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1 Introduction

Let (C, 4+, —, -, 0, 1) (C for short) be the complex field, a typical strongly
minimal structure. Let C,,;, denote its expansion by the exponential function
exp : z — e®. It is known that the model theory of C.s;, is not as well estab-
lished or developed as that of its companion structure Rez,. In fact the ring
of integers can be defined in C.,p, and consequently C.,,;, inherits all the com-
plexity of the first order theory of (Z, +, -). Also, one can see that the theory
of Ceyp, unlike that of Reyp [6], is not model complete. There are several open
questions regarding C.z,: among them whether C.yp, is quasi minimal (mean-
ing that every definable subset is either countable or co-countable), in particular
whether R is definable in C.g,.

Despite these obstructions, Zilber has developed a nice approach to Cegp in [7],
singling out an L, .,(Q)-sentence ® (where @ is the quantifier “there are un-
countably many”) on algebraically closed exponential fields such that ® admits
a unique model of power \ for every uncountable cardinal A up to isomorphism.
However it remains unknown whether C,,, is really the only model of power
280 of ®.

In her PhD Thesis [5] the second author dealt with (C, Z) —a structure de-
finable in C.gp, that also inherits the negative features of the ring of integers.
But [5] points out that (C, Z) is quasi minimal and its first order theory elimi-
nates quantifiers up to quantification over the integers. This adapts the result
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of Casanovas and Ziegler [1] valid for all the strongly minimal structures ex-
panded by a unary predicate, to the setting of (C, Z), greatly simplifying the
analysis of definable sets in the structure. Also, [5] examines the complexity of
(C, Z) by “forgetting” the definable sets generated by the integers and using a
Morley rank modulo a predicate PM R (as defined in [2]). Observe that under
the model theoretic point of view expanding the complex field by either the
ring of integers or its field of fractions —that is, the field of rationals— makes no
substantial difference, as the two structures, Z and Q are biinterpretable in C.
The aim of this paper is to pursue the approach in [5]. In fact, we deal with the
structure (C, Z, exp) where

e C is, as said, the field of complex numbers,
e 7 is the subring of integers,
e exp is the exponential function z +— e* restricted to Z.

More generally we consider exponentiation with respect to any basis € # 0 in
C, viewed as a function exp. from Z to C; so, in this larger perspective, exp as
described before is just exp.. Of course the value of € = exp (1) can be altered,
which will affect the analysis of (C, Z, exp.). We will discuss in the next section
all such possible cases.

Let L denote the language of these structures (C, Z, exp.), that is L expands
the language of fields by a unary relation symbol Z for Z and a unary operation
symbol EX P for exp. (formally speaking, exp. in this setting is only a partial
function, but can easily be enlarged to the whole domain in some artificial way).
Let us introduce some further notation. We refer here to L-structures C expand-
ing an algebraically closed field C of characteristic 0 such that Z(C) is a model
of the first order theory of the ring of integers. Then

e Q(C) is the field of fractions of Z(C);

e FE(C) denotes the ring generated by the union of Z(C) and its image in
EXP;

e K(C) is the field of fractions of E(C), so the subfield generated by the
union of Z(C) and its image under EX P.

Observe that Q(C) is definable in C; but, as we will see later, F(C) and K (C) are
not. When C = (C, Z, exp), then Q(C) is the field of rationals, E(C) = Z[e, €~ !]
and K(C) = Q(e).

Here is a brief outline of the paper. In the next section we will distinguish our
analysis according to whether € is algebraic or transcendental. In particular
we will show that € is algebraic if and only if exp. is definable in (C, Z). Of
course our main focus is on the transcendental case, and indeed without loss of
generality on € = e, therefore on exp. Hence in § 3 we will describe and discuss
several consequences of the transcendence assumption, which will lead in § 4 to
a tentative axiomatization T of the first order theory of (C, Z, exp). Finally,
we will prove in § 5 that T is complete, whence it really equals the theory of



(C, Z, exp). Not surprisingly, a Schanuel property — stating that if My, ..., My
are non standard integers and 1, My, ..., M} are linearly independent over the
standard rationals, then EXP(1), EXP(M,),..., EXP(M}) are algebraically
independent over Q(C)— plays a crucial role in this axiomatization. See [4] for a
general discussion of the relevance of this kind of property to the model theory
of exponentiation.

We refer to [3] for basic model theoretic results. We heartily thank Jonathan
Kirby for his attention to a previous version of these notes. His suggestions and
comments greatly improved it.

2 The definability of exp,

In this section we work in the complex field C with a l-ary predicate Z for
the integers and a l-ary function symbol EXP for exp. — viewed as a group
homomorphism from the additive group of integers to the multiplicative group
of non-zero complex numbers. As said € is the image of 1 under this morphism.
Its value clearly affects the analysis of the resulting structure. Actually, as
(Z, +) is cyclic, the isomorphism class of (C, Z, exp.) is fully determined by
the algebraic type of €. For instance, when € = 1, exp, is constant. Also e = —1
is trivial to treat. We consider the following less “simple” cases.

Example 2.1 Assume that € is an integer > 2. Observe that € is in the definable
closure of the ring of integers, and hence of (C, Z). Also, recall that

(i) by Lagrange’s Theorem, the set N of natural numbers with its addition
and multiplication is (-definable in the ring of integers,

(ii) the function taking any ordered pair (z, y) of natural numbers to z¥ (and
to 1 when = = y = 0) is recursive, and consequently arithmetical, that is,
(-definable in (N, +, -).

It turns out that in this case our structure is (-definable in (C, Z). Moreover
E defines the subring generated by ¢! and K the field of rationals. Similar
conclusions can be obtained when € is a negative integer < —2 and even when
€ is rational.

Assume now that e is algebraic (but not a rational). Then E defines Z[e, e~ !]
while K determines Q(¢). Some particular subcases are very easy to handle.

