Cell decomposition for P-minimal fields

Marie-Hélène Mourgues

November 10, 2008

Abstract In [S-vdD] P. Scowcroft and L. van den Dries prove a Cell Decomposition Theorem for p-adically closed fields. We work here with the notion of P-minimal fields defined by D. Haskell and D. Macpherson in [H-Mph]. We prove that a P-minimal field K admits cell decomposition if and only if K has definable selection. A preprint version in French of this result appeared as a prepublication [M].

1 Introduction

A p-valued field is a valued field (K, v) of characteristic 0 such that v(p) = 1 with valuation group vK and residue field K/v of characteristic p. The residue field is a finite algebraic extension of \mathbb{F}_p ; the degree of this extension, denoted by d is called the rank of (K, v). A p-valued field of rank d is said to be p-adically closed if it does not admit any proper algebraic extension to a p-valued field of the same rank. A characterisation of the p-adically closed fields of rank d is given in [P-R]: a p-valued field is p-adically closed if and only if it is Henselian and its value group is a \mathbb{Z} -group.

We denote by $L_d = \{+, -, ., 0, 1, Div, (P_n)_{n>1}, c_1, \cdots, c_d\}$ Macintyre's language for p-adically closed fields of rank d. If (K, v) is a p-valued field whose value group is a \mathbb{Z} -group, the language is interpreted as follows. For each n>1, $K \models P_n(x)$ if and only if $\tilde{K} \models \exists y(x=y^n)$ where \tilde{K} is the p-adic closure of K. We will use P_n^* to abbreviate the formula $P_n(x) \land x \neq 0$. The binary predicate Div is interpreted by Div(a,b) if and only if $v(a) \leq v(b)$. The c_i are interpreted in K as a basis of the residue field over \mathbb{F}_p . A. Prestel and P. Roquette [P-R], generalizing the theorem of Macintyre [Ma], have shown that in this language, the theory of p-adically closed fields of rank d admits elimination of quantifiers. Then, in this language, the definable subsets of K^n are exactly the semi-algebraic.

Let L'_d be any language extending L_d , we recall from [H-Mph] the definition of a P-minimal L'_d -structure, which is the analogue in the p-adic case of o-minimality in the real case.

Definition 1.1 Let K be an L'_d -structure. We say that K is P-minimal if for every K' elementary equivalent to K, every definable subset of K' is quantifier free definable by an L_d -formula.

Haskell and Macpherson carry on the analogy by showing that any P-minimal field is p-adically closed. In the same paper, they ask whether P-minimal fields admit cell decomposition.

We prove here, (3.5) and (4), that a P-minimal field K admits a cell decomposition if and only if K has definable selection (3.2).

R. Cluckers [C1] and [C2] proved a Cell Decomposition Theorem for subanalytic sets of finite field extensions of \mathbb{Q}_p which also gives a preparation result for definable functions.

Hans Schoutens in [Sc] introduced a notion of t-minimality and proved independently a Cell Decomposition Theorem for strongly t-minimal structures with definable selection which include the P-minimal case. He also proves that in some t-minimal structures cell decomposition implies definable selection.

2 Preliminaries

The starting point of our work is the Cell Decomposition Theorem given for p-adically closed fields in [S-vdD]:

Proposition 2.1 [S-vdD] Let K be a p-adically closed field of p-rank d. Let S be a semi-algebraic subset of K^n and $f: S \mapsto K$ a definable function. Then there is a partition of S into finitely many definable sets on each of which f is continuous. Each set in the partition either is open in K^n or has no interior and is homeomorphic by a bicontinuous projection onto certain of the coordinate axes to an open subset of K^l , where l < n.

