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Abstract

We classify actions of groups of finite Morley rank on abelian groups of
Morley rank 2: there are essentially two, namely the natural actions of
SL(V ) and GL(V ) with V a vector space of dimension 2.

1 The result

In [BC05], Borovik and Cherlin asked the following:

Problem 15 of [BC05] Let G be a connected group of finite Morley rank
acting faithfully and definably on an abelian group V of Morley rank 2. Then
either G is solvable or V has a structure of a 2-dimensional vector space over
an algebraically closed field F and G is one of the groups SL2(F ) and GL2(F )
in their natural representations.

This question appears as a first step towards a more ambitious one; we can
but refer the reader to [BC05, §6]. It must also be said that the present article is
very undirectly related to the so-called Cherlin-Zilber Algebraicity Conjecture,
a quasi-promethean attempt at classifying simple groups of finite Morley rank.
It should rather be read as an application of techniques forged to attack the
Conjecture. As for Problem 15, we provide a positive answer.

Theorem Let G be a connected, non-solvable group of finite Morley rank acting
definably and faithfully on a connected abelian group V of Morley rank 2. Then
there is an algebraically closed field K of Morley rank 1 such that V ' K2, and
G is isomorphic to GL2(K) or SL2(K) in its natural action.

The proof we shall give is a geometric as possible, with strong emphasis
on the dichotomy between semi-simplicity and unipotence. In the context of
groups of finite Morley rank the former notion is conveniently represented by
good tori [Che05]; as for the latter, Burdges [Bur04] has developed a suitable
0-unipotence theory which we shall use in its simplest form.
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2 The tools

We collect here some raw meat. The proof of our Theorem takes place in §3.

2.1 Linear actions

Fact 2.1 ([Poi87, Théorème 3.9]) Let G be a connected group of finite Mor-
ley rank acting definably and faithfully on a definable, abelian group A. Assume
that G has a definable, connected, normal subgroup H E G which has an abelian,
infinite, normal subgroup M E H, and such that A is H-minimal. Then there
is a definable field K and a definable finite-dimensional K-vector space struc-
ture on A such that G embeds into GL(A). Moreover, M acts on A by scalar
multiplication.

Fact 2.2 (Malcev’s Theorem [Poi87, Théorème 3.18]) Let G be a con-
nected, solvable group of finite Morley rank acting definably and faithfully on a
definable, abelian group A. If a definable subgroup B ≤ A is G- or G′-minimal,
then B is centralized by G′.

2.2 Around PSL2

Here is an identification result not entirely explicit in [Poi87, Corollaire 3.28].

Fact 2.3 Let G be a group of finite Morley rank having a definable subgroup
H of corank 1 such that

⋂
g∈GH

g = 1. Then G has Morley rank 3 and is
isomorphic to PSL2(K), where K is a definable field of Morley rank 1.

Proof
To see this, it suffices to note that G acts definably, transitively and faithfully

on the definable coset space G/H which is strongly minimal. So the Hrushovski
analysis [Poi87, Théorème 3.27] yields the conclusions. �

At some point of the proof of our Theorem we shall need to rule out PSL2(K)
in characteristic not 2. (Of course if K has characteristic 2, then PSL2(K) =
SL2(K) will certainly remain.) This is done by the following remark.

Fact 2.4 Let K be a field of finite Morley rank of characteristic 6= 2. Then
there is no definable, faithful, irreducible action of PSL2(K) on an abelian group
of rank 2.

Proof
Let PSL2(K) act on such an abelian group V , and let us prove a contra-

diction. We first notice that V is not an elementary abelian 2-group, as oth-
erwise letting τ ≤ PSL2(K) be a 2-torus, we find that V o τ = V ∗ τ , whence
τ ≤ CG(V ) = 1. This means that K has characteristic 2, against our assump-
tion.

Hence V does not have characteristic 2. Let i ∈ PSL2(K) and w ∈ C(i) \
{i} be two commuting involutions. As i is not central in PSL2(K), we find a
decomposition V = CV (i) ⊕ [V, i] and both terms are non-trivial. Notice that
w normalizes them; each is either centralized or inverted by w.
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If w centralizes CV (i), then w 6= 1 cannot centralize [V, i] too, and must
therefore invert it. It follows that i and w have the same action on V , whence
w = i, a contradiction. Now if w does not centralize CV (i), then it inverts it. As
w is not central in PSL2(K), it cannot invert [V, i] too, so it must centralize it.
It follows that iw inverts V , so iw must be central in PSL2(K), a contradiction
again. �

2.3 Around SL2

We will have to argue that when making G isomorphic to SL2(K) via an à la
Hrushovski analysis, we actually identify the pair (G,V ). In other words, we
have to determine small representations of SL2. This is possible thanks to the
following, originally due to Timmesfeld.

