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Abstract

We prove that a countable simple unidimensional theory that elimi-
nates hyperimaginaries is supersimple. This solves a problem of Shelah
in the more general context of simple theories under weak assumptions.

1 Introduction

The notion of a unidimensional theory already appeared (in a different form)
in Baldwin-Lachlan characterization of ℵ1-categorical theories; a countable
theory is ℵ1-categorical iff it is ω-stable and unidimensional (equivalently, T
has no Vaught pairs and is ω-stable). Later, Shelah defined a unidimensional
theory to be a stable theory T in which every two |T |+-staurated models
of the same power are isomorphic, and proved that in the stable context a
theory is unidimensional iff every two non-algebraic types are non-orthogonal.
A problem posed by Shelah was whether any unidimensional stable theory is
superstable. This was answered positively by Hrushovski around 1986 first
in the countable case [H0] and then in full generality [H1]. Taking the right
hand side of Shelah characterization of unidimensional stable theories seems
natural for the simple case. Shelah’s problem extended to this context seems
much harder. In [S3] it was observed that a small simple unidimensional
theory is supersimple. Later, Pillay [P] gave a positive answer for countable
imaginary simple theories with wnfcp (the weak non finite cover property)
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building on the arguments in [H0] and using some machinary from [BPV].
Then using the result on elimination of ∃∞ in simple unidimensional theories
[S1] completed his proof for countable imaginary low theories. In this paper
we prove the result for any countable imaginary simple theory. In general,
the main idea is the dividing line ”T is essentially 1-based” which means
that every type is coordinatized by essentially 1-based types in the sense of
the forking topology (the τ f -topology). In case T is not essentially 1-based
we prove there is an unbounded τ f -open set of finite SU -rank (possibly with
no finite bound); this is a general dichotomy for countable imaginary simple
theories. Then one applies the result in [S2] and a property (PCFT) proved
in the current paper to conclude T is supersimple. If T is essentially 1-based
the proof first reduces the problem to finding a type-definable τ f -open set of
bounded finite SUs-rank (the foundation rank with respect to forking with
stable formulas). In order to show the existence of such sets, we introduce the
notion of a τ̃ fst-set and prove a theorem saying that in any simple theory in
which the extension property is first-order any unbounded τ̃ fst-set contains an
unbounded type-definable τ f -open set (over parameters). Then, in the proof
of the main result we show how unidimensionality of T implies there is a τ̃ fst-
set that by a more precise version of the theorem is in fact a type-definable
τ f -open set over some finite set and is of bounded finite SUs-rank.

2 Preliminaries

We will assume basic knowledge of simple theories as in [K1],[KP],[HKP]. A
good text book on simple theories that covers much more is [W]. We recall
here some other definitions and facts relevant for this paper. In this section
T will be a simple theory and we work in Ceq, the monster model of T eq.

2.1 Interaction

For the rest of this section let P be an A-invariant set of small types and
p ∈ S(A). We say that p is (almost-) P-internal if there exists a realization

a of p and there exists B ⊇ A with
a |̂ B

A
such that for some tuple

c of realizations of types in P over B we have a ∈ dcl(B, c) (respectively,
a ∈ acl(B, c)). We say that p is analyzable in P if there exists a sequence
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I = 〈ai|i ≤ α〉 ⊆ dcleq(aαA) where aα |= p and tp(ai/A ∪ {aj|j < i}) is
P-internal for every i ≤ α. We say that p is foreign P if for every B ⊇ A and

a |= p with
a |̂ B

A
and a realization c of a type in P over B,

a |̂ c
B

.

Also, recall that p ∈ S(A) is said to be orthogonal to some q ∈ S(B) if for
every C ⊇ A ∪ B, for every p̄ ∈ S(C), a non-forking extension of p , and
every q̄ ∈ S(C), a non-forking extension of q, for every realization a of p̄ and

realization b of q̄,
a |̂ b

C
.

We say that T is imaginary (or has elimination of hyperimaginaries) if for
every type-definable over ∅ equivalence relation E on a complete type p (of
a possibly infinite tuple of elements), E is equivalent on p to the intersection
of some definable equivalence relations Ei ∈ L.

Fact 2.1 Let T be an imaginary simple theory. Then
1)If p is not foreign to P, then for a |= p there exists a′ ∈ dcl(Aa)\acl(A)
such that tp(a′/A) is P-internal.
2) p is analyzable in P iff every non-algebraic extension of p is non-foreign
to P.

An easy fact we will be using is the following.

Fact 2.2 Assume tp(ai) are P-internal for i < α. Then tp(〈ai|i < α〉) is
P-internal.

An important characterization of almost-internality is the following fact
[S0, Theorem 5.6.] (a similar result obtained independently in [W, Proposi-
tion 3.4.9]).

Fact 2.3 Let p ∈ S(A) be an amalgamation base and let U be an ∅-invariant
set. Suppose p is almost-U-internal. Then there is a Morley sequence ā in p
and there is a definable relation R(x, ȳ, ā) (over ā only) such that, for every
tuple c̄, R(C, c̄, ā) is finite and for every a′ realizing p, there is some tuple c̄
from U such that R(a′, c̄, ā) holds.

T is said to be unidimensional if whenever p and q are complete non-algebraic
types, p and q are non-orthogonal. From Fact 2.3 and Fact 2.1 it is easy to
deduce the following (using compactness).
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Fact 2.4 Let T be a simple theory. Let p ∈ S(∅) and let θ ∈ L. Assume
p is analyzable in θC. Then p is analyzable in θC in finitely many steps. In
particular, if T is an imaginary simple unidimensional theory and there exists
a non-algebraic supersimple definable set (i.e. a definable set with global D-
rank), then T has finite SU-rank i.e., every complete type has finite SU-rank
(in fact, for every given sort there is a finite bound on the SU-rank of all
types in that sort).

2.2 The forking topology

Definition 2.5 Let A ⊆ C. An invariant set U over A is said to be a basic
τ f -open set over A if there is φ(x, y) ∈ L(A) such that

U = {a|φ(a, y) forks over A}.

Note that the family of basic τ f -open sets over A is closed under finite inter-
sections, thus form a basis for a unique topology on Sx(A).

Definition 2.6 We say that the τ f -topologies over A are closed under pro-
jections (T is PCFT over A) if for every τ f -open set U(x, y) over A the set
∃yU(x, y) is a τ f -open set over A. We say that the τ f -topologies are closed
under projections (T is PCFT) if they are over every set A.

We will make an essential use of the following facts from [S2].

Fact 2.7 Let U be a τ f -open set over a set A and let B ⊇ A be any set.
Then U is τ f -open over B.

Fact 2.8 Let U be an unbounded τ f -open set over some set A. Assume U
has bounded finite SU-rank. Then there exists a set B ⊇ A and θ(x) ∈ L(B)
of SU-rank 1 such that θC ⊆ U ∪ acl(B).

The following theorem ([S2], Theorem 3.11]) generalizes Fact 2.4 but at
the price of PCFT.

Fact 2.9 Assume T is a simple theory with PCFT. Let p ∈ S(A) and let U
be a τ f -open set over A. Suppose p is analyzable in U . Then p is analyzable
in U in finitely many steps.
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3 Unidimensionality and PCFT

We show that if T is any simple theory in which the extension property is first-
order (more generally, if T is semi-PCFT) then T is PCFT. Recall that the
extension property is first-order for T iff for every formulas φ(x, y), ψ(y, z) ∈
L the relations Qφ,ψ defined by: for all a, Qφ,ψ(a) iff ”φ(x, b) does not divide
over a for every b |= ψ(y, a)” are type-definable (see Definition 3.9, part 4).
In this section T is assumed to be simple.

Definition 3.1 We say that T is semi-PCFT over A if for every formula
ψ(x, yz) ∈ L(A) the set {a| ψ(x, ab) forks over Aa for some b} is τ f -open
over A.

Lemma 3.2 If the extension property is first-order then the extension prop-
erty is first-order over every set A. Thus if the extension property is first-
order, then T is semi-PCFT over every set A.

