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Abstract In [S-vdD] P. Scowcroft and L. van den Dries prove a Cell Decom-
position Theorem for p-adically closed fields. We work here with the notion of
P-minimal fields defined by D. Haskell and D. Macpherson in [H-Mph]. We prove
that a P-minimal field K admits cell decomposition if and only if K has definable

selection. A preprint version in French of this result appeared as a prepublication
[M].

1 Introduction

A p-valued field is a valued field (K, v) of characteristic 0 such that v(p) = 1 with
valuation group vK and residue field K /v of characteristic p. The residue field
is a finite algebraic extension of F); the degree of this extension, denoted by d is
called the rank of (K, v). A p-valued field of rank d is said to be p-adically closed
if it does not admit any proper algebraic extension to a p-valued field of the same
rank. A characterisation of the p-adically closed fields of rank d is given in [P-R]:
a p-valued field is p-adically closed if and only if it is Henselian and its value group
is a Z-group.

We denote by Ly = {+,—,.,0,1, Div, (P,)n>1,¢1,- - ,cq} Macintyre’s lan-
guage for p-adically closed fields of rank d. If (K,v) is a p-valued field whose
value group is a Z-group, the language is interpreted as follows. For each n > 1,
K | P, () if and only if K }= Jy(x = y™) where K is the p-adic closure of K. We
will use P} to abbreviate the formula P,(z) A z # 0. The binary predicate Div is
interpreted by Div(a,b) if and only if v(a) < v(b) . The ¢; are interpreted in K as
a basis of the residue field over F,,. A. Prestel and P. Roquette [P-R], generalizing
the theorem of Macintyre [Ma], have shown that in this language, the theory of
p-adically closed fields of rank d admits elimination of quantifiers. Then, in this
language, the definable subsets of K" are exactly the semi-algebraic.

Let L/, be any language extending Lg, we recall from [H-Mph]| the definition of
a P-minimal L'-structure, which is the analogue in the p-adic case of o-minimality
in the real case.

Definition 1.1 Let K be an L;-structure. We say that K is P-minimal if for
every K' elementary equivalent to K, every definable subset of K' is quantifier
free definable by an Lg-formula.



Haskell and Macpherson carry on the analogy by showing that any P-minimal
field is p-adically closed. In the same paper, they ask whether P-minimal fields
admit cell decomposition.

We prove here, (3.5) and (4), that a P-minimal field K admits a cell decom-
position if and only if K has definable selection (3.2).

R. Cluckers [C1] and [C2] proved a Cell Decomposition Theorem for subana-
lytic sets of finite field extensions of QQ, which also gives a preparation result for
definable functions.

Hans Schoutens in [Sc] introduced a notion of ¢-minimality and proved inde-
pendently a Cell Decomposition Theorem for strongly t-minimal structures with
definable selection which include the P-minimal case. He also proves that in some
t-minimal structures cell decomposition implies definable selection.

2 Preliminaries

The starting point of our work is the Cell Decomposition Theorem given for p-
adically closed fields in [S-vdD]:

Proposition 2.1 [S-vdD] Let K be a p-adically closed field of p-rank d. Let S
be a semi-algebraic subset of K™ and f : S — K a definable function. Then
there is a partition of S into finitely many definable sets on each of which f is
continuous. Fach set in the partition either is open in K™ or has no interior and
18 homeomorphic by a bicontinuous projection onto certain of the coordinate axes
to an open subset of K', where | < n.

Then, they obtain for the field Q, of p-adic numbers a result of cylindric algebraic
decomposition using Denef’s Theorem (here |z| means p~*(*)):

Theorem 2.2 [D2]: Let fi(z,t) € Qplz,t],i = 1,---,7r, x = (z1, - Tm),t one
variable. Let n € N, n > 0, be fived. Then there exists a finite partition of Q'
into subsets A of the form

A=A{(z,t) € Qg2 € G Jar(2))|Oult — e(w)|Dzlaz ()|}

where C is a definable subset of Q) and Uy (resp. Uy) denotes either <, <, or
no condition, and a1, az, c are definable functions from Q' to Qp such that for
all (z,t) € A, we have

fi(z,t) = wi(z, t)"hi(z)(t — c(x))"?, fori=1,---,r
with ui(z,t) a unit in Zy, h; a definable function from Q' to Q, and v; € N

As noticed in [S-vdD] Denef’s Theorem is still true for finite extensions of Q,
and therefore for every p-adically closed fields of rank d which are elementary
equivalent to a finite extension of @,. So it follows that the cylindric algebraic
decomposition is again true for any p-adically closed field.