Fact 2.5 ([ABC08, Fact II.5.28]) Let K be a field and let V be a an SL2(K)-
module. Suppose the following:

1. CV (G) = 0 and [G,V ] = V

2. [U,U, V ] = 1, where U is a maximal unipotent subgroup of G.

Then for some field action on 〈vG〉, the vector space 〈vG〉 is a natural module
for each v ∈ CV (U)#.

Here is the consequence we shall use.

Fact 2.6 Let K be a field of Morley rank and let G ' SL2(K) act definably and
faithfully on a connected abelian group V of Morley rank 2. Then V is a natural
module for G.

Proof
We make use of Fact 2.5. It is clear that CV (G) = 0 and [G,V ] = V . Let U

be a maximal unipotent subgroup of G, and B = N◦G(U). V is not B-minimal,
as otherwise B′ = 1. So there is an infinite V1 < V which is B-invariant. Now
by Fact 2.2, U centralizes both V1 and V/V1, so [U,U, V ] = 1. �

By the way, what happens in higher rank? using the same characterization
(Fact 2.5), Altınel, Borovik, and Cherlin proved:

Fact 2.7 ([ABC08, Lemma II.5.31]) Let G be a group of finite Morley rank
that is isomorphic to SL2(K) as an abstract group with K an algebraically closed
field of characteristic 2. Let V be a connected, elementary abelian 2-group on
which G acts definably and faithfully. Let f = rk K, and suppose rkV = 2f .
Then V is a natural module for G.

And what in characteristic not 2? this is a question we shall discuss another
time. Let us merely remark that Fact 2.7 is not about SL2, but about PSL2:
its proof makes crucial use of Weyl involutions. When the characteristic moves
from 2 to odd or 0, these involutions are replaced by elements of order 4, which
do not enable the same computations... To be continued, so.
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2.4 Further remarks on SL2

The following result will be the basis of our analysis. It will yield solvability of
centralizers (Claim 3.5 below), a good starting point when one wishes to talk
about Borel subgroups. We sketch a couple of proofs, hoping one of them will
seem of interest to the reader.

Lemma 2.8 Let G be a connected group of finite Morley rank acting definably
and faithfully on a connected abelian group V of Morley rank 2. Let v0 ∈ V #.
Then C◦G(v) is not isomorphic to SL2 nor to GL2.

Proof
We may assume that there is a subgroup H ≤ C◦G(v0) which is isomorphic

to SL2. By Fact 2.6, we get that H acts on V as SL2. In particular H ≤ C◦G(v0)
is a contradiction. �

The proof we just gave relies on an identification result of the natural SL2-
module. As we have said, we still miss a more general tool when the character-
istic differs from 2 and the rank is greater than 2. So the reader might enjoy
the following argument, which spares us the concourse of the natural module.

Assume H is isomorphic to SL2(K), where K has characteristic not 2, and V
has no involutions. Pick the central involution i ∈ Z(H). As V is 2⊥, we may
write the decomposition V = CV (i)⊕ [V, i] = C◦V (i)⊕ [V, i] by connectedness of
V . Notice that C◦G(i) normalizes each term; a quick computation shows that if
both CV (i) and [V, i] have rank 1, then C◦G(i) ≥ H is solvable, which is absurd.
As [V, i] 6= 1, it follows that CV (i) = 1 and V = [V, i], that is i inverts V . This
contradicts i ∈ C◦G(v0). �

The reader may very well not be pleased at all with the latter argument
either. In this case we proceed as follows, regardless of the characteristic.

Alternate proof of Lemma 2.8
Fix an algebraic torus T ≤ H and j inverting T (the order of j depends on

the characteristic). Let B ≤ H be a Borel subgroup containing T , so that Bj

is the other such Borel subgroup.
We claim that there is a unique B-minimal subgroup V1 < V . Indeed, if

V itself is B-minimal, then by Fact 2.2 B′ = 1, absurd. So V1 does exist, and
B′ centralizes V1. If there is another B-minimal subgroup, then B′ = 1 again.
(Notice that we make crucial use of rkV = 2 at this point.) It is clear that
B = N◦H(V1), so V2 := V j

1 6= V1.
We claim that T acts freely on V #

1 and V #
2 . Let t ∈ CT (V1); then t central-

izes V1 and tj centralizes V j
1 , so t centralizes V1 +V j

1 = V , whence t = 1. Hence
CT (V1) = 1, and by the Zilber field theorem, T embeds inside the multiplicative
group of a field whose additive group is isomorphic to V1. The action is thus
free on V #

1 . The same applies to V #
2 .