Proof: First, note that the type-definability of the Qφ,ψ-s implies that
the κ-extension property is first-order for every κ ≥ |T |+. Now, if the κ-
extension property is first-order for every κ ≥ |T |+ then, given a (|T |+ |A|)+-
saturated model M∗ = (MA, P (MA)) of the common theory of all pairs of
TA(= Th(C, a)a∈A) satisfying the extension property, M∗|LP is also a model
of the common theory of all pairs of T satisfying the (|T | + |A|)+-extension
property (indeed, every pair of T satisfying the extension property has an el-
ementary extension which is sufficiently saturated and thus has an expansion
to a pair of models of TA). Thus, since we assume the κ-extension property is
first-order for every κ ≥ |T |+, M∗|LP has the (|T |+|A|)+-extension property,
and thus M∗ has the extension property.

Lemma 3.3 Assume T is semi-PCFT over A. Then T is PCFT over A.

Proof: We may clearly assume A = ∅. Let ψ(x, yz) ∈ L. We need to show
that Γ, defined by Γ(a) iff ∀b(ψ(x, ab) dnf over ∅) is a τ f -closed set. Let Γ∗

be defined by: for all a:

Γ∗(a) iff
∧

φ(x,y)∈L
[FKφ(a) → ∀b(ψ(x, ab) ∧ ¬φ(x, a) dnf over a)].

To finish it is sufficient to prove:
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Subclaim 3.4 Γ∗ is τ f -closed and Γ = Γ∗.

Proof: First, by our assumption Γ∗ is τ f -closed. To prove the second part,
first assume Γ(a). Then for any b there is c such that c |̂ ab and ψ(c, ab).
Thus Γ∗(a). Assume now Γ∗(a). Let pinda (x) =

∧ {¬φ(x, a)| φ(x, y) ∈ L, FKφ(a)}.
Let b be arbitrary and let q(x) = pinda (x) ∧ ψ(x, ab). It is enough to show
that q(x) doesn’t fork over a (since any realization of q is independent of a).
Indeed, by Γ∗(a), every finite subset of q(x) doesn’t fork over a, so we are
done.

Corollary 3.5 Suppose the extension property is first-order in T . Then T
is PCFT.

Now we conclude that every unidimensional simple theory is PCFT. Re-
call the following two facts and their corollary. First, let PSU≤1 denote the
class of complete types over sets of size ≤ |T |, of SU -rank ≤ 1.

Fact 3.6 (Pillay) Let T be a simple theory that eliminates ∃∞. Moreover,
assume every non-algebraic type is non-foreign to PSU≤1. Then the extension
property is first-order in T .

Fact 3.7 [S1] Let T be any unidimensional simple theory. Then T elimi-
nates ∃∞.

Corollary 3.8 In any unidimensional simple theory the extension property
is first-order.

We give now an easy generalization of Fact 3.6. Let us first fix some
notations and definitions. By a pair (M,PM) we mean an elementary pair of
models of T , where P is a new predicate symbol. For the rest of this section,
by a small type we mean a complete hyperimaginary type in ≤ |T | variables
over a hyperimaginary of length ≤ |T |.

Definition 3.9 Let P0,P1 be ∅-invariant families of small types.
1) We say that a pair (M,PM) satisfies the extension property for P0 if for
every L-type p ∈ S(A), A ∈ dcl(M) with p ∈ P0 there is a ∈ pM such that
a |̂ PM

A
.
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2) Let

TExt,P0 =
⋂
{ThLP

(M,PM)| the pair (M,PM) satisfies the extension property w.r.t. P0 }.

3) We say that P0 dominates P1 w.r.t. the extension property if (M,PM) sat-
isfies the extension property for P1 for every |T |+-saturated pair (M,PM) |=
TExt,P0. In this case we write P0 �

Ext
P1.

4) We say that the extension property is first-order for P0 if P0 �
Ext
P0. The

extension property is first-order if the extension property is first-order for the
family of all small types.

For an ∅-invariant family P0 of small types we say that P0 is extension-
closed if for all p ∈ P0 if p̄ is any extension of p to a small type, then p̄ ∈ P0.

Lemma 3.10 Let P0 be an ∅-invariant family of small types. Assume P0 is
extension-closed and that the extension property is first-order for P0. Let P∗

be the maximal class of small types such that P0 �
Ext
P∗. Then P∗ ⊇ An(P0)

(where An(P0) is the class of all small types analyzable in P0).

Proof: Note that if the pair (M,PM) satisfies the extension property for
the family of ∅-conjugates of tp(b/A) and for the family of ∅-conjugates of
tp(a/bA) then (M,PM) satisfies the extension property for the family of ∅-
conjugates of tp(ab/A). Thus, since P0 is extension-closed (and the extension
property is first-order for P0) we conclude that if B is any small hyperimag-
inary and a0, a1, ..., an are realizations of some types from P0 over B, then if
(M,PM) is a |T |+-saturated pair and (M,PM) |= TExt,P0 then (M,PM) sat-
isfies the extension property for the family of ∅-conjugates of tp(a0a1...an/B).
Therefore, P∗ ⊇ Int(P0), where Int(P0) denotes the family of small types
internal in P0. By induction we conclude that P∗ ⊇ An(P0).

Remark 3.11 Note that if T eliminates ∃∞ then the extension property is
first-order for PSU≤1 (this was proved in [V, Proposition 2.15]). Thus Lemma
3.10 implies Fact 3.6.

We conclude:

Theorem 3.12 Let T be any unidimenisonal simple theory. Then T is
PCFT.
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Corollary 3.13 Let T be an imaginary simple unidimensional theory. Let
p ∈ S(A) and let U be an unbounded τ f -open set over A. Then p is analyzable
in U in finitely many steps. In particular, for such T the existence of an
unbounded supersimple τ f -open set over some set A implies T is supersimple.

Proof: By Theorem 3.12 every unidimensional theory is PCFT . Thus by
Fact 2.9 and the assumption that T is imaginary and unidimensional, if U is
an unbounded τ f -open set over A, then tp(a/A) is analyzable in U in finitely
many steps for every a ∈ C. Thus, if U is supersimple, SU(a/A) < ω for all
a ∈ C. Thus T is supersimple.

4 Definability of being in the canonical base

In this section we show that in suitable setting the relation R defined by
R(e, a) iff e ∈ acl(Cb(C/a)) is Stone open over C (for a fixed set C).

Definition 4.1 Let C be any set. We say that a set U is a basic τ f∗ -open set
over C if there exists ψ(x, y, C) ∈ L(C) such that U = {a| ψ(x, aC) forks over a}.

First, we note the following claim:

Claim 4.2 For every e, C, a, we have e ∈ acl(Cb(C/a)) iff for every Morley
sequence (Ci|i < ω) of Lstp(C/a) we have e ∈ acl(Ci|i < ω).

Proof: Right to left follows form the well known fact that Cb(C/a) ∈
dcl(Ci|i < ω) for every Morley sequence (Ci|i < ω) of Lstp(C/a). For
the other direction, assume the right hand side. Let (Ci|i < ω · 2) be a
Morley sequence of Lstp(C/a). Let e∗ = Cb(C/a). Then e∗ ∈ bdd(a) and
thus clearly (Ci|i < ω · 2) is a Morley sequnce of Lstp(C/e∗). In particular,
(Ci|i < ω) is independent from (Ci|ω ≤ i < ω ·2) over e∗. By our assumption,
e ∈ acl(Ci|i < ω) and e ∈ acl(Ci|ω ≤ i < ω · 2). Thus e ∈ acl(e∗).

Lemma 4.3 Let C be any set and let (in a given sort) W = {(e, a)| e ∈
acl(Cb(C/a))}. Then W is a τ f∗ -open set over C.

Proof: First note that since T is simple, for any two sorts, if x, x′ has the
first sort, and y has the second sort, there exists a type-definable relation
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EL(x, x′, y) such that for all a, a′, b with the right sorts we have EL(a, a′, b)
iff Lstp(a/b) = Lstp(a′/b). By Claim 4.2, (e, a) 6∈ W iff there exists an a-
indiscernible sequence (Ci|i < ω) which is independent over a with EL(C0, C, a)
such that e 6∈ acl(Ci|i < ω). Let F be the collection of all finite sets of
formulas of the form ψ(Y0, ..., Yi, y) ∈ L where each of {Yi}i<ω have the
sort of C and y has the sort of a. For ∆ ∈ F let n(∆) be the maximal
natural number n such that Yn appears in one of the ψ-s in ∆. Also, for
ψ(Y0, ..., Yi, y) ∈ L as above let ψC = ψ(Y0, ..., Yi−1, C, y) and let i(ψ) = i.
For a formula φ(x, y, C) ∈ L(C), let FK∗

φ be the relation over C defined by
FK∗

φ(a) iff φ(x, a, C) forks over a. Thus, by compactness (e, a) 6∈ W iff∧
∆∈F

[(
∧
ψ∈∆

FK∗
ψC

(a)) → ∃Y0, ...Yn(∆)Θ(e, a, Y0, Y1, ..., Yn(∆), C)].

where Θ is the partial type over C defined by Θ(e, a, Y0, Y1, ..., Yn(∆), C) =

EL(Y0, C, a)∧I(Y0, ...Yn(∆), a)∧(
∧
ψ∈∆

¬ψ(Y0, Y1, ..., Yi(ψ), a))∧e 6∈ acl(Y0, Y1, ..., Yn(∆)).

and where I(Y0, ...Yn(∆), a) is the partial type saying Y0, , , , Yn(∆) is a-indiscernible.
Note that the complement of W is an intersection of τ f∗ -closed sets over C
(note that clearly every Stone-closed set over C is τ f∗ -closed over C.)

