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Abstract

Asymptotic classes are classes of finite structures which have uniformly definable esti-

mates for the cardinalities of their first-order definable sets akin to those in finite fields

given by the Lang-Weil estimates. The goal of the thesis is to prove that the finite

simple groups of a fixed Lie type and Lie rank form asymptotic classes. This requires

the following:

1. The introduction describes the background.

2. Chapter 4 shows a general method of generating one asymptotic class of structures

from another through the notion of bi-interpretability. Specifically, the notions

we introduce are those of uniform parameter bi-interpretability and strong uni-

form parameter bi-interpretability. We prove that being an asymptotic class is

preserved under strong uniform parameter bi-interpretability.

3. Chapter 5 shows that classes of finite simple groups of a fixed Lie type and Lie

rank are strongly uniformly parameter bi-interpretable with specific classes of

finite fields or finite difference fields. This reduces our task to demonstrating

that certain classes of finite difference fields form asymptotic classes.

4. Chapter 2 yields a definability of measure result for the finite σ-degree sets in

the theory ACFA. The principal result of the chapter is Theorem 2.1.1, and it

is published in work with Ivan Tomasic, in [25]. In a similar vein, Chapter 3

develops the asymptotic theory of finite fields equipped with fractional powers of

the Frobenius. Equipped with this almost theory, we demonstrate the existence of

many asymptotic classes of finite difference fields. In particular, we demonstrate

that the classes of finite difference fields found in Chapter 5 to be uniformly

parameter bi-interpretable with certain classes of finite simple groups do form

asymptotic classes. Combining our results we achieve the goal of the thesis.
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10 CHAPTER 1. INTRODUCTION

1.1 The thesis

This thesis lies at a confluence of model theory, classical algebraic geometry and the

theory of finite simple groups. It examines the notions of measurable groups and asymp-

totic classes of groups.

Initially, the goal of the research was to classify low-dimensional measurable groups and

primitive measurable group actions. In the course of the research it became apparent

that these classifications were too difficult to obtain in full generality. However, there

are analogous classifications for asymptotic classes of groups: namely to classify low-

dimensional asymptotic classes of groups, and to classify uniformly definable primitive

actions in asymptotic classes of groups. These classifications have been achieved, incor-

porating model theory of measurable structures, model theory of difference fields and

the theory of finite simple groups. Ultraproducts of members of asymptotic classes of

groups form a very rich and interesting sub-class of measurable groups, and so the re-

stricted classifications are satisfying in their own right. This work is joint with Richard

Elwes, in a manuscript in preparation. Although the results there depend on this the-

sis, they are not included here.

The core of the classification of low-dimensional asymptotic classes of groups, and the

classification of uniformly definable primitive actions in asymptotic classes of groups

lies in the following elegant, simple statement:

THEOREM 1.1.1 Any family of finite simple groups of Lie type of bounded Lie rank

forms an asymptotic class of groups.

In fact, the proof of this result is deep, and its proof is the ultimate goal of this thesis.

The thesis is structured into the introduction and four subsequent chapters.

Chapter 2 yields a definability of measure result for the finite σ-degree sets in the

theory ACFA. The principal result of the chapter is Theorem 2.1.1, and a proof of

this theorem is published in joint work with Ivan Tomasic, in [25]. The proof we give

in Chapter 2 is different from the published proof and is not joint work: here we use
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classical methods of model theory; they are more to my taste, and very much in the

flavour of the entire thesis.

Chapter 3 develops the asymptotic theory of finite fields equipped with fractional pow-

ers of the Frobenius. Equipped with this almost theory, we demonstrate the existence

of many asymptotic classes of finite difference fields.

Chapter 4 shows a general method of generating one asymptotic class of structures

from another through the notion of bi-interpretability. Specifically, the notions we in-

troduce are those of uniform parameter bi-interpretation and strong uniform parameter

bi-interpretation.

Chapter 5 shows that classes of finite simple groups of Lie type of bounded Lie rank are

uniformly parameter bi-interpretable with asymptotic classes of finite difference fields

identified in Chapter 3. This will form a crucial part of the proof of Theorem 1.1.1.

In addition, this result combined with the results of Chapter 3 yields the asymptotic

theory of the finite Suzuki and finite Ree groups.

In the introduction we shall endeavour to achieve several things. We shall give a broad

and basic description of the model-theoretic phenomena that arise in the research we

conducted. Ultimately, everything that is included in the thesis is done so because it

is a necessary result in proving Theorem 1.1.1. However, this covers a range of model-

theoretic techniques, and so a general introduction is useful. We will use the class of

algebraically closed fields as a benchmark in the introduction to illustrate the types of

model-theoretic phenomena we shall later encounter, and the methods we shall employ.

We shall also endeavour where possible to explain how various techniques or phenom-

ena pertain to our proof of Theorem 1.1.1; examples we give are those most relevant

to the thesis. In short, the introduction is intended to give the flavour of the thesis.

Necessarily, the introduction concludes with sections outlining technical, algebraic tools

used later.
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1.2 Basics of model theory

1.2.1 Structures, definable sets, axiomatisations and elementary classes

We have to begin somewhere. I take the notion of a first-order language L and an

L-structure as understood. Two wonderful references are [18] and [26]. But let us

take a basic example. We define the language of rings Lrings as having two function

symbols · and + each of arity (number of inputs) 2, two constant symbols 0 and 1,

and no additional relation symbols. A ring R interprets Lrings and is an Lrings-structure.

A class C of L-structures is said to be an elementary class, or axiomatisable, if

there is a set of sentences T in L such that C is exactly the class of L-structures that

satisfy the sentences in T . We call a set of consistent sentences a theory. In this case,

we say T is the the theory of C. If an L-structure M satisfies all the sentences of T ,

then we write M |= T . It is easy to write an axiomatisation of the class of rings or

the class of fields in Lrings. One may also axiomatise the class of algebraically closed

fields. An axiomatisation of a class of L- structures is a typical goal in model theory:

it captures exactly a determining set of properties of the class.

For a general first-order language L and L-structureM, a definable set is a subset of

Mn for some n which is precisely the interpretation of an L-formula with parameters

from M. We denote the system of all definable sets by Def(M). For the case of Lrings

and R a ring, we may give an alternative description of Def(R). We say Def(R) is the

smallest system of sets with Def(R) ⊆ ∪i∈N℘(Ri), which contains the algebraic sets

of R (these are the zero sets of ideals I / R[X̄]) and which is closed under boolean

operations and projections. We mention the special case of an algebraically closed field

K̃. There, by Chevalley’s Theorem, we see that Def(K̃) is precisely the system of

constructible sets in powers of K̃.

An ∅-definable set is a subset ofMn for some n which is precisely the interpretation

of an L-formula without use of parameters from M.

Now we focus on the two examples of languages and structures which are central to
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this thesis.

First, we consider Lgroups. It has two functions, −1 of arity 1, and · of arity 2. It has

one constant symbol 1. The class of groups is clearly axiomatisable in Lgroups. If G

is a group then we may describe Def(G) analogously to the fields case: we define a

group string S to be a finite string of variables and their inverses, and of elements of

G and their inverses. We define a group polynomial in n variables to be an equation

S = 1 where S is a group string in n variables. We define a group variety V ⊆ Gn

to be the set of solutions in Gn to a system of group polynomials in n variables. Here

then, Def(G) is the smallest system of sets with Def(G) ⊆ ∪i∈N℘(Gi), containing all

the group varieties of G, and closed under both boolean operations and projections.

Secondly we consider Ldiff , the language of difference rings. A difference ring is a

ring R with a specified endomorphism σ : R 7→ R. We define Ldiff to be the language

Lrings augmented by a function symbol σ of arity 1. Then it is easy to see that the

class of difference rings is an elementary class, axiomatisable in Ldiff . Difference fields

are difference rings where the underlying ring is a field. An inversive difference field is

a difference field (K,σ) where σ is an automorphism of K; the class of inversive differ-

ence fields is also an elementary class. It is inversive difference fields that we are most

interested in. Now we describe Def(K,σ). A difference polynomial over K is a poly-

nomial with coefficients from K, with monomials in variables xi and their σ-iterates

σj(xi). For instance σ(x) − x is a difference polynomial in 1 variable. A difference

equation is an equation P = 0 where P is a difference polynomial. A σ-closed set

in n variables is the zero set of a collection of difference equations in n variables. For

instance, if (K,σ) is a difference field, the σ-closed set defined by σ(x) − x = 0 is the

fixed subfield of σ. In the specific case where K is an algebraic closure of the finite

field Fp and σ = Frob : x 7→ xp this would be the prime subfield Fp. Difference fields

play a crucial role in the thesis, and the introduction contains a technical section 1.4.2

which summarises concepts from the theory of difference fields that will be used.
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1.2.2 Ultraproducts, asymptotic theories and some central topics of

this thesis

If I is an infinite set then a filter F on I is a collection of subsets of I which (a) does

not contain ∅, (b) is closed under finite intersections, and (c) is closed under taking

supersets. Maximal filters exist and are called ultrafilters. An ultrafilter U is charac-

terised by the property that if X ⊆ I, then X ∈ U if and only if I\X 6∈ U . A principal

ultrafilter is one of the form {X ⊆ I : a ∈ X} for some a ∈ I.

Now suppose that C = {Ci : i ∈ I} is a collection of L-structures. Often the Ci will be

finite. Let U be an ultrafilter on I. We define an equivalence relation ∼U on
∏
i∈I Ci by

(ai)i∈I ∼ (bi)i∈I if {i : ai = bi} ∈ U . Let C :=
∏
i∈I Ci/ ∼U . Then the reader can check

that C is naturally an L-structure: constants and functions are defined componentwise.

Let a ∈ C have a representative (ai)i∈I . For a unary relation R of L, R(a) holds if

{i : Ci |= R(ai)} ∈ U . Relations of higher arity are similar. We call the L-structure C

an ultraproduct of the members of C with respect to the ultrafilter U .

The fundamental theorem about ultraproducts is called Los’s theorem:

THEOREM 1.2.1 Let θ(x1, . . . , xn) be an L-formula. Let a1, . . . , an ∈ C have rep-

resentatives (a1i)i∈I , . . . , (ani)i∈I respectively. Then C |= θ(a1, . . . , an) if and only if

{i ∈ I : Ci |= θ(a1i, . . . , ani)} ∈ U .

Los’s theorem shows that in some sense an ultraproduct gives an average of its com-

ponent structures.

We shall make use of many non-principal ultraproducts in this thesis, and it would

involve much superfluous notation to define specific index sets and ultrafilters each

time. We shall sometimes use the notation
∏
i∈I Di/ ∼. This is always meant to de-

note a non-principal ultraproduct. Usually, an index set I is understood, or it is left

to the reader to see that for the given purposes an appropriate index set I may be

selected. The Di will always be an I-indexed collection of L-structures in a language

L. In all the ultraproducts we consider, both L, and the set of structures C from which

the Di are selected, will be transparent. We shall usually suppress the particular non-
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principal ultrafilter U on I which is used. It is not important. What is important is

that non-principal ultrafilters exist, and that Los’s Theorem 1.2.1 may be applied to

any non-principal ultraproduct. Thus in the notation
∏
i∈I Di/ ∼, the symbol ∼ is

purely notational, and it denotes the equivalence relation on
∏
i∈I Di where two strings

are equivalent if they agree on a set of components in the unstated ultrafilter U . We

shall also use the jargon ‘components of the ultraproduct’ and ‘ultrafilter-many com-

ponents’. A component of the ultraproduct D =
∏
i∈I Di/ ∼U is a single L-structure

Di. If we say something E occurs on ultrafilter-many components of D or that E occurs

ultrafilter-many times, then this is to say that there is a set J ⊆ I such that J ∈ U ,

and for each j ∈ J , E occurs on Dj .

We may ask which L-sentences hold in every structure in C. We call this collection

the theory of all C members. By Los’s theorem 1.2.1 these are exactly the sentences

which hold in all ultraproducts of members of C. However, the principal ultrafilters

give dull ultraproducts (such an ultraproduct will be isomorphic to a member of the

class.) More interesting is the theory T∞ of all non-principal ultraproducts of members

of the class. Clearly T∞ is exactly the collection of L-sentences which hold in all but

finitely many members of C, so we might refer to it as the almost theory of C. If C is

a class of finite L-structures where for any n ∈ N there are only finitely members of C

up to L-isomorphism of cardinality less than n (such as when L is a finite language),

then this is tantamount to asking which sentences hold for all members of C of greater

than a fixed cardinality. In this case we may also call T∞ the asymptotic theory of C.

Let us give three examples of classes of structures central to the thesis. For the first

two, an elegant axiomatisation of the almost theory has already been obtained. In

chapter 3 we present one for the final class.

The first is the class of finite fields. In 1968 James Ax gave an axiomatisation of the

asymptotic theory of finite fields; he called models of that theory pseudo-finite fields.

The axiomatisation of a pseudo-finite field K is threefold: (a) K is perfect, (b) The

absolute Galois group of K is Ẑ, and (c) K is pseudo-algebraically closed (PAC), that

is to say every absolutely irreducible variety defined over K has a K-rational point. It
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is not immediately clear that these axioms can be expressed in Lrings, but Ax shows

that this is in fact the case. The truth of the third axiom for ultraproducts of finite

fields follows from the Lang-Weil estimates:

THEOREM 1.2.2 Let e, n, r be integers greater than 1. There is a positive constant

C, such that for every prime power q and polynomials f1, . . . , fr ∈ Fq[X1, . . . , Xn] of

total degree ≤ e, if the algebraic set V defined by f1(X) = . . . = fr(X) = 0 (where

X = (X1, . . . , Xn)) is an absolutely irreducible variety of dimension d, then ||V (Fq)| −

qd| ≤ Cqd−
1
2 .

The second example subsumes the first. For a field of characteristic p we denote the

Frobenius automorphism x 7→ xp as Frob. Model-theorists have studied the class of

difference fields C = {(F̃p,Frobn) : p a prime, n ∈ N} for many years. Macintyre and

later Chatzidakis and Hrushovski axiomatised and developed the model theory of the

theory ACFA (algebraically closed fields with an automorphism), a candidate for the

almost theory of C. The axiomatisation for (K,σ) |= ACFA is given in Section 1.4.2.

In his manuscript [13] Hrushovski proves a theorem giving estimates for difference

fields analogous to the Lang-Weil estimates for finite fields. We refer to his theorem as

Hrushovski’s correspondence estimates. To understand his precise statement we need

some notation: suppose q = pn where p is a prime and n ≥ 1. Then let ϕq :=Frobn.

Suppose X is an affine variety defined by a set of polynomial equations E = {ei : 1 ≤

i ≤ m}, with coefficients in a characteristic p field k. Then let Xϕq be the affine variety

defined by the set of polynomial equations E∗ = {e∗i : 1 ≤ i ≤ m}, where each e∗i is

obtained by applying ϕq to the coefficients of ei. Let Φq(k) := {(x, ϕq(x)) : x ∈ k}.

Then Hrushovski’s precise statement is:

THEOREM 1.2.3 Let X be an affine variety over a base field k. Let q = pn

where p is a prime and n ≥ 1. Let S ⊆ (X × Xϕq) be an irreducible subvariety.

Assume dim(S) = dim(X) = d, the maps S 7→ X, S 7→ X ′ are dominant, and one is

quasi-finite. Let a = [S : X]/[S : X ′]insep. Then

|S(k) ∩ Φq(k)| = aqd +O(qd−
1
2 )

The reader will notice the similarity between these estimates and the Lang-Weil esti-

mates. Using these estimates Hrushovski proved that ACFA is indeed the asymptotic
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theory of difference fields (F̃p,Frobn). We call this the elementary equivalence theorem

for ACFA, and it is presented explicitly in this thesis as Theorem 2.1.3. We shall use

a version of Theorem 1.2.3 to prove the main theorem of Chapter 2 (Theorem 2.1.1).

The version we use is presented as Theorem 2.1.2.

The third example is central to the thesis. Let m and n be coprime natural numbers

with n > 1 and let p be a prime. Then we define the class of finite difference fields

C(m,n,p) := {(Fpnk+m ,Frobk) : k ∈ N}. In Chapter 3 we introduce a theory PSF(m,n,p)

in the language Ldiff . The theory PSF(m,n,p) is the theory of a pseudo-finite field

of characteristic p with an automorphism σ which satisfies Frobmσn =id. It is the

asymptotic theory of C(m,n,p). In Section 5.4 we will show that for the special case

of n = 2, m = 1, p = 2, the class C(1,2,2) is uniformly parameter bi-interpretable

with the class of finite Suzuki groups, and also with the class of finite Ree groups of

type 2F4; consequently the asymptotic theory PSF(1,2,2) may be translated into the

asymptotic theory of the finite Suzuki groups, or of these Ree groups. Similarly in the

case n = 2, m = 1, p = 3, the class C(1,2,3) is uniformly parameter bi-interpretable

with the class of finite Ree groups of type 2G2, and consequently the asymptotic theory

PSF(1,2,3) may be translated into the asymptotic theory of the finite Ree groups of

type 2G2. Bi-interpretations are introduced just below in subsection 1.2.6; the notion

of uniform parameter bi-interpretations is is the key notion of Chapter 4 (see Definition

4.2.3).

1.2.3 Elementary extensions, existentially closed models and model

companions

LetM⊆ N be a containment of L-structures. We say N is an elementary extension

ofM if for any L-formula θ(x̄, d̄) with parameters d̄ ⊆M, if there is a tuple c̄ ⊆ N for

which N |= θ(c̄, d̄) then there is another tuple b̄ ⊆ M such that M |= θ(b̄, d̄). If N is

an elementary extension ofM then we writeM≺ N . Let C be a class of L-structures.

Let M ∈ C. We say M is existentially closed in C if for any L-structure N ∈ C,

if M ⊆ N then any quantifier-free formula over M which has a solution in N has a

solution in M . The prototypical example is again an algebraically closed field K̃; all al-

gebraically closed fields are existentially closed inside the class of fields. Hilbert’s weak
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nullstellensatz (that maximal ideals over an algebraically closed field K̃ correspond to

tuples in K̃) is a consequence of this; conversely, recalling that the sets of Def(K̃) are

the constructible sets, then one can deduce that K̃ is existentially closed from Hilbert’s

weak nullstellensatz. The PAC property and Hrushovski’s correspondence estimates

1.2.3 can similarly be thought of as nullstellensatzes in their contexts.

If T is a theory in the language L then T is model-complete if for any pair of models

M,N |= T with M ⊆ N , then M ≺ N . T has a model companion T ∗ if (a) T ∗ is

a theory in L, (b) every model of T embeds into a model of T ∗ and every model of

T ∗ embeds into a model of T , and (c) T ∗ is model-complete. Model companions are

unique. The theory of algebraically closed fields is the model companion of the theory

of fields. The theory ACFA described above is the model companion of the theory of

difference fields.

1.2.4 Quantifier eliminations

Understanding Def(M) is of paramount importance to the model-theorist. Usually, for

algebraic structures like groups or rings or difference rings, Def(M) ostensibly captures

only the most basic algebraic data about the structure. So the question becomes, how

much of the deeper structure is captured in Def(M)? That deeper structure may be

topological: a linear group embedded in affine space has an induced Zariski topology,

a profinite group carries a natural topology. Is the topology embedded in the group

theoretic structure? One famous question of this flavour is the open subgroup question:

is every finite index subgroup of a profinite group open?

So let us consider Def(M). It is formed inductively. The first tier of sets is the tier

of atomic sets. These are the graphs of equations t1 = t2 where t1 and t2 are terms

(iterated functions) in the language with parameters from M, or graphs of relations

with parameters from M. We refer to the second tier as the quantifier-free sets.

These are the sets obtained from atomic sets by boolean operations. Then we have

the ∃-sets (projections of quantifier free sets), and the ∀-sets (complements of ∃-sets).

In general a Σn-set (respectively a Πn-set) is a set defined by a formula which starts

with an existential (universal) quantifier and has n − 1 alternations of existential and



1.2. BASICS OF MODEL THEORY 19

universal quantifiers. We more natually refer to Σ2-sets as ∃∀-sets, and to Π2-sets as

∀∃-sets. So for instance if θ(y1, y2, . . . , yn, x1, x2, . . . , xm, z̄) is quantifier-free then the

set defined by

∀y1∀y2 . . . ∀yn∃x1∃x2 . . . ∃xm(θ(y1, y2, . . . , yn, x1, x2, . . . , xm, z̄))

is ∀∃. Then Def(M) is the collection of all such sets as n ranges over the natural

numbers.

The problem with Def(M) is that in general we may have little idea what a set ob-

tained by iterated projections and boolean operations looks like. In the case of the

algebraically closed field K̃ however, this problem does not exist. Chevalley’s theorem

tells us that Def(M) consists exactly of the constructible sets. Projections add no com-

plexity. Model theorists would say “algebraically closed fields eliminate quantifiers”.

In general, suppose we have a theory T . Then we say T eliminates quantifiers if for

any L- formula θ(x̄), there is a quantifier-free L-formula θ∗(x̄) such that for any model

M |= T and tuple c̄ ⊆M, then M |= θ(c̄)⇔ θ∗(c̄).

In some cases we may not be fortunate enough to eliminate all quantifiers. The struc-

tures we are most interested in in this thesis are a case in point. However, we obtain an

approximation to quantifier elimination which is sometimes referred to as near model

completeness. Let T be a theory. T is near model complete if for every L-formula

θ(x̄) there is an L-formula θ∗(x̄) which is a boolean combination of ∃-formulae such that

for all models M |= T and tuples c̄ ⊆ M, then M |= θ(c̄) ⇔ θ∗(c̄). The asymptotic

theory of finite fields (defined in subsection 1.2.2) is near model complete.

Let Lrings,c be the language of rings with constants c = {cni : n > 1, 1 ≤ i ≤ n}.

In [10], the Lrings,c-theory T of enriched pseudo-finite fields was introduced. Enriched

pseudo-finite fields are pseudo-finite fields, and have the elimination form that for

any Lrings,,c-formula θ(x̄, c), there is an Lrings,c-formula θ∗(x̄, c) such that for any

model M |= T and tuple d̄ ⊆ M, then M |= θ(d̄) ⇔ θ∗(d̄); the formula θ∗(x̄)

is a conjunction of formulas ∃T (g(x̄, c, T ) = 0), where T is a single variable and

g(x̄, c, T ) ∈ Z[x̄, c, T ]. Otherwise put, we have every formula equivalent to a con-

junction of formulas ∃T (t1(x̄, T ) = t2(x̄, T )) where t1 and t2 are terms in the language.
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We shall call this positive near model completeness. In [10], positive near model

completeness was made use of to generalise the Lang-Weil estimates (presented above

as Theorem 1.2.2): in the language of this thesis the positive near model completeness

and the Lang-Weil estimates show that the class of finite fields forms an asymptotic

class. Let us define the equivalent notions for ∀∃-formulae to be near∗-model com-

pleteness and positive near∗-model completeness .

Let m and n be coprime natural numbers with n > 1. Let p be a prime. In Chapter 3

we demonstrate the near model completeness of the asymptotic theory PSF(m,n,p) (see

section 1.2.2 for a definition) of the class of finite difference fields C(m,n,p). We also

demonstrate the positive near model completeness of enriched finite difference fields

PSF(m,n,p,c) (see subsection 3.3.2 for a definition). Using that, one may deduce the

near∗-model completeness of the asymptotic theories of finite Suzuki groups and both

types of finite Ree groups, but we do not include this in the thesis. More importantly, in

the same way that the Lang-Weil estimates and positive near model completeness of the

asympotic theory of finite fields imply that finite fields form an asympotic class, pos-

itive near model completeness of PSF(m,n,p,c) and our generalisation (Theorem 2.1.1)

of Theorem 1.2.3 are shown in Chapter 3 to imply that C(m,n,p) is an asymptotic class

of difference fields.

1.2.5 Dimension theories

We have repeatedly mentioned algebraically closed fields. The reader will be acquainted

with the dimension theory for algebraic varieties. Over algebraically closed fields, since

all definable sets are finite unions of locally closed sets, a dimension theory obviously

extends to all definable sets. This is part of a much larger phenomenon in model the-

ory. Dimension theories are central to modern model theory, especially in the study of

stable and simple theories.

As an example, we now consider a rank known as S1-rank. Let M be an uncountably

saturated model. The S1 rank is defined on any set which is the interpretation in M

of a formula θ ∈ Def(M):
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1. S1(θ) > 0 iff θ has infinitely many solutions.

2. S1(θ) > n+ 1 iff there exists an infinite sequence (bi)i∈ω of distinct elements and

a formula ϕ(x, y) such that:

(a) for some k ∈ N, for any k distinct elements S1(ϕ(x, bi1) ∧ . . .∧ ϕ(x, bik)) ≤ n

(b) ( S1(θ ∧ ϕ(x, bi)) > n for each i.

In subsection 1.2.7 of this introduction we introduce asymptotic classes. They are

central to the thesis. It will transpire that any non-principal ultraproduct of members

of an asymptotic class has finite S1-rank. Finite S1-rank structures have been much

studied by model-theorists. However, the S1-rank is combinatorial and often hard to

characterise. In this thesis we show the classes C(m,n,p) are asymptotic classes, but we

work with a more natural notion of dimension for difference fields that bounds the

S1-rank above. It is the notion of σ-degree, and it is defined in Section 1.4.2. The

most important fact for us is that in ACFA σ-degree is definable: see Section 2.1.3 in

Chapter 2 for an explanation.

1.2.6 Interpretations and bi-interpretations

One important measure of model theoretic complexity is the notion of the interpretation

of one structure in another. Suppose M is an L1-structure and N is an L2-structure.

We say N interprets M if

• there is a set X ∈ Def(N ) and an equivalence relation E ∈ Def(N ) on X. Let

p : X 7→ X/E be the quotient map; we see that p naturally extends to a map

Xn 7→ (X/E)n.

• there are definable subsets Si ⊆ Xni of cartesian powers of X which also lie

in Def(N ), and the quotients X/E together with p(Si) interpret the relation

symbols, function symbols, and constant symbols of L1, in such a way that the

resulting L1-structure M∗ is isomorphic to M.
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• If there is no need for an equivalence relation E, then we sayM is definable in

N .

• If there is no need for parameters in the interpretation we say N ∅-interprets

M.

Some important examples of interpretations are (1) the reals as a field interpeting

the complexes, (2) the integers equipped with + and · interpreting the rationals, (3)

Zermelo-Fraenkel set theory interpreting Peano Arithmetic and (4) a field K interpret-

ing a linear group over K.

Suppose as above thatN definesM asM∗ via the L1-isomorphism f :M→M∗. Then

the structure induced onM byN is the system of sets {f−1(Y ∩M∗m) : Y ∈ Def(N )}.

It is certainly as rich as the system Def(M). In some cases it is richer: for instance,

the complex numbers as a field do not define the reals.

In other cases, two structures M and N may interpret each other in a special way

that shows they have the same complexity. We call this a parameter bi-interpretation.

If M is an L1-structure and N is an L2-structure, a parameter bi-interpretation

between M and N is firstly an interpretation M∗ of M in N via an L1-isomorphism

f :M→M∗, together with an interpretation N ∗ of N in M via an L2-isomorphism

g : N → N ∗. The isomorphism f induces an isomorphism f ′ from N ∗ to an L2-

structure N ∗∗ interpreted in M∗ and in turn interpreted in N . Similarly, the isomor-

phism g induces an isomorphism g′ from M∗ to an L1-structure M∗∗ interpreted in

N ∗ and in turn interpreted in M. In a parameter bi-interpretation the isomorphisms

g′f :M→M∗∗ and f ′g : N → N ∗∗ are definable in M and N respectively.

If there is no need for parameters in the bi-interpretation we say there is an ∅-bi-

interpretation between N and M.

The reader will see that where there is a bi-interpretation between N and M and in

fact N and M in the bi-interpretation are defined in each other, then in some sense

Def(N ) and Def(M) are identical. A basic example is that the group SL2(K̃) is bi-
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interpretable with the algebraically closed field K̃, and no equivalence relations are

necessary in the bi-interpretations. In this case a corollary of the bi-interpretation is

that there is no additional structure induced on SL2(K̃) by its obvious embedding in

A4: its induced Zariski topology is obtainable at the level of group varieties. IfM and

N are bi-interpretable then often a nice property of M may be inherited by N .

The difference between parameter bi-interpretations and ∅-bi-interpretations will be an

issue that requires delicate treatment in the thesis, for parameter interpretations and

bi-interpretations are inherently ‘weaker’ than ∅-interpretations or ∅-bi-interpretations.

Ultimately, in Chapter 5, we shall show that families of finite simple groups of Lie Type

of bounded Lie rank form asymptotic classes because their members are parameter bi-

interpretable with the members of certain families of finite fields or finite difference

fields. The bi-interpretations will necessarily make use of parameters. In order that

the families of finite simple groups are proved to be asymptotic classes it is insufficient

to show that they are pairwise bi-interpretable with specific finite fields or difference

fields. We shall require a uniformity in the family of parameter bi-interpretations, which

we call strong uniform parameter bi-interpretations. These are defined in Chapter 4,

and there we prove the following fundamental lemma:

PROPOSITION 1.2.4 1. Suppose D is an asymptotic class in a language L2. Sup-

pose C is a class of L1-structures and suppose C is strongly uniformly parameter bi-

interpretable with D. Then C is an asymptotic class.

