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Abstract In [S-vdD] P. Scowcroft and L. van den Dries prove a Cell Decom-
position Theorem for p-adically closed fields. We work here with the notion of
P -minimal fields defined by D. Haskell and D. Macpherson in [H-Mph]. We prove
that a P -minimal field K admits cell decomposition if and only if K has definable
selection. A preprint version in French of this result appeared as a prepublication
[M].

1 Introduction

A p-valued field is a valued field (K, v) of characteristic 0 such that v(p) = 1 with
valuation group vK and residue field K/v of characteristic p. The residue field
is a finite algebraic extension of Fp; the degree of this extension, denoted by d is
called the rank of (K, v). A p-valued field of rank d is said to be p-adically closed
if it does not admit any proper algebraic extension to a p-valued field of the same
rank. A characterisation of the p-adically closed fields of rank d is given in [P-R]:
a p-valued field is p-adically closed if and only if it is Henselian and its value group
is a Z-group.

We denote by Ld = {+,−, ., 0, 1, Div, (Pn)n>1, c1, · · · , cd} Macintyre’s lan-
guage for p-adically closed fields of rank d. If (K, v) is a p-valued field whose
value group is a Z-group, the language is interpreted as follows. For each n > 1,
K |= Pn(x) if and only if K̃ |= ∃y(x = yn) where K̃ is the p-adic closure of K. We
will use P ?

n to abbreviate the formula Pn(x)∧ x 6= 0. The binary predicate Div is
interpreted by Div(a, b) if and only if v(a) ≤ v(b) . The ci are interpreted in K as
a basis of the residue field over Fp. A. Prestel and P. Roquette [P-R], generalizing
the theorem of Macintyre [Ma], have shown that in this language, the theory of
p-adically closed fields of rank d admits elimination of quantifiers. Then, in this
language, the definable subsets of Kn are exactly the semi-algebraic.

Let L′
d be any language extending Ld, we recall from [H-Mph] the definition of

a P -minimal L′
d-structure, which is the analogue in the p-adic case of o-minimality

in the real case.

Definition 1.1 Let K be an L′
d-structure. We say that K is P -minimal if for

every K ′ elementary equivalent to K, every definable subset of K ′ is quantifier
free definable by an Ld-formula.
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Haskell and Macpherson carry on the analogy by showing that any P -minimal
field is p-adically closed. In the same paper, they ask whether P -minimal fields
admit cell decomposition.

We prove here, (3.5) and (4), that a P -minimal field K admits a cell decom-
position if and only if K has definable selection (3.2).

R. Cluckers [C1] and [C2] proved a Cell Decomposition Theorem for subana-
lytic sets of finite field extensions of Qp which also gives a preparation result for
definable functions.

Hans Schoutens in [Sc] introduced a notion of t-minimality and proved inde-
pendently a Cell Decomposition Theorem for strongly t-minimal structures with
definable selection which include the P -minimal case. He also proves that in some
t-minimal structures cell decomposition implies definable selection.

2 Preliminaries

The starting point of our work is the Cell Decomposition Theorem given for p-
adically closed fields in [S-vdD]:

Proposition 2.1 [S-vdD] Let K be a p-adically closed field of p-rank d. Let S
be a semi-algebraic subset of Kn and f : S 7→ K a definable function. Then
there is a partition of S into finitely many definable sets on each of which f is
continuous. Each set in the partition either is open in Kn or has no interior and
is homeomorphic by a bicontinuous projection onto certain of the coordinate axes
to an open subset of K l, where l < n.

Then, they obtain for the field Qp of p-adic numbers a result of cylindric algebraic
decomposition using Denef’s Theorem (here |x| means p−v(x)):

Theorem 2.2 [D2]: Let fi(x, t) ∈ Qp[x, t], i = 1, · · · , r, x = (x1, · · ·xm), t one
variable. Let n ∈ N, n > 0, be fixed. Then there exists a finite partition of Qm

p

into subsets A of the form

A = {(x, t) ∈ Qm+1
p ;x ∈ C, |a1(x))|�1|t− c(x)|�2|a2(x)|}

where C is a definable subset of Qm
p and �1 (resp. �2) denotes either <, ≤, or

no condition, and a1, a2, c are definable functions from Qm
p to Qp such that for

all (x, t) ∈ A, we have

fi(x, t) = ui(x, t)nhi(x)(t− c(x))νi , for i = 1, · · · , r

with ui(x, t) a unit in Zp, hi a definable function from Qm
p to Qp and νi ∈ N

As noticed in [S-vdD] Denef’s Theorem is still true for finite extensions of Qp

and therefore for every p-adically closed fields of rank d which are elementary
equivalent to a finite extension of Qp. So it follows that the cylindric algebraic
decomposition is again true for any p-adically closed field.
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We will add the hypothesis of definable selection (3.2) to obtain a Cell Decom-
position Theorem in the P -minimal case.