Proposition 4.4 Let q(x, y) ∈ S(∅) and let χ(x, y, z) ∈ L be such that |=
∀y∀z∃<∞xχ(x, y, z). Then U = {(e, c, b, a)| e ∈ acl(Cb(cb/a))} is relatively
Stone-open inside the Stone-closed set

F = {(e, c, b, a)| b |̂ a , |= χ(c, b, a), tp(cb) = q}.

Proof: Note that since q ∈ S(∅), it is enough to show that for any fixed
c∗b∗ |= q the set U∗ = {(e, a)| e ∈ acl(Cb(c∗b∗/a))} is relatively stone-open
inside

F ∗ = {(e, a)| b∗ |̂ a , |= χ(c∗, b∗, a)}.
Now, by Lemma 4.3 we know U∗ is a τ f∗ -open set over b∗c∗. Thus, for
some ψi(z;x, y, c

∗b∗) ∈ L(c∗b∗) (i ∈ I) we have U∗ =
⋃
i U∗

ψi
where U∗

ψi
=

{(e, a)| ψi(z; e, a, c∗b∗) forks over ea}.

Subclaim 4.5 For every (e, a) ∈ F ∗ we have (e, a) ∈ U∗
ψi

iff

∀d(ψi(d; e, a, c∗b∗) → da 6̂ | b∗ ) ∧ e ∈ acl(a).
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Proof: Assuming the left hand side we know e ∈ acl(Cb(c∗b∗/a)), hence

e ∈ acl(a). Let d |= ψi(z; e, a, c
∗b∗). If da |̂ b∗ , then

d |̂ b∗

a
. Since

(e, a) ∈ F ∗, c∗ ∈ acl(b∗a) implies
d |̂ b∗c∗

ea
, contradicting (e, a) ∈ U∗

ψi
.

Assume now the right hand side. Let d |= ψi(z; e, a, c
∗b∗). Assume by a way of

contradiction
d |̂ b∗c∗

ea
. Since e ∈ acl(a), this equivalent to

d |̂ b∗c∗

a
.

Since (e, a) ∈ F ∗ this is equivalent to da |̂ b∗ , contradiction.

By Subclaim 4.5 we see that each of U∗
ψi

and hence U∗ is Stone-open relatively
inside F ∗.

5 A dichotomy for projection closed topolo-

gies

We consider a general family of topologies on the Stone spaces Sx(A) that re-
fines the Stone topology and is closed under projections. For any such family
of topologies we will prove a dichotomy saying that either there exists an un-
bounded invariant set U that is open in this topology and is supersimple OR
for any SU -rank 1 type p0 every type analyzable in p0 is analyzable in p0 by
essentially 1-based types by mean of our family of topologies. In this section
T is assumed to be a simple theory with elimination of hyperimaginaries

Definition 5.1 A family

Υ = {Υx,A| x is a finite sequence of variables and A ⊂ C is small}

is said to be a projection closed family of topologies if each Υx,A is a topology
on Sx(A) that refines the Stone-topology on Sx(A), this family is invariant
under automorphisms of C and change of variables by variables of the same
sort, and the family is closed under product by the full Stone space Sy(A)
(where y is a disjoint tuple of variables) and closed by projections, namely
whenever U(x, y) ∈ Υxy,A, ∃yU(x, y) ∈ Υx,A.

There are two natural examples of projections-closed families of topolo-
gies; the Stone topology and the τ f -topology of a PCFT theory. From now
on fix a projection closed family Υ of topologies.
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Definition 5.2 1) A type p ∈ S(A) is said to be essentially 1-based over
A0 ⊆ A, by mean of Υ if for every finite tuple c̄ from p and for every type-
definable Υ-open set U over Ac̄, with the property that a is independent from
A over A0 for every a ∈ U , the set {a ∈ U| Cb(a/Ac̄) 6∈ bdd(aA0)} is nowhere
dense in the Stone-topology of U . We say p ∈ S(A) is essentially 1-based by
mean of Υ if p is essentially 1-based over ∅ by mean of Υ.
2) Let V be an A0-invariant set and let p ∈ S(A0). We say that p is analyzable
in V by essentially 1-based types by mean of Υ if there exists a |= p and
there exists a sequence (ai| i ≤ α) ⊆ dcleq(A0a) with aα = a such that
tp(ai/A0 ∪ {aj|j < i}) is V -internal and essentially 1-based over A0 by mean
of Υ for all i ≤ α.

Example 5.3 The unique non-algebraic 1-type over ∅ in ACFp is not es-
sentially 1-based by mean of the τ f -topologies for all p.

Remark 5.4 Note that p ∈ S(∅) is essentially 1-based by mean of Υ iff for
every finite tuple c̄ from p and for every type-definable Υ-open set U over
c̄, there exists a relatively Stone-open non-empty subset χ of U such that
a |̂ c̄

acleq(a) ∩ acleq(c̄) for all a ∈ χ.

Remark 5.5 Assume d ∈ dcl(c). Then Cb(d/a) ∈ dcl(Cb(c/a)) for all a.

One of the key ideas for proving the main result is the following theorem.

Theorem 5.6 Let T be a countable simple theory that eliminates hyperimag-
inaries. Let Υ be a projection-closed family of topologies. Let p0 be a partial
type over ∅ of SU-rank 1. Then, either there exists an unbounded finite-
SU-rank Υ-open set over some countable set, or every type p ∈ S(A), with
A countable, that is internal in p0 is essentially 1-based by mean of Υ. In
particular, either there exists an unbounded finite-SU-rank Υ-open set, or
whenever A is countable, p ∈ S(A) and every non-algebraic extension of p is
non-foreign to p0, p is analyzable in p0 by essentially 1-based types by mean
of Υ.

Proof: Υ will be fixed and we’ll freely omit the phrase ”by mean of Υ”. To
see the ”In particular” part, work over A and assume that every p′ ∈ S(A′),
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with A′ ⊇ A countable, that is internal in p0, is essentially 1-based over A.
Indeed, assume p ∈ S(A) is such that every non-algebraic extension of p
is non-foreign to p0. Then, for a |= p there exists a′ ∈ dcleq(Aa)\acleq(A)
such that tp(a′/A) is p0-internal and thus essentially 1-based over A by our
assumption. Since L and Aa are countable so is dcleq(Aa) and thus by
repeating this process we get that p is analyzable in p0 by essentially 1-based
types. We prove now the main part. Assume there exist a countable A and
p ∈ S(A) that is internal in p0 and p is not essentially 1-based. By Fact
2.2, we may assume there exists d |= p, and b that is independent from d
over A, and a finite tuple c̄ ⊆ p0 such that d ∈ dcl(Abc̄), and there exists
a type-definable Υ-open set U over Ad such that a is independent from A
for all a ∈ U and {a ∈ U|Cb(a/Ad) 6⊆ acleq(a)} is not nowhere dense in the
Stone-topology of U . So, since Υ refines the Stone-topology, by intersecting
it with a definable set, we may assume that {a ∈ U|Cb(a/Ad) 6⊆ acleq(a)} is
dense in the Stone-topology of U . Now, for each disjoint partition c̄ = c̄0c̄1
and formula χ(x̄1, x̄0, y, z) ∈ L(A) such that (*) ∀x̄0, y, z∃<∞x̄1χ(x̄1, x̄0, y, z),
let

Fχ,c̄0,c̄1 = {a ∈ U| ∃b′, c̄′0, c̄′1 s.t. tp(b′c̄′0c̄
′
1/Ad) = tp(bc̄0c̄1/Ad) and a is independent from

b′c̄′0c̄
′
1 over Ad and |= χ(c̄′1, c̄

′
0, b

′, a) and a is independent from Ab′c̄′0 over ∅}.