We claim that CT (V/V1, V/V2) = 1. Let t ∈ CT (V/V1, V/V2). Then fixing
v ∈ V , there are v1 ∈ V1 and v2 ∈ V2 such that vt = v + v1 = v + v2, so
v1 = v2 ∈ V1 ∩ V2. As this intersection of distinct groups of rank 1 is finite, it
follows by connectedness that [V, t] is trivial, and t = 1.
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Hence we can assume that K := CT (V/V1) < T . In particular, T/K acts
freely on (V/V1)#. Hence v0 ∈ V1. As T ≤ C◦G(v0) acts freely on V #

1 , we find
v0 = 0, a contradiction. �

3 The analysis

Notation 3.1 Let G be a non-solvable connected group of finite Morley rank
acting definably and faithfully on a connected abelian group V of Morley rank 2.

We shall proceed to identifying the action (G,V ) to a standard action of
GL2(K) or SL2(K) on K2. The idea is simple. Our distinction is the following:
GL2 has an infinite center, but SL2 doesn’t. In each case the center is the
intersection of all Borel subgroups. So we need a Borel subgroup, which will by
definition contain a connected stabilizer. Reverting the last three sentences, we
find the outline of a proof.

Before we start, here is a remark on subgroups of G admitting more than
one minimal subspace.

Lemma 3.2 Let T ≤ G be a definable, connected subgroup that normalizes two
distinct minimal subgroups of V . Then T is a good torus of rank ≤ 2.

Proof
Assume that T normalizes both V1 and V2. Clearly T is abelian. Let K =

CT (V1) and L = CT (V2). Then K ∩ L = 1, so both K and L embed into good
tori of rank 1. As T is abelian, it is a good torus too. The rank computation is
immediate. �

Recall that an infinite group of finite Morley rank is said minimal if it has
no proper definable infinite subgroup. If A is such a group, then any definable
group of automorphisms of A has rank ≤ rkA [Poi87, Proposition 3.12].

Claim 3.3 V is G-minimal but not minimal. It is either torsion-free or an
elementary abelian p-group for some prime number p.

Proof
V can’t be minimal, as otherwise G would have rank ≤ 2, and therefore be

solvable. If V is not G-minimal then there is a G-invariant V1 < V of rank 1. In
this case, G/CG(V1) acts faithfully on the minimal group V1, and must have rank
≤ 1. Besides, CG(V1)/CG(V1, V/V1) acts faithfully on the minimal group V/V1,
and must have rank ≤ 1. Now clearly [V,CG(V1, V/V1), CG(V1, V/V1)] = 1 so
CG(V1, V/V1) is abelian, and G is an extension of rank ≤ 2 of the latter, hence
solvable. This contradiction proves that V is G-minimal.

The second statement now follows from MacIntyre’s theorem on abelian
groups, together with the remark that V can’t have divisible torsion by rigidity
of p-tori. �

Notation 3.4 Let v0 ∈ V #. Let H = C◦G(v0) < G.

Clearly H has corank at most 2 in G. Our first step is to argue that there
is a Borel subgroup of G containing H.
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Claim 3.5 H is solvable.

Proof
If V is not H-minimal, then there is V1 < V which is H-minimal. Let

K = CH(V1) and L = CK(V/V1). Notice that [L, [L, V ]] = [L, V1] = 1 implies
that L is abelian. As K/L acts faithfully on the minimal group V/V1, it is
abelian, so K is solvable. As H/K acts faithfully on the minimal group V1, it
is abelian, so H is solvable.

So we now suppose that V is H-minimal. In particular, CV (H) is finite and
H acts definably and faithfully on the connected abelian group V/CV (H) of
rank 2. As H < G, we may apply induction. Then H ' SL2(K) or GL2(K),
and we find a contradiction to Lemma 2.8. �

Notation 3.6 Let B ≥ H be a Borel subgroup.

Claim 3.7 V is not B-minimal.

Proof
Otherwise B is abelian by Fact 2.2, so there is an interpretable L such that

V ' L+ and B embeds into L×. In particular, H = C◦G(v0) ≤ B must act freely
on V #, a contradiction. �

Notation 3.8 Let V1 < V be a B-minimal subgroup.

We want the Borel subgroup B to behave like in SL2 or GL2. The next step
is more delicate than the others; we shall prove that B is not morally semi-
simple. A very efficient modelisation of semi-simplicity in the context of groups
of finite Morley rank is the notion of a good torus introduced in [Che05].