The next two results come from [H-Mph] and will be of great use in what
follows. The topological dimension topdim(S) of a definable subset S of Kn is the
greatest integer k ≤ n for which there is a projection π : Kn 7→ Kk such that π(S)
has non empty interior in Kk. Haskell and Macpherson show that topological
dimension is well-behaved, i.e.

topdim(S1 ∪ · · · ∪ Sm) = max{topdim(S1), · · · , topdim(Sm)}.

Proposition 2.3 [H-Mph] Let K be a P -minimal field and f : K 7→ K be a
definable partial function. Then, there is an open subset U of dom(f) such that
dom(f)− U is finite and f�U is continuous.

Proposition 2.4 [H-Mph] Let n > 0 and f : Kn 7→ K be a definable partial
function, and let X = dom(f).
Let Y = {y ∈ X : f is defined and continuous in a neighbourhood of y}. Then
topdim (X\Y ) < n.

We will use in the last section the following version of Hensel’s Lemma.

Lemma 2.5 Let K be a p-adically closed field and let O be its valuation ring.
Let f(X) ∈ O[X] and f ′(X) denotes its derivative. Suppose that there exists
a ∈ O such that v(f(a)) > 2v(f ′(a)). Then there exists a unique b ∈ K such that
f(b) = 0 and v((b− a)) > v(f ′(a)).

3 Cell decomposition for P -minimal fields

In the following, we consider P -minimal fields of fixed rank d. For simplification
we write L instead of Ld and L′ instead of L′

d. Definable will always mean definable
with parameters. An L-definable subset of Kn will be called semi-algebraic and
definable will always means L′-definable.

From P -minimality by a classical model-theoretic compactness argument we
get:

Lemma 3.1 For any L′-definable set S′ ⊂ Kn+1 there exists m and a semi-
algebraic subset S of Km+1 such that for each y ∈ Kn there is z ∈ Km with
S′

y = Sz, where S′
y denotes the fiber at y of S′.

In other words, if φ(y, x) is an L′-formula defining S′ then there exists a quantifier
free L-formula ψ(z, x) such that K |= ∀y∃z∀x(φ(y, x) ⇔ ψ(z, x)).

Definition 3.2 Let K be a structure over a language L. We say that K admits
definable selection if for any definable set S ⊂ Kn+m there exists a definable
function g : π(S) 7→ Km whose graph is contained in S (where π : Kn+m 7→ Kn

is the projection map).
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Throughout this section, K will denote a P -minimal L′-structure with definable
selection. Then, the following lemma holds:

Lemma 3.3 Let S′ be a L′-definable subset of Kn+1. Let πn : Kn+1 7→ Kn be
the projection map. There exists m and a semi-algebraic subset S of Km+1 and a
L′-definable function f from πn(S′) to Km such that for any y ∈ πn(S′),

{x ∈ K; (y, x) ∈ S′} = {x ∈ K; (f(y), x) ∈ S}.

Proof: Let φ(y, x) be a L′-formula defining S′. Let S be a semi-algebraic sub-
set of Km+1 given by (3.1) and ψ(z, x) a L-formula defining S. Let F (y, z) =
∀x(φ(y, x) ⇔ ψ(z, x)). We apply definable selection to the L′-definable set A =
{(y, z) ∈ Kn+m;K |= F (y, z)}. Let π : Kn+m 7→ Kn as in (3.2). Then there
exists a definable function f : π(A) 7→ Km whose graph is contained in A. By
(3.1), πn(S′) ⊂ π(A), hence, for any y ∈ πn(S′), {x ∈ K; (y, x) ∈ S′} = {x ∈
K; (f(y), x) ∈ S}. �

Now, let us formulate a precise definition of cells in the sense of [vdD]

Definition 3.4 Let (i1, · · · , in) be a sequence of zeros and ones of length n. An
(i1, · · · , in)-cell is a definable subset of Kn defined by induction on n as follows:

1. A (0)-cell is a point of K and a (1)-cell is of the form

{x ∈ K; γ1 < v(x− c) < γ2 ∧ P ?
k (λ(x− c))}

where γ1, γ2 ∈ v(K)∪{−∞,∞}; c the center of the cell, is in K; k ∈ N and
λ is chosen from a fixed finite set of coset representatives of P ?

k in K∗.

2. Suppose that (i1, · · · , in)-cells are already defined.
Then an (i1, · · · , in, 0)-cell is the graph of a definable continuous function
from an (i1, · · · , in)-cell to K. And an (i1, · · · , in, 1)-cell is a set of the form

{(y, x) ∈ C ×K; v(a1(y))�1v(x− c(y))�2v(a2(y)) ∧ P ?
k (λ(x− c(y)))}

where C is an (i1, · · · , in)-cell, a1, a2, c are definable continuous functions
on C, λ is as in (1) and �1 and �2 are either ≤, < or no condition.