Then, they obtain for the field \mathbb{Q}_p of p-adic numbers a result of cylindric algebraic decomposition using Denef's Theorem (here |x| means $p^{-v(x)}$):

Theorem 2.2 [D2]: Let $f_i(x,t) \in \mathbb{Q}_p[x,t], i = 1, \dots, r, \ x = (x_1, \dots x_m), t$ one variable. Let $n \in \mathbb{N}$, n > 0, be fixed. Then there exists a finite partition of \mathbb{Q}_p^m into subsets A of the form

$$A = \{(x,t) \in \mathbb{Q}_p^{m+1}; x \in C, |a_1(x)| |a_1| |t - c(x)| |a_2| |a_2$$

where C is a definable subset of \mathbb{Q}_p^m and \square_1 (resp. \square_2) denotes either <, \leq , or no condition, and a_1 , a_2 , c are definable functions from \mathbb{Q}_p^m to \mathbb{Q}_p such that for all $(x,t) \in A$, we have

$$f_i(x,t) = u_i(x,t)^n h_i(x) (t - c(x))^{\nu_i}, \text{ for } i = 1, \dots, r$$

with $u_i(x,t)$ a unit in \mathbb{Z}_p , h_i a definable function from \mathbb{Q}_p^m to \mathbb{Q}_p and $\nu_i \in \mathbb{N}$

As noticed in [S-vdD] Denef's Theorem is still true for finite extensions of \mathbb{Q}_p and therefore for every p-adically closed fields of rank d which are elementary equivalent to a finite extension of \mathbb{Q}_p . So it follows that the cylindric algebraic decomposition is again true for any p-adically closed field.

We will add the hypothesis of definable selection (3.2) to obtain a Cell Decomposition Theorem in the P-minimal case.

The next two results come from [H-Mph] and will be of great use in what follows. The topological dimension topdim(S) of a definable subset S of K^n is the greatest integer $k \leq n$ for which there is a projection $\pi: K^n \mapsto K^k$ such that $\pi(S)$ has non empty interior in K^k . Haskell and Macpherson show that topological dimension is well-behaved, i.e.

$$topdim(S_1 \cup \cdots \cup S_m) = max\{topdim(S_1), \cdots, topdim(S_m)\}.$$

Proposition 2.3 [H-Mph] Let K be a P-minimal field and $f: K \mapsto K$ be a definable partial function. Then, there is an open subset U of dom(f) such that dom(f) - U is finite and $f|_{U}$ is continuous.

Proposition 2.4 [H-Mph] Let n > 0 and $f : K^n \mapsto K$ be a definable partial function, and let X = dom(f).

Let $Y = \{y \in X : f \text{ is defined and continuous in a neighbourhood of } y\}$. Then $topdim(X \setminus Y) < n$.

We will use in the last section the following version of Hensel's Lemma.

Lemma 2.5 Let K be a p-adically closed field and let \mathcal{O} be its valuation ring. Let $f(X) \in \mathcal{O}[X]$ and f'(X) denotes its derivative. Suppose that there exists $a \in \mathcal{O}$ such that v(f(a)) > 2v(f'(a)). Then there exists a unique $b \in K$ such that f(b) = 0 and v((b-a)) > v(f'(a)).

3 Cell decomposition for P-minimal fields

In the following, we consider P-minimal fields of fixed rank d. For simplification we write L instead of L_d and L' instead of L'_d . Definable will always mean definable with parameters. An L-definable subset of K^n will be called semi-algebraic and definable will always means L'-definable.

From P-minimality by a classical model-theoretic compactness argument we get:

Lemma 3.1 For any L'-definable set $S' \subset K^{n+1}$ there exists m and a semi-algebraic subset S of K^{m+1} such that for each $y \in K^n$ there is $z \in K^m$ with $S'_y = S_z$, where S'_y denotes the fiber at y of S'.

In other words, if $\phi(y,x)$ is an L'-formula defining S' then there exists a quantifier free L-formula $\psi(z,x)$ such that $K \models \forall y \exists z \forall x (\phi(y,x) \Leftrightarrow \psi(z,x))$.