1.2.7 Asymptotic classes

The three examples of section 1.2.2 are bound by a common feature: their structure is

largely determined by the solution sizes given by the Lang-Weil estimates or Hrushovski

correspondence estimates. Let C be either (a) the class of finite fields or (b) the class

of difference fields C = {(F̃p,Frobn) : p a prime, n ∈ N}. In the case of (a) let U be

the formula x = x, and in case (b) let U be the formula σ(x) = x. In each case, the

appropriate estimates mean we may fix a definable set D of the right type and look

at its set of rational points D(C) for any C ∈ C. We can then estimate |D(C)| as

a polynomial in the cardinality of |U(C)|. In the case of finite fields, looking at the
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Lang-Weil estimates, the sets D that can be estimated must be absolutely irreducible

varieties. But this was generalised in [10] so that D may be taken to be any definable

set in the language of rings. Taking finite fields as their motivation, Macpherson and

Steinhorn considered a class of finite L-structures C, where for any C ∈ C definable sets

have cardinalities given approximately by expressions µ · |C|d for fixed numbers µ and

d. In [23], they initiated the study of asymptotic classes and measurable structures.

Here are their original definitions:

DEFINITION 1.2.5 Let L be a first order language, and C be a collection of finite

L-structures. Then C is a 1-dimensional asymptotic class if the following hold for every

m ∈ N and every formula ϕ(x, ȳ), where ȳ = (y1, . . . , ym).

(i) There is a positive constant C and a finite set E ⊂ R>0 such that for every M ∈ C

and ā ∈Mm, either |ϕ(M, ā)| ≤ C, or for some µ ∈ E,

||ϕ(M, ā)| − µ|M || ≤ C|M |
1
2 .

(ii) For every µ ∈ E, there is an L-formula ϕµ(ȳ), such that ϕµ(Mm) is precisely the

set of ā ∈Mm with

||ϕ(M, ā)| − µ|M || ≤ C|M |
1
2 .

Their first basic proposition is so central to work around asymptotic classes that it is

almost part of the definition:

PROPOSITION 1.2.6 Suppose C is a 1-dimensional asymptotic class of finite L-

structures. Then the following holds, for every m,n ∈ N and every formula ϕ(x̄, ȳ),

where x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym).

(i) There is a positive constant C and a finite set D of pairs (d, µ) with d ∈ {0, . . . , n}

and µ ∈ R>0, such that for every M ∈ C and ā ∈ Mm, if ϕ(Mn, ā) is non-empty then

for some (d, µ) ∈ D,

||ϕ(Mn, ā)| − µ|M |d| ≤ C|M |d−
1
2 .

(ii) For every (d, µ) ∈ D, there is an L-formula ϕd,µ(ȳ), such that ϕd,µ(Mm) is precisely

the set of ā ∈Mm with

||ϕ(Mn, ā)| − µ|M |d| ≤ C|M |d−
1
2 .
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There is no particular reason to restrict to 1-dimensional asymptotic classes. Elwes

[12] generalises in the following way:

DEFINITION 1.2.7 A class C of finite L-structures is an N -dimensional asymptotic

class if

(i) for every L-formula ϕ(x, y) where length(y) = m, there exists finite D ⊂ {0, ..., N}×

R>0 ∪ {(0, 0)} and a partition {Φ(d,µ) : (d, µ) ∈ D} of {{M} ×Mm : M ∈ C} so that

for (M,a) ∈ Φ(d,µ)

we have

||ϕ(M,a)| − µ|M |
d
N || = o(|M |

d
N )

as |M | −→ ∞.

(ii) Moreover each Φ(d,µ) is definable, that is to say {a ∈ M : (M,a) ∈ Φ(d,µ)} is

uniformly ∅-definable across C.

The definition above considers only sets in 1 variable, but Elwes shows, in a proposi-

tion similar to 1.2.6, that the equivalent condition for sets in n variables is automatic,

the only change being that now the dimension of a set in n variables lies in {0, . . . , Nn}.

We shall refer to the dimension in Definition 1.2.7 variously as asymptotic dimension

or simply as the dimension of a particular asymptotic class. Definition 1.2.7 is the

key definition for the purposes of this thesis, as the asymptotic classes crucial to the

work are typically of asymptotic dimension greater than 1, and so, concretely, it is the

definition of asymptotic classes which we will use throughout.

We shall refer to clause (i) of Definition 1.2.7 as the first criterion for asymptotic classes,

and (ii) as the second criterion for asymptotic classes, or the definability of measure.

Let us also note that the dimension in 1.2.7 is not unique for an asymptotic class. If

C is an N -dimensional class, then C is also a k · N -dimensional asymptotic class for

any k ∈ N. Normally, if we compute dimension, we shall compute the minimal possible
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dimension N for an asymptotic class.

It will transpire in Chapter 5 that the families of finite simple groups of Lie type of

bounded Lie rank form asymptotic classes but not of dimension 1: in such families there

are uniformly definable families of sets such that each set is much smaller in cardinality

than than the particular group in which it is defined.

Taking non-principal ultraproducts of members of an asymptotic class yields an infi-

nite structure with a non-standard counting measure coming from the µ above. The

generalisation, to an infinite measurable structure, is natural. Here is a definition:

DEFINITION 1.2.8 Let M be an L-structure and let Def(M) be the union, over

all positive integers n, of the collections of parameter definable non-empty subsets of

Mn. ThenM is measurable if there is a function h : Def(M)→ N×R>0 satisfying the

following (where we write h(X) as (dim(X),meas(X))).

(i) If X ∈ Def(M) is finite non-empty then h(X) = (0, |X|).

(ii) For every formula ϕ(x̄, ȳ) there is finite D ⊂ N× R>0 so that:

(a) for all ā ∈Mm, h(ϕ(Mn, ā)) ∈ D.

(b) for all (d, µ) ∈ D, {ȳ ∈Mm : h(ϕ(Mn, ȳ)) = (d, µ)} is 0-definable.

(iii) Let X,Y ∈ Def(M) and f : X → Y be a definable surjection. By (ii), there is r ∈ ω

and (d1, µ1), . . . , (dr, µr) ∈ N × R>0 so that if Yi := {ȳ ∈ Y : h(f−1(ȳ)) = (di, µi)},

then Y = Y1 ∪ . . . ∪ Yr is a partition of Y into non-empty disjoint definable sets. Let

h(Yi) = (ei, νi) for i = 1, . . . , r. Also let c := Max {d1 + e1, . . . , dr + er}, and suppose

this maximum is attained by d1 + e1, . . . , ds + es. Then h(X) = (c, µ1ν1 + . . .+ µsνs).

If h(X) = (d, µ), we call d the dimension of X and µ the measure of X, and h the mea-

suring function. We often write hi(X) for the projection of h(X) to the ith coordinate

(for i = 1, 2).

A measure µ on M is said to be normalised if M itself has measure 1.
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We say that a complete theory T is measurable if it has a measurable model.

1.3 The results of this thesis put in context

We now give chapter-related results proved in this area and how ours fit in:

Chapter 2: The whole chapter is to prove Theorem 2.1.1. The debt to Hrushovski’s

Theorem 1.1 in [13] cannot be overstated. One can draw an analogy between our Theo-

rem 2.1.1’s relation to Hrushovski’s correspondence estimates and the relation between

the main theorem of [10] and the Lang-Weil estimates: in both cases definable estimates

for a base class of families of definable sets are extended to a larger class. The lemmas

2.4.3 and 2.4.4 in Section 2.4 are simply relativisations to the difference fields setting of

lemmas 3.5 and 3.7 of [10]. Theorem 2.1.1 is published in [25]. Here I have endeavoured

to prove the result in a more classical way, using only notions of definability, first-order

compactness, and results about the theory of algebraically closed fields and the theory

ACFA. The proof here, though perhaps more long-winded, really is in the same spirit

as the lovely paper [10], and I prefer it.

Chapter 3: Again, the debt to Hrushovski’s work in [13], the work of Chatzidakis

and Hrushovski in [8], and the work of Chatzidakis, Hrushovski and Peterzil in [9],

is immense. Simply, none of these results would exist without their core work. We

are essentially describing the first-order theory of certain uniformly definable reduct

difference fields of models of ACFA (the solution sets to the equations Frobmσn =id).

Our addition to existing knowledge is that we have axiomatised this class of reducts,

and described their model theory in their own right, and not relative to the enveloping

models of ACFA.

We should point out that our reduct difference fields were not new. In Theorem 3.3.22

we apply a strong result from [9] directly concerning them.
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The classes C(m,n,p) and the resulting models of the theories PSF(m,n,p) have prime p

characteristic. ACFA and our results in Chapter 1 are valid, however, for character-

istic 0. The reason for this is essentially accidental: when I began to consider these

classes it was to find the exact classes of finite difference fields that matched a class of

finite simple Suzuki or Ree groups. These are the classes C(1,2,2) and C(1,2,3). So much

was my focus that the work was called ‘Square Roots of the Frobenius’. I managed

the conceptual leap to generalise to arbitrary fractional powers of Frobenius, but alas,

did not examine the effect of relaxing the restriction on the prime. My feeling is very

very strongly that there is no problem whatsoever with relaxing this restriction, and

thus obtaining characteristic 0 pseudo-finite difference fields in our framework. Unfor-

tunately, this work is not included in the thesis.

We have included decidability results at the end of Section 3.3.4 that follow directly

from the decidability results in [8] 1.6. Let us just point out that the decidability results

here answer the last question in [24].

Chapter 4: The first section develops a tool to capture the definability of measure

in the theory of finite simple groups of a fixed Lie rank and Lie type. I do not know

any direct precursor to this work.

The second section is a restatement in a convenient form of the group generation re-

sults for supersimple groups found in [29]. I learnt of these results initially in [15]. We

apply them essentially through Lemma 4.3.11, which is in turn based on 4.3.10. Behind

Lemma 4.3.10 is the result that in a simple group defined in a theory such as ACFA

or PSF(m,n,p), if the group has ‘finite dimension’, then for any infinite definable subset

X invariant under conjugation, there is t = t(X) such that the group is generated in

at most t steps by X. By Hrushovski’s results these groups are exactly the simple

pseudo-finite groups. So imagine such a family of simple groups G(q). Then the num-

ber t translates into an absolute upper bound on the number of steps it takes X(q)

to generate G(q). Hrushovski states the particular case of generation by conjugacy

classes as Theorem 1.9 of [13]. It seems that if X is an Lgroups-definable set (as for

example conjugacy classes are), then this result is already a consequence of the work
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of Francoise Point in [24].

Chapter 5: Here we construct our uniform bi-interpretations between families of

finite simple groups and families of finite fields or finite difference fields. Several math-

ematicians have made notable contributions in this area:

Simon Thomas’s thesis [27] dealt with classification of locally finite, stable simple

groups. His methods involved interpreting fields of definition uniformly inside finite

simple groups of Lie type. We have differed in places in our construction but the ideas

we use to interpret fields are similar. In particular Thomas found the field of definition

inside groups of type 2B2 and 2G2. He did not find the difference field automorphism

living inside those groups. Adding this to his work as well as the wealth of results on

finite fields and finite difference fields, and working inside our framework of uniform

parameter bi-interpretations, we may obtain an elimination form for the groups of type
2B2 and 2G2 and an axiomatisation for their almost theory. It is also the uniform

bi-interpretability which allows us to exhibit asymptotic classes of finite simple groups.

Another notable contribution to this area is [20].

The question of whether the almost theory of a family of finite simple groups of a fixed

Lie type and Lie rank is decidable was posed in [24]. Hrushovski already includes an

affirmative answer as Theorem 1.7 of [13], and although we may see it in our context,

there is no need for the full uniform bi-intepretability to deduce this result.

Inverse questions have been addressed:

What are the finite rank definable simple groups in pseudo-finite fields, in ACFA or in

theories PSF(m,n,p)?

Hrushovski addresses the issue of definable simple groups in pseudo-finite fields in the

more general setting of simple definable groups in a bounded PAC field F : in Theo-

rem 9.5 of [15] he shows that they are Chevalley groups over Galois extensions of F .
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Comments in older versions of that manuscript suggest that he was perfectly aware as

early as 1991 that groups of type 2B2 and 2G2 were different. These comments do not

seem to be in the final version. We show in Section 3.4 that such groups cannot be

defined over a pure bounded PAC field. Hrushovski asserts the strong Theorem 1.8

in [13]: in ACFA the finite rank definable simple groups are exactly the pseudo-finite

simple groups of a fixed Lie rank and Lie type; as a theorem not depending on the

classification of finite simple groups this seems magnificent.

What are the simple pseudo-finite groups?

John Wilson tackles this question in [30]. He obtains the result that every simple

pseudo-finite group is elementarily equivalent to a Chevalley group over a pseudo-

finite field. The work draws from results of Felgner and Point ([24]). He leaves the

open question of whether every simple pseudo-finite group is, in fact, isomorphic to

a Chevalley group over a pseudo-finite field. Our results on the uniform parameter

bi-intepretations between groups and families of finite fields or finite difference fields

mean the answer to this question is ‘yes’.

1.4 Background concepts of the thesis

1.4.1 Concepts from classical algebraic geometry

The thesis takes a traditional view of algebraic geometry. Throughout, we work inside

universal domains for algebra - saturated, algebraically closed fields. A wonderful

reference for this viewpoint of algebraic geometry is [21]. Let us make precise a few

of the key terms of which we make use. Suppose we work inside the universal domain

K̃ |= ACF ; we will denote an arbitrary field by K. In this section and the next,

variables (such as x) will denote singletons or, for ease of notation, tuples.

• 〈·〉: if R is a ring and J ⊆ R, then we use the notation 〈J〉 for the ideal in R

generated by the elements of J .

• Algebraic sets: An algebraic set A ⊂ K̃n is the solution set to a system of
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polynomial equations

{P0(X1, X2, . . . , Xn), P1(X1, X2, . . . , Xn), . . . , Pm(X1, X2, . . . , Xn)}

where for each 0 ≤ i ≤ m we have Pi ∈ K̃[X1, . . . , Xn] (see [21] pp.24).

• Ideal of an algebraic set: For an algebraic set A ⊂ K̃n we denote by I(A) the ideal

of polynomials in K̃[X1, . . . , Xn] which vanish on A. (see [21] pp.24). Conversely,

the algebraic set in the universal domain determined by an ideal I, we shall refer

to as V (I).

• Affine Varieties: Affine varieties are absolutely irreducible algebraic sets (see [21]

pp.24).

• Generic points: We shall refer to a generic point x0 of an algebraic set A over a

small set B. We have:

x0 generic in A iff tr.deg(x0/B) = max(tr.deg(x/acl(B)) : x ∈ A) (1.1)

(see [21] pp.28)

• Fields of definition: Let I be some ideal in K̃[X1, . . . , Xn], and suppose that I

has a K̃-basis of polynomials whose coefficients lie in a subfield K. Then K is

said to be a field of definition for I. The concept extends to a field of definition

for an algebraic set A, and furthermore, there exists a unique smallest field of

definition for I (see [21] pp. 62).

• Purely inseparable extensions and the inseparable degree: Suppose that F ⊆ E

is an algebraic extension of characteristic p fields. An element α ∈ E is said to

be purely inseparable over F if there exists an n ≥ 0 such that αp
n ∈ F . Then

if every element of E is purely inseparable over F we say that E is a purely

inseparable extension of F . If E is a finite extension of F then the inseparable

degree [E : F ]ins is the maximum degree of a purely inseparable extension of F

within E.

• Morphisms of varieties: These are introduced in chapters IV and V of [21], and

we shall not delve into details here. However various properties and invariants

of morphisms are important to us. Suppose that f : V 7→ W is a morphism of
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varieties. Then f is a quasi-finite morphism of varieties if all the fibres of f are

finite in cardinality. Suppose that the morphism is defined over the small subfield

K. The morphism is dominant or generically onto if some y ∈W is generic over

K, and there is x ∈ V with f(x) = y. Suppose that f is both dominant and

quasi-finite. In such a case, generic points are mapped to generic points, and

we may suppose that y ∈ W,x ∈ V are generic over K, and f(x) = y. Then

K(x) is a finite extension of K(y). The degree [K(x) : K(y)] is an invariant

of the morphism and is called the degree of f . Similarly, the inseparable degree

[K(x) : K(y)]ins is an invariant called the inseparable degree of f . See [21] pp.90

for details.

• Correspondences, Rational Maps, Birational Maps: As in [21] pp.100, a corre-

spondence T between two varieties V and W will be a subvariety of the product

V ×W . Suppose (x, y) is a generic point of T over a field of definition K, and that

K(y) ⊆ K(x). We then call T a rational map from V to W . If T has projections

generically onto both V and W and if it is a rational map in both directions of

degree 1 then we say it is a birational map. Now let x′ be a point in V . If each

coordinate yj of y may be written yj = f(x)
g(x) where f and g are polynomials and

g(x′) 6= 0 then we say the rational map is defined at x′, of holomorphic at x′. If

T is birational, (x′, y′) ∈ T and T is holomorphic both at x′ and y′ then we say

it is biholomorphic at (x′, y′).

• Varieties: For us, a variety is a constructible set biholomorphic with an affine

variety: suppose T ⊆ V × W is a birational, everywhere biholomorphic map.

Suppose the projection of T in V is onto V . Then we say the image A of the

projection of T in W is a variety.

An important example for us will be the following - which we call the hyper-

bolisation trick: say W ⊆ Am is an affine variety defined by a prime ideal

I ⊆ K̃[X1, . . . , Xm]. Let f ∈ K̃[X1, . . . , Xm]\I. Consider A = W ∩ {x ∈

K̃m : f(x) 6= 0}. Now define V ⊆ Am+1 by the prime ideal in K̃[X1, . . . , Xm]

generated by I and the polynomial fXm+1 − 1. Consider the correspondence

T ⊆ V × W written in coordinates (x1, . . . , xm+1, y1, . . . , ym) and defined by
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polynomials xi − yi for i = 1 to m. Then T is a birational, everywhere biholo-

morphic map; its projection is onto V , and its image in W is A. So A is a variety.

Since A is an open subset in the Zariski topology, we may refer to it as an open

variety. Since it is birational, biholomorphic with an affine variety, we may also

refer to it as an open affine variety.

• Algebraic closures and relative algebraic closures: In model theory we have the

notion of the algebraic closure of a set. In the case of the theory of algebraically

closed fields this closure is equivalent to the field-theoretic algebraic closure, and

is denoted by aclalg(·).

Suppose we have a field K, and suppose A ⊆ K. Then we write aclalg(A,K)

or equivalently aclalg
K(A) for the smallest field F such that A ⊆ F ⊆ K and

F̃ ∩ K = F , where F̃ is the algebraic closure of F . We call F the relative

algebraic closure of A in K.

• Radical of an ideal: The radical of an ideal I in the ring A, denoted
√
I can be

seen in various ways. We shall define it as:

√
I = {x ∈ A : ∃n ∈ N s.t. xn ∈ I}

It can be shown that
√
I is the intersection of all prime ideals containing I (see

[2] proposition 1.8).

• fp−n : Let kp be a field of characteristic p. Let X̄ = X1 . . . Xr, and suppose

f(X̄) ∈ kp[X̄]. So suppose that f = b0 + b1X̄
m1 + . . . + bnX̄

mn , where each

X̄mi = X
a1,i

1 . . . X
ar,i
r for a collection of positive integers {at,i ∈ N : 1 ≤ t ≤

r, 1 ≤ i ≤ n}, and bi ∈ kp for 1 ≤ i ≤ n. By fp
−n

we mean fp
−n

= bp
−n

0 +

bp
−n

1 X̄m1 + . . .+ bp
−n
n X̄mn .

• Total degree: Let Xa1
1 Xa2

2 . . . Xan
n (ai ∈ N) be a monomial. Its total degree is∑n

i=1 ai. If P (X1, X2, . . . , Xn) is a polynomial, its total degree is the maximum

of the total degrees of its constituent monomials.

• Correspondences: Let V (x) and A(z) be algebraic sets. Then a correspondence

between V and A is an algebraic set T (xz) such that T ⊆ V × A. In such a
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situation, there are two canonical projections: π1 is the projection from T to x,

and π2 is the projection from T to z.

• Locus: Let x = (x1, . . . , xn) be a point in K̃n where K̃ is the universal domain,

let B ⊆ K̃, and let p be the prime ideal of functions over acl(B) which vanish at

x.Then V (p) is the locus of x over B.

• Conjugate varieties: Suppose σ is an automorphism of the fieldK, x = (x1, . . . , xl),

and A(x) is an algebraic set defined by polynomials {fi(x, k1, . . . , kn) : 1 ≤ i ≤

m}, where the coefficients k1, . . . , kn ∈ K. Then σ(A) may be defined as (i)

{(σ(x1), . . . , σ(xn)) : (x1, . . . , xn) ∈ A} or (ii) the algebraic set defined by the

polynomials {fi(x, σ(k1), . . . , σ(kn)) : 1 ≤ i ≤ m}; the definitions are equivalent.

We refer to σ(A) as a conjugate of A.

• Algebraic dimension: Suppose that K̃ is uncountably saturated. Let X be a set

definable over the small field B ⊆ K̃. Then the algebraic dimension of X is the

maximal transcendence degree of a point in X(K̃) over B. We write the algebraic

dimension of X as dimalg(X).

1.4.2 Concepts from difference algebra

Here we describe the basics of difference algebra and the model theory of difference

fields. We want to present enough material for the reader to understand the background

statements of chapter 2. The basic text on difference algebra is [11]. There is also a

very useful introductory page in [8], and what we now present is very similar to that,

if not in some places identical.

• Difference rings: A difference ring for us is a ring A together with an injective

map of rings σ : A 7→ A. Unless otherwise stated, all the maps we consider are

onto - they are automorphisms of A.

• Ldiff : In terms of model theory, the language we consider is the language Ldiff

of difference rings, which is exactly the language of rings augmented by a unary

function symbol σ. In this language, it is easy to write axioms stating that σ is

an automorphism.
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• Difference polynomial rings: For (K,σ) a difference field and X = (X1, . . . , Xn),

we define the difference polynomial ring K〈X〉 to be the ring

K[X1, . . . , Xn, σ(X1), . . . , σ(Xn), σ2(X1), . . .]

. The isomorphism σ extends to this polynomial ring in the obvious way. No-

tice that even if σ is an automorphism on K, this extension clearly is not an

automorphism.

• σ-ideals: For a difference ring (A, σ) there is a natural notion of a σ-ideal. It is

an ideal closed under the action of σ. A reflexive σ-ideal is a σ-ideal Iσ where if

σ(a) ∈ Iσ then a ∈ Iσ.

• Universal domains for difference algebra: These exist and are first-order. They

are captured by completions of the theory ACFA. The papers [8] and [9] are de-

voted to the study of that theory. Here is the axiomatisation of ACFA according

to [8]:

Let ACFA be the theory axiomatised by the scheme of axioms expressing the

following properties of the L-structure (K,σ):

(i) σ is an automorphism of K,

(ii) K is an algebraically closed field,

(iii) For every variety U , and variety V ⊆ U × σ(U) projecting generically onto

U and σ(U), and every algebraic set W properly contained in V , there is an

a ∈ U(K) such that (a, σ(a)) ∈ V \W (by U(K) we denote the K-rational points

of U).

• σ-polynomials and σ-closed sets: Let (M,σ) be a difference ring. Let x be a

tuple of variables. A σ-polynomial F (x) is a polynomial in variables x and its

σ-iterates, with coefficients in M . A σ-closed set in M is the solution set in some

cartesian power Mn of a system of σ-polynomials. For example, if x is a single

variable then the σ-closed set defined by the σ-polynomial σ(x) = x is the fixed

set in M of the operator σ.

• σ-degree: Let K ⊆ L be two difference fields, and let a be a tuple from L; we

denote by K(a)σ the field K(σk(a))k∈Z and we say that is is generated by a; a
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subextension of a difference field finitely generated over K is itself finitely gener-

ated. Assume that L = K(a)σ; we define degσ(L/K), or sometimes degσ(a/K),

to be the transcendence degree of L over K. In general, if A is a set of parameters,

let Aσ be the difference field generated by A. For an Ldiff -parameter definable

set ψ(x) we write degσ(ψ(x)) ≤ n to express that if A is a set containing the

parameters for ψ and ψ(a) holds, then degσ(a/Aσ) ≤ n.

• aclσ(A): In a difference field (K,σ), suppose A ⊆ K. Then we write aclσ(A) for

the smallest difference subfield of (K,σ) which contains A and is algebraically

closed inside K. Thus, aclσ(A) = aclalg(∪i∈Zσ
i(A)).



Chapter 2
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2.1 Chapter Introduction

In this chapter we derive a definable measure for families of sets of finite σ-degree

inside a big model of ACFA. The notion of definability we obtain is made precise in

the statement of the main theorem of the chapter: Theorem 2.1.1, and that result will

be sufficient for the applications in later chapters. This chapter is concerned with the

theory ACFA. Background for that theory is given in Section 1.4.2.

2.1.1 Notation and Key Definitions

In what follows x and y denote tuples unless specifically stated otherwise. Frob will

denote a frobenius automorphism.

First, suppose that L is a language, where L will either be Ldiff , the language of dif-

ference rings, or Lrings, the language of rings. Suppose K is the underlying ring in an

L-structure.

By θ(x, y)(K) we denote an L-definable set θ(x, y) whose intended meaning is a fam-

ily of sets parameterised by tuples y ∈ K. By a member of the family θ(x, y) we

shall mean a set θ(x, y0) in variable x with a parameter y0. The parameter set of

θ(x, y)(K) is defined as {y ∈ K : ∃x(x ∈ K ∧ θ(x, y))}. Let us denote the parame-

ter set of θ(x, y)(K) by P (θ)(K). Since θ(x, y) is defined without parameters, we can

make statements about the family of sets θ(x, y) over a class C of L-structures. We may

refer to the parameter sets in arbitrary members of C via notation P (θ)(y) or just P (θ).

A sub-family of θ(x, y)(K) is given as θ(x, y)∧y ∈ Q where Q ⊆ P (θ)(K). A parameter

definable sub-family of θ(x, y)(K) is given as θ(x, y) ∧ Q(y) where Q(K) ⊆ P (θ)(K)

and Q(y) is a formula in the language L(K). If the formulae involved are without

parameters we use the term ∅-definable sub-family.

A stratification of θ(x, y)(K) is a partition of θ(x, y)(K) into disjoint sub-families. For-

mally, there is an index J and a set of sub-families {θ(x, y) ∧ Qj(y) : j ∈ J}, where

P (θ)(K) =
∐
j∈J Qj(K). The convention will be to say θ(x, y)(K) is stratified into a

set S = {Qj(K) : j ∈ J}. If the Qj(K) are parameter definable sets then we say the
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stratification is parameter definable, or is a stratification by parameter definable sub-

families. As before, if the formulae involved are without parameters, we may instead

use the terms ∅-definable and stratification by ∅-definable sub-families.

If θ(x, y) is ∅-definable, and if Q(K) ⊆ P (θ)(K) for any L-structure K in some class

of L-structures C, we say Q is a sub-family for the class C. Similarly, if {Qj : j ∈ J}

are such that for any L-structure K ∈ C, P (θ)(K) =
∐
j∈J Qj(K), then we say that

θ(x, y) is stratified for the class C by the Qj ,

If we are in the context where the sets/families are given by formulae, we may omit

the explicit reference to the structure K. Suppose θ(x, y) is definable without param-

eters and that Q(y) is an L-formula representing a sub-family of θ(x, y) for some class

of L-structures C; we shall say Q(y) is a uniformly definable sub-family for the class

C. Similarly, if {Qj(y) : j ∈ J} are formulas without parameters such that for any

L-structure K ∈ C, P (θ)(K) =
∐
j∈J Qj(K), then we say that θ(x, y) is uniformly,

definably stratified for the class C by the Qj , or that the stratification is uniformly

definable for C. If the class C is understood, we may omit explicit reference to it.

Let θ(x, y)(K) be a family of sets in K. Let PI,G be a set and let I be a function

I : θ(x, y)(K) → PI,G . For instance, I might be a function mapping a family of al-

gebraic sets to their algebraic dimension. We may stratify θ(x, y)(K) into its I-fibres

{I−1(j) : j ∈ PI,G}. We then say I stratifies the family θ(x, y)(K). In our example,

this would be stratifying θ(x, y)(K) into sub-families of constant dimension. If the

collection of fibres may be taken to be {Qj(K) : j ∈ PI,G} for a collection of definable

sets we shall say that I is parameter definable in θ(x, y) for K.

Similarly, if θ(x, y) is a family and I is a function, both across C, then we may also

stratify θ(x, y) into its I-fibres across C. If the fibres may be taken to be uniformly

definable sub-families {Qj(y) : j ∈ PI,G} across C, we shall say I is uniformly definable

in θ(x, y) across C.

Below, a definable family of σ-closed sets is a family θ(x, y) ∧ P (θ)(y) where θ(x, y)
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defines a σ-closed set, but where there is no such restriction on the form of the pa-

rameter set formula P (θ)(y). Similarly, a quantifier-free family θ(x, y) ∧ P (θ)(y) has

θ(x, y) quantifier-free, but there is no restriction on the form of P (θ)(y).