We will add the hypothesis of definable selection (3.2) to obtain a Cell Decom-
position Theorem in the P-minimal case.

The next two results come from [H-Mph] and will be of great use in what
follows. The topological dimension topdim(S) of a definable subset S of K™ is the
greatest integer & < n for which there is a projection 7 : K™ + K* such that 7(S)
has non empty interior in K*. Haskell and Macpherson show that topological
dimension is well-behaved, i.e.

topdim (S, U ---USy,) = max{topdim(Si),- - ,topdim(Sp,)}.

Proposition 2.3 [H-Mph/ Let K be a P-minimal field and f : K — K be a
definable partial function. Then, there is an open subset U of dom(f) such that
dom(f) — U is finite and f is continuous.

Proposition 2.4 [H-Mph] Let n > 0 and f : K™ — K be a definable partial
function, and let X = dom(f).

Let Y = {y € X : fis defined and continuous in a neighbourhood of y}. Then
topdim (X\Y) < n.

We will use in the last section the following version of Hensel’s Lemma.

Lemma 2.5 Let K be a p-adically closed field and let O be its valuation ring.
Let f(X) € O[X] and f'(X) denotes its derivative. Suppose that there exists
a € O such that v(f(a)) > 2v(f'(a)). Then there exists a unique b € K such that

F() =0 and v((b — a)) > v(f'(a)).

3 Cell decomposition for P-minimal fields

In the following, we consider P-minimal fields of fixed rank d. For simplification
we write L instead of Ly and L' instead of L/;. Definable will always mean definable
with parameters. An L-definable subset of K™ will be called semi-algebraic and
definable will always means L’-definable.

From P-minimality by a classical model-theoretic compactness argument we
get:

Lemma 3.1 For any L'-definable set ' C K" there evists m and a semi-
algebraic subset S of K™ such that for each y € K" there is z € K™ with
S, = S., where S, denotes the fiber at y of S'.

In other words, if ¢(y, x) is an L’-formula defining S’ then there exists a quantifier
free L-formula 1 (z, x) such that K |= Vy3zVz(o(y, z) < ¥(z,x)).

Definition 3.2 Let K be a structure over a language L. We say that K admits
definable selection if for any definable set S C K"™t™ there exists a definable
function g : mw(S) — K™ whose graph is contained in S (where w : K"t™ — K"
is the projection map).



Throughout this section, K will denote a P-minimal L’-structure with definable
selection. Then, the following lemma holds:

Lemma 3.3 Let S’ be a L'-definable subset of K"t'. Let m, : K" — K" be
the projection map. There exists m and a semi-algebraic subset S of K™t and a
L'-definable function f from m,(S") to K™ such that for any y € m,(S’),

{r e K;(y,x) € '} = {z € K;(f(y),z) € S}.

Proof: Let ¢(y,x) be a L'-formula defining S’. Let S be a semi-algebraic sub-
set of K™*! given by (3.1) and ¢(z,7) a L-formula defining S. Let F(y,z) =
Vo (p(y, ) < (z,2)). We apply definable selection to the L’-definable set A =
{(y,2) € K" K &= F(y,2)}. Let 7 : K" +— K" as in (3.2). Then there
exists a definable function f : m(A) — K™ whose graph is contained in A. By
(3.1), mp(S") C w(A), hence, for any y € m,(5'), {z € K;(y,z) € S’} = {z €
K (f(y),2) € $}. O

Now, let us formulate a precise definition of cells in the sense of [vdD]

Definition 3.4 Let (i1,--- ,in) be a sequence of zeros and ones of length n. An
(i1, ,in)-cell is a definable subset of K™ defined by induction on n as follows:

1. A (0)-cell is a point of K and a (1)-cell is of the form
{reKiyi <v(x—c) <y APi(Az—2c)}

where y1,7v2 € v(K)U{—00,00}; ¢ the center of the cell, is in K; k € N and
A is chosen from a fived finite set of coset representatives of Py in K*.

2. Suppose that (i1, -+ ,ip)-cells are already defined.
Then an (i1,- -+ ,ipn,0)-cell is the graph of a definable continuous function
from an (i1, ,iy)-cell to K. And an (i1, - ,in, 1)-cell is a set of the form

{(y,2) € C x K;v(a1(y))Div(z — c(y))Dav(az(y)) A Pr(Mx —c(y)))}

where C is an (i1, -+ ,in)-cell, a1,as,c are definable continuous functions
on C, Xis as in (1) and Oy and Oy are either <, < or no condition.

