if

c |= p|C then C |̂ f
B
c. They coincide in dependent theories, and in stable

theories they are the same as non-forking. The notion originated in [Sheb,
5.6], and the proof of the next lemma is based on ideas from section 5 there.
More on strict non-forking can be found in [Usva].

(2) Lemma 3.14 above is an analog of what is known as Kim's lemma in simple
theories, that states in the simple context, every Morley sequence witnesses
dividing. It was noticed independently by Alex Usvyatsov (see [Usva]). In
fact, a more proper analog (and a generalization of 3.14) would be

Lemma 3.21. If ϕ (x, a) divides over B, and 〈ai |i < ω 〉 is a |̂ ist sequence over

B (i.e. ai |̂ istB a<i) such that ai ≡B a, then {ϕ (x, ai) |i < ω } is inconsistent.

Proof. Let I be an indiscernible sequence witnessing k dividing of ϕ (x, a) starting
with a. We build by induction on n a sequence of indiscernible sequences Ii =〈
aij |j < ω

〉
for i < n, such that Ii is indiscernible over BI<ia

>i
0 , ai0 = ai and

Ii ≡B I. By compactness we can �nd such a sequence of length ω. This will give us
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an array
{
ϕ
(
x, aij

)
|i < ω

}
in which each row is k inconsistent and for η : ω → ω,〈

aiη(i) |i < ω
〉
≡B 〈ai |i < ω 〉, so by the de�nition of NTP2, we are done.

For n = 1, there is such an I1 because a ≡B a1. Assume we have such a sequence
for n. As an+1 ≡B a, there is some indiscernible sequence I ′ ≡B I starting with

an+1. As an+1 |̂ istB a<n+1, we may assume by extension and invariance of |̂ ist

that an+1 |̂ istB I<n+1 (here we change the sequence we already built, but we retain

all its properties). So I<n+1 |̂ fB an+1. By 2.4, there is some In+1 ≡Ban+1 I
′, which

is indiscernible over BI<n+1. For i < n+1, Ii is indiscernible over C = BI<ia
n>,>i
0 ,

so by preservation of indiscernibles (see 2.9), as an+1 |̂ iC Ii (by base monotonicity),
it follows that Ii is indiscernible over Can+1, which is exactly what we needed to
prove. �

3.4. Applying the previous section.
Here we assume T is NTP2 unless stated otherwise.

Theorem 3.22. Forking equals dividing over models.

Proof. Let |̂ be |̂ u (co-inheritance) andM a model. Then |̂ u has all properties
listed in 2.9 except left extension, which it has over M (see 2.12), and M is an
extension base for |̂ u. So it has all the assumption of the previous section, hence
we can apply corollary 3.18. �

Theorem 3.23. If A is a left extension base for |̂ i, then forking equals divid-

ing over A (so in the dependent context, replace |̂ i by |̂ f ), moreover, A is an

extension base for |̂ ist.

Proof. Let |̂ be |̂ i - invariance. Then |̂ and A have all the properties required
by the previous section. �

By 2.12,

Corollary 3.24. In |̂ i-extensible NTP2 theories, forking equals dividing over any

set, and it is |̂ ist-extensible as well.

So, for left extension bases for |̂ i, not only is forking the same as dividing, but

also they are |̂ ist extension base, and so if ϕ (x, b) forks over A, every global |̂ ist

free type extending tp (b/A) witnesses it: every Morley sequence generated by it
witnesses it.
If A is just an extension base for |̂ f , or if |̂ f has left extension over it, then we
can also conclude that forking equals dividing, but may no longer be an extension

base for |̂ ist. But �rst we shall need a small lemma, which is always true.

Lemma 3.25. (T any theory) If a |̂ f
A
b and ϕ (x, b) forks over A then it forks

over Aa.

Proof. Recall that if a |̂ f
A
c and φ (x, c) divides over A then it divides over Aa (see

2.4). ϕ (x, b) forks over A, so there are n < ω, φi (x, yi) and bi for i < n such
that φi (x, bi) divides over A and ϕ (x, b) `

∨
i<n φi (x, bi). By extension, we may

assume a |̂ f
A
b 〈bi |i < n 〉. Hence φi (x, bi) divides over Aa. Hence ϕ (x, b) forks

over Aa. �
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So now we can �nish the proof of theorem 1.2.

Theorem 3.26. Assume that

(1) A is an extension base for non-forking; or
(2) Non-forking satis�es left extension over A

Then forking equals dividing over A.

Proof. So suppose ϕ (x, b) forks over A. Let M ⊇ A be some model.

If (1) is true, M |̂ f
A
A, and by extension and invariance we may assume (maybe

replacing M by some M ′ ≡A M) that M |̂ f
A
b.