Definition 3.2 Let K be a structure over a language L. We say that K admits definable selection if for any definable set $S \subset K^{n+m}$ there exists a definable function $g: \pi(S) \mapsto K^m$ whose graph is contained in S (where $\pi: K^{n+m} \mapsto K^n$ is the projection map).

Throughout this section, K will denote a P-minimal L'-structure with definable selection. Then, the following lemma holds:

Lemma 3.3 Let S' be a L'-definable subset of K^{n+1} . Let $\pi_n : K^{n+1} \mapsto K^n$ be the projection map. There exists m and a semi-algebraic subset S of K^{m+1} and a L'-definable function f from $\pi_n(S')$ to K^m such that for any $y \in \pi_n(S')$,

$${x \in K; (y, x) \in S'} = {x \in K; (f(y), x) \in S}.$$

Proof: Let $\phi(y,x)$ be a L'-formula defining S'. Let S be a semi-algebraic subset of K^{m+1} given by (3.1) and $\psi(z,x)$ a L-formula defining S. Let $F(y,z) = \forall x(\phi(y,x) \Leftrightarrow \psi(z,x))$. We apply definable selection to the L'-definable set $A = \{(y,z) \in K^{n+m}; K \models F(y,z)\}$. Let $\pi: K^{n+m} \mapsto K^n$ as in (3.2). Then there exists a definable function $f: \pi(A) \mapsto K^m$ whose graph is contained in A. By (3.1), $\pi_n(S') \subset \pi(A)$, hence, for any $y \in \pi_n(S')$, $\{x \in K; (y,x) \in S'\} = \{x \in K; (f(y),x) \in S\}$. \square

Now, let us formulate a precise definition of cells in the sense of [vdD]

Definition 3.4 Let (i_1, \dots, i_n) be a sequence of zeros and ones of length n. An (i_1, \dots, i_n) -cell is a definable subset of K^n defined by induction on n as follows:

1. A(0)-cell is a point of K and a(1)-cell is of the form

$$\{x \in K; \gamma_1 < v(x-c) < \gamma_2 \land P_k^{\star}(\lambda(x-c))\}$$

where $\gamma_1, \gamma_2 \in v(K) \cup \{-\infty, \infty\}$; c the center of the cell, is in K; $k \in \mathbb{N}$ and λ is chosen from a fixed finite set of coset representatives of P_k^* in K^* .

2. Suppose that (i_1, \dots, i_n) -cells are already defined. Then an $(i_1, \dots, i_n, 0)$ -cell is the graph of a definable continuous function from an (i_1, \dots, i_n) -cell to K. And an $(i_1, \dots, i_n, 1)$ -cell is a set of the form

$$\{(y,x) \in C \times K; v(a_1(y)) \square_1 v(x-c(y)) \square_2 v(a_2(y)) \wedge P_{\nu}^{\star}(\lambda(x-c(y)))\}$$

where C is an (i_1, \dots, i_n) -cell, a_1, a_2, c are definable continuous functions on C, λ is as in (1) and \square_1 and \square_2 are either \leq , < or no condition.

Note that the $(1, \dots, 1)$ -cells are exactly the cells which are open in their ambient space K^n and are called **open cells**. Let C be a (i_1, \dots, i_n) -cell. Then topdim(C) = k where k is the number of i_l equal to 1. If $\pi : K^n \mapsto K^k$ is the projection onto the k axes corresponding to indexes i_l equal to 1, then π maps C homeomorphically onto an open cell of K^k . Each cell is locally closed.

Theorem 3.5 Let K be a P-minimal L'-structure with definable selection. For each $n \in \mathbb{N}$,

 I_n If S' is a definable subset of K^n , then S' can be partitioned in finitely many cells of K^n .

 II_n Given a definable function $f: S' \mapsto K$ where S' is a definable subset of K^n , there exists a finite partition of S' into cells such that the restriction of f to each cell is continuous.