Note that the (1,---,1)-cells are exactly the cells which are open in their
ambient space K™ and are called open cells. Let C be a (i1,--- ,i,)-cell. Then
topdim(C) = k where k is the number of i; equal to 1. If 7 : K" — KF is the
projection onto the k axes corresponding to indexes 4; equal to 1, then m maps C
homeomorphically onto an open cell of K*. Each cell is locally closed.

Theorem 3.5 Let K be a P-minimal L' -structure with definable selection.
For each n € N,

I, If S’ is a definable subset of K", then S’ can be partitioned in finitely many
cells of K™.



II, Given a definable function f : S — K where S’ is a definable subset of K™,
there exists a finite partition of S’ into cells such that the restriction of f to
each cell is continuous.

Remark 3.6 When each occurrence of the word “definable” is replaced by “semi-
algebraic”, Theorem (3.5) follows easily from Denef and Scowcroft-van den Dries
results recalled in the above preliminaries. In this case we will speak of semi-
algebraic cell decomposition and we will refer to this result by SACD.

Proof: We will prove I,, and then II,, by induction on n.

I; follows from P-minimality and the cell decomposition for p-adically closed
fields (2.1) and II; follows from I; and (2.3).

Assume I; and II; for i < n. So let S’ be a definable subset of K", Let 7,
be the usual projection m, : K"t — K™ onto the first n axes. Let S € K™ be
a semi-algebraic set and f : m,(S’) — K™ a definable function given by (3.3), i.e.
such that for any y € m,(S")

{re K;(y,2) € 8"} ={z € K;(f(y),z) € S}.

By SACD, S is a finite partition of semi-algebraic cells. We call B any such cell and
we denote by C the projection of B onto the first m axes. Now, by our inductive
hypothesis II,,, for each co-ordinate function f; of f, there is finite decomposition
into cells of 7, (S”), such that the restriction of f; to each cell is continuous. Thus
we can find a finite decomposition of 7, (S") into cells C’ such that the restriction
of f to each cell is continuous. For each C' and C’ in the previous partitions,
consider the set T' = {y € K™y € C" and f(y) € C}. Since T is a definable
set of K", the inductive hypothesis I,, tell us that 7T is a finite union of cells of
K™ Take A’ a fixed cell of this partition of T, then we will show that the set
B'={(y,x) € A" x K;(f(y),r) € B} is a cell of K"! contained in S’.
Assume first that B is an (i1, ,im, 1)-cell of K™ i.e.

B ={(z2) € O x K;v(a1(2))D1v(x — ¢(2))Dav(az(2)) A PE (M@ — ¢(2)))}

where C' is here a semi-algebraic (i1,--- ,im,)-cell, and aj, as, ¢ are semi-algebraic
continuous functions on C'. Then,

B'={(y,z) € A'xK;v(a1(f()))Drv(z—c(f(y)))Dav(az(f () APE (Az—c(f ()}

Since f is continuous on A’ and f(A’) C C, azo f, a; o f and co f are definable
continuous functions, thus B’ is a cell of K" t1.

Assume now that B is the graph of a semi-algebraic function g : C'+— K. Then
B’ is the graph of the definable function h : A’ — K defined by h(y) = g(f(v)).
Hence B’ in this case again is a cell of K",

Morever, it is clear that S’ is the finite union of the cells B’ obtained from
the cells B which partition S, the cells C" which partition ,(S’), and for each
corresponding T, the cells A’ which partition 7. Therefore I,,, is established.



We will now derive 11,1 from I;, II;, ¢ <n and I,,1;.

Let again S’ be a definable subset of K"t and g : S’ — K be a definable
function. Because of I,,;1 it suffices to show that S’ can be partitioned into
finitely many definable sets such that the restriction of g to each set is continuous.
Again by I, 1 we can assume without loss of generality that S’ is already a cell.
If the cell S’ is not open in K"! we are done by using our inductive hypothesis
on m(S") where 7 is the projection on the k = topdim(S’) axes defined in section
2. Since k < n + 1, the set 7(S’) can be partitioned into finitely many cells on
which g o 7! is continuous which leads directly to the conclusion.