Note that the (1, · · · , 1)-cells are exactly the cells which are open in their
ambient space Kn and are called open cells. Let C be a (i1, · · · , in)-cell. Then
topdim(C) = k where k is the number of il equal to 1. If π : Kn 7→ Kk is the
projection onto the k axes corresponding to indexes il equal to 1, then π maps C
homeomorphically onto an open cell of Kk. Each cell is locally closed.

Theorem 3.5 Let K be a P -minimal L′-structure with definable selection.
For each n ∈ N,

In If S′ is a definable subset of Kn, then S′ can be partitioned in finitely many
cells of Kn.
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IIn Given a definable function f : S′ 7→ K where S′ is a definable subset of Kn,
there exists a finite partition of S′ into cells such that the restriction of f to
each cell is continuous.

Remark 3.6 When each occurrence of the word “definable” is replaced by “semi-
algebraic”, Theorem (3.5) follows easily from Denef and Scowcroft-van den Dries
results recalled in the above preliminaries. In this case we will speak of semi-
algebraic cell decomposition and we will refer to this result by SACD.

Proof: We will prove In and then IIn by induction on n.
I1 follows from P -minimality and the cell decomposition for p-adically closed

fields (2.1) and II1 follows from I1 and (2.3).
Assume Ii and IIi for i ≤ n. So let S′ be a definable subset of Kn+1. Let πn

be the usual projection πn : Kn+1 7→ Kn onto the first n axes. Let S ∈ Km+1 be
a semi-algebraic set and f : πn(S′) 7→ Km a definable function given by (3.3), i.e.
such that for any y ∈ πn(S′)

{x ∈ K; (y, x) ∈ S′} = {x ∈ K; (f(y), x) ∈ S}.

By SACD, S is a finite partition of semi-algebraic cells. We call B any such cell and
we denote by C the projection of B onto the first m axes. Now, by our inductive
hypothesis IIn, for each co-ordinate function fi of f , there is finite decomposition
into cells of πn(S′), such that the restriction of fi to each cell is continuous. Thus
we can find a finite decomposition of πn(S′) into cells C ′ such that the restriction
of f to each cell is continuous. For each C and C ′ in the previous partitions,
consider the set T = {y ∈ Kn; y ∈ C ′ and f(y) ∈ C}. Since T is a definable
set of Kn, the inductive hypothesis In tell us that T is a finite union of cells of
Kn. Take A′ a fixed cell of this partition of T , then we will show that the set
B′ = {(y, x) ∈ A′ ×K; (f(y), x) ∈ B} is a cell of Kn+1 contained in S′.

Assume first that B is an (i1, · · · , im, 1)-cell of Km+1, i.e.

B = {(z, x) ∈ C ×K; v(a1(z))�1v(x− c(z))�2v(a2(z)) ∧ P ?
k (λ(x− c(z)))}

where C is here a semi-algebraic (i1, · · · , im)-cell, and a1, a2, c are semi-algebraic
continuous functions on C. Then,

B′ = {(y, x) ∈ A′×K; v(a1(f(y)))�1v(x−c(f(y)))�2v(a2(f(y)))∧P ?
k (λ(x−c(f(y))))}.

Since f is continuous on A′ and f(A′) ⊂ C, a2 ◦ f , a1 ◦ f and c ◦ f are definable
continuous functions, thus B′ is a cell of Kn+1.

Assume now that B is the graph of a semi-algebraic function g : C 7→ K. Then
B′ is the graph of the definable function h : A′ 7→ K defined by h(y) = g(f(y)).
Hence B′ in this case again is a cell of Kn+1.

Morever, it is clear that S′ is the finite union of the cells B′ obtained from
the cells B which partition S, the cells C ′ which partition πn(S′), and for each
corresponding T , the cells A′ which partition T . Therefore In+1 is established.
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We will now derive IIn+1 from Ii, IIi, i ≤ n and In+1.
Let again S′ be a definable subset of Kn+1 and g : S′ 7→ K be a definable

function. Because of In+1 it suffices to show that S′ can be partitioned into
finitely many definable sets such that the restriction of g to each set is continuous.
Again by In+1 we can assume without loss of generality that S′ is already a cell.
If the cell S′ is not open in Kn+1 we are done by using our inductive hypothesis
on π(S′) where π is the projection on the k = topdim(S′) axes defined in section
2. Since k < n + 1, the set π(S′) can be partitioned into finitely many cells on
which g ◦ π−1 is continuous which leads directly to the conclusion.

Suppose now that S′ is an open cell of Kn+1. Let

U ′ = {y ∈ S′; g is continuous at a neighbourhood of y}.