Example 2.2 Suppose that € is a root of 1, say a primitive ¢-th root for some
integer ¢ > 2. Then, for every natural n, exp.(n) = € where r is the remainder
of n divided by t, hence exp, is first order definable in (C, Z) by the formula
saying that for some natural r < t r is just the remainder of n divided by ¢ and
exp.(n) is the product of r factors equal to e.

The case in which € is the root of a rational number «, can be managed in a
similar way. Assume ¢/ = a where t is an integer > 2 and the polynomial z* —
is irreducible over Q. Then the powers of € are of the form € - a4 where r, ¢



are natural numbers and r < t. More precisely, for every natural number n,
expe(n) = € - a? where r is the remainder and ¢ is the quotient of n divided by
t. Hence exp, is again definable in (C, Z) (as exponentiation with respect to
the rational basis « is definable).

The following proposition generalizes all the previous examples.
Proposition 2.3 If € is algebraic, then exp. is O-definable in (C, Z).

Proof. Let p(x) be the minimal polynomial of € over the rationals and let d be
its degree. Then the elements in K can be uniquely written as ag + a1e + ...+
aq—1€471 where the a; (j < d) are rational. Hence K can be identified with
Q¢ where addition and multiplication are introduced in the right way (and Q
consists of the d-tuples of rationals whose second, third, ... and last components
are 0, while €is (0, 1, 0, ..., 0)). Indeed, by using the representation of rationals
as quotients of two coprime integers r, s with s > 0 and some effective bijection
between Z and N, we can identify K with a suitable recursive subset of N2¢. The
function exp. (adapted to this setting) is explicitly computable, in other words
recursive, hence arithmetical. As the addition and multiplication of natural
numbers are definable in the ring of integers (and in the field of rationals), it
turns out that even in this general framework, exp, is definable in (C, Z). 4

Let us consider now a transcendental e. Since the resulting structure (C, Z, exp,)
has a unique isomorphism type in this setting, we can assume € = e, hence we
will let exp. = exp. Then E(C, Z, exp) = Zle, e~ 1] and K(C, Z, exp) = Q(e).
But now exp is not (-definable in (C, Z); in fact a subset (-definable in this
structure and containing some transcendental number must include all the tran-
scendental numbers [5], while exp(Z) contains e but is countable and hence
exclude most transcendental numbers. Actually a stronger result holds.

Proposition 2.4 The exponential function exp is not definable in (C, Z) (even
using parameters).

Proof. It suffices to prove that exp(IN), that is, the set of powers e™ with n a
natural number, is not definable in (C, Z).

Suppose on the contrary that exp(IN) is definable, say by a formula (v, e, @)
(let us explicitly include for simplicity e itself among the parameters). We can
assume that e, @ are algebraically independent over Q. In fact, if this is not
the case then we can arrange @ as (a’, b) where b is algebraic over Q(e, a’).
Let s(z) be the minimal polynomial of b over Q(e, a’), and ¥’ be any other
root of s(z). Then there is an automorphism of (C, Z) fixing e (and hence
exp(N)) and @ pointwise, sending b to b'. So the formula (v, e, a, b') built by
replacing b by b’ in (v, e, @) still defines exp(IN). Then exp(IN) can be defined
without involving b, by the formula Vz (s(z) = 0 — ¢(v, €, @/, z)). On this
basis it is straightforward to develop a suitable induction argument leading to
the conclusion that exp(IN) can be defined as claimed, that is, by a tuple @ of
parameters algebraically independent over Q(e).

Now we claim that, for every formula ¢ (v, w, @) of the language of (C, Z), there
exists a natural number N = N () such that either



(i) for every a algebraically independent over Q(e) the set ¢(v, e, @) defines
in (C, Z) is co-countable, or

(ii) for every @ algebraically independent over Q(e) the only powers of e it
contains arc at most 1, e, ..., eV

This clearly excludes that p(v, e, @) defines exp(N).
As the theory of (C, Z) eliminates quantifiers up to quantification over the
predicate for the integers (as shown in [5] in the particular case of (C, Z) and
in [1] in the more general framework of pairs (M, P) where M is a strongly
minimal structure and P is a unary predicate), we can assume that p(v, w, @)
has the form

Q121 €Z...Qrzr € ZY (v, w, U, )
where k is a natural number, Z = (z1, ..., 2;), each Q; (1 < j < k) is a
quantifier V or 3 and ¢'(v, w, @, Z) is a finite disjunction of finite conjunctions
of formulas

p(v7w7632):07 p(v7w7ﬁ7z)ez

and negations, where p is any polynomial with coefficients in Z. Thus p(v, w, 4, Z)
can be written as >, p;(w, @, Z)v" where the p; are polynomials with coeffi-
cients in Z.

We will proceed by induction on k. At the end our first induction step, we will
make more precise our assumptions on N, in particular how it depends on ¢.
Suppose k = 0, in other words ¢(v, w, @) is quantifier free and Z'is empty. As
the conclusions of the claim about (v, w, @) are preserved under finite dis-
junctions and conjunctions we can assume that ¢(v, w, @) is p(v, w, @) = 0
or p(v, w, @) € Z (or negation) where p a polynomial with integer coefficients.
Counsider the p;(w, %) as polynomials in w with coefficients in Z[a].

If some p;(w, @) is non zero, then let N be the maximal degree of the p;(w, @)
with respect to w. Take a tuple @ algebraically independent over Q(e). As e
is transcendental over Q(@), for any m > N e™ does not annihilate p(v, e, @)
or give it an integer value; otherwise, as the coefficients p;(w, @) have degree at
most N, for m > N p(v™, v,d) would become a nonzero polynomial over Q(&a)
annihilated by e, which is clearly impossible. Thus the only powers of e that
can satisfy ¢(v, e, @) are among 1, e, ..., eV.

Otherwise, when p(v, w, @) is identically 0 with respect to w, the set of roots of
p(v, e, @) is all of C, and the same is true of the set of complex numbers giving
it an integer value.

Passing to negations yields either cofinite or empty sets. This proves our claim
in the case k = 0.