Claim 3.9 B is not a good torus.

Proof
Assume it is. We shall show that G has rank 3, find a quotient isomorphic

to PSL2, and derive a contradiction.
Step 1: G has rank 3. Let K = CH(V1) and L = CH(V/V1). Consider

the set X = K ∪ L. If X ( H, then any h ∈ H \ X has a non-trivial image
in H/K, which acts freely on V #

1 , and in H/L, which acts freely on (V/V1)#.
As H = C◦G(v0), the latter implies v0 ∈ V1, and the former a contradiction. It
follows X = H, and in particular H is equal to K, or to L.

Let U = C◦H(V1, V/V1) = (K ∩ L)◦. We claim that U = 1. Assume that
V has exponent p. Then for each u ∈ U and v ∈ V , there is v1 ∈ V1 with
vu = v + v1. Applying u again and again, we end up with vup

= v + pv1 = v,
whence up ∈ CG(v), and as this is true regardless of v, we find up = 1. So U is
a p-unipotent subgroup of H ≤ B; by assumption, U = 1. Let us now deal with
the characteristic 0 case. Let u ∈ U be torsion, say un = 1. For any v ∈ V ,
there is v1 ∈ V1 with vu = v + v1. Applying u again and again yields this time
vun

= v = v + nv1, so nv1 = 0 and as V is torsion-free, v1 = 0, i.e. u ∈ CG(v).
It follows that the torsion subgroup of U is trivial; as B is a good torus, U = 1
again.

This proves that rkK ≤ 1 and rkL ≤ 1. As H is either K or L, we deduce
rkH = 1. Recall that H has corank ≤ 2 in G; hence as G is non-solvable, it has
rank 3.
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Step 2: finding a subgroup of rank 2. We now find a subgroup of G of
rank 2. If B has rank 1, then B = H is a good torus of rank 1. In particular it
contains a p-torus τ for some prime number p, and B = d(τ). Notice that p can’t
be the exponent of V , as otherwise τ would centralize V . Pick an element t ∈ τ
of order pn. By coprime action [ABC08, Corollary I.9.11], V = CV (t) ⊕ [V, t]
and both factors are connected. As v0 ∈ CV (t), we deduce that V0 := CV (t) has
Morley rank exactly 1. Now if s ∈ τ is a root of t of order pm > pn, then the
same applies to s, and in particular V0 = CV (s). Thus V0 = CV (τ) = CV (B).

It follows that if g 6∈ NG(V0) and v ∈ V0 ∩ V g
0 , then CG(v) ≥ B,Bg. As a

conclusion, V0 is disjoint from its distinct conjugates, and in particular rkV G
0 =

rkG−rkNG(V0)+rkV0 ≤ 2 together with G-minimality of V forces rkNG(V0) =
2.

Step 3: contradiction. G/Z(G) is a simple group of rank 3 having a defin-
able subgroup of rank 2. By Fact 2.3, G/Z(G) is isomorphic to PSL2(K) for
some interpretable field K. But now no Borel subgroup of G can be a good
torus, against the assumption that B is one. This is a contradiction. �

Now we know that B is not a good torus we reach a more algebraic landscape.

Claim 3.10 B = N◦G(V1) and NG(B) = NG(V1).

Proof
N◦G(V1) is easily proved solvable. As B is a Borel subgroup, we have B =

N◦G(V1). Also, Lemma 3.2 and Claim 3.9 imply that V1 is the only B-minimal
subgroup of V . Therefore NG(B) = NG(V1). �

A new tool comes into the picture: unipotence. We direct the reader to
[DJ07] for terminology and basic results about unipotence notions. As B is not
a good torus, it admits a non-trivial unipotence parameter [DJ07, Lemma 2.11].

Notation 3.11 Let q̃ 6= (∞, 0) be a maximal unipotence parameter for B and
let U = Uq̃(B).

In general, dealing with Burdges’ characteristic 0 unipotence requires care.
Here the situation is excellent, insofar as only one unipotence degree is possible.

Claim 3.12 If V is torsion-free, then d∞(V oG) ≤ 1. Moreover q̃ = (p,∞) iff
V has exponent p; q̃ = (∞, 1) iff V is torsion-free. In other words, U and V1

have the same unipotence parameter. In particular, U ≤ C◦G(V1).