Suppose that θ(x, y) is a family of sets in the language of difference rings across a class C

of models . We define θn(y) = {y : degσ(θ(x, y)) = n}. By θn(x, y) = θ(x, y)∧ θn(y) we

shall mean, in any ℵ0-saturated model (K,σ) |= ACFA, the sub-family of θ(x, y)(K)

consisting of those members of σ-degree n. If θ(x, y) is an ∅-definable family, then the

subfamily θn(x, y) is also ∅-definable, as we shall see in subsection 2.1.3.

2.1.2 Statement of main theorem

THEOREM 2.1.1 Let θ(x, y) be a family of sets definable in the language of differ-

ence rings. Then θn(x, y) can be partitioned into finitely many Ldiff-∅-definable sub-

families θn,µi(x, y), (µi ∈ R+) such that the following holds: there is a constant C ∈ R+

such that for all pairs of the form (F̃p, Frobk) but finitely many, for any y0 ∈ F̃p

P (θn,µi)(y0) ⇒ | | θ(F̃p, y0) | − µip
kn | ≤ Cpk(n− 1

2
)

Here, we allow p to run over all primes and k to run over the natural numbers.

This theorem will allow us to assign a measure, in the sense of [23], to the finite σ-

degree sets of ACFA. The situation is analogous to the situation in finite fields. In that

case, the Lang-Weil estimates were seen in [10] to generalise to numerical estimates for

all first-order definable sets in finite fields. In this chapter we follow the same pattern.

2.1.3 Key background results

In the statement of 2.1.1 we are already implicitly assuming definability of the family

θn(x, y). Let us justify this: in Section 7 of [8] it is written: ‘let ψ(x, y) be a formula

(in Ldiff), n a positive integer; then the set of elements b such that degσ(x, b) ≥ n

is definable’. We will not produce a proof here, but perhaps more interestingly, say

that the proof would be virtually identical to the proofs of definability of dimension

for geometric structures in [16], but using the analogue to algebraic boundedness for

ACFA described in (1.8) of [8].
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I now quote a version of Hrushovski’s correspondence estimates from [13] which we

shall use. This (Theorem 2.1.2) was communicated by Hrushovski personally, although

it may be deduced from, and is essentially Theorem 1.1 of [13].

We need some notation. Suppose K̃ is an algebraically closed field of characteristic p.

Let n, r ∈ N and q = pr. Let V (x) be an affine variety over K̃ and let I(V ) be the

ideal of V in K̃[x]. Suppose I(V ) is generated by a set S = {fl(x, y) : 1 ≤ l ≤ n} of

polynomials, for some parameters y ∈ K̃. Then we let the variety V q(z) be the variety

defined by the set of polynomials R = {fl(z, yq) : 1 ≤ l ≤ n}. Suppose W (xz) is a

variety and W (xz) ⊆ V (x)×V q(z). Then we define ∆q(W )(K̃) = {xz : xz ∈W (K̃) ∧

z = xq}. We are considering the x and z as tuples. Suppose x = (x1, x2, . . . , xm) and

z = (z1, z2, . . . , zm). Then by z = xq we mean zi = xqi for each 1 ≤ i ≤ m. Details

and references about various aspects of classical algebraic geometry that arise in the

statement of Theorem 2.1.2 and what follows are summarised in the Section 1.4.1.

Then the following is the statement of Hrushovski’s correspondence estimates of which

we make use:

THEOREM 2.1.2 Let K̃ be an algebraically closed field of characteristic p. Let r ∈ N

and q = pr. Let V (x) be an affine variety over K̃, and let W (xz) ⊆ V (x) × V q(z) be

an irreducible subvariety. Assume dim(W ) = dim(V ) = d, the projection π1 : W 7→ V

is dominant of degree δ and the projection π2 : W 7→ V q is quasi-finite of purely in-

separable degree δ′.

There is a constant C depending on the total degree of W (but not on q or the parameters

from K̃) such that

||∆q(W )(K̃)| − δ

δ′
qd| ≤ Cqd−1/2.

Notice that there is no specification that W (xz) is a closed subvariety of V (x)×V q(z);

this is intentional since it does not need to be. In fact, we shall apply 2.1.2 in situations

where W is not closed. In particular, in our main application at the end of the chapter

(Theorem 2.3.14) W will be an affine open variety of the form A\Zeroes(f) where A is

a closed affine variety in V × V q and f is a single polynomial f = f(x, z).
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The relation between Theorem 2.1.1 and 2.1.2 is analogous to the relation of the

generalised estimates in [10] to the Lang-Weil estimates.

In the same way that the generalised estimates of [10] lead to a non-standard counting

measure on pseudo-finite fields, we shall also obtain a non-standard counting measure

on all finite σ-degree sets in models of ACFA. We obtain the measure by using another

main theorem in [13]:

THEOREM 2.1.3 Let D := {(F̃p,Frobr) : r ∈ N, p a prime}. Every model of

ACFA is elementarily equivalent to a non-principal ultraproduct of members of D.

The remainder of the chapter is divided into three sections that lead to a proof of

Theorem 2.1.1.

1. In section 2.2 we gather preliminary algebraic and algebraic-geometric results.

2. In section 2.3 we exhibit definable cardinality estimates for σ-closed sets of finite

σ-degree. The techniques are analogous to those used in [10] to obtain cardinality

estimates for algebraic sets.

3. In section 2.4, we complete the proof of Theorem 2.1.1, again by applying tech-

niques analogous to those used in [10].

2.2 Stratification of families of Constructible Sets

In this section we work in the language of rings and in the theory of algebraically closed

fields. Algebraically closed fields will be denoted by tildas: K̃ is algebraically closed.

If we wish to specify that the characteristic of K̃ is some prime p, we shall refer to the

field as K̃p. In all instances, the prime field will be referred to as F .

DEFINITION 2.2.1 Let C be a class of L-structures, and let K be an L-structure.

Let S1 = {Q1j : j ∈ J} and S2 = {Q2i : i ∈ I} be either (i) stratifications of

θ(x, y)(K), or (ii) stratifications of θ(x, y) over C. Then S3 = {Q3r : r ∈ R} is a

boolean combination of S1 and S2, if either we are in case (i) and it is a stratification of

θ(x, y)(K) and each Q3r(K) is a boolean combination of elements of S1 and S2, or we
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are in case (ii) and it is a stratification of θ(x, y) over C and uniformly across C, each

Q3r is a boolean combination of elements of S1 and S2.

The following is obvious, but gives the flavour of what we shall do:

LEMMA 2.2.2 Let C be a class of fields.

1. Any boolean combination of parameter definable stratifications of θ(x, y)(K) is a

parameter definable stratification of θ(x, y)(K). Similarly, any boolean combina-

tion of uniformly definable stratifications of θ(x, y) over C is a uniformly definable

stratification of θ(x, y) over C.

2. A parameter definable sub-family (θ(x, y) ∧Q(y))(K) may be seen as one of two

stratifying sets in a parameter definable stratification of θ(x, y)(K) by setting the

stratification to be {θ(x, y) ∧ Q(y) ; θ(x, y) ∧ ¬Q(y)}. Similarly, a uniformly

definable sub-family θ(x, y) ∧ Q(y) for C may be seen as one of two stratifying

sets in a uniformly definable stratification of θ(x, y) for C, again by setting the

stratification to be {θ(x, y) ∧ Q(y) ; θ(x, y) ∧ ¬Q(y)}.

Similarly, we shall need some basic facts about stratifications under projections.

FACT 2.2.3 Let C be a class of algebraically closed fields. Let ψ(x1, w) and θ(x2, y)

be two ∅-definable families of sets in algebraically closed fields. Let f : P (ψ)(w) �

P (θ)(y) be a ∅-definable map of their parameter sets. Suppose that θ(x2, y) is uniformly

stratified over algebraically closed fields by S1 = {Qj(y) : j ∈ J}. Then ψ(x1, w) is

uniformly stratified over algebraically closed fields by S2 = {f−1(Qj(y)) : j ∈ J}.

This has two immediate, important applications:

1. Suppose that we have ψ(x, yz) and θ(x, y) is the y-projection of ψ. By this we

mean:

θ(x, y) =def {(x, y) : ∃z(ψ(x, yz))} (2.1)

Thus any stratification of θ(x, y) has a pullback to a stratification of ψ(x, yz).

2. Suppose that f is 1-to-1, that x1 = x2 = x, and f has the property:

ACF |= ∀wyx(f(w) = y ⇒ θ(x, y)⇔ ψ(x,w)) (2.2)
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So as sets, the f -pre-image of any y ∈ P (θ(y)) parameterises the identical family

member to the one parameterised by y itself. In this situation, ψ(x,w) and θ(x, y)

are the identical family of sets, just parameterised differently. We may apply

Fact 2.2.3 to f or f−1. This is like a rearrangement: any (parameter definable/

uniformly definable over algebraically closed fields) stratifying property for the

family of sets in terms of ψ(x,w) can be rearranged into a (parameter definable/

uniformly definable over algebraically closed fields) stratifying property in terms

of θ(x, y), and vice-versa. We shall use this fact when f is a projection (see

Lemmas 2.2.12 and 2.2.11).

Now suppose that f has fibres of size at most m <∞. This time, suppose that ψ(x,w)

is uniformly stratified over algebraically closed fields by S = {Qj(w) : j ∈ J}. Then

we may uniformly stratify θ(x, y) according to tuples of natural numbers (ej : j ∈ J)

where if y0 ∈ P (θ)(K̃) is associated to the tuple (ej : j ∈ J), it signifies that in the

f -fibre of y0, there are exactly ej elements stratified into the subfamily Qj under S for

each j ∈ J .

The Family Stratification Lemma

LEMMA 2.2.4 1. Suppose that K̃ is an ℵ0-saturated model of ACF and that

θ(x, y)(K̃) is a family of constructible sets in K̃n. Suppose that as a definable set

θ(x, y) is defined with a finite set of parameters B ⊂ K̃. Suppose that θ(x, y)(K̃)

is stratified into a set of non-empty sub-families S = {Qj(K̃) : j ∈ J}. Suppose

that for any y0 ∈ P (θ)(K̃) there is a B-definable set Yy0 such that (i) y0 ∈ Yy0

and (ii) there is some j ∈ J with Yy0 ⊆ Qj(K̃). Then S is a parameter definable

stratification of θ(x, y)(K̃). In fact, each Qj(K̃) is a finite union of sets of the

form Yy0. Also, J is a finite set.

2. Now suppose that θ(x, y) is an ∅-definable family. Let PI be a set and let I be

a function from all members of θ(x, y) over all algebraically closed fields to PI .

Suppose that for any ℵ0-saturated model K̃ |= ACF and y0 ∈ P (θ)(K̃), there is

an ∅-definable set Yy0 such that (i) y0 ∈ Yy0 and (ii) I is a single constant value

over all algebraically closed fields L̃ in the sub-family (θ(x, y) ∧ Yy0(y))(L̃). Then

I is uniformly definable in θ(x, y). The number of attainable possibilities for I is
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finite.

PROOF 1. Observe that P (θ)(K̃) = ∪y0∈P (θ))(K̃)Yy0 , where all the Yy0 are B-

definable. Since B is finite and K̃ is ℵ0-saturated, there are elements yl ∈ P (θ)(K̃)

and a collection R = {Yyl : 1 ≤ l ≤ s} such that P (θ)(K̃) = ∪sl=1Yyl . Then each Qj is

a union of elements of R. By compactness, it follows that J is finite.

2. Pick K̃0 |= ACF0 where K̃0 is ℵ0-saturated. By part 1 there is a finite set J

and a set of ∅-definable sets S = {Qj(y) : j ∈ J} such that the Qj(K̃0) witness

the stratification of P (θ(x, y))(K̃) by the fibres of I. Furthermore, by the second

statement in Part 1, each Qj(K̃0) may be written as a union of ∅-definable sets of the

form Yy0(K̃0). By compactness, there is a prime q and natural numbers nj such that for

all primes p > q and algebraically closed fields K̃p, P (θ)(K̃p) =
∐
j∈J Qj(K̃p) and each

Qj(K̃p) = ∪njl=1Yylj (K̃p). By the hypothesis of part 2, I is constant over all fields K̃p on

Yylj (K̃p). Since in characteristic 0, for each j ∈ J we have that I is constant on each

of the sets Ylj for 1 ≤ l ≤ nj , it follows by the assumptions that in any algebraically

closed field L̃ that I is constant on Qj(L̃). Thus, I is definably stratified for the class

of all algebraically closed fields of characteristic 0 or characteristic p > q. Now we may

repeat this procedure for each characteristic p with p ≤ q. Since all the sets of the form

J are finite, it follows that the number of attainable possibilities for I is finite. �

In the rest of this section we shall use Lemma 2.2.4 (Part 2) to demonstrate that various

properties of algebraic and constructible sets are uniformly definable. First we begin

with a simple, illustrative example.

EXAMPLE 2.2.5 Consider the family of algebraic sets A(x, y) given by x2−y = 0,

where x and y are single variables. We define I to be the cardinality I(y) = |A(x, y)|,

and we shall apply 2.2.4 (Part 2) to show that I is uniformly definable over all alge-

braically closed fields.

Suppose char(K̃) 6= 2 and y0 ∈ K̃×. Then there are two square roots of y0 which we

denote by x0 and −x0. We may write the Lrings(K̃) sentence:
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θ0(x0,−x0, y0) : y0 = x2
0 ∧ y0 = (−x0)2 ∧ ¬(x0 = −x0) (2.3)

The sentence θ0(x0,−x0, y0) is equivalent to I(y0) = 2, but uses parameters x0, −x0 ∈

aclalg(F (y0)). Our goal is to code I(y0) without parameters. But notice that the

following formula, which is satisfied by y0, asserts the existence of parameters such as

x0 and −x0, and is sufficient to code I(y0):

θ1(y) : ∃xw(y = x2 ∧ y = w2 ∧ ¬(x = w)) (2.4)

Importantly, θ1(y) only uses the variable y. But the fact that θ1(y0) holds is still

equivalent to I(y0) = 2. So we may set Yy0 as

Yy0(y) := θ1(y) (2.5)

Inspecting θ1(y), we see that it is equivalent to I(y) = 2. Now pick an algebraically

closed field K̃2, of characteristic 2, and let y1 ∈ K̃2. Then y1 has a unique square

root. Let x1 =
√
y1. In this case we may write the Lrings(K̃) sentence θ2(x1, y1) :

x2
1 = y1 ∧ (∀w)(w2 = y1 ⇒ w = x1). Again, θ2 uses the parameter x1 ∈ K̃2. How-

ever we may obtain a formula θ3(y), solely in parameter y, that asserts the existence

of x1; this is in the same way as θ1(y) was obtained from θ0(y0). We obtain Yy1(y) :

∃x(x2 = y ∧ (∀w)(w2 = y ⇒ w = x)). The formula Yy1 is seen to be equivalent to

I(y) = 1. The reader can check that the formula we have obtained is just the statement

‘characteristic=2 or y = 0’ in disguise.

REMARK 2.2.6 This example is typical of the method we shall use to demonstrate

that various properties of a family of algebraic sets A(x, y) are uniformly definable. We

aim to apply 2.2.4 (Part 2), and thus to pick some K̃, y0 ∈ P (A)(K̃) and suppose

I(y0) = m. With some parameters a ∈ K̃, we shall find an Lrings(a, y0) sentence

θ1(y0, a) which implies and is implied by the statement I(y0) = m. Then, in the proofs,

we shall leave it to the reader to observe that there is another formula θ(y) which y0

satisfies and also implies and is implied by the statement I(y) = m: it is obtained

from θ1(y0, a) by asserting the existence of the parameters a, but not referring to a

specifically, and by substituting the variable y for the parameter y0. Then we shall set

Yy0(y) = θ(y).
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To use Lemma 2.2.4 we shall need the following facts from [28]; they are also reported

in the identical fashion that they are reported here (but in French), in [6]:

FACT 2.2.7 . In this statement, x is a tuple of indeterminates, and by |x| we mean

the size of the tuple x. These statements make use of various notions from algebra

and algebraic geometry, such as the notion of the radical of an ideal (
√
·). For relevant

definitions see 1.4.1.

1. There is a constantA(n, e) such that for all fieldsK and polynomials f1(x), . . . , fn(x), g(x) ∈

K[x] of total degree ≤ e and where |x| ≤ n, if g(x) ∈ 〈f1(x), . . . , fn(x)〉 then

g(x) = f1(x)h1(x) + . . .+ fn(x)hn(x) for polynomials h1(x), . . . , hn(x) ∈ K[x] of

degree ≤ A(n, e).

2. There is a constant B(n, e) such that for all fields K, if |x| ≤ n and the ideal I

of K[x] is generated by polynomials of degree ≤ e, then if I is not prime, then

there exist polynomials g(x), h(x) of degree ≤ B(n, e) such that g(x), h(x) 6∈ I

and g(x)h(x) ∈ I.

3. There is a constant C = C(n, e) such that for all fields K, if |x| ≤ n, and the ideal

I in K[x] is generated by polynomials of total degree ≤ e, if for some g(x) ∈ K[x],

g(x) ∈
√
I, then g(x)C ∈ I.

4. There is a constant D = D(n, e) such that for all fields K, if |x| ≤ n and the

ideal I ⊆ K[x] is generated by polynomials of total degree ≤ e, there are at most

D minimal prime ideals containing I, and each is generated by polynomials of

degree ≤ D.

We now demonstrate that various properties of algebraic sets are uniformly definable,

making use of Lemma 2.2.4: for the first application of Lemma 2.2.4 let us briefly

mention the definable multiplicity property (DMP) for strongly minimal sets. This

concept was introduced in [14], and it is defined thus:

DEFINITION 2.2.8 If T is a strongly minimal theory then it has the definable

multiplicity property (DMP) if for all natural k, m and ψ(x̄, b̄) of rank k, multiplicity

m, there exists a formula θ ∈ tp(b̄) such that for all b̄′ |= θ, MR(ψ(x̄, b̄′)) = k and

mult(ψ(x̄, b̄′)) = m.
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REMARK 2.2.9 In Definition 2.2.8 suppose b̄′ ∈ M ′ where M ′ |= T . Then

the multiplicity mult in Definition 2.2.8 may be taken to refer to the number of type

completions over M ′ of the formula ψ(x̄, b̄′) of maximal Morley rank. It is a fact (see

[14]) that any completion of the theory ACF of algebraically closed fields has the DMP.

Then, applying Lemma 2.2.4 to the definition of the DMP, we see that the multiplicity

mult is uniformly definable over algebraically closed fields.

LEMMA 2.2.10 Let V (x, y) be a 0-definable family of algebraic sets given by a set

of polynomials {fj(x, y) : j ∈ J}. Let V (z, v) be the same family in variables z and

parameters v: so V (z, v) is given by {fj(z, v) : j ∈ J}. Let A(xz, t) be a third 0-

definable family of algebraic sets given by polynomials {gl(xz, t) : l ∈ L}. Suppose that

t is parsed as t = syv. Then we have the following:

1. The sub-family of irreducible members of V (x, y) is uniformly definable over al-

gebraically closed fields.

2. Algebraic dimension is uniformly definable in V (x, y) over algebraically closed

fields.

3. Let πx be the projection from A(xz, t) to x. Now assume that the family A(xz, t)

is such that for any K̃ and t0 ∈ P (A)(K̃), πx(A(xz, t0)) ⊆ V (x, y0), where t0 =

s0y0v0. Then the sub-family of A(xz, t) where πx is onto V (x, y) is uniformly

definable over algebraically closed fields. The sub-family where πx is of everywhere

finite fibre is also uniformly definable over algebraically closed fields. Similarly,

if A(xz, t) and V (x, y) are families of irreducible varieties, then the sub-families

of A(xz, t) where πx is generically onto, or of generically finite fibre, are both

uniformly definable over algebraically closed fields.

PROOF We make use of 2.2.7:

1. We must show that the set S := {y : y ∈ P (V ) ∧ V (x, y) is irreducible} is

uniformly definable across all algebraically closed fields. For y0 ∈ K̃ we write

〈{fj(x, y0) : j ∈ J}〉 for the ideal generated by the fj(x, y0) in K̃[x]. Then we

may also write S = {y : y ∈ P (V ) ∧
√
〈{fj(x, y) : j ∈ J}〉 is prime}. Now,

suppose y0 ∈ K̃ and we consider the ideal Iy0 = 〈{fj(x, y0) : j ∈ J}〉. By 2.2.7

(4),
√
Iy0 is generated by polynomials of total degree less than or equal to some
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e ∈ N which is independent of the particular choice y0. Thus, by 2.2.7 (2), there

is some b ∈ N such that
√
Iy0 is not prime if and only if there are f(x) and g(x)

of total degree less than b with f(x), g(x) 6∈
√
Iy0 and f(x)g(x) ∈

√
Iy0 ; again,

b is independent of y0 . But by 2.2.7 (3), there is some c ∈ N such that this is

equivalent to there being f(x)c, g(x)c 6∈ Iy0 , but (f(x)g(x))c ∈ Iy0 . Since the total

degree of f(x) and g(x) is bounded by b, by 2.2.7 (1) this last statement and its

negation are expressible in the pure language of rings. Its negation is what we

required.

2. This follows from the uniform definability of Morley Rank in a strongly minimal

theory; a nice general presentation of this result is for geometric structures in

Lemma 2.3 of [16], particularly part (ii), which asserts the uniform definability

of the rank for geometric structures.

3. The onto projections are obviously definable.

Let X and Y be constructible sets such that mult(X)=mult(Y )=1. A projection

(π : X 7→ Y ) is generically onto if and only if

MR(π(X)) = MR(Y )

where MR is the Morley Rank. It follows that we may uniformly define a sub-

family of A(xz, t) where π is generically onto if MR is uniformly definable in the

family of images of π.

In the last part we saw that the MR is uniformly definable in any family of con-

structible sets (see Lemma 2.3 of [16]). Now write A(xz, t) as A(x, zt). By the uni-

form definability of Morley Rank, we may uniformly define {zt : MR(A(x, zt)) =

0}. From this we see that both projections of everywhere finite fibre, and projec-

tions of generically finite fibre, are uniformly definable. �

2.2.1 Stratification by degree or inseparable degree of a projection

Now let A(xz, t) be a family of 0-definable algebraic sets, as in Lemma 2.2.10. Then

there is a uniformly definable sub-family of A(xz, t) across algebraically closed fields,
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denoted by A∗(xz, t), where by Lemma 2.2.10, for each t ∈ P (A∗) we have

1. A∗(xz, t) is an irreducible variety;

2. πx(A∗(xz, t)) ⊆ V (x, y) and V (x, y) is an irreducible variety;

3. the projection πx to the variable x is (onto/generically onto) of (everywhere finite

/generically finite fibre).

In the next lemma we relabel this A∗ as A; also, since we are only interested in the case

where y is a subtuple of t, we may assume that y = t. The remainder of this section is

concerned with the proof of the following lemma:

LEMMA 2.2.11 Let A(xz, y) and V (x, y) be 0-definable families of irreducible vari-

eties. Let πx be the projection from A(xz, y) to the variable x. For y0 ∈ P (A)(K̃),

let πx(y0) be the projection πx restricted to the algebraic set A(xz, y0). So we may

see πx(y) as a family of projections. We suppose for any K̃ and y0 ∈ P (A)(K̃), that

Im(πx(y0)) ⊆ V (x, y0), that πx(y0) is generically onto V (x, y0), and that πx(y0) has

generically finite fibres. Then both the degree of πx(y) and the inseparable degree of

πx(y) are uniformly definable in the family A(xz, y) over algebraically closed fields.

We shall prove 2.2.11 by showing that the criteria of Lemma 2.2.4 (Part 2) are met by

both the degree and inseparable degree.

Background to proof of 2.2.11

If S = {hj : 1 ≤ j ≤ m} is a finite set of polynomials with hj ∈ K̃[x] then let I = 〈S〉

be the ideal generated by S in K̃[x]. Let V (I) be the algebraic set defined by I. Then

we say that V is presented by the set of polynomials S. In other words, V is defined

by the formula ϕ : ∧mj=1hj(x) = 0. Similarly, let R = {gr : 1 ≤ r ≤ s} be a finite set

of polynomials with gr ∈ K̃[xz], J = 〈R〉 and let W (J) be the algebraic set defined by

the ideal J . We shall find ourselves considering a projection π : W 7→ V when we wish

to uniformly define the degrees/inseparable degrees of families of projections in which

π may be a member. Let I(V ) =
√
I and J(W ) =

√
J be the ideals in K̃[x] of the

algebraic sets V and W respectively. The analysis of degree and inseparable degree of

the projection π is done by examining the extension Frac(K̃[xz]/
√
J)/Frac(K̃[x]/

√
I).
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It may be that I 6=
√
I. Given a family of algebraic sets V (x, y), we wish to give

a presentation of V (x, y) by polynomials in parameter y as the solution set of some

S = {hj(x, y) : 1 ≤ j ≤ m}, so that for each member of the family, in the notation we

have adopted, I =
√
I.

LEMMA 2.2.12 Let V (x, y) be a family of ∅-definable algebraic sets. Suppose V (x, y)

is presented as the solution set of a set of polynomials S = {hj(x, y) : 1 ≤ j ≤ m}.

Then V (x, y) may be uniformly stratified into sub-families {Ai(x, y) : i ∈ I} with the

following property:

Let A(x, y) = Ai(x, y). Then there are some n, k ∈ N depending on i such that A(x, y)

can be presented as a formula of the form

∃(z1, z2, . . . , zk)(
n∧
l=1

fl(x, z1, z2, . . . , zk) = 0 ∧
k∧
r=1

gr(zr, y) = 0)

where

1. each gr(zr, y) is a purely inseparable polynomial satisfied by zr over the field gen-

erated by y.

2. Let y0 ∈ P (A)(K̃). Recall that F is the prime field of K̃. Let F̃ (y0) be the

algebraic closure of the field F (y0). If zr0 ∈ F̃ (y0) such that gr(zr0, y0) = 0 for

1 ≤ r ≤ k, then 〈fl(x, z10, z20, . . . , zk0) : 1 ≤ l ≤ n〉 = I(V (x, y0)).

Concretely, we have the following equivalence:

A(x, y) ⇐⇒ P (A)(y) ∧ ∃(z1, z2, . . . , zk)(
n∧
l=1

fl(x, z1, z2, . . . , zk) = 0 ∧
k∧
r=1

gr(zr, y) = 0)

PROOF We aim to show the criteria of Lemma 2.2.4 (Part 2) are met. So let K̃ be

an algebraically closed field and y0 ∈ P (V )(K̃). Let Sy0 = {hj(x, y0) : 1 ≤ j ≤ m}.

Let Y be the set of coefficients of the polynomials in Sy0 ; then Y ⊆ K̃. Let I = 〈Sy0〉

in K̃[X], and let F (Y )ins be the pure inseparable closure of the field F (Y ). Then recall

that I(V (I)) is generated by a finite set of polynomials R = {fj(x, z̄) : 1 ≤ j ≤ n},

where z̄ is a tuple of elements from F (Y )ins. (There are many references to this in

the literature - see for example [21] pp.74, C7⇒C6. Essentially, this is by a simple

automorphism argument: if an automorphism fixes Y then it fixes V (I), so it must fix
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the field of definition of V (I). So the field of definition of V (I), which we denote F0,

lies in the definable closure of the set Y , so it lies in the purely inseparable closure of

F (Y ). Furthermore, by Hilbert’s basis theorem, F0/F (Y ) is a finite extension.)

Thus, we may write the Lrings(F (y0))-sentence

∃(z1, z2, . . . , zk)(∀x(
n∧
l=1

fl(x, z1, z2, . . . , zk) = 0⇔
m∧
j=1

hj(x, y0) = 0) ∧
k∧
r=1

gr(zr, y0) = 0)

(2.6)

representing I(V (I)) where the zr and gr, y0, and the fl have the properties de-

manded by the statement of the lemma. It will be convenient to refer to the tuple

z = (z1, z2, . . . , zk).

To apply lemma 2.2.4 (Part 2) it suffices to show the following: in the notation of ex-

pression 2.6, there is a 0-definable set Yy0(y) containing y0, where for any algebraically

closed field L̃ and y1 ∈ Yy0(L̃), then I(V (x, y1)) ⊆ L̃[x] is generated by a set of polyno-

mials R = {fl(x, z1) : 1 ≤ l ≤ n}, z1 = (z11, z21, . . . , zk1), each zl1 ∈ L̃ for 1 ≤ l ≤ k,
k∧
r=1

gr(zr1, y1) = 0 (2.7)

and each polynomial gr(Z, y1), in indeterminate Z, is purely inseparable.

Now the strong version of Hilbert’s Nullstellensatz states that for any ideal I ⊆ K̃[X̄],

I(V (I)) =
√
I, where

√
I is the radical of I. So it will suffice to show that there is a

0-formula Yy0(y) such that the following demands are satisfied:

Demands on Yy0

1. Yy0(y0) holds.

2. Suppose y1 ∈ L̃ and Yy0(y1) holds. For 1 ≤ r ≤ k, let zr1 ∈ L̃ satisfy gr(zr1, y1),

as in expression 2.7. Each polynomial gr(Z, y1), in indeterminate Z, is purely

inseparable. Let Jy1 = 〈fl(x, z11, z21, . . . , zk1)〉 ⊆ L̃[x], where the polynomials fl

are as in expression 2.7. Let Iy1 = 〈hj(x, y1) : 1 ≤ j ≤ m〉. Then Jy1 =
√
Iy1 .