Let Pc̄ be the (finite) set of partitions of c̄ into two subsets. Note that since
d is independent from b over A, any a ∈ U is independent from Ab′ whenever

tp(b′/Ad) = tp(b/Ad) and
a |̂ b′

Ad
. Thus, since p0 is a partial type over

∅ of SU -rank ≤ 1 we have

U =
⋃

(c̄0,c̄1)∈Pc̄, χ|=(∗)
Fχ,c̄0,c̄1 .

Note that since we are fixing the type of b′c̄′0c̄
′
1 over Ad, the sets Fχ,c̄0,c̄1 are

type-definable over Ad. Since L and A are countable, by the Baire category
theorem for the Stone-topology of the closed set U , there exists (c̄∗0̄,c

∗
1) ∈ Pc̄

and there is χ∗ |= (∗) such that Fχ∗,c̄∗0,c̄∗1 has non-empty interior in the Stone-
topology of U . Thus, we may assume that U is a type-definable Υ-open
set over Ad such that {a ∈ U|Cb(a/Ad) 6⊆ acleq(a)} is dense in the Stone-
topology of U and for every a ∈ U there exists b′c̄′0c̄

′
1 |= tp(bc̄∗0c̄

∗
1/Ad) that
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is independent from a over Ad and such that |= χ∗(c̄′1, c̄
′
0, b

′, a) and a is
independent fromAb′c̄′0 over ∅. Let us now define a set V over Ad by

V = {(c̄′0, c̄′1, b′, a′, e′)| if tp(b′c̄′0c̄′1/Ad) = tp(bc̄∗0c̄
∗
1/Ad) and a′ is independent from

b′c̄′0c̄
′
1 over Ad and a′ is independent from Ab′c̄′0 over ∅ and |= χ∗(c̄′1, c̄

′
0, b

′, a′)

then e′ ∈ acl(Cb(Ab′c̄′0c̄′1/a′))}.

Let
V ∗ = {e′|∃a′ ∈ U ∀b′, c̄′0, c̄′1 V (c̄′0, c̄

′
1, b

′, a′, e′)}.

Subclaim 5.7 V ∗ is a Υ-open set over Ad.

Proof: By Proposition 4.4, we see that V is a Stone-open set over Ad. Since
Stone-open sets are closed under the ∀ quantifier and the Υ topology refines
the Stone-topology and closed under product by a full Stone-space and closed
under projections, we conclude that V ∗ is a Υ-open set.

Subclaim 5.8 For appropriate sort for e′, the set V ∗ is unbounded and has
finite SU-rank over Ad.

Proof: Let a∗ ∈ U be such that Cb(a∗/Ad) 6⊆ acleq(a∗). Then Cb(Ad/a∗) 6⊆
acleq(Ad). By Remark 5.5, there exists e∗ 6∈ acleq(Ad) such that e∗ ∈
acleq(Cb(Ab′c̄′0c̄

′
1/a

∗)) for all b′c̄′0c̄
′
1 |= tp(bc̄∗0c̄

∗
1/Ad). In particular, e∗ ∈ V ∗.

Thus, if we fix the sort for e′ in the definition of V ∗ to be the sort of
e∗, then V ∗ is unbounded. Now, let e′ ∈ V ∗. Then for some a′ ∈ U ,
|= V (c̄′0, c̄

′
1, b

′, a′, e′) for all b′, c̄′0, c̄
′
1. By what we saw above, there exists

b′c̄′0c̄
′
1 |= tp(bc̄∗0c̄

∗
1/Ad) that is independent from a′ over Ad such that |=

χ∗(c̄′1, c̄
′
0, b

′, a′) and a′ is independent from Ab′c̄′0 over ∅. Thus, by the def-
inition of V ∗, e′ ∈ acl(Cb(Ab′c̄′0c̄

′
1/a

′)). Since Ab′ is independent from a′

over ∅, tp(e′) is almost-p0-internal, and thus SU(e′) < ω. In particular,
SU(e′/Ad) < ω.

Thus V ∗ is the required set.
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6 Stable dependence

The goal of this section is to prove the symmetry of the relation stable-
dependence. In this section T is assumed to be a complete theory unless
otherwise stated, and we work in Ceq.

Definition 6.1 Let a ∈ C, A ⊆ B ⊆ C. We say that a is stably-independent
from B over A if for every stable φ(x, y) ∈ L, if φ(x, b) is over B (i.e.
the canonical parameter of φ(x, b) is in dcl(B)) and a′ |= φ(x, b) for some
a′ ∈ dcl(Aa), then φ(x, b) doesn’t divide over A. In this case we denote it by
a |̂s B

A
.

We will need some basic facts from local stability [HP]. From now on we
fix a stable formula φ(x, y). A formula ψ ∈ L(C) is said to be a φ-formula over
A if it is a finite boolean combination of instances of φ, that is equivalent to
a formula with parameters from A. A complete φ-type over A is a consistent
complete set of φ-formulas over A. Sφ(A) denotes the set of complete φ-types
over A. Note that if M is a model then every p ∈ Sφ(M) is determined by the
set {ψ ∈ p| ψ = φ(x, a) or ψ = ¬φ(x, a) for a ∈M} (in fact, it is easy to see
that every φ-formula over M is equivalent to a φ-formula whose parameters
are from M). Recall the following well known facts.

Fact 6.2 Let φ(x, y) ∈ L be stable. Then
1) For any model M , every p ∈ Sφ(M) is definable.
2) Let A be any set, let p ∈ S(A), and let M ⊇ A be a model. Then there
exists q ∈ Sφ(M) that is consistent with p and is definable over acleq(A).
3) Let A = acl(A). Let p ∈ Sφ(A). Then for every model M ⊇ A, there is a
unique p̄ ∈ Sφ(M) that extends p and such that p̄ is definable over A (i.e. its
φ-definition is over A). Moreover, there is a canonical formula over A that
is the definition of any such p̄ over any such model M .
4) Assume p, q ∈ Sφ(acl(A)) are such that p|A = q|A. Then there exists
σ ∈ Aut(C/A) such that σ(p) = q.

The following definition is standard.

Definition 6.3 Let p ∈ Sφ(B) and let A ⊆ B. We say that p doesn’t fork
over A in the sense of local stability (=LS) if for some model M containing
B and some p̄ ∈ Sφ(M) that extends p, p̄ is definable over acl(A).

14



The following lemma is easy but important.

Lemma 6.4 Assume T is a simple theory in which Lstp=stp over sets and
let φ(x, y) ∈ L be stable. Then for all a and A ⊆ B ⊆ C, tpφ(a/B) doesn’t
fork over A in the sense of LS iff tpφ(a/B) doesn’t fork over A.

Proof: Assume pφ = tpφ(a/B) doesn’t fork over A in the sense of LS.
Extend it to a complete φ-type p̄φ over a sufficiently saturated and sufficiently
strongly-homegeneous model M that is definable over acl(A). If tpφ(a/B)
divide over A, there is an acl(A)-indiscernible sequence (Bi|i < ω) ⊆M such
that if pφBi

are the corresponding acl(A)-conjugates of pφ, then
∧
i p

φ
Bi

= ∅.
By the uniqueness of non-forking extensions (in the sense of LS) of complete
φ-types over algebraically closed sets (and the fact that M is sufficiently
strongly-homegeneous) we conclude that p̄φ extends each pφBi

, a contradiction.
For the other direction, assume pφ = tpφ(a/B) doesn’t fork over A. Let
M ⊇ B be a sufficiently saturated and sufficiently strongly homogeneous
model. Let p̄ ∈ S(M) be an extension of pφ that doesn’t fork over A. Let
ψ(x, c) ∈ L(M) be the definition of p̄|φ (where c is the canonical parameter
of ψ). We claim that c ∈ acl(A). Indeed, otherwise let σ ∈ Aut(M/acl(A))
be such that σc 6= c. So, p̄, σ(p̄) have different φ-definitions, contradiction to
the following claim:

Claim 6.5 Let T be simple. Let φ(x, y) ∈ L be stable. Assume
a |̂ b

A

and
a′ |̂ b

A
and Lstp(a/A) = Lstp(a′/A). Then φ(a, b) iff φ(a′, b).