By (2.3) and (2.4) we have topdim(S′\U ′) < n + 1. As above, by inductive
hypothesis IIi, i ≤ n, S′\U ′ can be partitioned into cells on which the restriction
of g is continuous. Since U ′ is definable, the conclusion holds. �

Assertion II2 can be refined as follows:

Proposition 3.7 Let C be a 1-cell and f : C ×K 7→ K an L′-definable function
such that for any x ∈ C, the function y 7→ f(x, y) is continuous on K. Then there
are 1-cells C1, · · · , Cn whose union is co-finite in C such that f is continuous on
each Ci ×K.

Proof: By Theorem (3.5) there is a finite partition of C in points and 1-cells
C1, · · · , Cn and for any i a partition of Ci×K in cells which are either the graphs
Γi,j of K-definable functions ci,j continuous on Ci or sets of the form

Di,j = {(x, y) ∈ Ci ×K; v(ai,j(y))�1v(x− ci,j)�2v(bi,j(y)) ∧ Pk(λ(x− ci,j(y)))}

such that the restriction of f to each Γi,j and Di,j is continuous. In order to prove
that f is continuous on every Ci ×K, it suffices to show that f is continuous at
each point (x, ci,j(x)). So let c be one of the functions ci,j and (x, c(x)) a point of
the graph Γi,j . Using the facts that the function y 7→ f(x, y) is continuous on K
for any x ∈ Ci, the function f is continuous on the graph Γi,j , and the function c
is continuous on Ci, we get that for any β ∈ v(K) there is α ∈ v(K) such that, if
min(v(x− x′), v(c(x)− y′) > α then
v(f(x, c(x))− f(x′, y′))
≥ min{v(f(x, c(x))−f(x′, c(x′)), v(f(x′, c(x′))−f(x′, c(x))), v(f(x′, c(x))−f(x′, y′))}
≥ β.

This gives the continuity of f at (x, c(x)). �

4 The converse

The hypothesis of definable selection might seem too strong. However, we can
verify that it is necessary:
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Proposition 4.1 Let K be an L′
d-structure which is P -minimal. If K satisfies In

for all n ∈ N then K admits definable selection.

Proof: It suffices to adapt the proof of the existence of semi-algebraic selection
given in the appendix of [D-vdD]. Let S be a definable subset of Kn+m. Without
loss of generality, we may assume that m = 1, because the general case then
follows by induction on m. By In+1, S is a finite union of cells. So, it is enough to
prove that, for any definable cell C of Kn+1, there exists a definable function f :
π(C) 7→ K, whose graph is included in C. In the case where C is an (i1, · · · , in, 0)-
cell of the form {(y, x) ∈ B ×K;x = c(y)}, the function c is suitable. Let us now
consider the case where C is a (i1, · · · , in, 1)-cell, i.e.

C = {(y, x) ∈ B ×K; v(a1(y))�1v(x− c(y))�2v(a2(y)) ∧ P ?
k (λ(x− c(y)))}.

Let tk = λ(x − c(y)), b1(y) = λa1(y) and b2(y) = λa2(y). We have to prove
the existence of a definable function g : B 7→ K whose graph is included in the
set {(y, t) ∈ B × K; v(b1(y))�1kv(t)�2v(b2(y))}. Let M be a family of coset
representatives modulo Pk, such that for any µ ∈M , 0 ≤ v(µ) ≤ k. Then the sets
Bµ = B ∩ P ?

k (µb1(y)) partition B into definable sets on which v(b1(y)) = −v(µ)
modulo k. Put b(y) = µb1(y), then v(b(y)) is a multiple of k on Bµ. Hence we
may suppose that for all y ∈ B, v(b(y)) is a multiple of k.

Now we follow the lines of the proof of Lemma (2.4) of [D1]. Let π be a
fixed element of K such that v(π) = 1, and for x 6= 0, let ac(x) = xπ−v(x). By
Lemma (2.1) of [D1], there exists a definable function θ(y) from B to K such
that v(θ(y)) = v(b(y)) and v(ac(θ(y))− 1) > 2v(k) (here θ is definable instead of
semi-algebraic since b is definable). By applying (2.5) with f(X) = Xk − ac(θ(y))
and the approximate solution 1, for every y ∈ B there exists a unique η(y) ∈ K
such that η(y)k = ac(θ(y)) and v(η(y) − 1) > v(k). The function g defined from
B to K by g(y) = η(y)πv(b(y))/k is clearly definable and, forall y ∈ B,

v(g(y)) =
v(b(y))
k

.

Therefore, the function g is suitable in the case where �1 is ≤.
The other cases are similar. �

Acknowledgement: I would like to thank E. Bouscaren, F. Delon and D. Macpher-
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