If (2) is true, then, as A |̂ f
A
b (even A |̂ u

A
b), by left extension, we may assume

M |̂ f
A
b.

By the previous lemma, ϕ (x, b) forks over M , so by theorem 3.22, it divides over
M . As M ⊇ A, it divides over A, as we wanted. �

Corollary 3.27. Theorem 1.2, i.e. for a set A, the following are equivalent:

(1) A is an extension base for |̂ f (non-forking) (see de�nition 2.11).

(2) |̂ f has left extension over A (see de�nition 2.9).

(3) forking equals dividing over A.

Proof. Combine 3.26 and 3.1. �

And we can deduce a stronger version of 3.23:

Corollary 3.28. A is an extension base for |̂ i i� A is an extension base for |̂ ist
and in that case forking equals dividing over A.

Proof. The "only if" direction (the "if" direction is clear): |̂ i is stronger than |̂ f ,
so by 1.2, forking equals dividing over A. The proof of 3.16 only uses the fact that

forking implies quasi dividing over A and that A is an extension base for |̂ i. So
in our case the proof works. �

3.5. Some corollaries for dependent theories.
From here on, assume A is a set over which forking equals dividing, for example -
a model, and T is dependent. We start with an obvious improvement of theorem
1.2:

Theorem 3.29. The following are equivalent for A:

(1) A is an extension base for |̂ f .
(2) |̂ f has left extension over A.
(3) Forking equals dividing over A.

(4) A is an |̂ ist extension base.

Proof. If A is an extension base for |̂ ist, then obviously it's an extension base for

|̂ f , so the theorem follows from 1.2.

If one of (1) - (3) is true, then all are true by 1.2. As T is dependent, |̂ f = |̂ i,
by 3.28 we are done. �

Corollary 3.30. The following are equivalent for a formula ϕ (x, a):
• ϕ forks over A.
• ϕ quasi Lascar divides over A.
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• ϕ divides over A.

Proof. We only need to show the equivalence of the �rst 2. If ϕ forks over A, then
it quasi Lascar divides because forking equals dividing over A. If ϕ does not fork
over A, then extend it to a global non forking type over A, p. By dependence, p is
strongly Lascar invariant over A. This means that it contains all Lascar conjugates
of ϕ over A, and in particular it is impossible for ϕ to quasi Lascar divide. �

Remark 3.31. Dividing in type de�nable, so in dependent theories all these notions
are type-de�nable over A (i.e. dependent theories are low, see [Bue99])

Proof. (Due to Itai Ben Yaacov) First we shall see that for any set B, if ϕ (x, a)
divides over B then it k := alt (ϕ) divides over B. if 〈ai |i < ω 〉 is an indis-
cernible sequence witnessing m > k dividing but not k dividing, it means that
∃x
∧
i<k ϕ (x, ai), and by indiscerniblity, ∃x

∧
i<k ϕ (x, ami). So assume ϕ (c, ami)

for i < k. But for each i, there must be some m (i− 1) < ji ≤ mi − 1 such that
¬ϕ (c, aji). This is a contradiction to the de�nition of alt (see de�nition 2.6).
So it follows that dividing is type de�nable - there is a (partial) type π (x, Y ) (Y
the same length as B) such that π (a,B) i� ϕ (x, a) divides over B. The type would
say that there exists a sequence 〈xi |i < ω 〉 of elements having the same type as x
over Y , and that every k subset of formulas of the form ϕ (y, xi) is inconsistent. �

The following is a strengthening of [HP, Lemma 9.10]

Corollary 3.32. Let p be a partial type which is Lascar invariant over A. Then
there exists some global Lascar invariant over A extension of p in S (C).

Proof. If ϕ1, . . . , ϕn ∈ p, then
∧
i ϕi does not Lascar quasi divide over A (because

all the conjugates of ϕi are in p for all i). Hence p does not fork over A, hence there
is a global non-forking (hence Lascar invariant) extension. �

4. Bounded Forking + NTP2 = Dependent

It is well-known that stable theories can be characterized as those simple theories
in which every type over model has boundedly many non-forking extensions (see
e.g. [Adlb, theorem 45]). Our aim in this section is to prove a generalization of this
fact: if non-forking is bounded, and the theory is NTP2, then the theory is actually
dependent. By doing this we give a partial answer to a question of Hans Adler.

We quote from [Adlb, Section 6, Corollary 38]:

Fact 4.1. The following are equivalent for a theory T :

(1) Every type over model has boundedly many global non-forking extensions.
(2) For every global type p and every model M , p does not fork over M if and

only if it is invariant over M .

So to conclude it is enough to �nd a global non-forking type over a model which is
not invariant over it.

Theorem 4.2. Assume T is NTP2, but has the independence property, then there
is a global non-forking type over a model which is not invariant.