Observe that the bound N depends on the degrees of the p;(w, @) with respect
to w rather than directly on . Even if the coefficients of the p;(w, @) range
over all integers, N remains the same, or possibly decreases when some p;(w, @)
becomes zero. Actually this is what we assume in the next steps of our induc-
tion argument.

Now take k£ > 0. Suppose our claim is holds for £ —1 and we will prove it is also
true for k. We can assume that ¢(v, w, @) is of the form Vz € Z ¢" (v, w, 4, 2)



or 3z € Z " (v, w, U, z) where for every integer n, ¢’ (v, w, i, n) satisfies our
claim, in other words, either ¢" (v, e, @, n) defines a co-countable set for every
@ algebraically independent over Q(e) and for every n, or the only powers of e
satisfying it are among 1, e, ..., /¥ for every @ and n.

The intersections and unions of the sets the various ¢(v, e, @, n) define in (C, Z)
when n ranges over integers are co-countable, or exclude any power of e having
exponent > N (in particular, recall that a countable intersection of co-countable
sets is co-countable).

This completes the proof of the claim and of the whole proposition.

3 An algebraic analysis of (C, Z, exp)

We continue our study of (C, Z, exp) where exp denotes exponentiation with
respect to e, emphasizing some algebraic properties of this structure which will
be helpful, and in some cases crucial to results in the remainder of this paper.
First let us deal with the following Schanuel property, in which we use a large
saturated elementary extension U of (C, Z, exp).

Proposition 3.1 Let My = 1, My, ..., My € Z(C) be linearly independent
over Q (the standard rationals). Then exp(My), exp(My), ..., exp(My) are
algebraically independent over Q(U) (the non-standard rationals).

Proof. By compactness, it is sufficient, and indeed equivalent, to show that

for every non-zero polynomial p(v, wy, ..., wg, Z) with coefficients in Z, there
exists a bound H = H(p), only depending on p, such that, for every choice
of a tuple @ in Q with p(v, wy, ..., wy, @) # 0 and every (my, ..., my) € Z*
satisfying

Zj<k t;m; # 0 for every choice of integers t;, |t;| < H, t; not all zero,

p(e7 emp(m1)7 BN emp(mk), a:) # 0.
To prove that, let us state in a more general setting, the first step of the induction
argument proving Proposition 2.4.

Lemma 3.2 Let F be any field, b be transcendental over F, p(v, wy, ..., wg)
be a polynomial over F with degree No > 0 in v and N; > 0 in w; for every
J with 1 < j < k. Choose integers m; (j < k) such that mg = 1, m; > Ny,
mo > my - N1+ Ng, ..., mg > mi—1 - N1+ ... +mq1 - Ny + Ng. Then
p(b™o b ™) £ Q.

Proof. Under the assumptions on the m;, p(v, v, ..., v™*) is a nonzero
polynomial in v over F', and consequently cannot admit b as a root. -

Actually a more general result holds.

Lemma 3.3 Let F' be a field, b be transcendental over F, p(v, wy, ..., wg) be
a polynomial over F' with degree No > 0 in v and N; > 0 in w; for 1 < j <k.
Choose integers m; (7 < k) such that 1 = mg < my < ... < my, and the only
linear dependence relation ;) tym; with integer coefficients t; (|t;| < Nj for



every j < k) among the m; is the trivial one (when all the t;’s are 0). Then
p(d™o, b L b™E) £ 0.

Proof. In fact our assumptions are sufficient to ensure that the exponents of
the various powers of b in p(b, ™, ..., b™*) are pairwise different. Thus the
transcendence of b over F' implies our claim.

Applying this to the case when F' is the rational field and b = e, we obtain H
as the maximum of the N;. Notice that this bound H does not depend on the
coefficients of p, but only on its degrees. This concludes the proof of Proposition
3.1.

Observe that in the particular setting of Q and e the statements of Lemmas
3.2 and 3.3 can be expressed by infinitely many first order sentences of L, one
sentence for every tuple N; (j < k) of positive “standard” integers, saying that
for every polynomial p(v, wy, ..., wy) with coefficients in @, and degree Ny in
v, N; in w; (1 < j < k), and for every choice of mg, m1, ..., my as explained
in the lemmas, p(exp(mg), exp(my), ..., exp(my)) # 0. The same is true of
Proposition 3.1 itself, that can be can be expressed in a first order way by
infinitely many sentences, one for every polynomial p as in the statement of the
proposition with the corresponding bound H. Also, observe that an estimate of
H with respect to p is explicitly given.

We will now examine how exp function extends from the integers to the rationals.
To introduce this problem from a slightly different perspective, think of a tuple
of positive integers M; (j < k, My < My < ... < My, possibly My > 1)
satisfying some equality

(*) th = thMj
i<k

where the coefficients ¢, ¢; (j < k) are also integers and ¢ # 0. We can assume
t > 0, and even minimal with respect to these properties. This implies that the

greatest common divisor of ¢, tg, ..., tx_1 is 1. Moreover
t; M, s
(eMk)t _ eZKk g My H(eMJ)tJ

j<k

hence eM* is a root of the polynomial zf — Hj<k(eMﬂ')ti, and indeed the only

root in exp(Z). We would like to determine how to single out exp(M}) among
the various ¢-th roots of #* — [, (e")" over the field
Q(exp(Mo), €.13p(M1), teey exp(Mk—l))

via mere algebraic methods, without reference to exp. The following proposition
clarifies this question.

Proposition 3.4 For My < My < ... < My_ positive integers, t, t1, ..., tx—1
integers, t > 0, t, t1, ..., t,_1 coprime, z* — Hj<k(eMj)tJ‘ is irreducible over
QMo M eMi-1),



Proof. First observe, that if A denotes the greatest common divisor of the M;
(j < k), then
QM ..., €Mty = Q(eM).

Also notice that condition () can be written as
(x)" tMy =qM

for some suitable integer ¢; moreover ¢ is minimal with respect to this property,
which implies that ¢ and ¢ are coprime, and consequently that ¢ divides M.
We are led in this way to consider z — 9™ as a polynomial over Q(e?™). So
Proposition 3.4 becomes a consequence of the following lemma.