Corollary 6.6 Let T be a simple theory in which Lstp=stp over sets. Then

for all a,A ⊆ B ⊆ C we have
a |̂s B

A
iff tpφ(a

′/B) doesn’t fork over A in

the sense of LS for every stable φ(x, y) ∈ L and every a′ ∈ dcl(aA).

Given a,A ⊆ B ⊆ C, we will say that tp(a/B) doesn’t fork over A in the
sense of LS if the right hand side of Corollary 6.6 holds.

Lemma 6.7 Let T be a simple theory in which Lstp=stp over sets. Then
1) stable independence is a symmetric relation, that is, for all a, b, A we have
a |̂s Ab

A
iff

b |̂s Aa
A

.
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2) For all a,A ⊆ B ⊆ C, if
a |̂s B

A
and

a |̂s C
B

, then
a |̂s C

A
. In

fact, in any theory the same is true in the sense of LS.

Proof: To prove 1), first note the following.

Subclaim 6.8 Let φ(x, y) ∈ L be stable and let a, a′ ∈ C and let A ⊆ C.
Assume tpφ(a/A) = tpφ(a

′/A). Then φ(a, y) forks over A iff φ(a′, y) forks
over A.

Proof: Otherwise, there are p, q ∈ S(C), both extends tpφ(a/A) = tpφ(a
′/A),

and do not fork over A such that p represent φ(x, y) (namely, for some
b ∈ M , φ(x, b) ∈ p) and q doesn’t represent φ(x, y). By Fact 6.2 (4),
(p|φ)|acl(A) and (q|φ)|acl(A) are A-conjugate. Let σ ∈ Aut(C/A) be such
that σ((p|φ)|acl(A)) = (q|φ)|acl(A). Now, both σ(p|φ) and q|φ extend
(q|φ)|acl(A) and doesn’t fork over acl(A), and therefore by Lemma 6.4, both
doesn’t fork over acl(A) in the sense of LS. By Fact 6.2 (3), σ(p|φ) = q|φ,
which is a contradiction.

We prove symmetry. Assume
a |̂s Ab

A
. To show

b |̂s Aa
A

, let φ(x, y) ∈

L be stable such that φ(b′, a′) for some b′ ∈ dcl(Ab) and some a′ ∈ dcl(Aa).
By the assumption, tpφ̃(a

′/Ab) doesn’t fork over A (in the usual sense), so

there exists a′′ |= tpφ̃(a
′/Ab) such that

a′′ |̂ Ab
A

. Let (a′′i |i < ω) be

a Morley sequence of tp(a′′/Ab). Now, b′ |= ∧
i<ω φ(x, a′′i ). Thus φ(x, a′′)

doesn’t fork over A. By Subclaim 6.8, φ(x, a′) doesn’t fork over A. 2) is
immediate by Corollary 6.6 and fact that the relation of being a non-forking
extension in the LS sense is a transitive relation on complete φ-types (where
φ is a fixed stable formula).

7 An unbounded τ f∞-open set of bounded fi-

nite SUs-rank is sufficient

In this section T is an imaginary simple theory. We work in Ceq.
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Definition 7.1 For a ∈ C and A ⊆ C the SUs-rank is defined by induction

on α by SUs(a/A) ≥ α + 1 if there exists B ⊇ A such that
a 6̂ |s B

A
and

SUs(a/B) ≥ α.

Definition 7.2 The τ f∞-topology on S(A) is the topology whose basis is the
family of type-definable τ f -open sets over A.

Lemma 7.3 For a ∈ C and A ⊆ B ⊆ C, assume tp(a/B) doesn’t fork over

acl(aA) ∩ acl(B) and
a 6̂ | B

A
. Then

a 6̂ |s B
A

.

Proof: It will be sufficient to show that whenever
a 6̂ | B

A
and

a |̂ B
acl(a) ∩ acl(B)

for some (possibly infinite) tuple a and some A ⊆ B, there exists a stable
φ(x, y) ∈ L such that φ(a,B) and φ(x, b) forks over A (indeed, the above

implies the following: if
aA 6̂ | B

A
and

aA |̂ B
acl(aA) ∩ acl(B)

then

there exists a stable formula φ(x, y) ∈ L such that φ(aA,B) and φ(x,B)

forks over A, i.e.
a 6̂ |s B

A
). To prove this, let E = Cb(a/B). Then

E ⊆ acl(a) ∩ acl(B). By the assumption, there is e∗ ∈ dcl(E)\acl(A), so
e∗ ∈ (acl(a) ∩ acl(B))\acl(A). Hence there are n0, n1 ∈ ω and formulas
χ0(x, y), χ1(x, z) ∈ L such that ∀y∃<n0xχ0(x, y) and ∀z∃<n1xχ0(x, z) and
χ0(e

∗, a) and χ1(x,B) isolates tp(e∗/B). Let

φ(y, z) ≡ ∃x(χ0(x, y) ∧ χ1(x, z)).

Note that φ(y, z) is stable. Indeed, otherwise there are a ∈ C and an
∅-indiscernible sequence B = (bi|i ∈ Z) (Z=the integer numbers) such
that i ≥ 0 iff φ(a, bi). Since B is indiscernible, and χ1(x, b0) is algebraic,⋂
i∈I χ1(C, bi) =

⋂
i∈Z χ1(C, bi) for every infinite I ⊆ Z. But since χ0(x, a)

is algebraic, for some infinite I∗ ⊆ ω, χ0(C, a) ∩
⋂
i∈I∗ χ1(C, bi) 6= ∅. A

contradiction to ¬φ(a, bi) for i < 0. To see that φ(y,B) forks over A,

note that otherwise there exists a′ |= φ(y,B) such that
a′ |̂ B

A
, so if

e′ |= χ0(x, a
′) ∧ χ1(x,B), then on one hand

e′ |̂ B
A

and on the other
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hand since χ1(x,B) isolates tp(e∗/B), e′ ∈ acl(B)\acl(A) which is a contra-
diction.

Lemma 7.4 Assume U is an unbounded τ f∞-open set of bounded finite SUs-
rank over some finite set A. Then there exists a τ f∞-open set U∗ ⊆ U over
some finite set B∗ ⊇ A of SUs-rank 1.

Proof: We may clearly assume U is a basic τ f∞-open set. Let n = SUs(U) (U
is over A, and n < ω). Let a∗ ∈ U with SUs(a

∗/A) = n. Let B ⊇ A be finite

such that
a∗ 6̂ |s B

A
, and SUs(a

∗/B) = n−1. So, there exists a′ ∈ dcl(a∗A)

and stable φ(x, y) ∈ L such that φ(a′, B) and φ(x,B) forks over A. Let f an
∅-definable function such that a′ = f(a∗, A). Let

U ′ = {a ∈ U| φ(f(a,A), B) } (as a set over B).

Since a∗ ∈ U ′, SUs(U ′) ≥ n − 1. If a ∈ U ′, then φ(f(a,A), B) implies
a 6̂ |s B

A
and therefore SUs(U ′) ≤ n − 1. We conclude SUs(U ′) = n − 1.

Clearly, U ′ ⊆ U and U ′ is type-definable. By Fact 2.7, U ′, is a τ f -open set
over B. We finish by induction.

Lemma 7.5 Let T be a countable imaginary simple unidimensional theory.
Assume there is p0 ∈ S(∅) of SU-rank 1 and there exists an unbounded
τ f∞-open set over some finite set of bounded finite SUs-rank. Then T is
supersimple.

Proof: By Lemma 7.4, there exists a finite set A0 and a τ f∞-open set U over
A0 of SUs-rank 1. Clearly, we may assume U is type-definable. By Theorem
3.12, T is PCFT. Thus, working over A0, by Theorem 5.6 for the τ f -topology
either (i) there exists an unbounded τ f -open set of finite SU -rank over some
countable set or (ii) every non-algebraic type over A0 is analyzable in p0 by
essentially 1-based types by mean of τ f . By Corollary 3.13, we may assume
(ii). We claim SU(U) = 1. Indeed, otherwise there exists a and d ∈ U

such that
d 6̂ | a

A0
and d 6∈ acl(aA0). By (ii), there exists (ai|i ≤ α) ⊆

dcleq(aA0) with aα = a such that tp(ai/A0∪{aj|j < i}) is essentially 1-based
over A0 for all i ≤ α. Now, let i∗ ≤ α be minimal such that there exists
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d′ ∈ U satisfying
d′ 6̂ | {ai|i ≤ i∗}

A0
, and d′ 6∈ acl(A0 ∪ {ai|i ≤ i∗}). Pick

φ(x, a′) ∈ L(A0 ∪ {ai|i ≤ i∗}) that forks over A0 and such that φ(d′, a′). Let

V = {d ∈ U| φ(d, a′) and d 6∈ acl(A0 ∪ {ai|i ≤ i∗}) }.