We shall now construct Yy0(y) by refining a series of formulas. Each sub-formula is

chosen to be a particular formula satisfed by y0, so demand 1 will be automatically
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satisfied.

To begin, let us treat the pure inseparability of the polynomials gr(Z, y). Suppose

characteristic(K̃) = p. We can select the original gr(Z, y0) to be of a simple form:

gr(Z, y0) =def Zp
t − qr(y0)

for some t ∈ N, and where qr(y0) is a constant term in Lrings(y0). It is clear that for

any characteristic p field L̃, and parameter y1 ∈ L̃, then gr(Z, y1) is purely inseparable

over F (y1). So in this case we define the formula char to be

char(y) = def 1 + 1 + . . .+ 1 (p times) = 0 (2.8)

Alternatively, characteristic(K̃) = 0, and then we may write

gr(Z, y0) =def Z − qr(y0)

again where qr(y0) is a constant term in Lrings(y0). It is clear that for any field L̃ and

parameter y1 ∈ L̃, then gr(Z, y1) defines Z to be in F (y1) (and thus clearly purely

inseparable over F (y1)). So in this case

char(y) =def y = y (2.9)

Now let θ0 be defined by:

θ∗0(y, z1, z2, . . . , zk) = def (∀x(
n∧
l=1

fl(x, z1, z2, . . . , zk) = 0⇔
m∧
j=1

hj(x, y) = 0)

∧
k∧
r=1

gr(zr, y) = 0 ∧ char(y))

θ0(y) =def ∃(z1, z2, . . . , zk)(θ∗0(y, z1, z2, . . . , zk)) (2.10)

Then it is clear that the requirements on gr(Z, y1) for pure inseparability, in demand 2,

are met if Yy0(y1)⇒ θ0(y1). It is also clear that if Yy0(y1)⇒ θ0(y1) then the algebraic

set defined by Jy1 is identical to the algebraic set defined by Iy1 .

So to meet all of demand 2 for Yy0 , it is now enough that we construct a sub-formula

asserting that Jy1 =
√
Jy1 . To do so we need the following preparatory statement:
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Claim: Let W (x,w) be a ∅-definable family of algebraic sets given by a set of poly-

nomials G = {gj(x,w) : 1 ≤ j ≤ c}. For w0 ∈ P (W )(K̃), we define the ideal

Iw0 = 〈gj(x,w0) : 1 ≤ j ≤ c}〉. Then the sub-family of W given by {w : Iw =
√
Iw} is

uniformly definable over algebraically closed fields.

Proof of Claim: Consider G as a set of polynomials in the variables x, with co-

efficients w. Recall that for any polynomial ideal I,
√
I is the intersection of the

minimal prime ideals of I. So, by Fact 2.2.7 (4), there is D ∈ N such that over all

algebraically closed fields K̃, for any w0 ∈ P (W )(K̃),
√
Iw0 is generated by polynomi-

als of total degree ≤ D; also, the constant D is independent of w0. Thus we need an

Lrings − 0−formula which defines over algebraically closed fields the set {w : all poly-

nomials of total degree ≤ D which have a power in Iw are themselves in Iw}. By Fact

2.2.7 (3), there is C ∈ N such that if there is a polynomial g(x) ∈ K̃[x] of total degree

≤ D and k ∈ N with g(x)k ∈ Iw0 , then g(x)C ∈ Iw0 . Thus, to say that Iw0 =
√
Iw0 is

to say:

‘There is no g(x) ∈ K̃[x] of degree ≤ D such that g(x)C ∈ Iw0 and g(x) 6∈ Iw0 .’

Notice that g(x)C has total degree ≤ C · D. Thus, using Fact 2.2.7 (1), the quoted

statement is a uniformly definable statement; the claim follows. End of proof of claim

Apply the claim to the family of ideals in parameter z = (z1, z2, . . . , zk) given by the

family R = {fl(x, z) : 1 ≤ l ≤ n} of sets of polynomials, which is also in parameter

z = (z1, z2, . . . , zk). So there is a formula θ∗1(z) defined without parameters such that if

z∗ ∈ L̃ is a tuple with z∗ = (z∗1 , z
∗
2 , . . . , z

∗
k), and θ∗2(z∗) holds, then for J = 〈{fl(x, z∗) :

1 ≤ l ≤ n}〉 we have J =
√
J . We now conclude:

Yy0(y) =def ∃(z1, . . . , zk)(θ∗0(y, z1, . . . , zk)) ∧ θ∗1(z1, . . . , zk)) � (2.11)

REMARK 2.2.13 Consider a sub-family in the stratification of Lemma 2.2.12:

A(x, y) =def P (A)(y) ∧ ∃(z1, z2, . . . , zk)(
n∧
l=1

fl(x, z1, z2, . . . , zk) = 0 ∧
k∧
r=1

gr(zr, y) = 0)
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and consider

B(x, y, z1, z2, . . . , zk) =def P (A)(y) ∧
n∧
l=1

fl(x, z1, z2, . . . , zk) = 0 ∧
k∧
r=1

gr(zr, y) = 0

Let z = (z1, z2, . . . , zk). We have that A(x, y) and B(x, yz) are the identical family

of sets; it is the parameterisation that is different. Let f : P (B)(yz) 7→ P (A)(y)

be the natural projection of parameter sets. Since by construction, the gr are purely

inseparable over y, f is 1-to-1, and so by Fact 2.2.3 a stratification of B(x, yz) may be

‘rearranged’ into a stratification of A(x, y).

Proof of Lemma 2.2.11

PROOF Let us fix some notation. We shall assume V (x, y) is given by a set of 0-

polynomials S = {hj(x, y) : 1 ≤ j ≤ m}, and we assume that A(xz, y) is given by a set

of 0-polynomials U = {fl(xz, y) : 1 ≤ l ≤ u}. We shall denote specific family members

by subscripts: so for some K̃ and y0 ∈ P (A)(K̃), we let Sy0 = {hj(x, y0) : 1 ≤ j ≤ m}

and we let Iy0 = 〈{hj(x, y0) : 1 ≤ j ≤ m}〉 be an ideal in K̃[x]. Similarly, we let

Uy0 = {fl(xz, y0) : 1 ≤ l ≤ u} and Jy0 = 〈{fl(xz, y0) : 1 ≤ l ≤ u}〉.

By Remark 2.2.13 we may assume:

For all K̃ and y0 ∈ P (A)(K̃), Iy0 =
√
Iy0 and Jy0 =

√
Jy0 (2.12)

For a finite extension of fields L/K we write the degree of the extension as [L : K] and

the inseparable degree as [L : K]i. Under assumption 2.12 and under the assumptions

in the statement of the lemma, the degree of πy0 (denoted deg) satisfies

deg(πy0) = [Frac(K̃[xz]/Jy0) : Frac(K̃[x]/Iy0)] (2.13)

and the inseparable degree of πy0 (deg.ins) satisfies

deg.ins(πy0) = [Frac(K̃[xz]/Jy0) : Frac(K̃[x]/Iy0)]i (2.14)

We shall prove both that both degree and inseparable degree are uniformly definable in

the family A(xz, y) over algebraically closed fields, by applying Lemma 2.2.4 (Part 2).

We prove both results simultaneously. So suppose that y0 ∈ P (A)(K̃). We shall con-

struct a ∅-definable set Yy0(y) such that K̃ |= Yy0(y0) and for all L̃ and y1 ∈ P (A)(L̃)
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such that Yy0(y1) holds, the degree and inseparable degree of πy1 will be constant.

Let G = K̃[x]/Iy0 and let H = Frac(G). Similarly, let B = K̃[xz]/Jy0 and let

M = Frac(B). There is n ∈ N such that there are ti ∈ M and we may write M =

H(t1, t2, . . . tn, tn+1) whereH(t1, t2, . . . , tn)/H is purely inseparable, andM/H(t1, t2, . . . , tn)

is a separable extension primitively generated by tn+1. This is classical theory of fields

and may be found in, for instance, [22]: briefly, H(t1, t2, . . . tn)/H is the maximal purely

inseparable extension inside the finite extension M/H (it exists by Proposition 6.11 of

[22]), and then the fact that M/H(t1, t2, . . . tn) can be primitively generated follows

from the Primitive Element Theorem (see Theorem 4.6 of [22]). Let H0 = H and for

1 ≤ i ≤ n+ 1 let Hi = H(t1, t2, . . . , ti).

Claim: (1) Let T1, T2, . . . , Tn+1 be indeterminates. There is a polynomial g(x) ∈ K̃[x]

such that: for each 1 ≤ i ≤ n+ 1 there is a monic polynomial mi ∈ K̃[x, T1, . . . , Ti](g)

such that the ring Ri = K̃[x, T1, . . . , Ti](g)/〈Iy0 ,m1, . . . ,mi〉 is an integral domain,

Frac(Ri) ∼= Hi, and there is the following commutative diagram:

K̃[x, T1, . . . , Ti](g) � (K̃[x](g)/Iy0)[T1, . . . , Ti] ↪→ (Frac(K̃[x]/Iy0))[T1, . . . , Ti]

� � �

Ri ∼= Ri ⊆ Hi

Let char(K̃) = p. For 1 ≤ i ≤ n, the polynomial mi may be written in the form

T p
ni

i − qi

where ni ∈ N and qi ∈ K̃[x, T1, . . . , Ti−1](g). The polynomial mn+1 can be written

N∑
j=0

qnjT
j
n+1

where N ∈ N, qnN = 1, qnj ∈ K̃[x, T1, . . . , Tn](g), and there is at least one j0 with

1 ≤ j0 ≤ N such that:

(a) p 6 |j0
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(b) qnj0 6∈ 〈Iy0 ,m1, . . . ,mn〉

(2) Suppose that the situation as described in Part 1 holds: T1, . . . Tn+1 are indetermi-

nates, Iy0 ⊆ K̃[x] is a radical ideal, g(x) ∈ K̃[x], for each 1 ≤ i ≤ n+ 1 there are monic

polynomials mi ∈ K̃[x, T1, . . . , Ti](g) of the form described in Part 1 with respect to a

distinguished prime p (if n ≥ 1), the ring Ri = K̃[x, T1, . . . , Ti](g)/〈Iy0 ,m1, . . . ,mi〉 is

an integral domain with Frac(Ri) ∼= Hi, and the given commutative diagram holds.

Express mi as a polynomial in the indeterminate Ti with coefficients in the ring

K̃[x, T1, . . . , Ti−1](g). Then

(i) For each i with 1 ≤ i ≤ n+ 1, [Hi : Hi−1] =degree(mi).

(ii) If char(K̃) = p, then Hi/Hi−1 is purely inseparable for 1 ≤ i ≤ n.

(iii) If char(K̃) 6= p, then Hi/Hi−1 is separable for 1 ≤ i ≤ n.

(iv) We may exclude finitely many primes Pexcl = (p1, . . . , pl) such that p 6∈ Pexcl, and

if char(K̃) 6∈ Pexcl, then Hn+1/Hn is separable.

Proof of Claim: (1) The statement is for n, but it could be relativised to any

0 ≤ r ≤ n+ 1. Suppose that Part 1 of the claim holds for some r with 0 ≤ r ≤ n+ 1,

and g ∈ K̃[x] is a localisation polynomial witnessing the claim. Suppose g|b for b ∈

K̃[x]\Iy0 . Then the claim holds for r, with b in the place of g, with the same mi. We

verify this in the following set of enumerated points. We shall need to refer to the

ideal 〈Iy0 ,m1, . . . ,mi〉 as generated in the ring K̃[x, T1, . . . , Ti](g), and also in the ring

K̃[x, T1, . . . , Ti](b), so we shall use the notation I(g) and I(b) to distinguish between the

two:

1. The reader can verify that I(g) ∩ K̃[x] = Iy0 , and so b 6∈ I(g). It follows then that

I(b) is a prime ideal in K̃[x, T1, . . . , Ti](b).

2. Using the previous item, for each 1 ≤ i ≤ r there is a commutative diagram of

localisations:
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K̃[x, T1, . . . , Ti](g) ⊆ K̃[x, T1, . . . , Ti](b)

� (ϕi) �

Ri ⊆ (Ri)(ϕi(b))

(Here, we have labeled the quotient surjection ϕi : K̃[x, T1, . . . , Ti](g) � Ri.)

Since Frac((Ri)(ϕi(b))) ∼= Hi, the localised rings (Ri)ϕi(b) and b clearly witnesses

all of Part 1 of the claim except if r = n + 1 we still have not shown that the

demand referred to as (b) is met. We address this is the next item.

3. Now suppose that r = n + 1 and henceforth let 〈Iy0 ,m1, . . . ,mn〉 as generated

in the ring K̃[x, T1, . . . , Tn](b) be denoted by I(b), and the same ideal gener-

ated in the ring K̃[x, T1, . . . , Tn](g) be denoted by I(g). Suppose that qnj0 ∈

I(b). Then for some γ ∈ N and a ∈ I(g) we have qnj0 = a
bγ . But then qnj0 ·

bγ ∈ I(g). We have seen that b ∈ K̃[x, T1, . . . , Tn](g)\I(g), and by assump-

tion qnj0 ∈ K̃[x, T1, . . . , Tn](g)\I(g). But also by assumption, I(g) is prime in

K̃[x, T1, . . . , Tn](g), so we have a contradiction.

We shall prove Part 1 of the claim by induction on i. We denote the localisation poly-

nomial that witnesses Claim 1 at stage i by gi. We shall re-choose gi at each stage such

that gi−1|gi, and so by the previous clause of this proof, the induction remains valid.

The case i = 0 is vacuous.

Now for the inductive step. Let m∗∗i+1 be a monic, minimal polynomial for ti+1 in

Hi[Ti+1]. By induction there is a surjection Frac(K̃[x]/Iy0))[T1, . . . , Ti] � Hi. Choose

a preimage m∗i+1 of m∗∗i+1 in Frac(K̃[x]/Iy0)[T1, . . . , Ti][Ti+1]. Then m∗i+1 = 1

g∗
′
i+1

· n∗i+1,

where g∗
′
i+1 ∈ K̃[x]/Iy0 and n∗i+1 ∈ (K̃[x]/Iy0)[T1, . . . , Ti][Ti+1]. We let g

′
i+1 be a preim-

age of g∗
′
i+1 in K̃[x], and we let gi+1 = gi · g

′
i+1. According to the first clause of the

proof, we assume from now on that the induction has thus far been witnessed with

respect to the polynomial gi+1. By design, there is a monic preimage of m∗i+1 in

K̃[x][T1, . . . , Ti][Ti+1](gi+1), and we choose mi+1 to be such a preimage.
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If i ≤ n, then it is clear that we can select m∗∗i to be of the form:

T p
ni

i − q∗∗i

where ni ∈ N and q∗∗i ∈ Ri. By inspection, the pullback mi has the required form.

If i = n + 1 then the extension Hn+1/Hn is separable by design. So, the monic

polynomial m∗∗n+1 may be written:

N∑
j=0

q∗∗njT
j
n+1

where N ∈ N, q∗∗nj ∈ Rn, and there is a j0 with 1 ≤ j0 ≤ N , such that p 6 |j0 and q∗∗nj0 6= 0.

This is by basic separability theory (see [22] ch. 5). By induction, there is a pullback

of q∗∗nj0 in K̃[x, T1, . . . , Tn](gn+1) from the natural map K̃[x, T1, . . . , Tn](gn+1) 7→ Hn, so

a fortiori q∗∗nj0 cannot be in the kernel. By induction, the kernel is 〈Iy0 ,m1, . . . ,mn〉.

Thus, the pullback mn+1 of m∗∗n+1 has the required form.

All this leaves us with the commutative diagram:

K̃[x, T1, . . . , Ti+1](gi+1) (� η) (K̃[x](gi+1)/Iy0)[T1, . . . , Ti+1]

� � (ϕ)

Ri[Ti+1] ∼= Ri[Ti+1] (� ψ) Ri[Ti+1]/〈m∗∗i+1〉

⊆ ⊆ → (µ)

Hi[Ti+1] ∼= Hi[Ti+1] � Hi[Ti+1]/〈m∗∗i+1〉

We define Ri+1 := Ri[Ti+1]/〈m∗∗i+1〉, so we must now (a) show that ker(ψϕη) =

〈Iy0 ,m1, . . .mi+1〉, (b) show that the map labelled µ is an inclusion, and (c) show

Frac(Ri+1) = Hi[Ti+1]/〈m∗∗i 〉 = Hi+1.

(a) Suppose z ∈ K̃[x, T1, . . . , Ti+1](gi+1) and z ∈ ker(ψϕη); so ϕη(z) = m∗∗i+1 ·χ for some

χ ∈ Ri[Ti+1]. Now ϕη extends the map ϕi : K̃[x, T1, . . . , Ti](gi+1) 7→ Ri, (shown in the

diagram above in point number 2 at the beginning of the proof of the claim), which

by induction is a surjection. So by induction, ϕη is a surjection. Similarly, since the
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kernel of the map ϕi is 〈Iy0 ,m1, . . . ,mi〉 generated in K̃[x, T1, . . . , Ti](gi+1), it follows

that the kernel of ϕη is 〈Iy0 ,m1, . . . ,mi〉 generated in K̃[x, T1, . . . , Ti+1](gi+1). Notice

that we have adjusted all localisations to localising by gi+1, which we have shown we

may do. It follows that z ∈ 〈Iy0 ,m1, . . . ,mi+1〉.

(b) Suppose z ∈ Ri[Ti+1]/〈m∗∗i 〉 and z ∈ker(µ). It follows that there is z′ ∈ ψ−1(z)

with z′ = m∗∗i+1 ·
χ2

χ1
for χ2 a monic polynomial in Ri[Ti+1], and χ1 ∈ Ri. Now m∗∗i+1 is

monic so the leading term of z′ has coefficient 1
χ1

, and since z′ ∈ Ri[Ti+1], it follows

that χ1 is a unit in Ri. Let χ = χ2

χ1
. Then χ ∈ Ri[Ti+1] and z′ = m∗∗i+1 · χ. Thus

ψ(z′) = z = 0. So µ is an injection.

(c) This is now clear.

(2) By assumption we have the following commutative diagram:

K̃[x, T1, . . . , Ti, Ti+1](g)

� (ϕ) � (µ)

Hi[Ti+1] � (ψ) Hi+1

(i) Suppose z ∈ker(ψ). Then for z′ ∈ ϕ−1(z) we have z′ ∈ker(µ). By assumption,

z′ = z0 +
∑i+1

j=0 aj · mj for some z0 ∈ Iy0 , and for each 0 ≤ j ≤ i + 1, we have

aj ∈ K̃[x, T1, . . . , Ti+1](g). It follows that z ∈ 〈ϕ(mi+1)〉. So clearly ϕ(mi+1) is a min-

imal polynomial for the extension Hi+1/Hi. But mi+1 is monic so its degree is the

degree of that extension.

(ii) and (iii) For 1 ≤ i ≤ n, the assumptions mean that ϕ(mi) has the form of the poly-

nomial satisfied by a p-power’th root. Clearly this implies that Hi/Hi−1 is a purely

inseparable extension in the characteristic p case, and a separable extension in the not

characteristic p case.

(iv) Let

ϕ(mn+1) =
N∑
j=0

q∗∗njT
j
n+1
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for q∗∗nj ∈ Hn. The conditions imply that there is some j0 with 1 ≤ j0 ≤ N such that

p 6 |j0 and q∗∗nj0 6= 0. So let Pexcl = { the primes that divide j0}. Clearly p 6∈ Pexcl,

and again, by basic separability theory, so long as ϕ(mn+1) has a non-zero coefficient

in a term of power coprime to the characteristic, then ϕ(mn+1), is separable, and con-

sequently, so is Hn+1/Hn. End of Proof of Claim

We now use the claim to define Yy0 : in a sense, Part 1 of the claim is to show that the

projection at parameter y0 has certain properties, and Part 2 shows that any mem-

ber with those properties has identical degree and separable degree to the member y0.

What remains is to assert the definability of the properties in Claim 1.

It follows from the claim that Yy0(y) need only assert:

1. There is a polynomial g = g(x) ∈ K̃[x] and a set of elements t = (t1, . . . , tn+1)

with ti ∈ K̃[xz](g)/Jy0 such that Frac(K̃[x, t]/Jy0) =Frac(K̃[xz]/Jy0).

2. For each 1 ≤ i ≤ n+1, there is a polynomialmi(T1, . . . , Ti), andmi(t1, . . . , ti) = 0.

3. For each 1 ≤ i ≤ n + 1 the ideal Ii = 〈Iy0 ,m1, . . . ,mi〉 in K̃[x, T1, . . . , Ti](g) is

prime.

4. Let char(K̃) = p, or 0 as the case may be. For 1 ≤ i ≤ n, the polynomial mi is

of the form

T p
ni

i − qi

where ni ∈ N and qi ∈ K̃[x, T1, . . . , Ti−1](g). The polynomial mn+1 is of the form

N∑
j=0

qnjT
j
n+1

where N ∈ N, qN = 1, qj ∈ K̃[x, T1, . . . , Tn](g), and there is at least one j0 with

1 ≤ j0 ≤ N such that:

(a) p 6 |j0
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(b) qnj0 6∈ 〈Iy0 ,m1, . . . ,mn〉

5. The characteristic is not a divisor of j0.

(1) and (2) (1) is a conjunction of field-arithmetic statements in parameters from K̃;

the conjunction may be replaced with an existential formula asserting the existence of

parameters confirming the arithmetic statements. (2) is similar.

For (3), (4) and (5) we first apply the hyperbolicity trick to obtain the isomorphism

αi : K̃[x, T1, . . . , Ti](g) ∼= K̃[x, T1, . . . , Ti, T ]/〈Tg − 1〉.

(3) We define I∗i = 〈Iy0 , αi(m1), . . . , αi(mi), T g − 1〉 in K̃[x, T1, . . . , Ti, T ], and then

assertion (c) is equivalent to the assertion that I∗i is prime in K̃[x, T1, . . . , Ti, T ], and

the uniform definability of such an assertion is an application of Facts 2.2.7 virtually

identical to the application in Lemma 2.2.10 (1).

(4) and (5) Since the statement qj ∈ K̃[x, T1, . . . , Tn](g) may be written qj · gs ∈

K̃[x, T1, . . . , Tn] for some s ∈ N, this assertion is a conjunction of field arithmetic

statements, like (1). For the statement qnj0 6∈ 〈Iy0 ,m1, . . . ,mn〉 in K̃[x, T1, . . . , Tn](g),

we have the equivalent statement

αn(qnj0) 6∈ 〈Iy0 , αn(m1), . . . , αn(mn), T g − 1〉 in K̃[x, T1, . . . , Tn, T ]

and this is uniformly definable using Facts 2.2.7 (1). �

2.2.2 Fine stratification of algebraic sets and projections

LEMMA 2.2.14 Let A(x, y) be a ∅-definable family of algebraic sets.

1. We have the following:

(a) There is a ∅-definable family of algebraic sets V (x, z), such that over alge-

braically closed fields, any irreducible component of a member of A(x, y) is

a member of V (x, z).
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(b) The subfamily V ∗(x, z) of V (x, z) of members which are irreducible compo-

nents of some member of A(x, y) is uniformly definable over algebraically

closed fields.

(c) There is a ∅-definable, bounded, finite-to-1 map f : P (V ∗)(z) 7→ P (A)(y)

which maps the irreducible components of a member of A(x, y) to A(x, y).

2. Suppose V (x, z) may be uniformly stratified by some arbitrary uniform stratifica-

tion into sub-families {Vb : 1 ≤ b ≤ s}. Then A(x, y) may be uniformly stratified

according to tuples e = (e1, e2, . . . es), where the tuple e signifies that A(x, y)

contains eb irreducible components in the sub-family Vb(x, z), for each 1 ≤ b ≤ s.

PROOF (1a) Claim 1: There is a finite set of families of algebraic sets S = {Vi(x, yi) :

1 ≤ i ≤ n} such that any irreducible component of a member of A(x, y) is a member

of some member of S.

Proof of Claim 1: Notice that the set of algebraic sets {Wj : 1 ≤ j ≤ r} is the set

of irreducible components for an algebraic set X if and only if

• X = ∪rj=1Wj

• There are no proper inclusions amongst the Wj .

• The Wj are irreducible.

Now, by Lemma 2.2.4 there is an upper bound on the number of irreducible components

in a member of A(x, y). Thus, for a finite collection of ∅-definable families W =

{Wj(x, zj) : 1 ≤ j ≤ r} the set

BadW := {y : A(x, y) does not have all its components members of members of W}

is definable without parameters in algebraically closed fields. Call such a finite col-

lection of families a W -set and its associated BadW a Bad-W -set. If W = ∪Wi is a

W -set given as a union of W -sets, then BadW = ∩iBadWi . Now apply compactness: if

the intersection of finitely many BadW -sets is always non-empty in algebraically closed

fields, then there is some y0 in some algebraically closed field K̃, such that there is

no finite collection of families that contain all the irreducible components of A(x, y0).

This is absurd, and so there is a finite intersection of BadW -sets which is empty; and
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so there is an empty BadW set. The corresponding collection W is the collection of

families we sought. End of proof of Claim 1

Claim 2: Here, let S = {Vi(x, yi) : 1 ≤ i ≤ n} be a finite set of families of defin-

able sets in algebraically closed fields. By the disjoint union of the members of S we

mean a family V (x, z) such that for any algebraically closed field K̃ there is a bijective

map d :
∐

1≤i≤n P (Vi)(K̃) 7→ P (V )(K̃) such that for any yi0 ∈ P (Vi(K̃)), we have

V (K̃, d(yi0)) = Vi(K̃, yi0). Then the disjoint union of the members of S is a family of

definable sets.

Proof of Claim 2: Let z = y1y2 . . . ynw be a tuple of tuples, where w = w1 . . . wn is

a tuple of length n; we think of w as the marker tuple. We let V (x, z) be the family of

definable sets defined by the formula:

V (x, z) :=
n∨
i=1

[wi = 1 ∧j 6=iwj = 0] ∧
n∧
i=1

[wi = 1 ⇒ (P (Vi)(yi) ∧ ∧j 6=iyj = 0 ∧ Vi(x, yi))]

V (x, z) is the disjoint union of the members of S. End of proof of Claim 2

Now 1a follows from the two claims.

(1b) As we have said, by Lemma 2.2.4 there is an upper bound r on the number of

irreducible components in a member of A(x, y). So let V (x, z) be the family found in

Part 1a, and let us consider powers of V (x, z). For each 1 ≤ i ≤ r, let V (xi, zi) be

the family V (x, z) expressed in tuples xi, zi. Let x′ = x1 . . . xr and let z′ = z1 . . . zr.

For each 1 ≤ j ≤ r, let V j(x′, z′) :=
∏j
i=1 V (xi, zi). Consider the family C(x′x, z′y) :=

(
∐r
j=1 V

j(x′, z′))×A(x, y). By the characterisation of the set of irreducible components

of an algebraic set described in Part 1a we can define the sub-family C∗(x′x, z′y) of

C(x′x, z′y) where if

• we work in K̃,

• z′0y0 ∈ P (C∗)(K̃),

• in the disjoint union
∐r
j=1 V

j(x′, z′), z′0 corresponds to a set V j0(x′, z′0),
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• z′0 = z10 . . . zr0,

then the set {V (x, zj0) : 1 ≤ j ≤ j0} is the set of irreducible components of A(x, y0).

There is the natural map ϕ of families from C∗(x′x, z′y) to V (x, z) which is the com-

posite of the projection map z′y 7→ z1 and the substitution z1 7→ z. There is also the

natural projection ψ of families from C∗(x′x, z′y) to A(x, y) where z′y 7→ y. Then a

member V (x, z0) is an irreducible component of the algebraic set A(x, y0) if and only

if ϕ−1(z0) ∩ ψ−1(y0) 6= ∅.

(1c) Firstly we may now construct a correspondence C(yz) between the family P (V ∗)

defined in 1b, and P (A), where a pair y0z0 ∈ C(K̃) if and only V ∗(x, z0) is an irre-

ducible component of A(x, y0). The result is not necessarily a map. We may then

replace P (V ∗) with the disjoint union of the fibres, to obtain a proper map.

(2) This is now a direct application of Fact 2.2.3. �

2.3 Measurability for finite σ-degree σ-closed sets

NOTATION 2.3.1 In the remainder (K,σ) will be a large, uncountably saturated

model of ACFA. By saturated enough, we note that we want points of algebraic sets

and σ-closed sets which are generic over fields of definition to be realised in (K,σ).

It follows that ω1-saturation is sufficient. We shall be interested in the definability or

definability without parameters of certain properties. From now, unless we specifically

say otherwise, definability is meant in the sense of the language of difference rings. We

shall deal with correspondences (see Section 1.4.1 of the Introduction). If T (xz) ⊆

V (x) × A(z) is a correspondence, we shall denote the projection to x by π1 and the

projection to z by π2 .