Lemma 3.5 Ift > 0, M > 0 and q are integers, t and q are coprime and t
divides M, then x' — e is irreducible in Q(e?™)[x].

Proof. Let {; denote a primitive ¢-th root of 1 in C. Thus z? — e?™ decomposes

in C[z] as
zt—etM = H(x - C[e#).

r<t

Suppose for a contradiction that x* —e?™ is not irreducible over Q(e?). Each

irreducible factor in its decompositions has coefficients of the form h(eﬂ)
where h(zx) is a polynomial in QJz] possibly 0, or of degree < t. On the other
hand the same coefficient can be written as f(e?™) . g(e?™)~! where f(z),
g(z) € Q[z] and g(z) # 0. Therefore f(e?M)- h(e%) = g(eM) whence, by the
transcendence of e, h(x) has to be constant, possibly 0. This means that the
factorization of z* — e?™ over Q(e?™) only involves polynomials with rational
coefficients, which is clearly impossible.

Note that the statement of Proposition 3.4 can be expressed in L by infinitely
many first order sentences. In fact, take any polynomial p(z, wo, ..., wg_1)
with coefficients in Z and degree d < t in x; then the coefficients of p with re-
spect to x can be written as sums of monomials zwg ... wZ’“_‘ll with z € Z and
do, ..., dp_1 natural numbers. Then the first order translation of Proposition
3.4 requires one sentence for every choice of ¢ and ¢;, and various d; (j < k) in
two given polynomials p and p’ as before; this sentence says, that for every p, p’
(meaning for every choice of the various z) and for every 0 < My < My < ... <
My_1 in Z, the product of p(x, eMo, ... eMi-1)and p/(z, eMo, ..., eMr-1) can-

not equal o' — [, . (eMi)%.

4 The transcendental case. An axiomatization

We now propose a tentative axiomatization of the first order theory of (C, Z, exp.)
when € is transcendental. As above, we refer for simplicity to € = e, so to
exp = exp, as the function taking every integer z to e*. Our axioms are based
on the properties of e and exp we emphasized in the previous section, and on



some further features that are mostly trivialities in the framework of (C, Z, exp)
but play a more significant role in the other models.

We will deal with L-structures C. Our axioms express in a first order way in L
the following.

1. C is an algebraically closed field of characteristic 0 (with respect to +, -,
—,0and 1).

2. Z(C) is a subring of C' with 1 and, as such, is a model of the first order the-
ory of (Z, +, -, 0, 1), hence, among other properties: is an integral domain
with identity 1, and is an ordered domain (by Lagrange’s Theorem); how-
ever this is the “dark side” of our axiomatization, as the Godel phenomena
forbid a full comprehension of the theory of the ring of integers.

3. EXP(C) (EXP for short) is a 1-1 function of Z(C) to C with the following
properties.

(3.1) EXP is a group morphism of the additive group of Z(C) to the
multiplicative group of C' (equivalently, EXP(z + y) = EXP(z) -
EXP(y) for all z, y € Z(C) and EXP(0) =1).

(3.2) EXP(Z(C)) is linearly independent over Q(C).

(3.3) (A Schanuel condition) For every positive integer k, if 1 = My, M,
..., My € Z(C) are linearly independent over Q, then EX P (M),
EXP(M), ..., EXP(My) are algebraically independent over Q(C).

(3.4) (Extracting t-th roots) For every choice of k, ¢, t; (j < k) in Z with
k>0,t>0andt, ty, ..., txy_1 coprime, for every 0 < My < ... <
My in Z(C) the polynomial ' — [],_, EXP(M;)" is irreducible
over Q(C)(EXP(My), EXP(My), ..., EXP(M_1)).

(3.5) For every positive integer n, the polynomial 2™ —2 is irreducible over
Q(C).

(3.6) (A closure condition) For every polynomial ¢(Z, §) € Q[Z, §] and @ €
Q(EXP(1))%9, ifno b € ZIEXP(1), EXP(—1)] satisfies q(Z, b) # 0
and q(l_;, @) = 0, then no tuple in F(C) has this property.

Let T be the first order theory axiomatized in this way. We will now comment
on the various conditions in 3, in particular why they are true in (C, Z, exp)
and can be expressed in a first order way in L (possibly by infinitely many
sentences). This is clearly true of (3.1).

Remarks 4.1 (3.2) holds in (C, Z, exp) because e is transcendental. Indeed
(3.2) implies that in every model C of T EX P(1) is transcendental over
Q(C). Also, it can be expressed by infinitely many first order L-sentences,
one for every positive integer k, saying that for every choice of z;, M; in
Z(C) (_] < k) with My < M7 < ... < My, if ngk Z]EXP(M]) =0,
then z; = 0 for every j < k.



(3.3)

corresponds to Proposition 3.1. This was explained in the previous section,
including how to write it in a first order way (see the discussion preced-
ing the second proof of Proposition 3.1, and then Lemmas 3.2 and 3.3).
Actually a (slightly stronger) first order condition referring to Lemma 3.3
and ensuring (3.3) is the following: For every polynomial p(z, w1, ..., wg)
over Q(C) of degree Ny > 0in « and N; > 0in w; (1 < j < k), for every
M; € Z(C) (j < k) such that 1 = My < M; < ... < My, and the only
linear dependence relation »_;_; z;M; with integer coefficients z; (j < &,
|zj] < N;) —caution: the z; are “standard”!- among the M; is the trivial
one (when all the z; are 0),

p(EXP(1), EXP(M,), ..., EXP(My)) # 0.

was treated in the previous section. Specifically Proposition 3.4 shows
that it holds in (C, Z, exp), while the last lines of § 3 explain how to
write it in a first order way in L.

is a well known fact valid in (C, Z, exp), and can be easily expressed in
L in a first order way.