By minimality of i∗, d is independent from {ai|i < i∗} over A0 for all d ∈
V . Clearly V is type-definable and by Fact 2.7, V is a τ f -open set over
A0 ∪ {ai|i ≤ i∗}. Now, since tp(ai∗/A0 ∪ {ai|i < i∗}) is essentially 1-based
over A0, the set

{d ∈ V | Cb(d/A0 ∪ {ai|i ≤ i∗}) ∈ bdd(dA0)}

contains a relatively Stone-dense and open subset of V . In particular, there
exists d∗ ∈ V such that tp(d∗/A0 ∪ {ai|i ≤ i∗} doesn’t fork over acl(A0d

∗) ∩ acl(A0 ∪ {ai|i ≤ i∗}).

Since we know
d∗ 6̂ | A0 ∪ {ai|i ≤ i∗}

A0
, Lemma 7.3 implies

d∗ 6̂ |s A0 ∪ {ai|i ≤ i∗}
A0

.

Hence d∗ ∈ V implies SUs(d
∗/A0) ≥ 2, which contradict SUs(U) = 1. Thus

we have proved SU(U) = 1. Now, by Fact 2.8 there exists a definable set of
SU -rank 1, and thus by Fact 2.4, T is supersimple.

Remark 7.6 Note that if X is any Stone-closed subset of the Stone-space
Sx(T ) and B = {Fi}i∈I is a basis for a topology τ on X that consists of
Stone-closed subsets of X, then (X, τ) is a Baire space (i.e. the intersection
countably many dense open sets in it is dense). In particular, the τ f∞-topology
on S(A) is Baire.

Remark 7.7 If we could show that for all a,A ⊆ B ⊆ C,

a |̂s C
A

⇒ a |̂s C
B

,

then this would imply that for A ⊆ B,
a |̂s B

A
implies SUs(a/A) =

SUs(a/B). Thus by Remark 7.6, a Baire categoricity argument, applying
Theorem 3.12, will imply the existence of a bounded finite SUs-rank un-
bounded τ f∞-open set in any countable imaginary unidimensional simple the-
ory and thus supersimplicity will follow by Lemma 7.5. Unfortunately, this
seems to be false for a general simple theory without stable forking.
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8 τ̃ f and τ̃ fst-sets

In this section T is assumed to be a simple theory. We work in C.

Definition 8.1 A relation V (x, z1, ...zl) is said to be a pre-τ̃ f -set relation if
there are θ(x, x̃, z1, z2, ..., zl) ∈ L and φi(x̃, yi) ∈ L for 0 ≤ i ≤ l such that for
all a, d1, ..., dl ∈ C we have

V (a, d1, ..., dl) iff ∃ã [θ(a, ã, d1, d2, ..., dl) ∧
l∧

i=0

(φi(ã, yi) forks over d1d2...di)]

(for i = 0 the sequence d1d2...di is interpreted as ∅). If each φi(x̃, yi) is
assumed to be stable, V (x, z1, ...zl) is said to be a pre-τ̃ fst-set relation.

Definition 8.2 1) A τ̃ f -set (over ∅) is a set of the form

U = {a| ∃d1, d2, ...dl V (a, d1, ..., dl)}

for some pre-τ̃ f -set relation V (x, z1, ...zl). The minimal natural number l for
which the set U above can be defined is called the degree of the set U (e.g.
τ f -open sets have degree 0).
2) A τ̃ fst-set is defined in the same way as a τ̃ f -set but we add the requirement
that V (x, z1, ...zl) is a pre-τ̃ fst-set relation.

We will say that the formula φ(x, y) ∈ L is low in x if there exists k < ω
such that for every ∅-indiscernible sequence (bi|i < ω), the set {φ(x, bi)|i < ω}
is inconsistent iff every subset of it of size k is inconsistent. Note that every
stable formula φ(x, y) is low in both x and y.

Remark 8.3 Note that if φ(x, y) ∈ L is low in x then the relation Fφ defined

by Fφ(b, A) iff φ(x, b) forks over A is type-definable. Thus every pre-τ̃ fst-set

relation is type-definable and every τ̃ fst-set is type-definable.

Lemma 8.4 Assume the extension property is first-order in T . Let θ(x, z1, ..., zn)
be a Stone-open relation over ∅ and let φj(x, yj) ∈ L for j = 0, .., n. Let U
be the following invariant set. For all d1 ∈ C, U(d1) iff

∃a, d2, d3, ...dn[θ(a, d1, ...dn) ∧
n∧
j=0

φj(a, yj) forks over d1...dj].
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Then U is a τ f -open set over ∅. If each φj(x, yj) is assumed to be low in yj
and θ is assumed to be definable, then U is a basic τ f∞-open set.

Proof: We prove the lemma by induction on n ≥ 1. Consider the negation
Γ of U :

Γ(d1) iff ∀a∀d2...dn(θ(a, d1, ...dn) →
n∨
j=0

φj(a, yj) dnfo d1...dj)

(where ”dnfo”=doesn’t fork over).

Subclaim 8.5 Let Γ′ be defined by Γ′(d1) iff

∧
{ηj}n−1

j=0 ∈L

∀d2...dn[(
n−1∧
j=0

ηj(d1...dn, yj) forks over d1...dj) → ∀aΛ(a, d1, ..., dn)].

where Λ is defined by

Λ(a, d1, ...dn) iff θ(a, d1, ...dn) →
n∨
j=0

φj(a, yj) ∧ ¬ηj(d1...dn, yj) dnfo d1...dn

where ηn denotes a contradiction. Then Γ′ = Γ.

Proof: Assume Γ(d1). Let η0, ...nn−1 ∈ L and let d2, ...dn ∈ C. As-
sume ηj(d1...dn, yj) forks over d1...dj for all 0 ≤ j ≤ n − 1, and let a ∈
C be such that θ(a, d1, ...dn). By the assumption, φj0(a, yj0) doesn’t fork
over d1...dj0 for some 0 ≤ j0 ≤ n − 1. Let cj0 be such that φj0(a, cj0)

and
a |̂ cj0

d1...dj0
. By extension we may assume

ad1...dn |̂ cj0
d1...dj0

.

Since ηj0(d1...dn, yj0) forks over d1...dj0 , we know ¬ηj0(d1...dn, cj0). There-
fore φj0(a, yj0) ∧ ¬ηj0(d1...dn, yj0) doesn’t fork over d1...dj0 and in particular
doesn’t fork over d1...dn. Assume now Γ′(d1). Let a, d2, ...dn ∈ C and assume
θ(a, d1, ...dn). It is sufficient to show that for all 0 ≤ j ≤ n−1 if φj(a, yj) forks
over d1...dj, then there exists ηj such that ηj(d1...dn, yj) forks over d1...dj and
φj(a, yj) ∧ ¬ηj(d1...dn, yj) forks over d1....dn. Assume otherwise. Fix j, so
φj(a, yj) forks over d1...dj and φj(a, yj) ∧ ¬ηj(d1...dn, yj) doesn’t fork over
d1....dn for all ηj such that ηj(d1...dn, yj) forks over d1...dj. Let

Ψ(yj) ≡
∧

ηj∈Fj ,µj∈Ej

φj(a, yj) ∧ ¬ηj(d1...dn, yj) ∧ ¬µj(ad1...dn, yj)

21



where
Fj = {ηj| ηj(d1...dn, yj) forks over d1...dj},

and
Ej = {µj| µj(ad1...dn, yj) forks over d1...dn}.

By our assumption and compactness, Ψ(yj) is consistent. Let cj |= Ψ(yj).

Then φj(a, cj),
d1...dn |̂ cj

d1...dj
, and

ad1...dn |̂ cj
d1...dn

. By transi-

tivity,
ad1...dn |̂ cj

d1...dj
. A contradiction to the assumption that φj(a, yj)

forks over d1...dj. The proof of Subclaim 8.5 is complete.