2.3.1 Weak Quantifier Elimination for ACFA

There is a weak quantifier elimination form for definable sets in ACFA (see [8] 1.5 and

1.6). That form allows us to view an arbitrary family θ(x, y) of sets as a family of fi-

nite unions of finite fibre projections of quantifier-free, definable sets. More specifically,
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ACFA |= θ(x, y)⇐⇒
k∨
i=1

∃t θi(x, y, t) (2.15)

where t is a single variable, θi = θi(x, σ(x), . . . , σm(x), y, σ(y), . . . , σm(y), t, σ(t), . . . , σm(t))

is a quantifier-free formula in the language of fields, and for any (K,σ) |= ACFA and

(x0y0t0) ∈ θi(K), t0 is algebraic in the sense of fields over (x0, σ(x0), . . . , σm(x0), y0, σ(y0), . . . , σm(y0)).

In particular there is an n ∈ N such that any θi(x0, y0, t) has at most n solutions in t.

As in the pseudo-finite fields case [10], once we establish definable asymptotic esti-

mates for finite σ-degree, σ-closed sets (see Section 1.4.2 for a definition of σ-degree

and σ-closed sets), definable asymptotic estimates for quantifier-free definable sets of

finite σ-degree will follow easily. Then using elimination form 2.15 and the method

in [10] 3.7, definable asymptotic estimates for all first-order definable families of finite

σ-degree sets will be obtained. The key is obtaining definable asymptotic estimates for

σ-closed sets.

We also need the following notion of algebraic dimension:

DEFINITION 2.3.2 Let θ(x, y) be a family of sets definable in the language of

difference rings. Suppose that (K,σ) |= ACFA is ω1-saturated. Let y0 ∈ P (θ)(K)

and let Y = aclσ(y0). Then we define dimalg(θ(x, y0)) = max(tr.deg(x/Y ) : x ∈

θ(K, y0)). We call dimalg(θ(x, y0)) the algebraic dimension of θ(x, y0). For a type p

over Y =aclσ(Y ) with |Y | < ω1, we may similarly define dimalg(p) = max(tr.deg(x/Y ) :

x ∈ p(K)). Then this definition of algebraic dimension simply extends the definition

introduced in Section 1.4.1.

DEFINITION 2.3.3 Suppose that θ(x, y) is a ∅-definable family of σ-closed sets

given by a set of polynomials

{fj(x, σ(x), . . . , σl(x), y, σ(y), . . . , σm(y)) : 1 ≤ j ≤ d}

We now fix some n ∈ N. We shall define some y-parameterised families of sets that may

be obtained from θ(x, y). These families will be used in conjunction with the sub-family

θn(x, y) of θ(x, y) of members of σ-degree n. Suppose that x = x0 = (x00, x01, . . . x0k)

is a tuple of length k + 1. Let N =max {n, l}.
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• We let x′ = (x0, x1, . . . , xN ), where for each 0 ≤ i ≤ N , xi = (xi0, xi1, . . . , xik)

is a tuple of length k + 1. We define the σ-closed set extn(θ)(x′, y) as the set of

zeroes of the polynomials:

{fj(x0, σ(x0), . . . , σl(x0), y, σ(y), . . . , σm(y)) : 1 ≤ j ≤ d} ∪ {xi − σi(x0) : 1 ≤ i ≤ N}

(2.16)

extn(θ)(x′, y) is a family of y-parameterised σ-closed sets in variables x′. We use

the notation ext for ‘extending’, because we are extending the number of variables

in θ so that there are variables for all σ-iterates up to N ; for clarity, extn(θ)(x′, y)

is an Ldiff -set.

• Suppose A(x, y) is a system of polynomials in the variable tuple x and whose

parameters are the tuples of iterates (y, σ(y), . . . , σm(y)); suppose that A(x, y)

specifically mentions no σ-iterates of x. Then for (M,σ) |= ACFA and y0 ∈

P (θ)(M), A(x, y0) is an algebraic set over the parameters (y0, σ(y0), . . . , σm(y0)).

We call such an A(x, y) algebraic in x. From extn(θ)(x′, y) we produce a definable

set algn(θ)(x′, y) that is algebraic in x′: the family extn(θ) is written in terms

of the tuple (x0, σ(x0), . . . , σN (x0) ; x1, x2, . . . , xN ). Then algn(θ) is obtained

as the zero set of the polynomials obtained by the substitution σi(x0) 7→ xi for

each 0 ≤ i ≤ N in the defining polynomials of extn(θ)(x′, y). Thus algn(θ)(x′, y)

is a family of y-parameterised sets in variable x′. We call its set of defining

polynomials EQalg(θ),n(x′, y). The (x′, y) pair signifies only that we are writing the

polynomials in these specific variables x′ and y; of course, they can be substituted.

Again, for clarity, algn(θ)(x′, y) is an Ldiff -set. However, it may also be seen as

an algebraic set in parameters which are y and a finite set of the σ-iterates of y.

• Let V (x′, y) = algn(θ), where x′ = (x0, . . . , xN ) and for each 0 ≤ i ≤ N , xi =

(xi0, . . . , xik), as above. Let V (z, v) be a copy of V (x′, y) in variable tuple z

and parameter tuple v. Let V 2(x′z, yv) = V (x′, y) × V (z, v). We construct a

family of yσ(y)-parameterised correspondences inside the y-parameterised family

V 2(x′z, yσ(y)). We call this family of correspondences shiftn(θ)(x′z, y). The
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polynomials whose zero set defines shiftn(θ) are

EQalg(θ),n(x′, y) ∪ EQalg(θ),n(z, σ(y)) ∪ {zij−x(i+1)j : (0 ≤ i ≤ N−1, 0 ≤ j ≤ k)}

This construction can be considered either locally at a family member y0 ∈

P (θ)(M), or globally: shiftn(θ)(x′z, y) can be thought of as a single Ldiff − 0-

definable formula in parameter y. Even though shiftn(θ)(x′z, y) is an Ldiff -set,

like algn(θ)(x′, y) it may also be seen as an algebraic set in parameters which are

y and a finite set of the σ-iterates of y.

We denote the natural projection of shiftn(θ) onto the variable x′ as π1 and

the projection onto z as π2. We denote by πθ the projection onto the variables

coding the original data from θ(x, y): in the coordinates introduced above, πθ is

the projection onto coordinates (x00, x01, . . . , x0k). Similarly, we define πσ(θ) to

be the projection onto coordinates (z00, z01, . . . , z0k). The reader will observe that

all these projections are 0-definable formulae in parameter y, in Ldiff .

• Lastly, we define the Ldiff -set 4n(θ)(x′z, y) to be {(x′, z) : (x′, z) ∈ shiftn(θ) ∧

z = σ(x′)}

We shall call the sets extn(θ), algn(θ), shiftn(θ) and4n(θ) the auxiliary sets for θn(x, y).

EXAMPLE 2.3.4 We just give an example of a family of σ-closed sets and its

auxiliary sets. Consider the family θ(x, y) defined by the σ-polynomial y3x− yσ2(x)−

1 = 0 . When y = 0 this is empty, otherwise σ2(x) = y2x − 1
y and degσ(θ(x, y))=2.

So let’s calculate auxiliary sets for θ2(x, y). In this case, in the notation of Definition

2.3.3, k = 0, l = 2, n = 2, and so N = 2.

ext2(θ) = Zeroes({y3x00 − yσ2(x00)− 1 , x10 − σ(x00), x20 − σ2(x00)})

alg2(θ) = Zeroes({y3x00 − yx20 − 1})

shift2(θ) = Zeroes({y3x00 − yx20 − 1, (σy)3z00 − (σy)z20 − 1 , z00 = x10, z10 = x20})

42(θ) = Zeroes({y3x00 − yx20 − 1, (σy)3z00 − (σy)z20 − 1 , z00 = x10, z10 = x20, z00 = σ(x00),

z10 = σ(x10), z20 = σ(x20)})

REMARK 2.3.5 The auxiliary sets extn(θ), algn(θ), shiftn(θ) and 4n(θ), were

constructed from a set θ(x, y). We view this as taking the family θ(x, y) and canon-
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ically producing new families: we have a uniform procedure valid for any model

(K,σ) |= ACFA and y0 ∈ P (θ)(K), for taking θ(x, y0) and producing the auxiliary

sets in parameter y0.

Formally, the auxiliary sets are in a different number of variables from θ(x, y); in Defi-

nition 2.3.3, extn(θ), algn(θ) were in variable x′, and shiftn(θ), 4n(θ) were in variable

x′z. However, it is easier to adopt the convention of using x for the tuple of variables

in the auxiliary sets extn(θ) and algn(θ), and using w (or xz where necessary) for the

tuple of variables in shiftn(θ) and 4n(θ). The reader should note that we shall inter-

change between w and xz to denote the variables in the latter auxiliary sets.

REMARK 2.3.6 We try to motivate Definition 2.3.3 and how we shall use it.

Our goal is to give uniform asymptotic estimates for a family θ(x, y) of σ-closed sets,

but for simplicity let us assume we only want to estimate a single σ-closed set θ(x).

Really, our only tool is Theorem 2.1.2, and we must make use of it somehow.

The first point is that Theorem 2.1.2 gives estimates for the (x, σ(x)) points of corre-

spondences W ⊆ V ×σ(V ), so we must in some sense write θ(x) in terms of such a cor-

respondence. Now θ(x) is a conjunction of algebraic equations in some parameters and

in some set of iterates of x: for simplicity let us suppose that we have only one defining

polynomial f(x, σ(x), . . . , σl(x)). If we substitute (x 7→ x0, σ(x) 7→ x1, . . . , σ
l(x) 7→ xl),

then this yields the algebraic equations f(x0, . . . , xl), defining a variety Y . This is es-

sentially what the formula algn(x, y) does. However, this is not so useful; θ(x) is sitting

somewhere inside Y .

If we consider the σ-closed set sitting inside Y defined by the σ-polynomials:

f(x0, . . . , xl) ; x1 = σ(x0), . . . , xl = σl(x0) (2.17)

then it is clear that the projection onto the first coordinate of this σ-closed set is θ(x),

and also that that projection is a 1:1 map. Also, if (x0, . . . , xl) satisfies f(x0, . . . , xl) = 0

then σ(f)(σ(x0), . . . , σ(xl)) = 0. Then this means that the σ-closed set S(x0, . . . , xl, z0, . . . , zl)



70 CHAPTER 2. ACFA AND FINITE DIMENSIONAL MEASURABLE SETS

defined by

f(x0, . . . , xl) ; x1 = σ(x0), . . . , xl = σl(x0) ; σ(f)(z0, . . . , zl) ; z0 = σ(x0), . . . , zl = σ(xl)

(2.18)

is also in bijection via the first coordinate projection with θ(x). Examining these

equations it is easy to see that for each 1 ≤ i ≤ l − 1, zi = σ(xi) = σ(σi(x0)) =

σi+1(x0) = xi+1. It is then verified that we may equally well specify S with the

equations:

f(x0, . . . , xl) ; x1 = z0, . . . , xl = zl−1 ; σ(f)(z0, . . . , zl) ; z0 = σ(x0), . . . , zl = σ(xl)

(2.19)

S is now in a form to apply Hrushovski’s estimates since it is clear by looking at the

latter set of equations that if we write x′ = x0, . . . , xl and z′ = z0, . . . , zl, then they

define the x′σ(x′) points of the correspondence C(x′z′) ⊆ Y × σ(Y ) defined by

f(x0, . . . , xl) ; x1 = z0, . . . , xl = zl−1 ; σ(f)(z0, . . . , zl) (2.20)

This is essentially what we do in the construction of shiftn(θ(x, y)). The lemma that

treats bijections between the ‘xσ(x)’ points of our constructed correspondences and

the initial σ-closed sets follows; it is Lemma 2.3.7.

This is not the end of the story, because the auxiliary sets look more complicated than

the construction above. The added complication again comes from the fact that we

aim to apply Theorem 2.1.2. If we write our correspondences in variables x′z′, then it

requires us to have finite fibre/quasi-finite fibre projections to x′ and to z′. Essentially,

this means that generically in our constructed correspondence C(x′z′), over the base,

z′ must be interalgebraic in the field-theoretic sense with x′. Now, there is a further

point to make: because Hrushovski’s estimates 2.1.2 hold for not necessarily closed

subvarieties W ⊆ V × σ(V ), it follows that in an application of them to C(x′z′), there

will be a generic point of the correspondence of the form z′ = σ(x′). So for this generic

point, σ(x′) must be field interalgebraic with x′ over the base of definition. Intuitively,

for a σ-closed set θ(x) of σ-degree n, this happens only when we have at least n

σ-iterates of x included in our constructed auxiliary correspondence (shiftn(θ(x, y)).

Indeed, this is verified in Lemma 2.3.8. This is the reason why our construction in

Definition 2.3.3 includes N =max{n, l} σ-iterates of the original variables x.
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LEMMA 2.3.7 1. Let (K,σ) |= ACFA. Fix a family parameter y0 ∈ P (θn)(K).

Then πθ is a definable bijection from 4n(θ)(K, y0) to θ(K, y0).

2. πσ(θ)(4n(θ)(K, y0)) = σ(θ(K, y0)).

PROOF 1. By inspection πθ sends 4n(θ)(K, y0) into θ(K, y0). On the other hand

there is a natural inverse Φ to πθ:

Φ : θ 7→ 4n(θ) ; (x00, x01, . . . , x0k) 7→ (x′, σ(x′)) where :

x′ = (xij : 0 ≤ i ≤ N, 0 ≤ j ≤ k) and xij = σi(x0j) for 1 ≤ i ≤ N, 0 ≤ j ≤ k(2.21)

2. The second statement is clear, by Part 1 and because on 4n(θ)(K, y0) we have

πσ(θ) = σπθ. �

LEMMA 2.3.8 Suppose that (K,σ) is an ω1-saturated model of ACFA and y0 ∈

P (θn(K)). Let w ∈ 4n(θ)(K, y0), and let v = πθ(w). Then

(i) w and v are Ldiff-∅-inter-definable over aclσ(y0).

(ii) degσ(v/aclσ(y0)) = degσ(w/aclσ(y0)) = dimalg(w/aclσ(y0)).

(iii) dimalg(w/aclσ(y0)) ≤ n, and equality is obtained for some w0 = x0z0 where

x0z0 ∈ K. Also, degσ(v/aclσ(y0)) ≤ n. Further, for any points w1 ∈ 4n(θ)(K, y0) and

v1 such that πθ(w1) = v1 and degσ(v1/aclσ(y0)) = n, then also dimalg(w1/aclσ(y0)) = n.

PROOF Let Y = aclσ(y0).

(i) This follows directly from Lemma 2.3.7 (1).

(ii) The first equality follows from Part (i). Now it is clear that degσ(w/aclσ(y0)) ≥

dimalg(w/aclσ(y0)). Suppose that degσ(v/aclσ(y0)) = d. Since y0 ∈ P (θn(K)), it fol-

lows that d ≤ n. The first n σ-iterates of v appear in the point w. The rest of this part

of the lemma then follows from the following claim:



72 CHAPTER 2. ACFA AND FINITE DIMENSIONAL MEASURABLE SETS

Claim dimalg(v, σ(v), . . . , σn−1(v)) = d.

Proof of Claim: On the one hand some finite collection of σ-iterates of v has al-

gebraic dimension d over Y . By applying an appropriate power of σ, we may assume

that there is a minimal e such that the collection of iterates C = {σi(v) : 0 ≤ i ≤ e}

has algebraic dimension d over Y . It is also clear that if there is some f ∈ N and

σf+1(v) ∈ aclalg({σj(v) : 0 ≤ j ≤ f}, Y ), then for all k > 0, σf+k(v) ∈ aclalg({σj(v) :

0 ≤ j ≤ f, }, Y ). This implies that if e > n − 1, then degσ(v/aclσ(y0)) > n, and since

n ≥ d we have a contradiction. So e ≤ n − 1 , and we are done. End of proof of

claim and lemma

(iii) Since y0 ∈ P (θn)(K), for any v ∈ θ(K, y0) we have that degσ(v/Y ) ≤ n, and

further, equality must be attained for some v0. Then Part (iii) now follows from Part

(ii) and Part (i).

COROLLARY 2.3.9 Let θ(x, y) be a family of σ-closed sets of σ-degree n. Let

V (x′z, y) ⊆ 4n(θ)(x′z, y) be a family of σ-closed sets. Then V (x′z, y) may be uni-

formly stratified into finitely many sub-families {Vn,i : 1 ≤ i ≤ n} such that over all

ω1-saturated (K,σ) |= ACFA, for y0 ∈ P (Vn,i)(K) we have dimalg(V (x′z, y0)) = i.

PROOF Let y0 ∈ P (V )(K). By Lemma 2.3.8 Part (ii) and Lemma 2.3.7 we have

dimalg(V (x′z, y0)) =degσ(V (x′z, y0)). But then σ-degree is uniformly definable over

the family V (x′z, y). �

LEMMA 2.3.10 Suppose that θ(x, y) is a family of σ-closed sets, (K,σ) |= ACFA is

ω1-saturated and y0 ∈ P (θn)(K). Suppose that V (x′z) ⊆ shiftn(θ)(x′z, y0) is a variety

of dimension d defined over aclσ(y0) and that V (x′z) contains a generic point x0z0

over aclσ(y0), such that z0 = σ(x0). Suppose f(x′, z) is a polynomial over aclσ(y0)

such that dimalg(V (x′z)\Zeroes(f(x′, z))) = dimalg(V (x′z)). Then π1 and π2 are both

generically finite fibre projections on V . Also, π2(V \Zeroes(f)) = σ(π1(V \Zeroes(f))).

PROOF Let Y = aclσ(y0).
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Claim: x0 and z0 are field inter-algebraic over Y .

Proof of Claim: Suppose that x0 = (xij : 0 ≤ i ≤ N ; 0 ≤ j ≤ k) and

z0 = (zij : 0 ≤ i ≤ N ; 0 ≤ j ≤ k). For 0 ≤ i ≤ N , let xi = {xij : 0 ≤ j ≤ k} and let

zi = {zij : 0 ≤ j ≤ k}. Then purely in terms of sets of elements: z0\x0 = σ(xN ) and

x0\z0 = x0.

First we show that z0 ∈aclalg(Y, x0). It suffices to show that σ(xN ) ∈aclalg(Y, x0). We

now argue similarly to previous lemmas: if σ(xi) ∈aclalg(Y, x0, . . . , xi), then inductively,

for all j ≥ 0 we have σj(xi) ∈aclalg(Y, σj(x0), . . . , σj(xi)) ⊆ aclalg(Y, x0, . . . , xi). But

now by 2.3.8 Part (iii) dimalg(x0z0/y) ≤ n, and so there must be some i0 ≤ n − 1

such that xi0+1 = σ(xi0) ∈aclalg(Y, x0, . . . , xi0). Now σ(xN ) = σN−i0+1(xi0), and so

σ(xN ) ∈ aclalg(Y, x0, . . . , xi0) ⊆aclalg(Y, x0).

Next we show that x0 ∈aclalg(Y, z0). This is almost identical to the converse we just

proved: it suffices to show that x0 ∈aclalg(Y, z0). For i ≥ 0, if σ−1(zN−i) ∈aclalg(Y, zN , . . . , zN−i),

then inductively, for all j ≥ 0 we have σ−j(zN−i) ∈aclalg(Y, σ−j(zN ), . . . , σ−j(zN−i)) ⊆

aclalg(Y, zN , . . . , zN−i). Again, since dimalg(x0z0/y) ≤ n there must be some i1 ≤ n−1

such that zN−i1−1 = σ−1(zN−i1) ∈aclalg(Y, zN , . . . , zN−i1). Now x0 = σi1−(1+N)(zN−i1),

and so x0 ∈ aclalg(Y, zN , . . . , zN−i1) ⊆aclalg(Y, z0). End of proof of claim

Since V is defined over Y , we deduce that x0 and z0 each have transcendence degree

d over Y , and x0z0 ∈ V \Zeroes(f). Also, it follows from the claim that π1 and π2 are

generically finite fibre projections, and furthermore,

dimalg(π1(V \Zeroes(f))) = dimalg(π2(V \Zeroes(f))) = d

Since V (x′z) is irreducible and defined over Y , we deduce that both π1(V \Zeroes(f))

and π2(V \Zeroes(f))) are also irreducible and defined over Y . It follows that (i) x0

is generic in π1(V \Zeroes(f)) over Y , and (ii) z0 is generic in π2(V \Zeroes(f)) over

Y . From (i) it follows that σ(x0) = z0 is generic in σ(π1(V \Zeroes(f))) over σ(Y ) =

Y . So z0 is generic in two irreducible varieties defined over Y : π2(V \Zeroes(f)) and

σ(π1(V \Zeroes(f))). We deduce π2(V \Zeroes(f)) = σ(π1(V \Zeroes(f))). �
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PROPOSITION 2.3.11 Let θ(x, y) be a ∅-definable family of σ-closed sets of σ-

degree n. There exists r ∈ N and a finite set {(Bj(w, v), fj(w, v)) : 1 ≤ j ≤ r} of

0-definable families of algebraic sets Bj(w, v) and polynomials fj(w, v) with the follow-

ing properties:

For some k ∈ N there is a tuple of tuples v = (v1, v2, . . . , v2k+1) , where each vi is a tuple

of the same length as y. For any ω1-saturated model (K,σ) |= ACFA and y0 ∈ P (θ(K))

let v0 = (σ−k(y0), σ1−k(y0), . . . , σk(y0)). Then there is a subset J ⊆ {1, 2, . . . , r} such

that the following hold:

1. 4n(θ)(w, y0) ⊆
⋃
j∈J Bj(w, v0) ⊆ shiftn(θ)(w, y0);

2. For each j ∈ J , dimalg(Bj(w, v0)) = dimalg(Bj(w, v0)\Zeroes(fj(w, v0))).

3. For each j ∈ J , Bj(w, v0) contains a generic point over aclσ(y0) of the form x0z0

where z0 = σ(x0);

4. For each j ∈ J , π2 is a quasi-finite projection on Bj(w, v0)\Zeroes((fj(w, v0)).

5. There is a j ∈ J such that dimalg(Bj(w, v0)) = n.

PROOF Let C := C(y) := {σi(y) : i ∈ Z}. Consider the list Lalg of algebraic sets in

variable w and parameters in C:

Lalg = {C − parameterised algebraic sets in variables w}

and the list Lpoly of polynomials in variable w and parameters in C:

Lpoly = {C − parameterised polynomials in variables w}

Let (B, f) ∈ Lalg × Lpoly. We define BAD(B,f)(w, y) by

BAD(B,f)(w, y) := P (θ)(y) ∧ 4n(θ)(w, y) ∧ (Θ(B,f)(w, y) ⇒ Ψ(B,f)(w, y))

where

Θ(B,f)(w, y) := v = (σ−k(y), σ1−k(y), . . . , σk(y)) ∧

B(w, v) ∧ (∀t)[B(t, v) ⇒ shiftn(θ)(t, y)] ∧

(∀s)(s ∈ π2(B(w, v)\Zeroes(f(w, v)))⇒ dimalg(π−1
2 (s)) = 0) ∧
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dimalg(B(w, v)\Zeroes(f(w, v))) = dimalg(B(w, v))

Ψ(B,f)(w, y) := v = (σ−k(y), σ1−k(y), . . . , σk(y)) ∧

dimalg(B(w, v) ∩4n(θ)(w, y)) < dimalg(B(w, v))

Here, the dimalg notation is from 2.3.2. Notice that BAD(B,f)(w, y) is definable in the

language of difference rings by Corollary 2.3.9.

Now consider the collection of formulae D(w, y) = {BAD(B,f)(w, y) : (B, f) ∈ Lalg ×

Lpoly}. We shall suppose D is a consistent collection of formulae, derive a contradic-

tion, and then apply compactness to deduce parts 1 to 4 of the lemma.

If D is a consistent set of formulae, then extend D to a type p(w, y), and choose

(w0, y0) ∈ K such that (K,σ) |= p(w0, y0). Let C0 = {σi(y0) : i ∈ Z} and let

Y0 = aclσ(y0). Let L0 be the locus of w0/Y0, and let B0 be the C0-definable algebraic set

which is the union of the conjugate varieties of L0 over C0. Since shiftn(θ)(w, y0) may

be considered as an algebraic set defined over C0, it follows that B0 ⊆ shiftn(θ). Since

w0 is generic in B0 over Y0, we deduce that dimalg(B0 ∩ 4n(θ)(w, y0)) = dimalg(B0).

Let w = xz. From Lemma 2.3.10, the projections π1 and π2 on L0(xz) are of generically

finite fibre. Thus the projections π1 and π2 on B0(xz) are also of generically finite fibre.

Since π2 is generically finite, consider S = π−1
2 ({z ∈ π2(B0) : dimalg(π−1

2 (z)) > 0}).

Then S̄ ⊆ B0, has dimalg(S̄) <dimalg(B0), and is defined over C0. So there is poly-

nomial f , with Zeroes(f) of codimension 1 in B0, with f defined over C0, and such

that S̄ ⊆Zeroes(f) ∩ B0. This shows that (K,σ) 6|= BAD(B0,f)(w0, y0), and this is a

contradiction.

Thus we may deduce

[ P (θ)(y) ∧ 4n(θ)(w, y) ∧
∧

(B,f)∈Lalg×Lpoly

(Θ(B,f)(w, y)⇒ Ψ(B,f)(w, y)) ] ` ⊥ (2.22)

Applying compactness to 2.22 and manipulating the resulting formula using elementary

logic, we obtain:
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For some r ∈ N [ P (θ)(y) ∧ 4n(θ)(w, y) ∧
r∧
j=1

(Θ(Bj ,fj)(w, y)⇒ Ψ(Bj ,fj)(w, y)) ] ` ⊥

` [P (θ)(y) ∧ 4n(θ)(w, y)] ⇒ ¬[
r∧
j=1

(Θ(Bj ,fj)(w, y)⇒ Ψ(Bj ,fj)(w, y))]

` [P (θ)(y) ∧ 4n(θ)(w, y)] ⇒
r∨
j=1

¬(Θ(Bj ,fj)(w, y)⇒ Ψ(Bj ,fj)(w, y))

` ∀yw([P (θ)(y) ∧ 4n(θ)(w, y)] ⇒
r∨
j=1

Θ(Bj ,fj)(w, y) ∧ ¬(Ψ(Bj ,fj)(w, y)))

Parts 1-4 in the statement of the proposition are exactly the last formula written in

Ldiff . Now by Lemma 2.3.8, there is w0 ∈ 4n(θ)(K, y0) such that tr.deg(w0/Y )=n.

So it follows that some Bj(w, v0) has algebraic dimension at least n, and has a generic

point in 4n(θ)(K, y0). But by Lemma 2.3.8, n = maxw∈4n(θ)(K,y0)(tr.deg(w/Y )). So

dimalg(Bj(w, v0)) = n. �

LEMMA 2.3.12 Suppose (K,σ) |= ACFA, y0 ∈ P (θn)(K) and Bj = Bj(w, v0),

1 ≤ j ≤ r, are as in Proposition 2.3.11. Let Vj1 ⊆ Bj1 and Vj2 ⊆ Bj2 be two differ-

ent irreducible varieties, each of dimension ≤ n, and each with a generic point over

aclσ(y0) of the form (x, σ(x)). Let 4V = {xz : xz ∈ Vj1 ∩ Vj2 ∧ z = σ(x)}. Then

degσ(4V ) < n.

PROOF Let Y = aclσ(y0). Suppose degσ(4V ) ≥ n. Then we may pick w0 ∈

4V such that degσ(w0/Y ) ≥ n. But w0 ∈ 4n(θ)(K, y0), and thus by Lemma 2.3.8,

dimalg(w0/Y ) = n. But w0 ∈ Vj1 ∩ Vj2 and since Vj1 and Vj2 are irreducible, not equal

and of dimension ≤ n, dimalg(Vj1 ∩ Vj2) < n. This contradiction proves the lemma. �

PROPOSITION 2.3.13 Let θ(x, y) be a family of σ-closed sets of σ-degree n. Sup-

pose that {Bj(w, v), fj(w, v) : 1 ≤ j ≤ r} is as in 2.3.11. Suppose that (K,σ) |=

ACFA is ω1-saturated and that y0 ∈ P (θn)(K). Let the triple of natural numbers

(ncomp, ndeg, nins)(y0) denote the following:

In the collection of irreducible components of the algebraic sets Bj(w, v0) (1 ≤ j ≤ r)

there are exactly ncomp distinct components with the following property: if we label
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one as V , then V \Zeroes(fj(w, v0)) has dimension n with a generic point of the form

(x, σx), and on V \Zeroes(fj(w, v0)) the projection π1 is of degree ndeg and π2 is a

quasi-finite projection of inseparable degree nins.

Over all ω1-saturated models (K,σ) |= ACFA and y0 ∈ P (θn)(K), there is a finite set

of different triples (ncomp, ndeg, nins)(y0). Every θ(x, y0) has a non-empty collection of

triples. θn(x, y) can be uniformly stratified according to the collection of triples of a

member θ(x, y0).