is clearly true in (C, Z, exp), where E is interpreted as Z[e, e"1]. More-
over it can be suitably expressed in a first order way in L by infinitely many
sentences, one for every polynomial ¢ and for every type of a tuple @ over
Q(e) (in the language of fields) containing ¢(7, b) # 0 for all b in Z[e, e1];
this sentence says that no tuple b in Z(C) satisfies both ¢(Z, b) # 0 and
q(a, E) = 0. Quantifying over types of tuples @ = (ay, ..., a,) in Q(e)*9
over Q(e) can be stated as “for every vy satisfying the minimal polynomial
of a1 over Q(e), for every vy satisfying the minimal polynomial of ay over
Q(e, v1) and so on”. In fact these conditions on minimal polynomials de-
termine the type of @ over Q(e) and it is easily seen, that if d is another
tuple satisfying them, then there is field automorphism of C fixing Q(e)
pointwise and sending @ to a’, hence for every b € Z[EX P(1), EX P(—1)]
with ¢(Z, 5) #0, q(d, E) = 0 holds if and only if q(c?’, b) = 0 does.
Regrettably, we do not see how to explicitly decide and list the pairs con-
sisting of a polynomial and a type and occurring in these sentences.

We will refer to (C, Z, exp) as the standard model of T. We will now state
some simple consequences of the axioms of T

Remarks 4.2 Here C denotes an arbitrary model (C, Z(C), EXP) of T.

1.
2.

Z(C)NEXP(Z(C)) ={1}.
For every positive (standard) integer ¢ and for every a and b in Z(C),

if EXP(a)! = EXP(b)!, then a = b (as EXP(a)! = EXP(t-a) and
similarly for b, moreover EX P is injective).
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3. Let F be any subfield of C' containing E(C) (equivalently, K(C)). If a
and b are two elements of C transcendental over F', then there is an au-
tomorphism f of C as a field fixing F' pointwise and taking a to b. As
f acts identically on F', f is also an automorphism of L. In particular a
and b have the same type over F' (with respect to L). Also, if X is an
F-definable set, then X either includes or excludes all the elements of C
transcendental over F'.

Corollary 4.3 The standard model of T (C, Z, exp) is quasi minimal.

Proof. Let X be a definable subset of the complex field and let @ be a tuple
of parameters defining X. Then X either excludes or includes all the elements
transcendental over Q(e, @). Accordingly X is countable or co-countable.

Corollary 4.4 The model theoretic algebraic closure of O acl(B) in T equals
the field theoretic algebraic closure Q(EX P(1))%9 of Q(EXP(1)).

Proof. It is clear that D holds. On the other hand no finite (-definable set in
the standard model can include an element transcendental over Q(e) (otherwise
it contains infinitely many transcendental elements). -

Lemma 4.5 Let C be any model of T. Then every element of E(C) decomposes
uniquely as zo + Zl<j<k z; EXP(M;) where k is a natural number, the z; and
the M; are in Z(C) and My < ... < M.

Proof. Every element of E(C) can be obtained by adding and multiplying
integers and values of EX P. Integers are closed under both addition and mul-
tiplication, and values of EX P under multiplication. Also, the distributivity
law can be applied. This ultimately yields a decomposition as claimed. Axiom
(3.2) ensures that this decomposition is unique. -

Corollary 4.6 E(C) and K(C) are not definable in C.

Proof. In fact E(C) includes elements 20 + >, <<, 2 EXP(M;) with an ar-
bitrarily large k. So a standard compactness argument applies and proves our
claim.

Proposition 4.7 Let C = (C, Z(C), EXP) be a model of T, F be an alge-
braically closed proper subfield of C extending K(C). Then (F, Z(C), EXP) is
an elementary substructure of C, and in particular is a model of T. Also, F is
not definable in C.

Proof. We apply the Tarski-Vaught criterion and show that F' is the domain of
an elementary substructure F of C (observe that, as Z(C) is a subring of F' and
EXP C F? in this substructure Z(F) = Z(C) and EXP is the restriction of
the exponential function from C to F?). Take any formula (v, @) with param-
eters @ from F. We will show that if C = Jv (v, @), then there is some b € F
such that C = ¢(b, @).

Suppose this is false. There is at least one element satisfying (v, @) in C, and
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this element has to be transcendental over F. By Remark 3 in 4.2, C' — F C
©(C, @). But no element of F' can belong to ¢(C, @), so C — F = ¢(C, @), equiv-
alently F' = —¢(C, @). So it is sufficient to prove that F' cannot be defined in C
in a first order way. Note that this is an interesting fact in its own right (and in
fact we state it separately in our proposition). We will refer to a large saturated
elementary extension U of C.

Let us first assume F = Q(e)?9 and K(C) = Q(e). Observe that every element
of C satisfying ¢(v, @) is transcendental over K(C) because F extends K(C).
Consequently the same is true in & with respect to K (U). Take ¢ € C' transcen-
dental over Q(e), then ¢(c, @) holds in C and in U, hence ¢ is transcendental
over K (U). Now consider the 1-type I' over Q(e) consisting of:

o ~¢(v, @),

e the formulas saying that v does not annihilate any polynomial of degree
n with coefficients from K (equivalently from F) when n ranges over the
positive integers (there is a formula for every n and for every choice of
coefficients in E according to the representation described in Lemma 4.5).

This type is finitely satisfiable in C. In fact take a finite subset I'y of I', say
consisting of —¢(v, @) and certain formulas of the second kind corresponding to
degrees smaller than a given N. For n > N the polynomial " — 2 is irreducible
over Q(e), hence an n-th root of 2 satisfies I'y.

By compactness there is some element ¢’ € U satisfying I'. Both ¢ and ¢’ are
transcendental over K (U). Then there is an automorphism of U/ —as a field, and
as a structure of L— fixing K (i), and in particular Q(e), pointwise and sending
¢ to /. But ¢ satisfies p(v, @) and ¢’ does not — a contradiction.