So assume ϕ (x, y) has the independence property. This means that there is an
in�nite set A (may be a set of tuples), such that for any subset B ⊆ A, there is
some b such that for all a ∈ A, ϕ (b, a) i� a ∈ B. Let r (x) = {x 6= a |a ∈ A} be
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a partial type over A. Since it is �nitely satis�able in A there is a global type p
containing r which is �nitely satis�ed in A. p is A invariant, so p(ω) is well de�ned.
It is even �nitely satis�able in A. Let ψ (x, y, z) = ϕ (x, y) ∧ ¬ϕ (x, z).

Claim 4.3. There is some |C| ≤ ℵ1 such that if I = 〈ai |i < ω 〉 is an indiscernible
sequence such that for every i < ω, ai |= p(2)|AC , then ΓI = {ψ (x, ai) |i < ω } is
consistent.

Proof. Assume not. De�ne by induction
〈
Ij |j < ω1

〉
such that

• For all i < ω, Ij =
〈
aji |i < ω

〉
is indiscernible (over ∅).

• For all i, j < ω, aji |= p(2)|AI<j .
• Γj = ΓIj is inconsistent.

How? for C = ∅ the conclusion is false, so we can �nd I0 as above, such that
Γ0 is inconsistent. For 0 < j, by our assumption C = I<j is not the desired
C, so we can continue. So for each j < ω1, Γj is inconsistent, so, by Ij being
indiscernible, it follows that it is kj inconsistent for some kj < ω. So for in�nitely
many js, Γj is k inconsistent for some k, so we may assume that this is the case

for j < ω. Consider the array
{
ψ
(
x, aji

)
|i, j < ω

}
. Each row is k-inconsistent,

and to get a contradiction to NTP2, it's enough to show that each vertical path

is consistent. For all η : ω → ω, tp

(〈
ajη(j)

〉
j<ω

/A

)
= p(ω)|A, so it's enough to

show that some vertical path is consistent. So take the �rst column, and show that{
ψ
(
x, aj0

)
|j < ω

}
is consistent, so we need to show that

{
ψ
(
x, aj0

)
|j < n

}
is

consistent for all n < ω. Assume not, so ¬∃x
∧
j<n ψ

(
x, aj0

)
, but

〈
aj0 |j < n

〉
|=

p(2n)|A, so it is �nitely satis�able in A, so there are distinct aj , bj ∈ A (i.e. with
no repetitions), such that ¬∃x

∧
j<n ψ (x, aj , bj). But that is a contradiction to the

choice of A and ϕ.
Let M be a model containing AC. ab |= p(2)|M . So the formula ψ (x, a, b)does not
divide overM (by the claim above), thus does not fork by 3.22. Then there is some
global type containing it and non-forking over M , which is certainly not invariant
over M (because of the choice of ψ and the fact that a ≡M b) and we are done. �

5. optimality of results

In general, forking is not the same as dividing, and Shelah already gave an exam-
ple in [She90, III,2], and Kim gave another example in his thesis ([Kim96, Example
2.11]) - circular ordering. Both examples were over the empty set, and the theory
was dependent.
Here we give 2 examples. The �rst shows that outside the realm of NTP2, our
results are not necessarily true, and the second shows that even in dependent the-
ories, forking is not the same as dividing even over sets containing models.
In both examples, we use the notion of a (directed) circular order, so here is the
de�nition:

De�nition 5.1. A circular order on a �nite set is the ternary relation obtained by
placing the points on a circle and taking all triples in anticlockwise order. For an
in�nite set, a circular order is a ternary relation such that the restriction to any
�nite set is a circular order.
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5.1. Example 1. Here we present a variant of an example found by Martin Ziegler,
showing that

(1) forking and dividing over models are di�erent in general.
(2) Strictly non-forking types need not exist over models (see 3.20), so in par-

ticular, strictly invariant types and non-forking heirs need not necessarily
exist over models.

Let L be a 2 sorted language: one sort for "points", which will use the variables t and
another for "sets", which we denote with s. L consists of 1 binary relation E (t, s)
to denote "membership", and 2 4-ary relations: C (t1, t2, t3, s) and D (s1, s2, s3, t).
Consider the class K of all �nite structures of this language satisfying:

(1) For all s, C (−,−,−, s) is a circular order on the set of all t such that
E (t, s), and if C (t1, t2, t3, s) then E (ti, s) for i = 1, 2, 3, and

(2) For all t, D (−,−,−, t) is a circular order on the set of all s such that
¬E (t, s), and if D (s1, s2, s3, t) then ¬ (E (t, si)) for i = 1, 2, 3.