Remark 3.6 When each occurrence of the word "definable" is replaced by "semi-algebraic", Theorem (3.5) follows easily from Denef and Scowcroft-van den Dries results recalled in the above preliminaries. In this case we will speak of semi-algebraic cell decomposition and we will refer to this result by SACD.

Proof: We will prove I_n and then II_n by induction on n.

 I_1 follows from P-minimality and the cell decomposition for p-adically closed fields (2.1) and II_1 follows from I_1 and (2.3).

Assume I_i and II_i for $i \leq n$. So let S' be a definable subset of K^{n+1} . Let π_n be the usual projection $\pi_n : K^{n+1} \mapsto K^n$ onto the first n axes. Let $S \in K^{m+1}$ be a semi-algebraic set and $f : \pi_n(S') \mapsto K^m$ a definable function given by (3.3), i.e. such that for any $y \in \pi_n(S')$

$${x \in K; (y, x) \in S'} = {x \in K; (f(y), x) \in S}.$$

By SACD, S is a finite partition of semi-algebraic cells. We call B any such cell and we denote by C the projection of B onto the first m axes. Now, by our inductive hypothesis Π_n , for each co-ordinate function f_i of f, there is finite decomposition into cells of $\pi_n(S')$, such that the restriction of f_i to each cell is continuous. Thus we can find a finite decomposition of $\pi_n(S')$ into cells C' such that the restriction of f to each cell is continuous. For each C and C' in the previous partitions, consider the set $T = \{y \in K^n; y \in C' \text{ and } f(y) \in C\}$. Since T is a definable set of K^n , the inductive hypothesis I_n tell us that T is a finite union of cells of K^n . Take A' a fixed cell of this partition of T, then we will show that the set $B' = \{(y, x) \in A' \times K; (f(y), x) \in B\}$ is a cell of K^{n+1} contained in S'.

Assume first that B is an $(i_1, \dots, i_m, 1)$ -cell of K^{m+1} , i.e.

$$B = \{(z, x) \in C \times K; v(a_1(z)) \square_1 v(x - c(z)) \square_2 v(a_2(z)) \land P_k^{\star}(\lambda(x - c(z)))\}$$

where C is here a semi-algebraic (i_1, \dots, i_m) -cell, and a_1, a_2, c are semi-algebraic continuous functions on C. Then,

$$B' = \{(y, x) \in A' \times K; v(a_1(f(y))) \square_1 v(x - c(f(y))) \square_2 v(a_2(f(y))) \land P_k^{\star}(\lambda(x - c(f(y))))\}.$$

Since f is continuous on A' and $f(A') \subset C$, $a_2 \circ f$, $a_1 \circ f$ and $c \circ f$ are definable continuous functions, thus B' is a cell of K^{n+1} .

Assume now that B is the graph of a semi-algebraic function $g: C \mapsto K$. Then B' is the graph of the definable function $h: A' \mapsto K$ defined by h(y) = g(f(y)). Hence B' in this case again is a cell of K^{n+1} .

Morever, it is clear that S' is the finite union of the cells B' obtained from the cells B which partition S, the cells C' which partition $\pi_n(S')$, and for each corresponding T, the cells A' which partition T. Therefore I_{n+1} is established.

We will now derive II_{n+1} from I_i , II_i , $i \leq n$ and I_{n+1} .

Let again S' be a definable subset of K^{n+1} and $g: S' \mapsto K$ be a definable function. Because of I_{n+1} it suffices to show that S' can be partitioned into finitely many definable sets such that the restriction of g to each set is continuous. Again by I_{n+1} we can assume without loss of generality that S' is already a cell. If the cell S' is not open in K^{n+1} we are done by using our inductive hypothesis on $\pi(S')$ where π is the projection on the k = topdim(S') axes defined in section 2. Since k < n+1, the set $\pi(S')$ can be partitioned into finitely many cells on which $g \circ \pi^{-1}$ is continuous which leads directly to the conclusion.