Now take any F with Z(F) = Z(C). We can proceed as for Q(e)*9. The
crucial point is again to satisfy any finite I'g O IT" inside C. The polynomials
in 'y have again degree smaller than some fixed N, but their coefficients may
involve, in addition to arbitrary elements from K (C) some further parameters
§from F — K(C). Again, it suffices to find some element in F' that is algebraic
of degree at least N over K(C)(S).

It is easily seen that one can assume that § is algebraically independent over
K(C). In fact, if this is the case and t is a tuple of elements algebraic over
K (C)(5) such that the degree of K(C)(5, t) over K(C)(5) is d, it suffices to take
an element b € F algebraic of degree at least N x d over K(C)(5) to guarantee
that the degree of K(C)(3, t, b) over K(C)(5, t) is at least N.

Hence we can assume that § is algebraically independent over K(C). If the
transcendence degree of F over K(C) is greater than the length of § then we are
done. If this is not the case, we can suppose that F' = K(C)(5)%9. By (3.4), for
n > N 2™ — 2 is irreducible over K (C) and consequently over K (C)(5).

In conclusion F' cannot be defined by a first order formula in C. Therefore F' is
the domain of an elementary substructure of C as claimed.

Observe that the previous proof uses only some very basic properties of EX P,
and does not require all the axioms of T'.
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By Proposition 4.7, Cy = (Q(e)™9, Z, exp) is an elementary substructure of the
standard model (C, Z, exp) and so is a model of T'. Actually Cy, as a countable
atomic model of the first order complete theory of (C, Z, exp), is a prime model
of this theory. Also, the following fact is easy to check.

Remark 4.8 Cj is embeddable in every model C = (C, Z, EXP) of T.

In fact, as C' has characteristic 0 and EXP(1) is transcendental over Q(C),
Q(EXP(1))%9 —and, through it, Q(e)?9 itself- is embeddable in C as a sub-
field.

It is clear that the intersection of this subfield and Z(C) is just an isomorphic
copy of the ring of integers, but nothing more. In fact, by (3.2) —more precisely,
by the transcendence of EXP(1) over Z(C)— any nonstandard integer z > 0
algebraic over Q(EX P(1)) should be algebraic over Q, which is clearly a con-
tradiction.

Finally, by (3.1), EXP acts in Z(C) on this copy of Z just like exponentiation
with respect to the basis EX P(1).

In the following we will call this embedding of Cy into C —fixing any standard
integer pointwise and sending e to EX P(1)— canonical.

Unfortunately, we cannot deduce that Cy is a prime model of T, because we do
not know whether T' is complete. Indeed the fact that Cy is a prime model is
just equivalent to the completeness of T'. So the basic question to be answered
is the following one:

Question. Is Cy elementarily embeddable in any model C of T? In other words,
is Cp a prime model of T?

Observe that a positive answer to this question cannot be obtained on the basis
of Proposition 4.7 because the assumption that Q(EX P(1))9 extends K (C)
may fail. Actually any elementary embedding C' < C between models of T has
to satisfy further conditions, such as the ones we are going to list. For simplicity
we assume here that the elementary embedding of C’ into C is just an inclusion.

(i) EXP(Z(C")=C'NnEXP(Z(C)).
Actually the inclusion C is trivial. On the other hand, for b € C’' N
EXP(Z(C)), the sentence Jw(EX P(w) = b) is true in C, and hence has
to be true in C’.
) E(C")=C"NE(C).
) K(C")=C"nK(C).
(iv) K(C")%9 =C'n K(C).
)

-,

b € E(C) such that ¢(Z, b) # 0 but ¢(&@, b) = 0, then there is some tuple
in E(C") with this property.

For every tuple @ in C’ and polynomial ¢(Z, ¥) € Q[Z, 7], if there is some
) =0

(vi) For every tuple @ in C’ and polynomial ¢(Z,

b € K(C) such that ¢(&, b) # 0 but ¢(a, b)
in K(C’) with this property.

¥) € Q[Z, 7], if there is some
= 0, then there is some tuple
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It is not difficult to check these conditions one by one. In fact (v) and (vi) are
immediate, while (ii), (iii), (iv) can be handled as (i). However it is enough to
show (v) —in addition to (i)— because (v) implies the remaining ones. Let us
explain why.

Remark 4.9 It is clear that (vi) implies (iv) when @ consists of a single element,
and (iv) also implies (iii), when ¢ is  —y. Similarly (ii) is a consequence of (v).
So it remains to show that (v) implies (vi).

Fix @ € ¢’ and ¢(Z, §) € QI[Z, 7] such that some b in K(C) satisfies both
q(Z, g) # 0 and q(a, 5) = 0. Write each element b of b as a quotient b - b”~1

—

with o/, b” € E(C) and b" # 0. Multiply ¢(Z, b) by the product of the maximal
powers of each b” occurring in the coefficients of ¢(#, b) and then again by
the b"’s (so ultimately by a product of powers (b”)% for some suitable positive
integer dy), and create in this way a polynomial in E(C). Then replace all the b"’s
and the b"’s by new corresponding variables 3" and 4. One gets a polynomial

¢'(Z, 9, y") with rational coefficients such that
q(Z 0, 0") #£0, 4@V, v =0

By (v) there are tuples ¢, ¢ in E(C') for which

In particular every ¢” is not zero. At this point divide by the product of the
(") Let ¢ denote the quotient of a given element ¢’ of ¢/ by the corresponding
element ¢’ in ¢”. Then each single ¢ is in K(C) and their sequence ¢ satisfies

q(, b) #0, q(@, b) =0.
This proves (vi).

Lemma 4.10 For every model C of T, the canonical embedding of Cy into C
satisfies (i) and (v) (and hence (ii), (iii), (iv), (vi)).

Proof. For simplicity we assume that the canonical embedding is just an in-
clusion, so e = EXP(1) in C. Then (i) follows from (3.3), in fact, for z a non
standard integer, EX P(z) and EX P(1) have to be algebraically independent
over Q(C) and consequently over Q. Furthermore (v) directly follows from (3.6),
because K (Cy)™9 = Cy and E(Cy) = Z[e, e71].