Proof
If V is torsion-free, then as V is not minimal by Claim 3.3, d∞(V ) = 1. For

all the remaining statements, consider the solvable group V U in the light of
Burdges’ structure theorem for nilpotent groups [DJ07, Fact 2.5]. �

The main tool when using unipotence is Jaligot’s Rigidity Lemma which
asserts that Borel subgroups tend not to share unipotence. We give here a
quite trivial form. The reader may have already met a more subtle version in
which some control of the unipotence degree is required; but such control is here
provided by Claim 3.12.
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Fact 3.13 ([DJ07, Corollary 4.4]) Let G be a locally◦ solvable◦ group of fi-
nite Morley rank, p̃ = (p, r) a unipotence parameter with r > 0 such that
dp(G) = r. Let B be a Borel subgroup of G such that dp(B) = r. Then
Up̃(B) is a Sylow p̃-subgroup of G, and if U1 is a non-trivial definable p̃-
subgroup of B, then Up̃(B) is the unique Sylow p̃-subgroup of G containing
U1, N(U1) ≤ N(Up̃(B)) = N(B), and B is the unique Borel subgroup of G
containing U1.

On the other hand, we have not explained yet what is local◦ solvability◦,
and why G should enjoy such a property. In [DJ07], following Thompson and
in spite of another traditional terminology, a group of finite Morley rank G is
said locally◦ solvable◦ if whenever 1 < A ≤ G is a definable, connected, solvable
subgroup, then so is N◦G(A). The reader will not be surprised to hear that we
do not claim that our group G is locally◦ solvable◦: after all, we are trying to
identify GL2(K)! But it turns out that in order to prove and use Fact 3.13, the
following weaker condition suffices.

Claim 3.14 If 1 < U ≤ G is a q̃-group, then N◦G(U) is solvable.

Proof
Let N = N◦G(U). If N is not solvable, then V is N -minimal. (This was

proved above for H, first paragraph of the proof of Claim 3.5.) In particular, N
acts definably and faithfully on V/CV (N) which is a connected abelian group
of rank 2.

If N < G we apply induction: N is isomorphic to either SL2(K), or GL2(K),
or a finite-by-bad group. As N has an infinite, proper normal subgroup, it
cannot be isomorphic to SL2(K) nor to a finite-by-bad group. Furthermore, if
N ' GL2(K), then U embeds into K× where K has rank 1, so U ' K× is a
good torus, a contradiction to U = Uq̃(B).

If N = G, then applying Fact 2.1 we find a K-vector space structure on V
such that V ' K2 and G embeds into GL(V ), and we argue similarly. �

Claim 3.15 Up to changing v0 ∈ V #, we may suppose that B has corank 1.

Proof
If H has corank 1 we are done as H ≤ B. So assume that H has always

corank 2. Then for each v0 ∈ V #, vG
0 is generic, and in particular G is transitive

on V #. If H < B we are done. So suppose H = B. Recall from Claim 3.12
that U ≤ C◦G(V1).

Let g 6∈ NG(V1). If there is v ∈ (V1 ∩ V g
1 )#, then C◦G(v) ≥ U,Ug. As G

is transitive on V #, v is conjugate to v0, and C◦G(v) is solvable by Claim 3.5.
Now Fact 3.13 (valid here in view of Claim 3.14) forces g ∈ NG(B) = NG(V1)
by Claim 3.10, a contradiction.

Therefore the subgroups {V g
1 } are pairwise disjoint, and N◦G(V1) must have

corank 1. But N◦G(V1) = B by Claim 3.10. �

We now are ready to recognize the group.

Notation 3.16 Let N =
⋂

g∈GB
g.
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Claim 3.17 If N is infinite, then there is an interpretable field K of rank 1
such that V ' K2 and G = GL(V ).

Proof
Let g 6∈ NG(B) = NG(V1) < G. By Lemma 3.2, B∩Bg is a good torus; hence

N◦ 6= 1 is abelian. Then by Fact 2.1, G embeds into GL(V ) for some K-vector
space structure on V . Clearly rk K = 1 and V ' K2. As G is non-solvable but
has an infinite, normal subgroup, G = GL(V ). �

Claim 3.18 If N is finite, then there is an interpretable field K of rank 1 such
that V ' K2 and G ' SL(V ).

Proof
G/N is a finite, central quotient of G which contains B/N of corank 1.

Fact 2.3 yields G/N ' PSL2(K) for some interpretable field K of rank 1. As
rkG = 3 and G is not solvable, one must have G′ = G, that is G is perfect:
and therefore a perfect central extension of a quasi-simple group. It is known
that G is algebraic itself [ABC08, Proposition 3.1 p.136]. It follows G ' PSL2

or SL2 (arguing for example that G has Lie rank 1). Now Facts 2.4 and 2.6 give
the conclusion. �
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