Suppose now that S' is an open cell of K^{n+1} . Let

$$U' = \{y \in S'; g \text{ is continuous at a neighbourhood of } y\}.$$

By (2.3) and (2.4) we have $topdim(S' \setminus U') < n + 1$. As above, by inductive hypothesis Π_i , $i \leq n$, $S' \setminus U'$ can be partitioned into cells on which the restriction of g is continuous. Since U' is definable, the conclusion holds. \square

Assertion II_2 can be refined as follows:

Proposition 3.7 Let C be a 1-cell and $f: C \times K \mapsto K$ an L'-definable function such that for any $x \in C$, the function $y \mapsto f(x,y)$ is continuous on K. Then there are 1-cells C_1, \dots, C_n whose union is co-finite in C such that f is continuous on each $C_i \times K$.

Proof: By Theorem (3.5) there is a finite partition of C in points and 1-cells C_1, \dots, C_n and for any i a partition of $C_i \times K$ in cells which are either the graphs $\Gamma_{i,j}$ of K-definable functions $c_{i,j}$ continuous on C_i or sets of the form

$$D_{i,j} = \{(x,y) \in C_i \times K; v(a_{i,j}(y)) \square_1 v(x - c_{i,j}) \square_2 v(b_{i,j}(y)) \land P_k(\lambda(x - c_{i,j}(y))) \}$$

such that the restriction of f to each $\Gamma_{i,j}$ and $D_{i,j}$ is continuous. In order to prove that f is continuous on every $C_i \times K$, it suffices to show that f is continuous at each point $(x, c_{i,j}(x))$. So let c be one of the functions $c_{i,j}$ and (x, c(x)) a point of the graph $\Gamma_{i,j}$. Using the facts that the function $y \mapsto f(x,y)$ is continuous on K for any $x \in C_i$, the function f is continuous on the graph $\Gamma_{i,j}$, and the function c is continuous on C_i , we get that for any $\beta \in v(K)$ there is $\alpha \in v(K)$ such that, if $\min(v(x-x'), v(c(x)-y') > \alpha)$ then

$$v(f(x,c(x)) - f(x',y'))$$

$$\geq \min\{v(f(x,c(x))-f(x',c(x')),v(f(x',c(x'))-f(x',c(x))),v(f(x',c(x))-f(x',y'))\} \\ \geq \beta.$$

This gives the continuity of f at (x, c(x)). \square

4 The converse

The hypothesis of definable selection might seem too strong. However, we can verify that it is necessary:

Proposition 4.1 Let K be an L'_d -structure which is P-minimal. If K satisfies I_n for all $n \in \mathbb{N}$ then K admits definable selection.

Proof: It suffices to adapt the proof of the existence of semi-algebraic selection given in the appendix of [D-vdD]. Let S be a definable subset of K^{n+m} . Without loss of generality, we may assume that m=1, because the general case then follows by induction on m. By I_{n+1} , S is a finite union of cells. So, it is enough to prove that, for any definable cell C of K^{n+1} , there exists a definable function $f: \pi(C) \mapsto K$, whose graph is included in C. In the case where C is an $(i_1, \dots, i_n, 0)$ -cell of the form $\{(y, x) \in B \times K; x = c(y)\}$, the function c is suitable. Let us now consider the case where C is a $(i_1, \dots, i_n, 1)$ -cell, i.e.

$$C = \{(y, x) \in B \times K; v(a_1(y)) \square_1 v(x - c(y)) \square_2 v(a_2(y)) \land P_k^{\star}(\lambda(x - c(y)))\}.$$

Let $t^k = \lambda(x - c(y))$, $b_1(y) = \lambda a_1(y)$ and $b_2(y) = \lambda a_2(y)$. We have to prove the existence of a definable function $g: B \mapsto K$ whose graph is included in the set $\{(y,t) \in B \times K; v(b_1(y)) \Box_1 k v(t) \Box_2 v(b_2(y))\}$. Let M be a family of coset representatives modulo P_k , such that for any $\mu \in M$, $0 \le v(\mu) \le k$. Then the sets $B_{\mu} = B \cap P_k^{\star}(\mu b_1(y))$ partition B into definable sets on which $v(b_1(y)) = -v(\mu)$ modulo k. Put $b(y) = \mu b_1(y)$, then v(b(y)) is a multiple of k on B_{μ} . Hence we may suppose that for all $y \in B$, v(b(y)) is a multiple of k.