PROOF Let (K,σ) be an ω1-saturated model of ACFA and let y0 ∈ P (θn(K)). By

Proposition 2.3.11 there is a j with 1 ≤ j ≤ r such that Bj(xz, v0) has an irreducible

component V (xz) of dimension n, and V (xz) has a generic point over aclσ(y0) of the

form z0 = σ(x0).

SinceBj(xz, v0)\Zeroes(fj(w, v0)) has π2 quasi-finite, then so too does V (xz)\Zeroes(fj(w, v0))

. Furthermore, by Lemma 2.3.10 both projections π1 and π2 on V are generically of

finite fibre. Thus the collection of triples for θ(xz, y0) is non-empty.

Let V (xz, v) be any family of absolutely irreducible algebraic sets. Then the set

Sgeneric := {v : dimalg(V (xz, v)) = dimalg(V (xz, v)∩4n(θ)(xz, v))} is uniformly defin-

able as a corollary of Corollary 2.3.9. Each member of Sgeneric has a generic point of the

form z = σ(x), so we may apply Lemma 2.3.10. Suppose now the projections π1 and π2

on any member V (xz, v0) of a family V (xz, v) are of generically finite fibre. By Lemma

2.2.11, V (xz, v) can be uniformly stratified by the degree of π1 or by the inseparable

degree of π2. By 2.2.2, V (xz, v) may be simultaneously, uniformly stratified according

to all these properties. The last statement of the lemma then follows from 2.2.14 Part 2.

Finally, since all the stratifications used stratify families into finitely many sub-families,

there can only be finitely many triples. �

We now prove the main Theorem 2.1.1 for families of σ-closed sets. It will make strong

use of Theorems 2.1.2 and 2.1.3:
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THEOREM 2.3.14 Let θ be a ∅-definable family of σ-closed sets. Then θn(x, y) can

be partitioned into finitely many sub-families θn,µi(x, y), (µi ∈ R+), such that the fol-

lowing holds:

There is a constant C ∈ R+ such that for all pairs of the form (F̃p, Frobk) but finitely

many, for any y0 ∈ F̃p

P (θn,µi)(y0) ⇒ | | θ(x, y0) | − µip
kn | ≤ Cpk(n− 1

2
)

Here, we allow p to run over all primes and k to run over the natural numbers.

Proof We begin by defining the sub-families θn,µi(x, y) = θn(x, y) ∧ P (θn,µi)(y). Let

N = {(ncompl , ndegl , ninsl) : 1 ≤ l ≤ m} be a collection of triples of natural numbers. By

Lemma 2.3.13, there is a finite set of such collections of triples D = {N1, N2, . . . , Ne},

such that for any ω1-saturated (K,σ) |= ACFA and y0 ∈ P (θn)(K), the collection

of triples associated to θ(x, y0) in the stratification defined in 2.3.13 is Nt, for some

1 ≤ t ≤ e. Thus, by Proposition 2.3.13, θn(x, y) may be stratified into sub-families

θn,Nt(x, y) = θn(x, y) ∧ P (θn,Nt)(y). We define the function µ on finite collections of

triples, and its definition on N = {(ncompl , ndegl , ninsl) : 1 ≤ l ≤ m} is

µ(N) =
m∑
l=1

ncompl ·
ndegl

ninsl

We may define an equivalence relation ≈ on D by Nt ≈ Ns if and only if µ(Ns) = µ(Nt).

Let Dt be the ≈-equivalence class of Nt. For each ≈-equivalence class Dt we define a

sub-family θn,µt by setting µt = µ(Nt) and P (θn,µt)(y) :=
∨
Ns∈Dt P (θn,Ns)(y).

Now we prove the theorem with respect to this choice of sub-families θn,µt(x, y).

Recall Theorem 2.1.3: ACFA is the almost theory of the set of difference fields

S = {(F̃p,Frobk) : p a prime, k ∈ N}. Thus we have the principle that any first-

order formula which holds for all ω1-saturated models of ACFA, holds for all but

finitely many members of S. The reader will notice that Propositions 2.3.11, 2.3.13

and Lemma 2.3.10 proved results for all ω1-saturated models of ACFA, and so we

begin applying this principle to that lemma and those two propositions:
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Let {Bj(w, v), fj(w, v) : 1 ≤ j ≤ r} be as in 2.3.11. We deduce that for all (K,σ) ∈

S\Eθ, where Eθ is a finite collection of exceptional difference fields depending only on

θ, the following hold:

1. P (θn)(K) is stratified into the sub-families P (θn,Nt)(K). Also, P (θn)(K) is strat-

ified into the sub-families P (θn,µt)(K).

2. Suppose now y0 ∈ P (θn,µi)(K). Then there is t ∈ {1, 2, . . . , e} such that y0 ∈

P (θn,Nt)(K), and µ(Nt) = µi. Without loss of generality we shall write Nt = N =

{(ncompl , ndegl , ninsl) : 1 ≤ l ≤ m} and µi = µ. Let v0 = (σ−k(y0), σ1−k(y0), . . . , σk(y0)),

where this k is as in Proposition 2.3.11. Then there is a subset J ⊆ {1, 2, . . . , r}

such that

(a) θ(K, y0) is in ∅-definable bijection with 4n(θ)(K, y0).

(b) 4n(θ)(K, y0) ⊆
⋃
j∈J Bj(K, v0);

(c) For each j ∈ J, Bj(K, v0) ⊆ shiftn(θ)(K, y0);

(d) For each j ∈ J , π2 is a quasi-finite projection onBj(K, v0)\Zeroes(fj(K, v0)),

and π1 is a generically finite fibre projection on Bj(K,V0).

(e) For each j ∈ J , dimalg(Bj(K, v0)\Zeroes(fj(K, v0))) = dimalg(Bj(K, v0)).

3. It follows from Lemma 2.2.14 and an application of Lemma 2.2.4 that there is

a finite set of ∅-definable families of algebraic sets {Wk(w, u) : 1 ≤ k ≤ h}

such that for any algebraically closed field K̃, and j such that 1 ≤ j ≤ r, and

v1 ∈ P (Bj)(K̃), the irreducible components of Bj(w, v1) are all of the form

Wk(w, u1) for some 1 ≤ k ≤ h and u1 ∈ K̃. Also, there is G ∈ N such that

over all K̃ and for any selection of parameters {vj ∈ P (Bj)(K̃) : 1 ≤ j ≤ r},

the total number of irreducible components in the collection of algebraic sets

{Bj(w, vj) : 1 ≤ j ≤ r} is less than G.

Returning to the specific case outlined in Item 2, we deduce (making additional

use of Lemma 2.3.10 and Proposition 2.3.13 ) that there is a finite set of varieties

{Vi(w, ui) : 1 ≤ i ≤ g} such that each Vi(w, ui) is of the form Wk(w, ui) for some

1 ≤ k ≤ h, and ui ∈ K, and
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(a) 4n(θ)(K, y0) ⊆
⋃g
i=1 Vi(K,ui);

(b) For each 1 ≤ i ≤ g, Vi(K,ui) ⊆ shiftn(θ)(K, y0);

(c) For each 1 ≤ i ≤ g, there is a j such that 1 ≤ j ≤ r and π2 is a quasi-

finite projection on Vi(K,ui)\Zeroes(fj(w, v0)), and π1 is a generically fi-

nite fibre projection on Vi(K,ui). Also, dimalg(Vi(K,ui)\Zeroes(fj(w, v0)))

=dimalg(Vi(K,ui)).

(d) For each 1 ≤ i ≤ g, π2(Vi(w, ui)\Zeroes(fj(w, v0))) = σ(π1(Vi(w, ui)\Zeroes(fj(w, v0)))).

This is specifically because of Lemma 2.3.10.

(e) For each 1 ≤ l ≤ m there are exactly ncompl numbers i ∈ {1, 2, . . . , g} such

that dimalg(Vi(w, ui)) = n, Vi(w, ui) has a generic point of the form (x, σ(x)),

and Vi(w, ui) has π1 of degree ndegl and π2 of inseparable degree ninsl . Fur-

thermore, every Vi(w, ui) such that dimalg(Vi(w, ui)) = n is counted exactly

once in this way.

We now need to examine some consequences of Theorem 2.1.2:

Let us work with the families Wk(w, u) (1 ≤ k ≤ h) defined in Item 3. For given k,

we may uniformly define the sub-family of Wk(w, u) where Wk(w, u) is absolutely irre-

ducible, both π1 and π2 are generically finite fibre projections, and by Lemma 2.2.11

we may stratify the resulting sub-family by pairs (deg, ins), where deg is the degree of

π1 and ins the inseparable degree of π2. Repeating this procedure for each 1 ≤ k ≤ h,

we obtain a finite set of such pairs (deg, ins). For each such pair we may consider the

ratio deg
ins . Let µlow be the minimum such ratio and µhigh the maximum such ratio.

Let us apply Hrushovski’s correspondence estimates to a family Wk(w, u). Consider

an arbitrary (F̃p,Frobγ) ∈ S and q = pγ . Suppose u1 ∈ F̃p. Suppose that f is

a polynomial such that dimalg(Wk(w, u1)\f) = dimalg(Wk(w, u1)), and Wk(w, u1) is

irreducible of dimension d with π1 of generically finite fibre and degree δ, and π2 quasi-

finite of inseparable degree δ′ on Wk(w, u1)\Zeroes(f). We define 4q(Wk\Zeroes(f)) =

{xz ∈Wk\Zeroes(f) : z = xq}. Then by 2.1.2 there is a constant Ck ∈ R+ such that:

||4q(Wk\Zeroes(f))(F̃p)| −
δ

δ′
qd| ≤ Ckqd−1/2 (2.23)
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We may also deduce a cruder estimate; we express this for Vi\Zeroes(fj) where fj is as

in 3c above, and Vi is of the form Wk(w, u1) as above:

µlowq
d − Ckqd−

1
2 ≤ |4q(Vi\Zeroes(fj))| ≤ µhighq

d + Ckq
d− 1

2 (2.24)

Inductive Proof of the theorem

The inductive hypothesis, which is on n ∈ N, is:

Suppose that ϕ(w, v) is a 0-definable family of σ-closed sets such that if (K,σ) is any

ω1-saturated model of ACFA and v1 ∈ P (ϕ)(K), then degσ(ϕ(w, v1)) < n. Then the

conclusion of the theorem is true for the family ϕ(w, v).

We begin by applying the inductive hypothesis to get a rough estimate of cardinality

for sets of σ-degree less than n. Suppose that ϕ(w, v) is a 0-definable family of σ-closed

sets. Suppose that if (K,σ) is any ω1-saturated model of ACFA and v1 ∈ P (ϕ)(K),

then degσ(ϕ(w, v1)) < n. Then there is mϕ ∈ R+ such that for all (F̃p,Frobγ) ∈ S and

v2 ∈ P (ϕ)(F̃p),

|ϕ(F̃p, v2)| ≤ mϕq
n−1 (where q = pγ) (2.25)

Consider the family ϕint,k1,k2 = Wk1(w, uk1)∩Wk2(w, uk2), where 1 ≤ k1 < k2 ≤ h, and

consider the definable sub-family ϕint,k1,k2,<n of members of σ-degree < n. Then we

may define mint,k1,k2 = mϕint,k1,k2,<n
as we defined mϕ.

Now consider the family ϕopen,k1,j2 = Wk1(w, uk1)∩Zeroes(fj(w, vj2)), where 1 ≤ k1 ≤ h

and 1 ≤ j2 ≤ r, and consider the definable sub-family ϕopen,k1,j2,<n of members of σ-

degree < n. Then we may also define mopen,k1,j2 = mϕopen,k1,j2,<n
as we defined mϕ.

With reference to 2.25, 2.23 and 2.24, we let

T = max( {mint,k1,k2 : 1 ≤ k1 < k2 ≤ h}; {mopen,k1,j2 : 1 ≤ k1 ≤ h, 1 ≤ j2 ≤ r};

µhigh; {Ck : 1 ≤ k ≤ h})
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In the given set-up we estimate θ(K, y0).

Case n = 0: For n = 0 the theorem follows by [8] Section 1.8; the reader can look at

2.1.3 for details.

Case n > 0: Each Vi(w, ui) is irreducible (see Item 3), has π1 generically of finite fibre

and π2 quasi-finite on the open affine subvariety Vi(w, ui)\Zeroes(fj(w, v1)) for some

1 ≤ j ≤ r (see Item 3c). Also, π2 = σ ◦ π1 (see Item 3d).

Thus we may apply Hrushovski’s correspondence estimates 2.1.2 to each Vi(w, ui)\Zeroes(fj(w, v1)),

for 1 ≤ i ≤ g. We now also need to specify (K,σ) = (F̃p,Frobγ) and q = pγ . For ease,

we suppress the parameter ui. We define 4q(Vi) = {xz ∈ Vi : z = xq}. Suppose first

that dimalg(Vi(w, ui)) = d < n. Then by the Hrushovski correspondence estimate 2.24

and the definition of T :

|4q(Vi)(K)| ≤ Tqd (2.26)

For a component Vi of dimension n, and π1 of degree ndegi and π2 of inseparable degree

ninsi we shall need to use the fine estimate 2.23. We begin by writing the obvious

decomposition:

|4q(Vi)(K)| = |4q(Vi\Zeroes(fj))(K)|+ |4q(Vi ∩ Zeroes(fj))(K)| (2.27)

Since, by 3c, dimalg(Vi ∩ Zeroes(fj)(K)) < n, we have

|4q(Vi ∩ Zeroes(fj))(K)| ≤ Tqn−1 (2.28)

and we have by the fine estimate 2.23

||4q(Vi\Zeroes(fj))(K)| − δ

δ′
qn| ≤ Tqn− 1

2 (2.29)

where δ = deg(π1) and δ′ = deg.ins(π2). With reference to Item 3e, let α =
∑m

l=1 ncompl .

There are exactly α of the Vi of dimension n. Amongst those α, there are exactly

ncompl where δ = ndegl and δ′ = ninsl , for each l such that 1 ≤ l ≤ m. Recall that

µ =
∑m

l=1 ncompl ·
ndegl
ninsl

.

By Items 2a, 3a, and 3b, θ(K, y0) is in bijection with ∪gi=14q(Vi)(K). So we have the

following upper-bound estimate for |θ(K, y0)|:
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|θ(K, y0)| ≤ µqn + αTqn−
1
2 + αTqn−1 + (g − α)qn−1 + (g − α)Tqn−

3
2

≤ µqn + αTqn−
1
2 + αTqn−1 + (1 + T )(g − α)qn−

1
2

≤ µqn + (1 + T )gqn−
1
2

≤ µqn + (1 + T )Gqn−
1
2 (2.30)

where G is an in Item 3.

Let us briefly describe the terms visible in the first line of Calculation 2.30. The first

two terms are the asymptotic estimate and upper bound on the error for the contribu-

tions from the α sets Vi\Zeroes(fj) of dimension n. The third term is an upper bound

estimate for the contribution of the α sets Vi∩Zeroes(fj) where each Vi is of dimension

n. The last two terms are the asymptotic estimate and upper bound on the error for

the contributions from the remaining g − α sets Vi.

A lower-bound estimate for |θ(K, y0)| is given by the expression

g∑
i=1

|4q(Vi\Zeroes(fj))(K)| −
∑

1≤i<i∗≤g
|4q(Vi)(K) ∩4q(Vi∗)(K)| (2.31)

But notice that 4q(Vi)(K) ∩ 4q(Vi∗)(K) = 4q(Vi ∩ Vi∗). By Lemma 2.3.12 we may

assume that degσ(4q(Vi ∩ Vi∗) < n. Thus by the inductive hypothesis, and by our

discussion above, we may assume that |4q(Vi ∩ Vi∗)| ≤ mi,i∗q
n−1 ≤ Tqn−1. Thus we

deduce a lower-bound estimate for |θ(K, y0)|:

|θ(K, y0)| ≥ µqn − αTqn−
1
2 −

 g

2

Tqn−1

≥ µqn − gTqn−
1
2 −

 g

2

Tqn−
1
2

≥ µqn − (G+

 G

2

)Tqn−
1
2 (2.32)

Again, let us briefly describe the terms visible in the first line of Calculation 2.32. The

first two terms are the asymptotic estimate and upper negative bound on the error for
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the contributions from the α sets Vi\Zeroes(fj) of dimension n. We then assume (as

we are looking for a lower bound) that the remaining g − α sets Vi make no contribu-

tion, so there is no term accounting for these. However, in the last term we subtract an

upper bound estimate for the contribution of the intersection sets from Expression 2.31.

Thus, let C = max((T + 1)G, (G+

 G

2

)T). We deduce that

| | θ(x, y0) | − µqn | ≤ Cq(n− 1
2

)

Again, these estimates are valid for all (K,σ) = (F̃p,Frobγ) ∈ S\E; the exceptions

E result from transferring from definable stratifications that hold for all ω1-saturated

models of ACFA, to the the class S, where such stratifications hold almost everywhere.

�

2.4 Estimates for all finite σ-degree sets

Theorem 2.3.14 establishes Theorem 2.1.1 for families of finite σ-degree, σ-closed sets.

We need to extend this to all families of finite σ-degree sets. We now prove two lemmas

that we apply here in conjunction with Theorem 2.3.14 in order to deduce Theorem

2.1.1, and in Chapter 2 in Theorem 3.5.8. The first lemma is a relativisation of Lemma

3.5 of [10] in the difference fields setting; similarly, the second is a relativisation of 3.7

of [10], also in the difference fields setting.

DEFINITION 2.4.1 Let C be a class of difference fields. Let T∞(C) be the almost

theory of C. We say that the σ-degree of sets is definable in C, if for every family θ(x, y),

and for each l ∈ N, there is a formula θl(y) ∈ Ldiff such that for any ω1-saturated model

M |= T∞(C), then y0 ∈ θl(M) if and only if degσ(θ(x, y0)) = l.

We now need a more general version of Definition 1.2.7:

DEFINITION 2.4.2 Let C be a class of difference fields. Suppose R(x) ∈ Ldiff is

a formula in one variable, the measuring stick for C. Let E be a class of families of
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Ldiff -sets. Then we say E satisfies Elwes’ definition of asymptotic sets with respect to

R, if

(i) R(M) is finite for each M ∈ C.

(ii) for every E family ϕ(x, y) where length(y) = m, there exists finite D ⊂ {0, ..., N}×

R>0 ∪ {(0, 0)} and a partition {Φ(d,µ) : (d, µ) ∈ D} of {{M} ×Mm : M ∈ C} so that

for (M,a) ∈ Φ(d,µ)

we have

||ϕ(M,a)| − µ|R(M)|
d
N || = o(|R(M)|

d
N )

as |R(M)| −→ ∞.

(iii) Moreover each Φ(d,µ) is definable, that is to say {a ∈ M : (M,a) ∈ Φ(d,µ)} is

uniformly ∅-definable across C.

In the following two lemmas, we assume that a measuring stick formula R(x) is fixed

and so we omit reference to it.

LEMMA 2.4.3 Let C be a class of difference fields such that the σ-degree of sets is

definable in C, and suppose that any family of σ-closed sets of finite σ-degree satisfies

Elwes’ definition for asymptotic classes. Then any family of quantifier-free sets of finite

σ-degree satisfies Elwes’ definition for asymptotic classes.

PROOF We transcribe the proof of Lemma 3.5 of [10] into our context:

Let θ(x, y) be a quantifier-free family of sets of finite σ-degree. By disjunctive normal

form manipulations we see that θ is equivalent to a disjunction
∨

1≤v≤N (fv(x, y) =

0 ∧ gv(x, y) 6= 0), where fv is a formula defining a σ-closed set, and gv is a difference

polynomial. Now let y′ = yr+1, . . . , yr+N . We define the formula

θ′(xy′, y) =
∨

1≤v≤N
[fv(x, y) ∧ gv(x, y)yr+v = 1 ∧

∧
λ 6=v

yr+λ = 0] (2.33)

Now, θ′(xy′, y) is a formula defining a σ-closed set. Also, for fixed family parameter

y, the solutions of θ′(xy′, y) are in definable bijection with the solutions of θ(x, y) via
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the map xy′ 7→ x. Thus θ′(xy′, y) has finite σ-degree. It follows that θ′(xy′, y) satisifes

Elwes’ definition for asymptotic classes, and thus so does θ(x, y). �

LEMMA 2.4.4 Let C be a class of difference fields such that the σ-degree of sets is

definable in C, and suppose that the quantifier-free sets of finite σ-degree satisfy Elwes’

definition for asymptotic classes. Let θ(xt, y) be a quantifier-free family of sets of finite

σ-degree, and suppose that there is an e ∈ N such that for any (x0, y0) ∈ C for some

C ∈ C, the set θ(x0C, y0)} has cardinality less than e. Then ∃t(θ(xt, y)) satisfies Elwes’

definition for asymptotic classes.

PROOF Let (K,σ) ∈ C. Let ϕ(x, y) := ∃t(θ(xt, y)). Define

F := ϕ(K, y) (2.34)

Fj := {x ∈ K : |{t ∈ K : θ(x, t, y)}| = j} (2.35)

G := θ(K, y) (2.36)

So, as in 3.7 of [17], we have the equations:

|F| = |F1|+ |F2|+ . . .+ |Fe| (2.37)

|G| = |F1|+ 2 · |F2|+ . . .+ e · |Fe| (2.38)

To get an estimate of |Fj |, we consider the formula

θj(xt1 . . . tj , y) :=
j∧
i=1

θ(xti, y) ∧
∧
i1 6=i2

ti1 6= ti2 (2.39)

where the ti are new tuples of variables of the same length as t, and ti1 6= ti2 is

the disjunction expressing that some coordinate of ti1 differs from the corresponding

coordinate of ti2 . Let Kj := θj(K, y). Then for each 0 ≤ s ≤ e − j, each x ∈ Fj+s

corresponds to j![( (j+t)!
j!t! ] = (j+t)!

t! points in Kj . Thus we have:

|Kj | = j! · |Fj |+
(j + 1)!

1!
· |Fj+1|+ . . .+

e!
(e− j)!

· |Fe| (2.40)

Using 2.40, we may solve for the |Fj | from the |Kj | to give

|F| = r1 · |K1|+ r2 · |K2|+ . . .+ re · |Ke| (2.41)

for some rationals r1, . . . , re depending only on e. Now the Kj are defined using the

quantifier-free families θj(xt1 . . . tj , y). Since we have assumed θ(xt, y) is a family of
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finite σ-degree sets, it follows by its definition that θj(xt1 . . . tj , y) is also a family of

finite σ-degree sets. Thus, by assumption, the family of sets θj(xt1 . . . tj , y) satisfies

Elwes’ definition for asymptotic classes. Combining this with 2.41, we obtain the

result.�

We now deduce Theorem 2.1.1 from Theorem 2.3.14. Let C = {(F̃p,Frobk) : p a prime, k ∈

N}. Let R(x) := σ(x) = x. Then 2.3.14 implies that C satisfies Elwes’ definition for

asymptotic classes with respect to R(x) for all families of σ-closed sets of finite σ-degree.

Then we may apply 2.4.3 to deduce that C satisfies Elwes’ definition for asymptotic

classes with respect toR(x) for all quantifier-free families of sets of finite σ-degree. Then

Theorem 2.1.1 follows from the elimination form for ACFA (see Expression 2.15) and

Lemma 2.4.4.
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3.1 Chapter Introduction

This chapter presents a family of asymptotic classes of finite difference fields. The

results make strong use of Theorem 2.1.1. In order to to obtain the results it is necessary

to develop the almost theory of finite difference fields equipped with fractional powers

of the Frobenius. The almost theories under consideration are made precise below.

3.2 Notation and Key Definitions

A fractional power of the Frobenius Frob
m
n (m,n positive) should be exactly a solution

to the equation Frob−mσn = id. In the literature of ACFA, and also of Suzuki and Ree

groups, the objects tend to be solutions of Frobmσn = id, (m,n positive). Although

there is no real difference, since our eventual aim in Chapter 4 is to study Suzuki

and Ree groups, our theory follows the latter convention, and strictly is the theory of

fractional powers of the inverse of the Frobenius - but we are slack and ignore the

distinction.

Throughout the chapter we work with a fixed triple m,n, p ∈ N, with p a

prime, (m,n) = 1, m ≥ 1 and n > 1.

If F is a field, and σ an automorphism of F , we shall use the notation Fix(σ) to denote

the subfield of F of fixed points of σ. The identity automorphism is referred to as id.

Algebraically closed fields are again denoted by a tilde: so K̃ is an algebraically closed

field, and if K is a field then K̃ is its algebraic closure. For a field K, we denote by

K ins the purely inseparable closure of K.

For a perfect field K, Gal(K) denotes the automorphisms of K̃ that fix all elements of

K.

The notions of aclalg(·) and aclσ(·) are defined in sections 1.4.1 and 1.4.2 respectively.

For either notion aclalg(A) or aclσ(A), if the structure in which we are closing A is not

clear, we shall denote it by a superscript. So if (M,σ) ⊆ (K,σ) is a difference subfield,
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and A ⊆M , then aclσM (A) denotes the closure in M . Similarly, if (K,σ) is a difference

field, and A ⊆ K then we write Aσ for the smallest difference subfield of (K,σ) which

contains A.

For types, if we wish to specify the language in which we take a specific type as pure

fields we write tpalg, and for difference fields we write tpσ.

We shall make use of ultrafilters and ultraproducts. An appropriate guide to the

conventions we use is in Section 1.2.2.

3.3 Fractional powers of the Frobenius in finite fields

This first section is really an easy application of the hard results of [8] and [13]. All

our lemmas are relative to a fixed characteristic determined by a choice of Frobenius

automorphism; we often omit subscript reference to that characteristic.

3.3.1 Easy observations about finite fields

We begin with some simple observations about finite fields and finite cyclic groups.

Our axiomatisation of the asymptotic theory of fractional powers of the Frobenius

will be composed partly of a relativisation of the theory ACFA. The intuition for

the additional ingredient comes largely from the observations and the lemma of this

section.

The Set-up

• For α ∈ N, Zα shall mean the cyclic group of order α, and we shall always identify

Zα with the numbers 0, 1, . . . , α− 1. So in the sequel, we have the set of abelian

groups Scyclic groups = {Zα : α ∈ N}
⋃

Z.

• All epimorphisms considered, unless explicitly otherwise stated, are either

– maps ϕα : Z � Zα for some α ∈ N, where ϕα is determined by mapping

1 ∈ Z to 1 ∈ Zα, or
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– maps ϕα,β : Zα � Zβ for some α, β ∈ N where β|α and ϕα,β is determined

by mapping 1 ∈ Zα to 1 ∈ Zβ.

So our set-up is tantamount to picking a coherent set of generators and epimor-

phisms for the set of groups Scyclic groups.

• The map ϕα is commonly known as the modulus map or ‘mod ’ map. Let α ∈ N,

and let the prime decomposition of α be α = pj11 · p
j2
2 . . . pjkk . The Kronecker

decomposition of Zα is precisely the map

Kα : Zα 7→
k∏
i=1

Z
p
ji
i

X 7→ (ϕ
α,p

j1
1

(X), ϕ
α,p

j2
2

(X), . . . , ϕ
α,p

jk
k

(X)) (3.1)

Now consider g ∈ Zα, and for each 1 ≤ i ≤ k, let gpi = ϕ
α,p

ji
i

(g). Then of course

Kα : 〈g〉 ∼=
k∏
i=1

〈gpi〉 (3.2)

• We fix notation: for prime q, the Kronecker q-component or just q-component of

Zα will be the Sylow q-subgroup in Zα. We may refer to this as Kα
q .

• The canonical projection from the Kronecker decomposition to the q-component

will be πq, and supposing that the Sylow q-subgroup has order qn, then for h ∈ Zα

we let hq = πq ◦Kα(h) = ϕα,qn . We call hq the q-coordinate of h.

• The Kronecker decomposition commutes with epimorphisms: suppose we have

the prime decomposition α = pj11 · p
j2
2 . . . pjkk , and β|α, so that we have the prime

decomposition β = pl11 · p
l2
2 . . . p

lk
k , with li ≤ ji for 1 ≤ i ≤ k. Then we have the

tuple map

(ϕ
p
j1
1 ,p

l1
1

, ϕ
p
j2
2 ,p

l2
1

, . . . , ϕ
p
jk
k ,p

lk
k

) :
k∏
i=1

Z
p
ji
i

7→
k∏
i=1

Z
p
li
i

(3.3)

The commutation with epimorphisms is summarised by the equation

(ϕ
p
j1
1 ,p

l1
1

, ϕ
p
j2
2 ,p

l2
1

, . . . , ϕ
p
jk
k ,p

lk
k

) ◦Kα = Kβ ◦ ϕα,β (3.4)

We call the tuple map in Expression 3.3 the Kronecker decomposition of ϕα,β.

For q a prime , the ‘q’th component of the Kronecker decomposition of ϕα,β’ will

refer to the member map of the Kronecker decomposition which is the map of

Sylow q-subgroups.
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LEMMA 3.3.1 Let n and m be coprime natural numbers. Let ϕα·β,α : Zα·β 7→ Zα be

an epimorphism of finite cyclic groups. Let h be an element of Zα. Suppose 〈nh+m〉

is a subgroup of Zα of cardinality S. Then there exists g ∈ Zα·β such that ϕα·β,α(g) = h

and 〈ng +m〉 is a subgroup of Zα·β of cardinality S · β.