Suppose now that S’ is an open cell of K"*!. Let

U' = {y € 9'; g is continuous at a neighbourhood of y}.

By (2.3) and (2.4) we have topdim(S"\U’) < n + 1. As above, by inductive
hypothesis II;, i < n, S’\U’ can be partitioned into cells on which the restriction
of g is continuous. Since U’ is definable, the conclusion holds. [J

Assertion Il can be refined as follows:

Proposition 3.7 Let C be a 1-cell and f : C x K — K an L'-definable function
such that for any x € C, the functiony — f(x,y) is continuous on K. Then there
are 1-cells Cy,--- , C, whose union is co-finite in C' such that f is continuous on

each C; x K.

Proof: By Theorem (3.5) there is a finite partition of C' in points and 1-cells
Ci, -+ ,Cy and for any 7 a partition of C; x K in cells which are either the graphs
I'; ; of K-definable functions ¢; ; continuous on Cj or sets of the form

D;; = {(z,y) € Ci x K;v(a;;(y))Div(z — ¢;,j)020(bi j(y) A Pe(AMz — ¢i5(y))) }

such that the restriction of f to each I'; ; and D; ; is continuous. In order to prove
that f is continuous on every C; x K, it suffices to show that f is continuous at
each point (z,¢; j(x)). So let ¢ be one of the functions ¢; ; and (z, ¢(x)) a point of
the graph I'; ;. Using the facts that the function y — f(z,y) is continuous on K
for any = € Cj, the function f is continuous on the graph I'; ;, and the function c
is continuous on Cj;, we get that for any 5 € v(K) there is o € v(K) such that, if
min(v(xz — z'),v(c(z) — y') > a then
v(f(ac,c(:c)) - f(xlu y/))
> minfo(f(z, o(@))— (@', o(@')), v(F (@', e(2'))—F (@, e(@))), v f (&', cl@))— F (s y')}
> 3.

This gives the continuity of f at (x,c(x)). O

4 The converse

The hypothesis of definable selection might seem too strong. However, we can
verify that it is necessary:



Proposition 4.1 Let K be an L)-structure which is P-minimal. If K satisfies I,
for alln € N then K admits definable selection.

Proof: It suffices to adapt the proof of the existence of semi-algebraic selection
given in the appendix of [D-vdD]. Let S be a definable subset of K"*™. Without
loss of generality, we may assume that m = 1, because the general case then
follows by induction on m. By 1,41, S is a finite union of cells. So, it is enough to
prove that, for any definable cell C' of K1, there exists a definable function f :
7m(C) — K, whose graph is included in C. In the case where C is an (i1, - ,ip,0)-
cell of the form {(y,z) € B x K;x = c(y)}, the function c is suitable. Let us now
consider the case where C'is a (i1, - ,in, 1)-cell, i.e.

C ={(y,z) € B x K;v(a1(y))Dhv(z — c(y))Dz2v(az(y)) A P (A — c(y)))}-

Let t* = Az — ¢(y)), bi(y) = Aai(y) and ba(y) = Aaz(y). We have to prove
the existence of a definable function g : B — K whose graph is included in the
set {(y,t) € B x K;v(bi(y))Dikv(t)Oav(ba(y))}. Let M be a family of coset
representatives modulo Py, such that for any p € M, 0 < v(u) < k. Then the sets
B, = BN P} (ub1(y)) partition B into definable sets on which v(b(y)) = —v(u)
modulo k. Put b(y) = ubi(y), then v(b(y)) is a multiple of £ on B,. Hence we
may suppose that for all y € B, v(b(y)) is a multiple of k.

Now we follow the lines of the proof of Lemma (2.4) of [D1]. Let 7 be a
fixed element of K such that v(r) = 1, and for z # 0, let ac(z) = 2r~*®). By
Lemma (2.1) of [D1], there exists a definable function 6(y) from B to K such
that v(0(y)) = v(b(y)) and v(ac(8(y)) — 1) > 2v(k) (here 6 is definable instead of
semi-algebraic since b is definable). By applying (2.5) with f(X) = X* —ac(8(y))
and the approximate solution 1, for every y € B there exists a unique n(y) € K
such that n(y)* = ac((y)) and v(n(y) — 1) > v(k). The function g defined from
B to K by g(y) = n(y)n*CW)/* is clearly definable and, forall y € B,

Therefore, the function ¢ is suitable in the case where [} is <.
The other cases are similar. [J
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