Now we follow the lines of the proof of Lemma (2.4) of [D1]. Let π be a fixed element of K such that $v(\pi)=1$, and for $x\neq 0$, let $ac(x)=x\pi^{-v(x)}$. By Lemma (2.1) of [D1], there exists a definable function $\theta(y)$ from B to K such that $v(\theta(y))=v(b(y))$ and $v(ac(\theta(y))-1)>2v(k)$ (here θ is definable instead of semi-algebraic since b is definable). By applying (2.5) with $f(X)=X^k-ac(\theta(y))$ and the approximate solution 1, for every $y\in B$ there exists a unique $\eta(y)\in K$ such that $\eta(y)^k=ac(\theta(y))$ and $v(\eta(y)-1)>v(k)$. The function g defined from g to g by g by g by g clearly definable and, for all g constants g is clearly definable and, for all g is g and g and g is clearly definable and, for all g is g and g is g and g is clearly definable and, for all g is g in g in g is g.

$$v(g(y)) = \frac{v(b(y))}{k}.$$

Therefore, the function g is suitable in the case where \square_1 is \leq . The other cases are similar. \square

Acknowledgement: I would like to thank E. Bouscaren, F. Delon and D. Macpherson for many helpful remarks.

References

[C1] R. Cluckers, Model theory of valued fields, in Model theory and applications, 73–85, Quad. Mat., Vol. 11, Aracne, Rome, (2002).

- [C2] R. Cluckers, Analytic p-adic cell decomposition and integrals. Trans. Amer. Math. Soc. 356 (2004), no. 4, 1489–1499.
- [D1] J. Denef, p-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154–166.
- [D2] J. Denef, The rationality of the Poincaré series associated to the *p*-adic points on a variety, *Inventiones mathematicae*, vol. 77, (1984).
- [D-vdD] J. Denef and L. van den Dries, p-adic and real subanalytic sets, Annals of Maths. 128 (1988), 79–138.
- [H-Mph] D. Haskell, H.D. Macpherson, A version of o-minimality for the *p*-adics, J. Symbolic Logic, vol 62 (1997), 1075–1092.
- [H-Mph-vdD] D.Haskell, H.D. Macpherson, L. van den Dries, One dimensional p-adic subanalytic sets, J. London Math. Soc. (2) 59 (1995), 1–20.
- [M] M.-H. Mourgues, Corps *P*-minimaux avec fonctions de Skolem définissables, preprint, Séminaire de structures algèbriques ordonnées, 72, Equipe de Logique Mathématique, (2000).
- [Ma] A. Macintyre, On definable subsets of p-adics fields, J. Symbolic Logic, vol 41 (1976), 605–610.
- [P-R] A.Prestel, P.Roquette, Formally p-adic fields, Lectures Notes in Mathematics, no. 1050, Springer verlag, Berlin, (1984).
- [Sc] H. Schoutens, t-minimality, preprint (2001).
- [S-vdD] P. Scowcroft, L. van den Dries, Semi algebraic sets over p-adic field, J. Symbolic Logic, 53, (1988), 1138–1164.
- [vdD] L. van den Dries, Tame Topology and o-minimal Structures, *London mathematical Society Lecture Note* Series 248, Cambridge University Press (1998).

Equipe de Logique Mathématique UFR de Mathématiques Université Denis-Diderot Paris 7 2 place Jussieu 75251 Paris Cedex 05 France E-mail: mhm@logique.jussieu.fr