PROOF We work with the set-up of cyclic groups as described in the set-up section

of 3.3.1, and we assume that for natural numbers d1|d2, epimorphisms ϕd2,d1 are inter-

preted as in that set-up. There is no loss of generality in this. It suffices to let β be a

prime p, and do one step, since it is clear that ϕα·β·γ,α = ϕα·β,α ◦ ϕα·β·γ,α·β. We pick g

by picking its Kronecker coordinates. Using Expression 3.2, we see that to prove the

lemma we must pick g according to the following demands:

Demands on g

1. ϕα·p,α(g) = h

2. For all Kronecker q-components of Zα with p 6= q, |〈ngq +m〉| = |〈nhq +m〉|

3. |〈ngp +m〉| = p · |〈nhp +m〉|.

1′. By the commutation of Kronecker decomposition with epimorphisms (see expression

3.4), demand 1 is equivalent to the statement: for each Kronecker q-component of Zα·p,

suppose the order of q in α·p is N1 and the order of q in α is N2, then ϕqN1 ,qN2 (gq) = hq.

We shall use 1′ instead of 1.

Let us do two cases.

(Case 1: p|α) In this case the Kronecker decomposition of ϕα·p,α is identity on all

Kronecker q-components for p 6= q and is ϕpN+1,pN on the Kronecker p-component,

where N is the order of p in α.

Since ϕα·p,α is identity on all q-components for p 6= q, for these, we may let gq = hq, and

demand 2 is satisfied. Also, demand 1′ is met on all Kronecker q-components with p 6= q.

For the p-component, let 0 ≤ w ≤ N . Notice the following:
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1. The restriction of the map ϕpN+1,pN to the unique pw+1-size subgroup of ZpN+1

is the epimorphism ϕpw+1,pw .

2. From (1) above and by counting, the preimage ϕ−1
pw+1,pw

(Zpw) = Zpw+1 .

3. The other fact we recall is that for an epimorphism of cyclic p-groups where

the image is not the trivial group, the generators of the source are exactly the

preimages of the generators of the image. We omit the proof of this, but it

is straightforward, by counting, and the counting makes use of Euler’s totient

function.

Now begin by ‘guessing’ gp = hp (see the set-up subsection at the beginning of 3.3.1 to

see the specific meaning of this guess). Now, with this guess, ϕpN+1,pN (gp) = hp, and

so demand 1′ is now satisfied on all Kronecker components, and so all we need to do is

ensure demand 3. We have two cases:

If nhp + m is a non-trivial element of ZpN then suppose 〈nhp + m〉 has size pw with

w 6= 0. By (2) above, ϕ−1
pN+1,pN

(〈nhp + m〉) is the unique Zpw+1 subgroup of ZpN+1 .

By (3) and (1) above, any preimage ϕ−1
pN+1,pN

(nhp + m) is a generator for Zpw+1 . But

ngp +m is such a preimage.

If nhp +m is the trivial element of ZpN then our guess may not be good enough. Now

the preimages ϕ−1
pN+1,pN

(hp) are exactly {hp + δpN : 0 ≤ δ < p}. So the preimages are

coded by numbers δ with 0 ≤ δ < p, and since we shall select gp from these preimages

by selecting a value for δ, demand 1′ will be satisfied on all Kronecker components. We

now work in ZpN+1 . We may suppose that for some 0 ≤ ε < p, that nhp + m is the

element εpN of ZpN+1 We have n · (hp + δpN ) +m = (ε+ nδ)pN . If ε 6= 0 then we may

pick δ = 0, and nhp +m generates the unique p size subgroup of ZpN+1 , which is what

we desired. If ε = 0 and (n, p) = 1 we can pick any δ 6= 0 and let gp = hp + δpN . Then

ngp + m generates the unique p-size subgroup of ZpN+1 , which was what we desired.

Otherwise (n, p) = p. But then (n,m) = 1 so (m, p) = 1 and so (nhp + m, p) = 1 and

nhp +m cannot be the trivial element of ZpN .

(Case 2: (α, p) = 1) For q 6= p we must pick gq = hq, and again, demand 2 is satisfied,
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and demand 1′ is satisfied for all Kronecker q-components with p 6= q. For demand 3,

notice that we have that the Kronecker p-component of ϕα·p,α is ϕp,1 : Zp 7→ 1, and

any choice for gp in 0 ≤ gp < p extends hp. So to satisfy demand 3, we require exactly

a gp such that (ngp + m, p) = 1 where 0 ≤ gp < p. Try gp = 0. Either it works, or

(m, p) = p. If (m, p) = p then (n, p) = 1 and (m+ n, p) = 1, so gp = 1 suffices. �

This tells us something quite specific about extensions of fractional powers of the Frobe-

nius. This is because for q a prime power, and l ∈ N, Aut(Fql/Fq) =Gal(Fql/Fq) ∼= Zl.

So let p be a prime and a, j, l ∈ N. Suppose σ is a solution in Aut(Fpa) to the equa-

tion FrobmXn = id. Say Fpa ⊆ Fpaj ⊆ Fpajl is a containment of fields, and suppose

σ′ ∈ Aut(Fpaj ) is an extension of σ. Further suppose that Frobm(σ′)n is a generator

of Gal(Fpaj/Fpa). Now let α = aj and β = l and apply Lemma 3.3.1 to the data:

Zα = Aut(Fpaj ); Zα·β = Aut(Fpajl); h = σ′; and F is the restriction epimorphism of

automorphism groups. The conclusion of the Lemma is the existence of σ′′ ∈ Aut(Fpajl)

such that σ′′ extends σ′ and | 〈Frobm(σ′′)n〉 |= l· | 〈Frobm(σ′)n〉 |. But 〈Frobm(σ′)n〉 =

Gal(Fpaj/Fpa), so we deduce Frobm(σ′′)n is a generator for Gal(Fpajl/Fpa).

We enshrine this conclusion in a definition and lemma:

DEFINITION 3.3.2 Consider an extension of perfect difference fields (F, σ) ⊆ (G, σ′)

with Frobmσn = id. We say the extension is generic over F if Fix(Frobmσ′n) = F .

PROPOSITION 3.3.3 Let p be a prime and a, j, l ∈ N. Consider an extension of

finite difference fields (Fpa , σ) ⊆ (Fpaj , σ′) with Frobmσn = id. Suppose the extension

is generic over Fpa. Then for any finite extension Fpaj ⊆ Fpajl, σ′ has an extension

σ′′ ∈ Aut(Fpajl) which is generic over Fpa. �

Here is an example of the Lemma in action:

EXAMPLE 3.3.4 Consider the field F39 , the automorphism Frob = x 7→ x3 and

the automorphism of F39 , σ = Frob3 = x 7→ x27. Then in F39 , σ is a solution of

Frob3 ◦X5 = id. Consider F39 ⊆ F318 and let us find a generic extension of σ to F318

over F39 . Recall that Aut(F318/F3) ∼= Z18
∼= Z9 × Z2. Thus we have two choices for

the Kronecker 2-coordinate. Keeping σ = Frob3 is picking 2-coordinate 1. But this is

not generic as the fixed field of Frob3 ◦ (Frob3)5 in F318 is F318 . But pick 2-Kronecker
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coordinate 0, and this yields an extension of σ, σ′ = Frob12 = x 7→ x312
. Now in F318 ,

Fix(Frob3 ◦ (Frob12)5) = Fix(Frob63) = Fix(Frob9) = F39 .

3.3.2 Axiomatisation and quantifier elimination results

In this section, unless stated otherwise, we work in Ldiff , the language of rings with

a unary function symbol σ. Let Ldiff,c be the augmentation of Ldiff by distinguished

constants (cij : i ∈ N, 0 ≤ j ≤ i). Similarly, let the language Lrings,c be the language of

rings augmented by constants c. A field K is augmented to an Lrings,c-structure simply

by interpreting the constants c, and is denoted Kc. Recall that distinguished constants

are used in [10] to produce model-complete expansions of pseudo-finite fields. They

will play a similar role in what follows.

Let p be a prime. For V a variety over the field K and σ an automorphism of K, we

shall use the notion of the conjugate variety σ(V ), which is explained in Section 1.4.1.

The following axioms express properties of an Ldiff -structure (K,σ). It will be called

the theory PSF(m,n,p):

(i) K is a pseudo-finite field of characteristic p.

(ii) σ is an automorphism of K with Frobm ◦ σn = id.

(iii) Suppose U = U(x11x21 . . . xn1 . . . x1Nx2N . . . xnN ) is an absolutely irreducible vari-

ety over K and σ(U) = σ(U)(y11y21 . . . yn1 . . . y1Ny2N . . . ynN ). Suppose V ⊆ U ×σ(U)

is an absolutely irreducible variety over K including the equations yij = xi+1j and

yp
m

nj = x1j for i = 1 to n − 1 and j = 1 to N . Suppose V projects generically onto U

and σ(U), and suppose W is a K-algebraic set properly contained in V . Then there is

a point x ∈ V (K)\W (K) such that x = ab where a = (aij : 1 ≤ i ≤ n, 1 ≤ j ≤ N),

b = (bij : 1 ≤ i ≤ n, 1 ≤ j ≤ N), a ∈ U , b ∈ σ(U) and bij = σ(aij) for each i, j.

(iv) Let K ⊆ L ⊆ H be a tower of finite extensions. Suppose (K,σ) ⊆ (L, σ′) is an

extension of difference fields generic over K. Then there is an extension of difference

fields (L, σ′) ⊆ (H,σ′′) with σ′′ generic over K.
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In the language Ldiff,c, let PSF(m,n,p,c) be the theory obtained from the axioms above

with axiom (i) replaced by (i’) saying Kc is a model of the theory of enriched pseudo-

finite fields. Let us describe this enrichment briefly: let Pi(X) be the polynomial

Pi(X) = ci0 +ci1X+ci2X
2 . . .+ciiX

i. The enriched theory of pseudo-finite fields is the

theory of pseudo-finite fields augmented by sentences stating the Pi(X) are irreducible

polynomials. Thus in a containment Kc ⊆ Lc of enriched pseudo-finite fields, it follows

that Lc ∩ K̃c = Kc. This implies Kc ≺ Lc as enriched fields, by the characterisation of

elementary equivalence of pseudo-finite fields (see [6] Theorem 5.12). Thus the theory

of enriched pseudo-finite fields is model-complete. See [10] Section 2, and [6] Section

5 for more details.

LEMMA 3.3.5 The theories PSF(m,n,p) and PSF(m,n,p,c) are first order and consis-

tent. Furthermore, for any (M,σ) |= ACFAp, (Fix(Frobm◦σn)(M), σ|Fix(Frobm◦σn)(M)) |=

PSF(m,n,p).

PROOF It is enough to prove these results for PSF(m,n,p), since a model of PSF(m,n,p,c)

is obtained from a model of PSF(m,n,p) by an appropriate assignment of the constants.

We show that PSF(m,n,p) is first-order. Axioms (i) to (iii) are clearly first-order since

(i) is known and (iii) is just a fragment of ACFA. As to (iv) we can quantify over a

finite extension of K-(see for instance the axiomatisation of a pseudo-finite field in [6]).

So let L be a finite extension of K. Since K is perfect (this is in the axiomatisation

of pseudo-finite fields) we may write L = K(l) where l is a primitive element for L/K.

An automorphism τ of L, such that τ extends σ, is determined exactly by two things:

by the action of σ on K and by the image τ(l). Thus all automorphisms τ , which are

extensions of σ to L, are interpretable. Thus (iv) is first-order too.

Proving the last statement of the lemma also suffices to prove consistency, so pick a

model (M,σ) of ACFAp and look at K = Fix(Frobm ◦ σn). Now I claim (K,σ|K) |=

PSF(m,n,p). Axiom (i) is a basic fact about the theory ACFA- see [8] 1.2 and 1.12.

Axiom (ii) is clear. Axiom (iii) is just a fragment of the theory ACFA satisfied by

(K,σ|K).
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Now for axiom (iv): the elementary equivalence theorem for ACFA (one of the main

theorems of [13], and presented in this thesis as Theorem 2.1.3) states that ACFAp

is the theory of all non-principal ultraproducts of all difference fields of the form

(F̃p,Frobk) where k ∈ N. Thus, we suppose

(M,σ) ≡
∏
i∈N

(F̃p,Frobti)/ ∼U

for some choice of U , and ti.

Notice that for any characteristic p difference field (K1, σ1) the formula Frobmσn(x) = x

defines the underlying set of a difference subfield, which we denote by (K1)m,n. If

(K1, σ1) and (K2, σ2) are elementarily equivalent difference fields, then it follows that

the difference subfields (K1)m,n and (K2)m,n are elementarily equivalent too. It follows

that

(K,σ|K) ≡
∏
i∈N

(Fpnti+m ,Frobti)/ ∼U

By Los’s Theorem, an extension (K,σ) ⊆ (L, σ′), with [L : N ] = j <∞, satisfies

(L, σ′) ≡
∏
i∈N

(Fp(nti+m)j ,Frobsi)/ ∼U ,

for some collection si where 0 ≤ si ≤ (nti + m)j − 1, and si = ti mod (nti + m).

Similarly, if L ⊆ H and [H : L] = l <∞, then

H ≡
∏
i∈N

(Fp(nti+m)jl)/ ∼U ,

Since axiom (iv) is first-order, Los’s Theorem implies that there is σ′′, an extension

of σ′ on H which is generic over K, if and only if there are extensions of Frobsi on

Fp(nti+m)jl which are generic over Fpnti+m on ‘ultrafilter-many’ components i (see section

1.2.2 for an explanation of this term). This is so by 3.3.3. �

LEMMA 3.3.6 Let (K,σ) |= PSF(m,n,p). Then there is an automorphism τ of K̃

such that τ |K = σ and Fix(Frobm ◦ τn) = K.

PROOF Clear by axiom scheme (iv).
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THEOREM 3.3.7 (a) Every Ldiff,c-model (Kc, σ) of axioms (i’), (ii) and (iv) embeds

in a model of PSF(m,n,p,c). Considered as an embedding of the reduct enriched pseudo-

finite fields, the embedding is elementary.

(b) PSF(m,n,p,c) is model-complete.

PROOF (a) Since (K,σ) models axiom scheme (iv), there is an extension of difference

fields (K,σ) ⊆ (K̃, σ+) with Fix(Frobm(σ+)n) = K. Now ACFA is the model com-

panion of difference fields so (K̃, σ+) embeds in (M, τ) |= ACFA. Look at Fix(Frobm ◦

τn)(M). Observe firstly that K is algebraically closed inside Fix(Frobm ◦ τn)(M) (see

Section 1.4.1 for an explanation), and secondly, that if E and F are two pseudo-finite

fields with a common subfield K then E ≡K F ⇔ E ∩ K̃ ∼= F ∩ K̃. (The reader may

find a detailed proof of this in section 5 of [6].) Thus K ≺ Fix(Frobm ◦ τn)(M), and

this shows that Kc ≺ Fix(Frobm ◦ τn)c(M). This was what was required.

(b) Now we apply the Robinson test: ‘If T is a consistent theory in a language L,

then T is model complete if and only if for any pair of models U,B |= T with U ⊆ B,

then every existential sentence in L(U) which holds in B also holds in U ’ (see [5] pp.

187). An existential sentence is a sentence ∃(x1, x2, . . . , xr)θ(x1, x2, . . . , xr) where θ is

quantifier-free.

Let (K,σ, c) |= PSF(m,n,p,c). Let ψ(x̄) be a quantifier-free formula with parameters

in K, in variables x̄ = (x1, . . . , xr−1), and which has a solution ā0 = (a1, . . . , ar−1) in

some (L, σ′, c) |= PSF(m,n,p,c), such that (Kc, σ) ⊆ (Lc, σ′). It suffices to assume that

for some k, s ∈ N, ψ(x̄) is of the form

f1(x̄, σ(x̄), . . . , σk(x̄)) = f2(x̄, σ(x̄), . . . , σk(x̄)) = . . . = fs(x̄, σ(x̄), . . . , σk(x̄)) = 0

∧ g(x̄, σ(x̄), . . . , σk(x̄)) 6= 0

where the fi’s and g are polynomials with coefficients in K. We may ‘hyperbolise’:

that is, let xr be a new variable, let x̄′ = (x1, x2, . . . , xr), so that x̄ is the sub-tuple of

x̄′ of its first r − 1 elements, and consider the formula ψ′(x̄′):

ψ′(x̄′) =def f1(x̄, σ(x̄), . . . , σk(x̄)) = f2(x̄, σ(x̄), . . . , σk(x̄)) = . . . = fs(x̄, σ(x̄), . . . , σk(x̄)) = 0

∧ xr · g(x̄, σ(x̄), . . . , σk(x̄))− 1 = 0
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Notice that ā = (ā0,
1

g(ā0,σ(ā0),...,σk(ā0))
) is a solution to ψ′. Also notice that the sub-

tuple of the first r − 1 elements of a solution to ψ′ is always a solution to ψ. So it

suffices to find a tuple b̄ of elements from K such that ψ′(b̄) holds.

We use axiom scheme (iii). For a matrix Mat of elements of a difference field (K,σ),

let σ(Mat) be the matrix obtained by applying σ component-wise. Relabel x̄′ as

x̄. Let Mat0(x̄) be an n × r matrix with Mat0(x̄)ij = σi(xj) where 0 ≤ i ≤ n −

1 and 1 ≤ j ≤ r. Let Matq(x̄) = σq(Mat0(x̄)) for 0 ≤ q ≤ k, and finally, let

Mat(x̄) = Mat0(x̄)Mat1(x̄) . . .Matk(x̄) be the matrix obtained by right juxtaposition

of the Matq(x̄).

So suppose that ā ∈ L and ψ′(ā) holds in the extension (L, σ′, c). Then consider the

algebraic-geometric locus: V= locus(Mat(ā)σ(Mat(ā))/K̃). Then V has dominant pro-

jections into each of U = locus(Mat(ā)/K̃) and σ(U). Clearly V ⊆ U × σ(U). It also

satisfies the equational constraints of axiom (iii).

Also I claim that both V and U are definable over K. To show this, first recall a fact

about algebraically closed fields: Let C ⊆ L̃. Then tpalg(Mat(ā)σ(Mat(ā))/(acl(C) ∩

dcl(C,Mat(ā)σ(Mat(ā))))) is stationary (see, for instance, Section 1, and Proposition

1.1 in particular, of [15]). So let C = K; we write acl(K) as K̃. Since K is alge-

braically closed in L, we have K̃ ∩ dcl(K,Mat(ā)σ(Mat(ā))) ⊆ K̃ ∩ L = K, and so

tp(Mat(ā)σ(Mat(ā))/K is stationary, and so V is definable over K. Similarly, so too

are U and σ(U). We can now apply axiom scheme (iii): there is a tuple b̄ ∈ K such

that Mat(b̄)σ(Mat(b̄)) ∈ V . However the construction of Mat(b̄) was a typical corre-

spondence coding of a σ-closed set, similar to the constructions of 2.3.1. Similar to

Lemma 2.3.7, there is a bijection between the points xσ(x) ∈ V (K) and the points of

ψ′(K). Chasing through the construction of Mat(b̄), the reader can verify that ψ′(b̄)

holds. �

LEMMA 3.3.8 Let T0 be the Ldiff-theory of a field of characteristic p with auto-

morphism σ satisfying Frobm ◦ σn = id. Every model of T0 embeds into a model of

PSF(m,n,p).
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PROOF Let (M0, σ0) |= T0. Then (M0, σ0) embeds into some (M, τ) |= ACFA,

because ACFA is the model companion of difference fields. Now this shows that M0

embeds into Fix(Frobm ◦ τn)(M). In Lemma 3.3.5 it is shown that (Fix(Frobm ◦

τn)(M), τ |Fix(Frobm◦τn)(M)) |= PSF(m,n,p). �

We needed the following lemma. We have been informed subsequently that it is Theo-

rem 7 of [3].

LEMMA 3.3.9 Let K ⊆ L be such that L is pseudo-finite and L ∩ K̃ = K. Then K

has at most one finite extension of each degree.

PROOF FirstlyK must be perfect by the assumption thatK is relatively algebraically

closed in L. So suppose K has two extensions of degree r, witnessed by primitive

elements α1 and α2. Let their minimal polynomials over K be denoted Mαi . Since

their compositum is a finite separable extension of K, it is primitively generated by an

element α whose minimal polynomial over K is denoted by Mα. Now fix i for i = 1

or i = 2. If [L(αi) : L] < r, then Mαi factorises partially over the field L. Suppose

P ∈ L[X] and P is a non-trivial factor of Mαi . The coefficients of P are rational

functions of the roots of Mαi and at least one of these must live in L\K. But then

L ∩ K̃ 6= K. The same argument applies to [L(α) : L]. So

(∗) [L(α) : L] = [K(α) : K] > [K(αi) : K] = [L(αi) : L] = r

Now by the uniqueness of degree-r extensions for pseudo-finite fields L(α1) = L(α2).

So L(α) = L(αi) and this contradicts (*). �

THEOREM 3.3.10 Let (F, σ) and (E, τ) both be models of PSF(m,n,p) containing a

common substructure K- i.e. σ|K = τ |K . Then (F, σ) ≡K (E, τ)⇔ (F∩K̃, σ|F∩K̃) ∼=K

(E ∩ K̃, τ |E∩K̃).

PROOF For the left to right we use results on pseudo-finite fields. We assume satu-

rated models exist and take saturated elementary extensions (F, σ,K) ≺ (M,µ,K) and

(E, τ,K) ≺ (N, ν,K). By (F, σ,K), we mean the difference field (F, σ) with constants

for the subfield K; similarly, by (F,K) we mean the field F with constants for the

subfield K. We may suppose there is an isomorphism i : (M,µ,K) ∼= (N, ν,K). But
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(F, σ,K) ≺ (M,µ,K) means that for (F,K) we have (F,K) ≺ (M,K). So by the

version of our Theorem for pseudo-finite fields (see [7] 5.12), M ∩ K̃=F ∩ K̃. Similarly

N ∩ K̃=E ∩ K̃. So i gives us the necessary isomorphism.

Now the other direction. It is harmless to relabel K as the intersection E ∩ K̃, and

using an isomorphism we may assume that K is algebraically closed in both E and F ,

and that τ |K = σ|K .

Claim: There are difference fields (F̃ , σ̃) and (Ẽ, τ̃) such that F̃ and Ẽ are the

algebraic closures of F and E respectively, (F, σ) ⊆ (F̃ , σ̃) and (E, τ) ⊆ (Ẽ, τ̃), and

(i) τ̃ |K̃ = σ̃|K̃

(ii) Fix(Frobmσ̃n) = F and Fix(Frobmτ̃n) = E

Proof of right to left direction of lemma assuming claim: Embed (Ẽ, τ̃) ⊆

(A, τ̃ ′) where the latter is a model of ACFA. Similarly embed (F̃ , σ̃) ⊆ (B, σ̃′) where

the latter is a model of ACFA. Notice that by [8] Theorem 1.3 (A, τ̃ ′) ≡K̃ (B, σ̃′).

So, in particular, we have for the reducts

(Fix(Frobm(τ̃ ′)n), τ̃ ′|Fix(Frobm(τ̃ ′)n)) ≡K (Fix(Frobm(σ̃′)n), σ̃′|Fix(Frobm(σ̃′)n))

and by Lemma 3.3.5

(Fix(Frobm(τ̃ ′)n), τ̃ ′|Fix(Frobm(τ̃ ′)n)) |= PSF(m,n,p)

(Fix(Frobm(σ̃′)n), σ̃′|Fix(Frobm(σ̃′)n)) |= PSF(m,n,p)

By the claim, F is algebraically closed in Fix(Frobm(σ̃′)n), and E is algebraically closed

in Fix(Frobm(τ̃ ′)n). Thus by Theorem 3.3.7 (b)

(F, σ) ≺ (Fix(Frobm(σ̃′)n), σ̃′|Fix(Frobm(σ̃′)n))

(E, τ) ≺ (Fix(Frobm(τ̃ ′)n), τ̃ ′|Fix(Frobm(τ̃ ′)n))

and so we have the chain

(F, σ) ≡K (Fix(Frobm(σ̃′)n), σ̃′|Fix(Frobm(σ̃′)n)) ≡K (Fix(Frobm(τ̃ ′)n), τ̃ ′|Fix(Frobm(τ̃ ′)n)) ≡K (E, τ)
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End of proof of right to left direction assuming claim

Proof of claim: Let H = Gal(F ) × Gal(E). Thus H is naturally a compact topo-

logical group. Pick σ1 ∈ Aut(F̃ ) such that σ1|F = σ, and τ1 ∈ Aut(Ẽ) such that

τ1|E = τ . Then J = {(x, y) ∈ Aut(F̃ ) × Aut(Ẽ): x extends σ and y extends

τ}= σ1Gal(F ) × τ1Gal(E), and this choice of representatives σ1 and τ1 identifies a

structure of a compact topological space on J induced from the topology of H.

For a pseudo-finite field P we denote by Pr its unique degree-r extension.

Now let

Sr = {(x, y) ∈ J : Fix(Frobm(x|Fr)n) = F and Fix(Frobm(y|Er)n) = E and x|K̃∩Fr = y|K̃∩Er}

To conclude the proof of the claim it suffices to show that for any r ∈ N, Sr is closed

and non-empty. Let us demonstrate this: since for any i ∈ N, we have ∅ 6= Sr1·r2...·ri−1·ri

and since Sr1·r2...·ri−1·ri ⊆ Sr1 ∩Sr2 . . .∩Sri−1 ∩Sri , so the collection of sets {Si : i ∈ N}

has the finite intersection property. By compactness,
⋂
i∈N Si is non-empty. Thus we

are reduced to the following subclaim:

Subclaim: For any r ∈ N, Sr is closed and non-empty.

Proof that any Sr is closed: Any set Sr is closed in J because it is a finite union

of sets of the form σ1Y × τ1X where Y is a coset of Gal(Fr) in Gal(F ) and X is a coset

of Gal(Er) in Gal(E).

Proof that any Sr is not empty: This is more complicated. Principally, we use

axiom scheme (iv): using that axiom scheme, pick some x extending σ on Fr with

Fix(Frobm(x)n) = F . We shall restrict x to Fr ∩ K̃ and then try to lift the restriction

to some y ∈Aut(Ẽ) so that (x, y) ∈ Sr.

To begin, let Kr′ = K̃ ∩ Fr and x′ = x|Kr′ where r′ = [Kr′ : K]. Then notice r′ ≤ r. If

not, then there is some h ∈ Fr which generates a finite extension of K of finite degree r∗
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with r∗ > r. But then let us make a similar argument to that in 3.3.9: let mh ∈ K[X]

be the minimal polynomial for h over K. Since mh must partially factorise over F , say

with factor m∗h, then m∗h ∈ F [X]∩(K̃[X]\K[X]) = ∅, since K is relatively algebraically

closed in F . This contradiction proves r′ ≤ r. Also, since K is algebraically closed in

E, a similar argument shows that Er′ = EKr′ .

Now let us show that x′ extends to x′′ ∈ Aut(Er′) with (a) x′′|E = τ and (b)

Fix(Frobm(x′′)n) = E.

For (a), Er′ = E(a) for some a ∈ Kr′ . Let Ma be a minimal polynomial for a/E. We

assume Ma ∈ K[X]. Denote by τ(Ma) the polynomial obtained by applying τ to the

coefficients of Ma. The automorphisms of Er′ extending τ are exactly those obtained by

picking any rootR of τ(Ma) and mapping a toR: on the one hand, clearly it is necessary

that under any automorphism extending τ , that a be mapped to a root of τ(Ma). On

the other hand, let R be a root of τ(Ma). Then τ(Ma) must be irreducible over E and

by the uniqueness of r′-degree extensions result (3.3.9) it follows that R ∈ K(a). Let

E[X] be the polynomial ring in one variable. So τ extends to an automorphism of E[X],

and we have, for any α ∈ Ẽ, the homomorphism fα : E[X] 7→ E[α], where fα(X) = α,

and f |E =id. So, consider the map fR ◦ τ : E[X] 7→ Er′ . The kernel of the map is

〈Ma〉, and so there is an isomorphism g1 : E[X]/〈Ma〉 ∼= Er′ , where g1(X+〈Ma〉) = R,

and g1|E = τ . Now fa induces an isomorphism g2 : E[X]/〈Ma〉 ∼= Er′ with g2|E the

identity and g2(X + 〈Ma〉) = a. The unique automorphism of Er′ extending τ and

mapping a to R is then g1g
−1
2 . Let us apply this: since σ|K = τ |K we may find an

automorphism x′′ of Er′ such that x′′(a) := x′(a). Then x′′ satisfies (a).

For (b), by 3.3.9, Kr′/K is a normal extension. It is also finite and since K is perfect,

it is separable; so it is Galois. Also, we quote the following lemma which is proved in

[6] pp.34: ‘Suppose G is a finite group, and suppose that for any m|order(G), that G

has at most one subgroup of order m. Then G is cyclic.’ By this lemma, and by the

Galois correspondence, Gal(Er′/E) and Gal(Kr′/K) are both cyclic groups of order

r′. Again, by the elementary Galois correspondence, the subfield lattices for the ex-

tensions Er′/E and Kr′/K are identical, so that every subfield E′ with E ⊆ E′ ⊆ Er′ ,
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has the form E′ = EK ′ where K ⊆ K ′ ⊆ Kr′ . So if x′′ does not satisfy (b), then let

E′ = Fix(Frobm(x′′)n). Then E′ = EK ′ and K ′ 6= K. But on K ′, x′′ = x′, and that

contradicts our choice of x′.