This class has the Hereditary property, the Joint embedding property and the
Amalgamation property as can easily be veri�ed by the reader. Hence, as the
language has no function symbols, there is a Fraïssé limit - a theory T which is
complete, ω-categorical and eliminates quanti�ers. See [Hod93, Theorem 7.4.1] for
the details.
Let M be a model of T and M1 be an |M |+ saturated extension. We choose
t0, s0 ∈ M1\M , such that for all t ∈ M , ¬E (t, s0) and for all s ∈ M , E (t0, s).
Now, E (x, s0) forks over M , and ¬E (t0, y) forks over M , but non of them (quasi)
divides.
Why? Non quasi dividing is straight forward from the construction of T .
We show that ¬E (t0, y) forks (for E (x, s0) use the same argument): choose some
circular order on PointsM , and choose s′i for i < ω such that:

• ¬E (t0, s′i) for i < ω.
• D

(
s′i, s

′
j , s
′
k, t0

)
whenever i < j < k.

• For all i < ω, for all t ∈ M , E (t, s′i), and C (−,−,−, s′i) orders PointsM

using the prechosen circular order.

Now, ¬E (t0, y) ` D (s′0, y, s
′
1, t0) ∨D (s′1, y, s

′
0, t0) and D (s′0, y, s

′
1, t0) divides over

Mt0 as witnessed by
〈
s′is
′
i+1 |i < ω

〉
, and so does D (s′1, y, s

′
0, t0).

Let p (t) be tp (t0/M). We show that p is not a strictly non-forking type over
M : suppose q is a global strictly non-forking extension, and let t′0 |= q|M1 . Then
t′0 |̂ M M1 and M1 |̂ M t′0. But s0 ∈ M1 and surely ¬E (t, s0) ∈ q, so ¬E (t′0, s0).
t′0 ≡M t0 so s0 6 |̂ M t′0 - a contradiction.
Note that T has the tree property of the 2nd kind: Let si for i < ω be such that
they are all di�erent, and for each i, let tij for j < ω, be such that for j < k < l,

C
(
tij , t

i
k, t

i
l, si
)
. The array

{
C
(
tij , x, t

i
j+1, si

)
|i, j < ω

}
witnesses TP2.

5.2. Example 2. We give an example showing that even if T is dependent, and
S contains a model, forking is not necessarily the same as dividing over S. Hence
models are not good extension bases (see 2.11) in dependent theories in general.
Let L be a 2 sorted language. One sort for "points", which will use the variables
t and another for "sets", which we denote with s. L contains a binary ordering
relation <, a binary "membership" function f from the points sort to the sets sort,
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and a 4-ary relation C (t1, t2, t3, s).
Let T have the axioms:

(1) < is a dense linear order without end points on Sets.
(2) C (−,−,−, s) is a dense circular order on the in�nite set f−1 (s) = {t |f (t) = s}

(i.e. for all t1, t2 from f−1 (s), there is t3 such that C (t1, t3, t2, s)), and
C (t1, t2, t3, s) implies f (ti) = s for i = 1, 2, 3.

It is easy to see that T is complete and has quanti�er elimination (for example
because it is the Fraïssé limit of an age of the appropriate class of �nite structures).
Moreover, T is dependent: To show this, it's enough to show that all formulas
ϕ (x, y) where x is one variable have �nite alternation number. As T eliminates
quanti�ers, it's enough to consider atomic formulas (see e.g. [Adlb, Section 1]), and
this is left to the reader.
Let M be a model, M1 an |M |+ saturated model. Let s ∈ M1\M . Let t1, t2 ∈
f−1 (s), then C (t1, x, t2, s) divides over Ms (because one can �nd a sequence
〈ti |i < ω 〉 in f−1 (s) such that C (ti, tj , tk, s) i� i < j < k starting with t1 and
t2, titi+1 ≡Ms t1t2, and so 〈titi+1 |i < ω 〉 witnesses 2 dividing).
So E (x, s) ` C (t1, x, t2, s) ∨ C (t2, x, t1, s) forks but does not divide over M ∪ {s}.

6. Questions and remarks

(1) Are simple theories |̂ i-extensible NTP2 theories?
(2) In [Sta] Starchenko gives a quite natural and informative characterization

of non-forking in o-minimal theories. It would be very nice to �nd a proper
generalizations to dependent theories (or at least to dp-minimal theories).

(3) What about generalizing the results of this paper to n-dependent theories?
(See [Shea]) (Is Ziegler's example n-dependent for some n?) To SOPn?
NSOP2 or even to NSOP?

(4) It would be nice to �nd some purely semantic characterization of theories
in which forking equals dividing over models. For example we know that
all NTP2 theories are such, however the opposite is not true: there is a
theory with TP2 in which forking=dividing (essentially the example from
section 5, but with dense linear orders instead of circular ones).
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