Before concluding this section, let us emphasize two notable consequence of (v),
using the same notation as in (v).

Lemma 4.11 Assume (v) holds. Then a tuple @ € C’ algebraically independent
over K(C') is also algebraically independent over K (C).

Proof. Actually this is a consequence of (vi). -
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Lemma 4.12 Assume (v) (actually (vi)). Let @ € C', s € K(C')*9. Then s
has the same minimal polynomial over K(C')(d) and over K(C)(@).

Proof. Otherwise the latter minimal polynomial ¢(z, @, b) (with b € K(C))
divides the former but has a smaller degree. Also, we can assume ¢(zx, d, 5) is
monic, hence ¢(z, Z, %) is monic with respect to . By (vi) some ¢ € K (C’) satis-
fies ¢(s, @, ¢) = 0 and q(z, d, €) # 0. But the degree of ¢(z, @, €) is smaller than
that of the minimal polynomial of s over K(C')(@), and this is a contradiction.
_{

5 The transcendental case. Main results

In this section we show that T is complete, and so equals the first order theory
of (C, Z, exp). An investigation of 1-types over the empty set in an arbitrary
model C of T will be useful in our proof. Over certain models this classification
of types is very simple. For instance, in the standard model K(C) = Q(e),
Q(e)? equals acl(()) and then only one non algebraic 1-type is realized, that of
elements transcendental over K (C).

Things change when we look at arbitrary models of 7. To obtain a complete
picture of this general case, we refer to a big saturated model C of T'.

Again there is a unique 1-type for all the elements transcendental over K (C).
Moreover the elements lying out of K (C) but algebraic over it can be treated in
terms of their minimal polynomials and hence of the ordered sequences of the
corresponding coefficients in K(C).

On the other hand the elements of K (C) can be viewed as fractions of elements
in E(C).

So it is sufficient to deal with a generic element b of F(C). By Lemma 4.5 b
decomposes uniquely as zg + Zlgjgk z; EXP(M;) with k a natural number,
zj, M; € Z(C) for every j and My < ... < Mj. Put for simplicity 2 =
(20, 21, -+, 2) and M = (My, ..., My). The question here is whether the
type of the tuple (Z, M) over () in the theory of the ring Z determines that of b
in T, or the latter requires additional information.

For simplicity let us rearrange (Z, M) as a single tuple and (by slightly changing
our notation) let us represent it as M = (Mo, My, ..., My) where My = 1.
Without loss of generality for our purposes we can assume that all the M; are
positive (if not, we replace any negative M; by —M; and EXP(M;) by its
inverse), and indeed that My < My < ... < M. As every positive integer N
satisfies EXP(N) = EXP(1)", we can also assume that all the M; with j > 0
are not “standard”. Keeping this notation we prove:

Lemma 5.1 The type of M over ) in_the theory of the ring of integers fully
determines the type of M (and EXP(M)) over 0 in T.

As said, the Schanuel Property (3.3) plays a key role here, as well as (3.4).

Proof. Let us examine the elements of the tuple M one by one, by induction
on the index j < k.
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First suppose j = 0, 1. By (3.2) EXP(My) is transcendental over Q(C), and
indeed EX P(Mj) and EX P(M,) are algebraically independent over Q(C). The
set of first order statements of these properties determines the type of M over
the empty set in 7.

Now take j with 1 < j < k and look at M;;. Up to rearranging the indexes
i with 1 <4 < j, we can assume that, for some suitable h < j, EXP(M;y) and
the EXP(M;) with 1 < i < h are algebraically independent over Q(C), while
the remaining EX P(M;) (h < i < j) are algebraic over the extension of Q(C)
by the previous ones. This can be obtained without changing the order of the
various M; (if necessary, replace any M; with ¢ > h by M, + Mj). By (3.3) no
linear dependence relation ZK ntiM; = 0 with integer coefficients ¢; can link
the M; (with the only exception of the trivial one, that whose coefficients are
0).

Case 1: My, ..., My, M;41 are linearly independent over the rationals.

Thus by (3.3) EXP(M;44) is algebraically independent from the EXP(M;)
(with ¢ < h and consequently with ¢ < j) over Q(C), which determines its type.

Case 2: My, ..., My, M;41 are linearly dependent over the rationals.

Then there is some nontrivial linear dependence relation tM; 14>, ., tiM; =0
with “standard” integer coefficients. Due to the assumptions on the M; with
i < h, it must be the case that ¢t # 0. Of course we can assume t is positive.
Also, we can extend our investigation to all equalities of this form, possibly
involving even the M; with h < i < j. Choose ¢ minimal, so a generator of
the ideal of Z consisting of the integers accompanying M;;; in one of these
equalities. Choose the corresponding ¢; (i < 7). Observe that by the minimality
of t, the greatest common divisor of ¢t and the ¢; is 1. Of course the type of M
(in the theory of integers) contains the formula saying that ¢ divides ), j ti M;
and identifies Mj; as the corresponding quotient.

Observe EXP(M;+1)" = [[,; EXP(M;)"; in other words EXP(M;11) is a
root of the polynomial z* — [[,; EXP(M;)". By (3.4), this polynomial is
irreducible over

QC)(EXP(My), EXP(M,), ..., EXP(M;))

and consequently over Q(]\Z7 EXP(My), EXP(M), ..., EXP(M;)), which
identifies EX P(M;41) without any ambiguity and determines the type of M.

Let M’ be a tuple in Z(C) admitting the same type as M in the theory of the ring
of integers. Then there is an automorphism of Z(C) (in the language of rings)

sending M to M’ ; and this automorphism can be extended to an automorphism
of the whole L-structure C sending EXP(M) to EXP(M'). -

Proposition 5.2 Let C = (C, Z(C), EXP) be a model of T and let F be an
algebraically closed proper subfield of C. Assume that FNZ(C) is an elementary
substructure of Z(C) (in the language of rings). Also, assume that:
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(i) EXP(F) = FNEXP(Z(C)) —then we can form the L-structure F =
(F, FN Z(C), F> N EXP) with Z(F) = FN Z(C));

(v) for every @ in F and polynomial q(Z, §) € QIZ, 4], if there is some b e

E(C) such that q(Z, b) # 0 and g(d, b) = 0, then there is some tuple in
E(F) with this property.