Since the extension property is first-order for T , the relation Λ0 defined by
Λ0(d1, ...dn) ≡ ∀aΛ(a, d1, ...dn) is type-definable. Now, clearly for all d1,
Γ′(d1) iff

∧
{ηj}n−1

j=0 ∈L

∀d2...dn(¬Λ0(d1, ..., dn) →
n−1∨
j=0

ηj(d1...dn, yj) dnfo d1...dj).

Now, if n = 1 then this is clearly τ f -closed. If n > 1, then we finish by the
induction hypothesis.

Corollary 8.6 Assume the extension property is first-order in T . Let m ≤
l < ω and let d∗1, ...d

∗
m ∈ C. Let θ ∈ L and φi ∈ L for i ≤ l. Let V be defined

by

V (a, d1, ..., dl) iff [θ(a, d1, d2, ..., dl) ∧
l∧

i=0

(φi(a, yi) forks over d1d2...di)].

Then the set U defined by

U(dm+1) iff ∃a∃dm+2...dl V (a, d∗1, ...d
∗
m, dm+1, ...dl)

is a τ f -open set over d∗1...d
∗
m.

Proof: By Fact 2.7, there are formulas {ψj(x̃, wj) ∈ L(d∗1...d
∗
m)}j∈J such

that

∀a [
m∧
i=0

(φi(a, yi) forks over d∗1d
∗
2...d

∗
i ) iff

∨
j∈J

(ψj(a, wj) forks over d∗1d
∗
2...d

∗
m)].
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Therefore by Lemma 8.4 (since by Lemma 3.2, the extension property is
first-order over d̄∗ as well) U is a union over j ∈ J of τ f -open sets over
d∗1d

∗
2...d

∗
m.

Theorem 8.7 Assume the extension property is first-order in T . Then
1) Let U be an unbounded τ̃ f -set over ∅. Then there exists an unbounded
τ f -open set U∗ over some finite set A∗ such that U∗ ⊆ U . In fact, if
V (x, z1, ..., zl) is a pre-τ̃ f -set relation such that U = {a|∃d1...dlV (a, d1, ..., dl)},
and (d∗1, ..., d

∗
m) is any maximal sequence (with respect to extension) such that

∃dm+1...dlV (C, d∗1, ..., d∗m, dm+1, ..., dl) is unbounded, then

U∗ = ∃dm+1...dlV (C, d∗1, ..., d∗m, dm+1, ..., dl)

is a τ f -open set over d∗1...d
∗
m.

2) Let U be an unbounded τ̃ fst-set over ∅. Then there exists an unbounded
τ f∞-open set U∗ over some finite set A∗ such that U∗ ⊆ U . In fact, if
V (x, z1, ..., zl) is a pre-τ̃ fst-set relation such that U = {a|∃d1...dlV (a, d1, ..., dl)},
and (d∗1, ..., d

∗
m) is any maximal sequence (with respect to extension) such that

∃dm+1...dlV (C, d∗1, ..., d∗m, dm+1, ..., dl) is non-algebraic, then

U∗ = ∃dm+1...dlV (C, d∗1, ..., d∗m, dm+1, ..., dl)

is a basic τ f∞-open set over d∗1...d
∗
m.

Proof: By Remark 8.3, (2) is an immediate corollary of (1). It suffices,
of course, to prove the second part of (1). T is PCFT by Corollary 3.5.
Let d̄∗ = d∗1...d

∗
m. First, if m = l then the assertion follows immediately

by Fact 2.7. So, we may assume m < l. By maximality of d̄∗, we know
∃dm+2...dlV (C, d∗1, ..., d∗m, d′m+1, dm+2, ...dl) is bounded (equivalently, a union
of algebraic sets over d̄∗) for every d′m+1. Thus for every a ∈ U∗, there exist
χa(x, z̄

∗, z) ∈ L, k = k(χa) < ω and d′m+1(a) ∈ C, such that ∀z∀z̄∗∃=kxχa(x, z̄
∗, z)

(*1) and V (a, d∗1, ..., d
∗
m, d

′
m+1(a), dm+2, ...dl) for some dm+2, ...dl ∈ C and

χa(x, d̄
∗, d′m+1(a)) isolates the type tp(a/d̄∗, d′m+1(a)). Let Ξ = {χa}a∈U∗ . For

χ ∈ Ξ, let k = k(χ) and let Uχ be the d̄∗-invariant set defined by Uχ(dm+1)
iff

∃ distinct a1....ak[
k∧
j=1

χ(aj, d̄
∗, dm+1)∧

k∧
j=1

∃dm+2...dlV (aj, d̄
∗, dm+1, dm+2, ...dl)]
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Subclaim 8.8 Uχ is a τ f -open set over d̄∗.

Proof: Let V be given by:

V (a, d1, ..., dl) iff ∃ã [θ(a, ã, d1, d2, ..., dl) ∧
l∧

i=0

(φi(ã, yi) forks over d1d2...di)].

for some θ, φi ∈ L. Since T is PCFT, it is sufficient to show that there exists
a τ f -open set W = W (x, zm+1, d̄

∗) over d̄∗ such that if U ′
χ is defined by

U ′
χ(dm+1) iff ∃ distinct a1....ak[

k∧
j=1

χ(aj, d̄
∗, dm+1) ∧

k∧
j=1

W (aj, dm+1, d̄
∗)]

then U ′
χ = Uχ. To show this let W be defined by: W (a, dm+1, d̄

∗) iff

∃ã∃d′m+2...d
′
l[θ(a, ã, d

∗
1, d

∗
2, ...d

∗
m, dm+1, d

′
m+2, ...d

′
l)∧

l∧
i=0

(φi(ã, yi) forks over d′1d
′
2...d

′
i)]

where d′i is defined in the following way: for 1 ≤ i ≤ m, d′i denotes d∗i , and
d′m+1 denotes dm+1a (and the rest are quantified variables). First note that for
all a, dm+1 with a ∈ acl(dm+1, d̄

∗),W (a, dm+1, d̄
∗) iff ∃dm+2...dlV (a, d̄∗, dm+1, dm+2, ...dl).

Thus by (*1), U ′
χ = Uχ. By Corollary 8.6, W is a τ f -open set over d̄∗. So,

the proof of Subclaim 8.8 is complete.

Now, for each χ ∈ Ξ define Yχ(x) ≡ ∃dm+1(χ(x, d̄∗, dm+1)∧Uχ(dm+1)). Since
T is PCFT, Subclaim 8.8 implies Yχ is a τ f -open set over d̄∗. Note that by
the definition of Uχ and (*1), Yχ ⊆ U∗ for all χ ∈ Ξ. Now, if a ∈ U∗, then
by the choice of d′m+1(a), χa and k = k(χa), we have χa(a, d̄

∗, d′m+1(a)) ∧
Uχa(d

′
m+1(a)). Thus a ∈ Yχa . Hence U∗ =

⋃
χ∈Ξ Yχ, and so U∗ is a τ f -open

set over d̄∗. The proof of Theorem 8.7 is complete.

9 Main Result

Definition 9.1 For a ∈ C and A ⊆ C the SUse-rank is defined by induction

on α: SUse(a/A) ≥ α + 1 if there exist B1 ⊇ B0 ⊇ A such that
a 6̂ |s B1

B0

and SUse(a/B1) ≥ α.
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Remark 9.2 Note that SUse(a/B) ≤ SUse(a/A) for all a ∈ C and A ⊆
B ⊆ C (this is the reason for introducing SUse). Also, clearly SUs(a/A) ≤
SUse(a/A) ≤ SU(a/A) for all a,A. Clearly SUse(a/A) = 0 iff SUs(a/A) = 0
iff a ∈ acl(A) for all a,A.

Theorem 9.3 Let T be a countable imaginary simple unidimensional theory.
Then T is supersimple.

Proof: By adding countably many constants we may assume there exists
p0 ∈ S(∅) of SU -rank 1 (each of the assumptions is preserved, as well as
the corollary). By Lemma 7.5, it will be sufficient to show there exists an
unbounded τ f∞-open set of bounded finite SUs-rank over some finite set. Fix
a non-algebraic sort s. Since T is unidimensional and imaginary, by Fact 2.1
for every a ∈ Cs\acl(∅) there exists a′ ∈ dcl(a)\acl(∅) such that tp(a′) is p0-
internal and thus has finite SU -rank. To finish the proof it will be sufficient to
show that in any countable simple theory T in which the extension property
is first-order, the non-existence of an unbounded τ f∞-open set of bounded
finite SUse-rank over a finite set implies ∃a∗ ∈ Cs\acl(∅) such that for every
∅-definable function f , either f(a∗) ∈ acl(∅) or SUse(f(a∗)) ≥ ω. To show
this, assume the above assumptions on T . For every ∅-definable function f
and n < ω, let

Sf,n = {a ∈ Cs| 0 < SUse(f(a)) < n}.

Subclaim 9.4 For every non-empty τ̃ fst-set U ⊆ Cs (with U ∩ acl(∅) = ∅)
for all ∅-definable function f , and n < ω, there exists a non-empty τ̃ fst-set
U∗ ⊆ U ∩ (Cs\Sf,n).

Assuming Subclaim 9.4 is true, let ((fi, ni)|i < ω) be an enumeration of
all such pairs (f, n). By induction, let U0 = Cs\acl(∅), and let Ui+1 ⊆
Ui ∩ (C\Sfi,ni

) be a non-empty τ̃ fst-set. Since each Ui is type-definable, by
compactness

⋂
i<ω Ui 6= ∅. So, any a∗ ∈ ⋂

i<ω Ui will work.

Proof of Subclaim 9.4: Let U , (f, n) be as in Subclaim 9.4. Now, if there
exists a ∈ U such that f(a) ∈ acl(∅), let χ(x) ∈ L be algebraic such that
χ(f(a)). By letting U∗ = {a ∈ U| |= χ(f(a))} we are done. Hence we may
assume f(a) 6∈ acl(∅) for every a ∈ U . Let V (x, z1, ...zn) be a pre-τ̃ fst-set
relation such that

U = {a| ∃d1, d2, ...dl V (a, d1, ..., dl)}.
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where V is defined by:

V (a, d1, ..., dl) iff ∃ã [θ(a, ã, d1, d2, ..., dl) ∧
l∧

i=0

(φi(ã, yi) forks over d1d2...di)]

for some θ(x, x̃, z1, z2, ..., zl) ∈ L and stable φi(x̃, yi) ∈ L for 0 ≤ i ≤ l. Now,
let Vf be defined by: for all b, d1, ..., dl ∈ C,

Vf (b, d1, ..., dl) iff ∃a(b = f(a) ∧ V (a, d1, ..., dl)).

Then, clearly Vf is a pre-τ̃ fst-set relation. Let

Uf = {b| ∃d1, d2, ...dl Vf (b, d1, ..., dl)}.

Let d̄∗ = (d∗1, ..., d
∗
m) be a maximal sequence, with respect to extension, (m ≤

l) such that

Ṽf (v) ≡ ∃dm+1, dm+2, ...dlVf (v, d
∗
1, ...d

∗
m, dm+1, ...dl)

is non-algebraic, or equivalently unbounded (since U 6= ∅ and we assume
f(a) 6∈ acl(∅) for all a ∈ U , the empty sequence satisfies this property). By
Theorem 8.7, Ṽf (C) is a basic τ f∞-open set over d̄∗. By our assumption Ṽf (C)
is not of bounded finite SUse-rank. Thus there are a∗ and d∗m+1, ...d

∗
l such that

V (a∗, d̄∗, d∗m+1, ..., d
∗
l ) and SUse(f(a∗)/d̄∗) ≥ n. Let E = 〈(c∗i , e∗i )|1 ≤ i ≤ n〉

be such that
f(a∗) 6̂ |s e∗i

d̄∗c∗1e
∗
1...c

∗
i

for all 1 ≤ i ≤ n (*1). Note that since

both dcl and forking have finite character, we may assume that c∗i , e
∗
i are

finite tuples. Let ã∗ be such that:

θ(a∗, ã∗, d∗1, d
∗
2, ..., d

∗
l ) ∧

l∧
i=0

(φi(ã
∗, yi) forks over d∗1d

∗
2...d

∗
i ) (∗2).

Now, by maximality of d̄∗, f(a∗) ∈ acl(d̄∗d∗m+1). By taking a non-forking
extension of tp(E/acl(d̄∗d∗m+1)) over acl(d∗1...d

∗
l a

∗ã∗) we may assume that
a∗ã∗d∗1...d

∗
l |̂ E
d̄∗d∗m+1

and (*1) and (*2) still hold. Thus
a∗ã∗ |̂ d∗1...d

∗
iE

d∗1...d
∗
i

for allm+1 ≤ i ≤ l. Hence by (*2), we conclude φi(ã
∗, yi) forks over d∗1d

∗
2...d

∗
iE

for all m+1 ≤ i ≤ l. By (*1) and symmetry of
|̂s

(Lemma 6.7), there are
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stable ψi(xi, wi) ∈ L and ∅-definable functions gi for 1 ≤ i ≤ n such that if
a∗i = gi(f(a∗), d̄∗c∗1e

∗
1...c

∗
i ), then ψi(a

∗
i , e

∗
i ) and ψi(a

∗
i , wi) forks over d̄∗c∗1e

∗
1...c

∗
i .

Now, let us define a relation V ∗ in the following way:

V ∗(a, d1, ...dm, c1, e1, ...cn, en, dm+1, ...dl) iff ∃ã, ã′ = ã′1...ã
′
n(θ

∗ ∧ V0 ∧ V1 ∧ V2)

where, θ∗ is defined by: θ∗(a, ã, ã′, d1, ...dm, c1, e1, ...cn, en, dm+1, ...dl) ≡

θ(a, ã, d1, ...dl) ∧
n∧
i=1

ψi(ã
′
i, ei) ∧ (ã′i = gi(f(a), d1, ...dm, c1, e1, ...ci))

V0 is defined by:

V0(ã, d1, ...dm) iff
m∧
i=0

(φi(ã, yi) forks over d1d2...di)

V1 is defined by:

V1(ã
′, d1, ...dm, c1, e1, ...cn, en) iff

n∧
i=1

(ψi(ã
′
i, wi) forks over d1d2...dmc1e1...ci),

and V2 is defined by:

V2(ã, d1, ..dm, c1, e1, ..cn, en, dm+1, ..dl) iff
l∧

i=m+1

(φi(ã, yi) forks over d1d2..dmc1e1..cnendm+1..di).

Note that V ∗ is a pre-τ̃ fst-set relation. Thus

U∗ = {a| ∃d1, ..dm, c1, e1, ..cn, en, dm+1, ..dl V
∗(a, d1, ..dm, c1, e1, ..cn, en, dm+1, ..dl)}

is a τ̃ fst-set. By the construction of a∗, d∗1, ..d
∗
m, c

∗
1, e

∗
1, ..c

∗
n, e

∗
n, d

∗
m+1, ..d

∗
l , U∗ 6=

∅. By the definition of U∗, U∗ ⊆ U∩(Cs\Sf,n) (note that if a ∈ U∗, then there
are d1, ..., dm ∈ C such that SUse(f(a)/d1...dm) ≥ n and thus by Remark 9.2,
SUse(f(a)) ≥ n). So, the proof of Subclaim 9.4 is complete, and thus so is
the proof of the theorem.

Recall that a theory T has the wnfcp(=weak non finite cover property) if
for each L-formula φ(x, y), the Dφ-rank is finite and definable (the Dφ-rank
of a formula ψ(x, a) is defined by: Dφ(ψ(x, a)) ≥ 0 if ψ(x, a) is consistent;
Dφ(ψ(x, a)) ≥ α + 1 if for some b, Dφ(ψ(x, a) ∧ φ(x, b)) ≥ α and φ(x, b)
divides over a; and for limit δ, Dφ(ψ(x, a)) ≥ δ if it is ≥ α for all α < δ).
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Corollary 9.5 Let T be a countable imaginary simple unidimensional the-
ory. Then T is low and thus has the wnfcp.

Proof: By Fact 2.4, T has bounded finite SU -rank in any given sort. Thus
the global D-rank in any given sort has a finite bound. Now, let φ(x, y) ∈ L.
Then φ(x, y) is low in x iff Sup{D(x = x, φ(x, y), k)| k < ω} < ω. So, clearly
every φ(x, y) is low in x. Thus T is low. By Corollary 3.8 the extension
property is first-order in any unidimensional theory. We conclude T has the
wnfcp (see [BPV], Corollary 4.6).
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