Then F is an elementary substructure of C.

Proof. As in Proposition 4.7 we apply the Tarski-Vaught criterion and show
that F' is the domain of an elementary substructure of C (of course, this sub-
structure is just F). Accordingly let ¢(v, @) be a formula of L with parameters
d from F such that C = Jv (v, @). We are looking for some b € F such that
C = (b, @).

Claim 1: We can assume @ = (a/, a’’) where d’ is in Z(F) and @’ is algebraically
independent over K (F) (equivalently over K (C)).

In fact, observe that for every element a in @, if a € E(C) (equivalently,
a € E(F)), then a decomposes uniquely as 20 + 3, 2 EXP(M;) with
zj and M; in Z(F) and My < ... < My, and we can replace a as a parameter
using the z; and M;; similarly, if « € K(C) (equivalently a € K(F)), then a can
be expressed as a quotient of two elements in F(F) and can be replaced as a
parameter by the ordered pair of these elements.

Now decompose @ as (a/, a’’) where o’ is algebraically independent over K (F)
and the elements in o’ are algebraic over K(F)(@). Observe that a” is alge-
braically independent also over K(C) (by (v) and Lemma 4.11). Let

e po(wo, @) be the minimal polynomial of a} over K(F)(a”) (and over
K(C)(a")), see Lemma 4.12), and

o for every i < m let piy1(ap, - ., aj, wit1, a’") be the minimal polynomial
of aj,, over K(F)(agp, ..., aj, a”) (and over K(C)(ay, ..., aj, a”), again

by (v) and Lemma 4.12).

Let
@' (v, d") = Fwp ... Fwm(Nicmpi(wo, - ., wi, a’) A (v, &, a”).

Notice that the parameters in ¢’ (v, a’l ) —including the coefficients of the p;— are
in F, and either transcendental over K (F) or in K(F), and in the latter case
we can assume that they are in Z(F) itself.

If our hypothesis is satisfied under the assumptions of Claim 1, then there is
some ¢ € F such that C satisfies ¢’(c, a7’) and consequently ¢(c, 7, a7’) for some
suitable tuple 7. Note that 7 is in F. Also, there is an automorphism f of C
such that:

a) f fixes Z(C), and consequently E(C), K(C), pointwise and K (C)%9 setwise,

b) in particular f fixes Z(F), E(F), K(F) pointwise and K (F)%9 setwise,
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c¢) f maps 7 to a’ and @” to itself,
d) finally f(c) € F.

Then C = ¢(f(c¢), @). In this way our proposition is proved in the general case,
that is, for an arbitrary a, provided that it is true in the restricted case, when
a is as in Claim 1.

Claim 2: We can assume that C is a big saturated model of T. Otherwise we
replace Cr —the expansion of C by all the elements of F'— by a big saturated
elementary extension. It is easily seen that passing to this model preserves the
conditions on C.

We will continue our proof under the further assumptions given in Claims 1
and 2. Let ¢ € C satisfy (¢, @). If ¢ is transcendental over K(C)(a"), then
every element of C transcendental over K (C)(a”) satisfies (v, @) as well. If no
element algebraic over K (C)(a’) satisfies ¢(v, @), then

C — K(C)(a")™ = p(C, a)

is definable, as well as K (C)(a”)™9. But this contradicts what was observed in
Proposition 4.7, because K (C)(a7’ )29 is an algebraically closed proper subfield
of C extending K (C).

Thus we can assume that ¢ is algebraic over K (C)(a”).

Notice that ¢(v, @) is satisfied by any root of the minimal polynomial p(z) of ¢
over K(C )(a7’ ), as well as by the image of ¢ under any automorphism of C fixing @
pointwise. Without loss of generality we can assume that the coefficients of p(x)
are finite sums of monomials of the form i ... 1" where (Iy, ..., l,) is @’ and
gisin Z(C). Let M denote the sequence of all the elements g € Z (C) obtained
in this way. Observe that M enlarges a. Rearrange M to obtain an increasing
sequence where the elements of a’ come before those lying in M but not in a’
(just replace each M in M but not in by M +a where a is the coordinate of a
with the maximum value). Also we can arrange the elements lying in M but not
in zz_”, as My < My < ... < My and suppose that all of them are non-standard.
Let My = 1 and assume that it belongs to a'. For every sequence M’ expanding
a , with the same type as MinT (including EX P), there is an automorphism
f of C sending M to M’ that fixes @ pointwise and even o’ pointwise (because
' is algebraically independent over K (C)). Consequently, f(c) viewed as a root
of the polynomial obtained by replacing M by M’ in p(x) still satisfies ¢(v, @).
Actually by compactness, a finite part of the type of M in T is sufficient to
imply (v, @). By Proposition 5.1, a finite part of the type of M in the first
order theory of the ring of integers is enough to do so. But this finite subset
of the whole type of M can be also realized in Z(F) (where Z and @' lie), and
consequently in F'| bX some suitable tuple M" . Recall that F is algebraically
closed and includes a”’. Thus any root of the polynomial obtained by replacing
M by M” in p(x) is in F, and satisfies (v, @).
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Corollary 5.3 Cy is elementarily embeddable in every model C of T'. In partic-
ular Cy 1s a prime model of T.

Proof. As observed in Lemma 4.10, the canonical embedding of Cy into C
satisfies conditions (i) and (v). The further hypotheses of Proposition 5.2 are
also satisfied. In particular Z(Cy) = Z is an elementary substructure of Z(C),
and indeed a prime model of the theory of the ring of integers.

Theorem 5.4 The theory T is complete, and hence equals the first order theory
of (C, Z, exp).

Proof. Every model of T is an elementary extension of Cy, and so is elementarily
equivalent to it.
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