Now we must lift x′′ to some y on Er so that the Fix(Frobmyn) = E. This is a direct

application of axiom scheme (iv). Note that x′′ is an automorphism of Er′ generic over

E. So by axiom scheme (iv) there is y ∈ Aut(Er) extending x′′ such that y is generic

over E. So Sr is not empty.

End of proof of Subclaim and proof of Claim �

3.3.3 Deducing an Elimination Form

Having proved Theorem 3.3.10 we show that, as in pseudo-finite fields, we can deduce

an almost ∃1 form for formulas: we show that, analogously to pseudo-finite fields, every

definable set θ(x̄) is a boolean combination of projections of σ-closed sets in variables

x̄, y, where y is a single variable. This places our theory in the middle of pseudo-finite

fields and ACFA.

In this section, we shall present general logical results modulo an arbitrary theory T

in a language L, and then we shall present further results after specifying both L and

T . Generally, suppose ∆ is a set of formulas over ∅ and for any type p over ∅ let us

define p∆ = p ∩ ∆. Let conj/disj(∆) be the collection of all finite conjunctions and

disjunctions of ∆-formulas - that is, formulas in ∆.

Most general assumption: T is an arbitrary theory in an arbitrary language L.

We begin with a very standard type of result:

LEMMA 3.3.11 Suppose that p∆ ` p for any consistent type p over ∅. Let θ ∈ L.

Then there is ϕθ ∈ conj/disj(∆) such that

T ` θ ⇔ ϕθ

PROOF Clearly any formula θ consistent with T lies in some type p, and since p∆ ` p,
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then by compactness θ is implied by a conjunction of ∆-formulas. Let Φ ⊆ conj/disj(∆)

be the subset of conj/disj(∆) of formulas that imply θ. Suppose θ implies no member

of Φ. Clearly Φ is closed under disjunctions, so by compactness the partial type p0 =

{¬ϕ : ϕ ∈ Φ} ∪ θ is consistent. Extending p0 to a type p, we can apply the hypothesis:

p∆ ` p. In particular, there is a formula ϕθ ∈ conj/disj(∆) ∩ p such that ϕθ ⇒ θ. But

our construction forbids that and we have a contradiction.�

More specific assumption on T and L: Now suppose L = Ldiff and T is a theory

in L such that

1. T |=‘σ is an automorphism’.

2. If (M,σ) and (N, τ) are both models of T , and K is an L-substructure of each,

then M ≡K N ⇔ (M ∩ K̃, σ) ∼=K (N ∩ K̃, τ).

LEMMA 3.3.12 Let K be a substructure of both M |= T and N |= T . Let ā ∈ M

and b̄ ∈ N be tuples of elements. Then tp(ā/K) = tp(b̄/K) as Ldiff(K)-types, iff there

is a difference field K-isomorphism aclMσ (K(ā)) 7→ aclNσ (K(b̄)) sending ā to b̄.

PROOF (⇐) Let i0 : aclMσ (K(ā)) 7→ aclNσ (K(b̄)) be the given isomorphism. By

elementary model theory, there is an Ldiff -structure M ′ containing aclNσ (K(b̄)) such

that we may extend i0 to an isomorphism of Ldiff -structures i : M 7→M ′. Then by (2)

in the assumptions above, M ′ ≡K(b̄) N . So tp(b̄) in M ′ is the same as tp(b̄) in N . Now

pulling back by the K-isomorphism i0, we have tp(b̄/K)=tp(ā/K).

(⇒) The assumption allows us to extend M and N elementarily to saturated enough

models M ′ and N ′ of the same cardinality, so that there is an isomorphism i : M ′ 7→ N ′

taking ā to b̄ and such that i is the identity on K. We get the desired isomorphism of

substructures by restricting i. �

Even more specific assumption on T and L: Now we let T = PSF(m,n,p).

REMARK 3.3.13 We describe a set ∆ of Ldiff -formulae over ∅, and a set ∆c of

Ldiff,c-formulae over ∅ (see Section 3.3.2). We shall refer to polynomial equations: by

this we mean equations with the left hand side of some specific polynomial/difference

polynomial type, and the right hand side set to be 0.
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1. A δ0-formula δ(y, x̄) is just a σ-polynomial equation in σ-iterates of both y and

x̄, where y is a single variable.

2. A δ′1-formula δ′1(y, x̄) is a difference polynomial in y and x̄, but a pure algebraic

polynomial equation (i.e with no use of σ-iterates) in y, with y a single variable.

3. Consider a δ′1-formula as a polynomial equation in y whose coefficients are dif-

ference polynomial expressions of x̄. Assume an index J on the coefficient poly-

nomials. Then a δ1-formula is a formula δ′1(y, x̄) ∧ CI(x̄) such that I ⊆ J and

CI(x̄) states that the coefficient difference polynomials indexed by I are not all

identically zero. If the coefficient expressions are Ci(x̄) (i ∈ J), CI(x̄) can be

expressed as ∃t
∏
i∈I(Ci · t− 1) = 0. A non-trivial δ1-formula is one where I 6= ∅.

4. A δ-formula is δ(x̄) = ∃y(δ0(y, x̄)∧ δ1(y, x̄)), where the δ1-conjunct is non-trivial.

Notice that the existential quantifier inside the δ1-conjunct can be brought out-

side: the result is that a δ-formula is an existential formula ∃yt(θ(yt, x̄)) where

θ is a conjunction of a single difference equation in variables yx̄, a single alge-

braic equation in variable y with coefficient difference polynomial expressions in

x̄, and a conjunction of difference algebraic equations in variables tx̄; the latter

difference algebraic equations ensure that the map θ(yt, x̄) 7→ x̄ has finite fibres

bounded by some natural number Nθ.

5. We let ∆ be the set of formulas boolean(δ) (boolean combinations of δ-formulas).

6. We can also consider the theory Tc = PSF(m,n,p,c) in the language Ldiff,c, as

described in the beginning of Se ction 3.3.2. For Tc, we can define a δ-formula

similarly. The only difference is that the constants c and their σ-iterates are

allowed in the δ0,δ
′
1 and CI formulae. In this case we are more interested in ∆c,

the set of positive boolean combinations of δ-formulas.

7. There is a simplification of quantifiers result for pure pseudo-finite fields (see [6]

5.11 through 5.17). That simplification implies that there is a sub-type ∆∗ of the

pure field type tpfield(ā) such that ∆∗ `tpfield(ā), and ∆∗ ⊆ tp(ā)∆. Similarly,

let tpfield,c(ā) be the type of ā in the language Lrings,c. Then [6] 5.17 implies

that there is a sub-type ∆∗c of the type tpfield,c(ā) such that ∆∗c `tpfield,c(ā), and

∆∗c ⊆ tp(ā)∆c .
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8. The quantifier-free type of ā is determined by the difference polynomial equa-

tions ϕ(x̄) which ā satisfies, and by the difference polynomial equations ϕ(x̄)

which ā does not satisfy. Take any difference polynomial equation ϕ(x̄): it

is a δ0-formula. Also, if x̄ = x1, . . . , xk, then consider the algebraic equation

f(x̄, y) =def y − x1 = 0. Since the coefficient of y in this algebraic equation is 1,

we have the δ
′
1-formula f∗(x̄, y) =def f(x̄, y) ∧ ∃t(t ·1−1 = 0). Notice that the δ-

formula ∃y(ϕ(x̄) ∧ f∗(x̄, y)) is equivalent to ϕ(x̄), and thus, ¬∃y(ϕ(x̄) ∧ f∗(x̄, y))

is equivalent to ¬ϕ(x̄). Since ∆ is the set of boolean combinations of δ-formulas,

we have tp(ā)∆ `tpquantifier free(ā).

Even though ∆c is defined as the positive boolean combinations of δ-formulas in

Ldiff,c, we still have tp(ā)∆ =tp(b̄)∆ only if tpquantifier free(ā) = tpquantifier free(b̄),

since the assumption that tp(ā)∆ =tp(b̄)∆ implies that tp(ā) and tp(b̄) must

agree on all boolean combinations of δ-formulas.

THEOREM 3.3.14 (i) Let L=Ldiff and ∆ be as in remark 3.3.13. For any L-

formula θ(x̄) there is δ ∈ ∆ and PSF(m,n,p) ` θ ⇔ δ.

(ii) In the expansion Lc there is δ ∈ ∆c and PSF(m,n,p,c) ` θ ⇔ δ. We call this ∃′1
form.

PROOF We will prove (i). The proof for (ii) is a simple relativisation of that for (i);

if there is an important detail required for the relativisation we mention it.

The set of formulae ∆ is closed under conjunctions and disjunctions. Thus, by 3.3.11

it suffices to show that ∆-formulae determine Ldiff -types modulo PSF(m,n,p). Suppose

(M,σ) and (N, τ) are two models of PSF(m,n,p). Suppose that K is the prime field

of both M and N (for the relativisation of the proof to (ii), suppose that Kc(M) and

Kc(N) are the difference subfields of M and N generated by the distinguished con-

stants c). Suppose we have tuples ā ∈ M and b̄ ∈ N of the same length. Then

by 3.3.12 and by 3.3.10, if there is a K-isomorphism of difference fields between

aclMσ (K(ā)) and aclNτ (K(b̄)) taking ā to b̄, then tp(ā) =tp(b̄). So it is sufficient to
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show that tp(ā)∆ = tp(b̄)∆ only if there is a K-isomorphism of difference fields be-

tween aclMσ (K(ā)) and aclNτ (K(b̄)) taking ā to b̄.

Firstly, by 3.3.13 (8), tpquantifier free(ā) = tpquantifier free(b̄), (and also in the relativisation

to (ii) this is true for the quantifier-free Ldiff,c-types), so there is a unique isomorphism

f : (K(ā)σ, σ) ∼= (K(b̄)τ , τ) that takes b̄ to ā, and is identity on K. Thus, we can

assume K(ā)σ = K(b̄)τ , and by extending f−1 we can identify aclNτ (K(b̄)) with a sub-

field of K̃(ā)σ denoted K2. We do this, and we also let K1 = aclMσ (K(ā)). Expand K1

to a difference field by equipping it with the restriction of σ. Expand aclNτ (K(b̄)) to

a difference field by equipping it with τ , and then expand K2 to a difference field by

equipping it with the automorphism f(τ) = f−1τf .

Relabelling and setting notation, the problem is now reduced to exhibiting an isomor-

phism between the difference fields (K1, σ) and (K2, τ), where

• (K1, σ) and (K2, τ) share a common difference subfield (B, σB), where B =

K(ā)σ = f(K(b̄)τ , and σB is the restriction of σ to B.

• K1 = aclMσ (K(ā)), K2 = aclNσ (K(ā)) with (M,σ), (N, τ) |= PSF(m,n,p)

• tp(ā)∆ = tp(b̄)∆.

By 3.3.13 (7) it follows that K1 and K2 are isomorphic over B as fields. For the rela-

tivisation of the proof to (ii), also by 3.3.13 (7), there is an isomorphism between K1c

and K2c over Bc as fields with constants.

By this isomorphism, we must have the equality K1∩Bins = K2∩Bins (see the prelim-

inary section to this chapter for notation). In algebraic, purely inseparable extensions

of difference fields, the difference operator extends uniquely. So there is a unique ex-

tension of σB to K1 ∩Bins; σ and τ must both restrict to this unique extension. So we

let B∗ = K1 ∩ Bins = K2 ∩ Bins, and see that τ and σ agree on B∗. Both extensions

Ki/B
∗ (i = 1 or 2) are separable.

For L a Galois extension of B∗ we let SL = {g ∈ Gal(B∗): g gives an isomorphism from

L ∩K1 onto L ∩K2 and ∀x ∈ L ∩K1 gσ(x) = τg(x)}. Then SL is closed in Gal(B∗),
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since it is a union of cosets of Gal(L). We aim to show that the set of all SL has the

finite intersection property.

Since we have shown that K1
∼=B∗ K2, by restriction we have L ∩K1

∼=B∗ L ∩K2, for

any Galois L/B. Denote the isomorphic fields L∩K1 and L∩K2 as L1 and L2 respec-

tively. Since Li/B∗ is separable for i = 1 or 2, we have primitive elements: L1 = B∗(α),

L2 = B∗(β) and α, β are roots of some irreducible f(X) ∈ B∗[X].

To prove the finite intersection property, we aim to show that for each L, SL 6= ∅.

Claim: The composite fields 〈L1, σ(L1)〉 and 〈L2, τ(L2)〉 are isomorphic over B∗.

Proof of Claim: Take an isomorphism γ : K1
∼=B∗ K2. Under γ a root of σj(f(X))

(0 ≤ j ≤ 1) goes to a root of σj(f(X)). L1 is the unique subfield of K1 generated

over B∗ by a root of f(X): for any such field is contained in L, and L ∩K1 = L1, so

it must be unique. By applying the difference operator, we see σj(L1) (0 ≤ j ≤ 1)

is the unique subfield of K1 generated over B∗ by a root of σj(f(X)). Analogously,

τ j(L2) (0 ≤ j ≤ 1) is the unique subfield of K2 generated over B∗ by a root of

τ j(f(X)) = σj(f(X)). Thus γ(L1) = L2 and γ(σ(L1)) = τ(L2) and so γ witnesses the

claim. End of proof of claim

Consider the algebraic-geometric type of the pair (α, σ(α))/B∗. It is isolated by the

monic minimal polynomial (Minα) equation of α/B∗ and the monic minimal polynomial

equation (Minσ(α)) of σ(α)/B∗(α). Now Minα and Minσ(α) can be seen as a pair of

difference equations in α with coefficients from B∗. It follows that

(K1, σ) |= ∃y (Minα(y) ∧ Minσ(α)(σ(y))) (3.5)

Ostensibly, this formula makes use of parameters in B∗\B. However, since B∗ ⊆ Bins,

it follows that there is l ∈ N such that there are difference polynomials Mα = (Minα)p
l

and Mσ(α) = (Minσ(α))p
l

where Mα is a purely algebraic, monic polynomial in y, where

the coefficients of Mα and Mσ(α) are over B, and such that modulo the theory of
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characteristic-p fields

∀y[(Minα(y) ∧ Minσ(α)(σ(y)))⇔ (Mα(y) ∧ Mσ(α)(σ(y))] (3.6)

Notice that we may now see ∃y (Mα(y) ∧ Mσ(α)(y)) as a sentence in parameters ā.

Substituting x̄ for ā, we have a formula θ(x̄) =def ∃y (Mα(y) ∧ Mσ(α)(y)), where

θ(x̄) ∈tpσ(ā). For the relativisation to (ii), θ(x̄) only uses parameters in the field

Kc generated by the distinguished constants. Either way, θ(x̄) is definable without

parameters. Since Mα(y, x̄) is purely algebraic and monic as a y-polynomial equation,

it follows that θ(x̄) can be assumed to be a formula in tp(ā)∆. So, by assumption, θ(x̄)

is in tp(ā)∆ as measured in K2. So, by expression 3.6

(K2, τ) |= ∃y (Minα(y) ∧ Minσ(α)(σ(y))) (3.7)

Let β be a witness for ∃y (Minα(y)∧ Minσ(α)(σ(y))) in K2. By the uniqueness described

in the claim above, L2 = B∗(β) and τ(L2) = B∗(τ(β)). The isomorphism L1 7→ L2

given by sending α to β over B∗, maps Minσ(α) to an irreducible polynomial over L2

satisfied by τ(β). So there is an embedding of 〈L1, σ(L1)〉 into 〈L2, τ(L2)〉. But it is

onto because the image contains B∗, β and τ(β). Lift this isomorphism to an element

g of Gal(B∗). So g ∈ SL.

The rest is standard. Let L1, L2, . . . , Lk be an arbitrary collection of finite extensions

of B∗. Let L be the normal closure of the composite L1L2 . . . Lk over B∗. Since

∅ 6= SL and SL ⊆ SL1 ∩ SL2 ∩ . . .∩ SLk this set of closed sets has the finite intersection

property, and by compactness of Gal(B∗) there is g∗ ∈
⋂
L/B∗ normal SL. Thus g∗ is the

isomorphism we sought. �

3.3.4 Theory of almost all fractional powers of the Frobenius

In this section we show that PSF(m,n,p) is the theory of almost all finite difference fields

of a specific kind. For completeness we also recall the decidability results.

THEOREM 3.3.15 Let n and m be coprime natural numbers and p a prime. PSF(m,n,p)

is the asymptotic theory of the class of finite difference fields C(m,n,p) = {(Fpkn+m ,Frobk) :

k ∈ N}. That is, every model of PSF(m,n,p) is elementarily equivalent to a non-principal

ultraproduct of members of C(m,n,p), and every non-principal ultraproduct of members
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of C(m,n,p) is a model of PSF(m,n,p).

PROOF Let D ={non-principal ultraproducts of members of C(m,n,p)}. We start by

showing that every member D ∈ D is a model of PSF(m,n,p). Recall that by Lemma

3.3.5, in any (M,σ) |= ACFA, the substructure (Fix(Frobm ◦ σn), σ|Fix(Frobm◦σn)) is a

model of PSF(m,n,p). So consider D ∈ D. Suppose D =
∏
i∈N(Fpnki+m ,Frobki)/ ∼ U

where U is a non-principal ultrafilter on N. Let (M,σ) =
∏
i∈N(F̃p,Frobki)/ ∼U .

By the elementary equivalence theorem for ACFA, (M,σ) |= ACFA. But D =

(Fix(Frobm ◦ σn)(M), σ|Fix(Frobm◦σn)(M)) . So D |= PSF(m,n,p).

Now we need only show that every model of PSF(m,n,p) is elementarily equivalent to

some model in D. Take an arbitrary model (M,σ) |= PSF(m,n,p). Then by Lemma

3.3.6 we may extend (M,σ) ⊆ (M̃, σ̃) such that Fix(Frobmσ̃n)(M̃) = M . Since ACFA

is the model companion of difference fields we may embed (M̃, σ̃) ⊆ (K, τ) where

(K, τ) |= ACFA. Let (K ′, τ ′) = (Fix(Frobmτn)(K), τ |Fix(Frobmτn)(K)). It is clear by

the elementary equivalence theorem for ACFA (see Theorem 2.1.3) that (K ′, τ ′) ≡ D

for some D ∈ D. Notice that M is algebraically closed in K ′. So by 3.3.10 we have

(M,σ) ≡ (K ′, τ ′) ≡ D. �

As to the decidability, there is not much to say. It is proved in [8] that the theoryACFA

is decidable. The proof there can be directly translated to a proof of the decidability

of PSF(m,n,p). One can also see it this way: by the theorem above, PSF(m,n,p) is

interpretable in ACFAp, and so its decidability follows from the decidability of ACFAp

(a proof of the decidability of ACFAp may be found in [8] 1.6).

3.3.5 Tools: analogues for theorems about ACFA

This section relativises results from ACFA to PSF(m,n,p). The statements may be

useful for a reader.

Suppose (M,σ) |= PSF(m,n,p). Let Θ be the Ldiff -formula defining the substruc-

ture Fix(Frobmσn). Notice that Θ is quantifier-free. By Theorem 3.3.15 there is

a model (K, τ) |= ACFA such that (M,σ) ≡ ((Θ(K), τ |Θ(K)). We may assume
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(K, τ) is |M |-saturated, and this yields |M |-saturation for the definable substruc-

ture (Θ(K), τ |Θ(K)). Thus we may assume that (M,σ) embeds elementarily into

(Θ(K), τ |Θ(K)). For ease of notation, in the following lemmas let us just use the symbol

σ for the automorphism, ignoring the domain in question: we assume the elementary

embedding (M,σ) ≺ (Θ(K), σ) ⊂ (K,σ) with (K,σ) |= ACFA for the following lem-

mas. We also assume ω1-saturation of (K,σ).

PROPOSITION 3.3.16 The model-theoretic and algebraic notions of algebraic clo-

sure over a substructure coincide in models of PSF(m,n,p).

PROOF Let (E, σ) ⊆ (M,σ) be a substructure that is algebraically closed inside

M , in the sense of fields. Say a ∈ M\E. But then a ∈ K\Ẽ, and (Ẽ, σ) is an

algebraically closed substructure of (K,σ) in the sense of fields. By [8] Proposition

1.7, a is not model-theoretically algebraic over Ẽ in (K,σ). Thus a is not model-

theoretically algebraic over E in (M,σ). �

So, as in ACFA, we can identify the model-theoretic algebraic closure of a set A ⊆M

with aclMσ (A) (see 3.2 for a definition of aclMσ (A)).

Let X̄ = (X1, X2, . . . Xk) be indeterminates. We let Z〈X̄〉 be the free commutative

σ-algebra generated by the Xi over Z.

PROPOSITION 3.3.17 Given ψ(x̄, y) with x̄ a tuple and y a single variable, there

are difference polynomials f1(X̄, Y ), . . . , fm(X̄, Y ), with each fi ∈ Z〈X̄〉[Y ], such that

for every model M of PSF(m,n,p) and tuple ā from M , if ψ(ā,M) is finite, then it is

included in the set of zeroes of fi(ā, Y ), for some i such that fi(ā, Y ) is a non-trivial

polynomial in Y .

PROOF The statement is exactly the same as the statement in [8] 1.8 for ACFA.

The proof follows from [8] 1.8, because PSF(m,n,p) is interpretable in ACFAp, and the

quantifier-free fi(X̄, Y ) are interpreted as themselves. �

In the following, we briefly describe the model-theoretic theory of independence for

PSF(m,n,p). We make use of the general theory of independence, in particular, the
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relation |̂ , the notion of supersimplicity, Morley sequences, and the notion of model-

theoretic dividing. A good general reference for this theory is [29]; in particular, section

2.2 and chapter 5.

PROPOSITION 3.3.18 Let independence in the sense of (Θ(K), σ) be |̂ . Let in-

dependence in the sense of (K,σ) be |̂ ACFA. Let independence in the sense of al-

gebraically closed fields be |̂ acf . Let ā and b̄ be tuples from Θ(K), and let (E, σ) ⊆

(Θ(K), σ) be an algebraically closed substructure such that K is (|E| + ω1)-saturated.

Then

1. ā |̂
E
b̄ if and only if ā |̂ ACFA

E
b̄

2. ā |̂
E
b̄ if and only if aclσ(āE) |̂ acf

E
aclσ(b̄E)

PROOF 1. We recall that Th(Θ(K)) is supersimple, because any model is elemen-

tarily equivalent to a definable substructure of a model of ACFA. Thus we may use

dividing as our notion of forking.

(⇐) A witness to dividing on the left-hand-side is a k-inconsistent set of formu-

las {θ(x̄, b̄iē) : i ∈ ω} such that b̄0 = b̄, ē ∈ E, the b̄i are distinct, and for each

i ∈ ω we have that tp(b̄i/E) = tp(b̄/E) and (Θ(K), σ) |= θ(ā, b̄iē). By compactness

and the assumption of |E|-saturation, we may assume that for each i ∈ ω we have

that tpACFA(b̄i/E) = tpACFA(b̄/E). Here, tpACFA denotes a type in (K,σ). Now

PSF(m,n,p) is 0-interpretable in ACFA. So suppose the formula θ(x̄, ȳz) is interpreted

in ACFA as θ′(x̄, ȳz). Then {θ′(x̄, b̄iē) : i ∈ ω} witnesses dividing on the right-hand-

side.

(⇒) If ā 6 |̂ ACFA
E

b̄, then σ-degree decreases: degσ(ā/aclKσ (Eb̄)) < degσ(ā/aclKσ (E))

(see [8] 2.2 Remark (2)). Since these two bases are algebraic closures of Θ(K)-subsets,

this inequality is equivalent to there being some l ∈ N such that:

degσ(ā/ ˜Eb̄(σb̄) . . . (σl−1b̄)) < degσ(ā/Ẽ) (3.8)

So suppose that {a1, a2, . . . as} ⊆ ∪l−1
i=1σ

i(ā) is a transcendence base for aclσ(Eā)/E.

Then from expression 3.8, we see that there is some 1 ≤ i ≤ s − 1 such that ai+1
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is algebraic over (Eb̄(σb̄) . . . (σl−1b̄)a1 . . . ai). Let b̂ = b̄σ(b̄) . . . σl−1(b̄) and let â =

āσ(ā) . . . σl−1(ā). So in terms of algebraically closed fields â 6 |̂ acf
E
b̂. So we can choose a

formula ψ(x̂, b̂ē) ∈ Lrings(Θ(K)) with ē ∈ E, witnessing dividing in algebraically closed

fields. Since we are now working over algebraically closed fields, we can choose ψ to be

quantifier free. Also, there is a quantifier-free formula ψ∗(x̄, b̄, ē) ∈ Ldiff(Θ(K)) such

that if x̂ = x̄σ(x̄) . . . σl−1(x̄), then ψ∗(x̄, b̄, ē) = ψ(x̂, b̂ē). I claim that ψ∗ is the formula

witnessing dividing in the difference field (Θ(K), σ).

We work by assuming the contrary, so in (Θ(K), σ), suppose that ψ∗(x̄, b̄, ē) does not

divide over E. Then let us quote [29] Theorem 2.4.7 (6) (changing notation to put the

result in our context):

‘If T is simple then a formula ψ∗(x̄, b̄ē) does not divide over E if and only if for some

Morley sequence I∗ in type b̄/E the set H∗ = {ψ∗(x̄, b̄′ē) : b̄′ ∈ I∗} is consistent.’

By the saturation we have assumed, there is an ā′ ∈ Θ(K) that satisfies all formulas of

H∗. We have the Morley sequence I∗; consider the sequence I = {b̂′ = b̄′ . . . σl−1(b̄′) :

b̄′ ∈ I∗}. Then I must be an Lrings-Morley sequence. Let H = {ψ(x̂, b̂′ē) : b̂′ ∈ I}.

Then â′ = ā′σ(ā′) . . . σl−1(ā′) must satisfy all formulas of H. But then we can reapply

[29] Theorem 2.4.7 (6) to show that ψ(x̂, b̂ē) does not divide over E, and that is a

contradiction.

2. This now follows from 1:

ā |̂
E

b̄ ⇔ ā
ACFA

|̂
E

b̄ ⇔ aclσ(āE)
acf

|̂
E

aclσ(b̄E) �

Having established the notion of independence to be what is expected, we may ask

whether imaginaries are eliminated in PSF(m,n,p). In ACFA, imaginaries are elimi-

nated. There, full elimination of imaginaries followed from the generalised indepen-

dence theorem, and in particular, the independence theorem holds over algebraically

closed sets in ACFA. However, inspecting the proof of the generalised independence

theorem in [8] 1.9, we cannot obviously deduce the independence theorem over alge-

braically closed sets in PSF(m,n,p). Since PSF(m,n,p) is a simple theory, we certainly
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have the independence theorem over a model (see [29] 2.5). Using the independence

theorem, Proposition 3.2 and Corollary 3.3 of [15] hold in PSF(m,n,p):

PROPOSITION 3.3.19 Let (M,σ) be a model of PSF(m,n,p), and let (N, σ|N ) ≺

(M,σ) be an elementary submodel. Then (M,σ, a)a∈N eliminates imaginaries.

PROOF The independence theorem over a model is the necessary ingredient to tran-

scribe the proofs of [15] Propositions 3.2 and Corollary 3.3: the PAC set F there is

replaced with the structure (M,σ) in our context. With this replacement, Corollary

3.3 of [15] is exactly our statement. �

DEFINITION 3.3.20 Let L be a language and N be an L-structure and U ⊆ N

an L-substructure. Let Def(N) be the set of all sets in cartesian powers of N definable

in Th(N), and let Def(U) be the set of all sets in cartesian powers of U definable

in Th(U). Let Def(U,N) be the set of traces of Def(N) sets in U . So Def(U,N) =

∪n∈N{X ⊆ Un : X = Y ∩Un ∧ Y ∈ Def(N)}. Then we say U is completely embedded

in N , if Def(U)=Def(U,N).

We also need the notion of stable embeddability. We transcribe part of the definition

from the Appendix of [8], changing notation slightly. The reader will find a much more

thorough treatment there.

DEFINITION 3.3.21 Let T = T eq be a complete theory in a countable language,

and let U be an uncountable saturated model of T . Let p be a partial r-type over the

empty set and let P = P (U) be the set of realisations of p in U , together with the

structure induced from U , i.e. the ∅-definable subsets of P s are the traces on P s of

∅-definable subsets of U rs. Then we say P is stably embedded if for every s, if D ⊆ U rs

is definable, then D ∩ P s is definable with parameters from P . In Lemma 1 of the

Appendix of [8], various equivalent conditions for stable embeddability are presented.

We note one in particular: P is stably embedded if every automorphism of P lifts to

an automorphism of U .

LEMMA 3.3.22 (Θ(K), σ) is completely embedded in (K,σ).
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PROOF Since Θ(K) is definable without parameters in (K,σ), it follows that Def((Θ(K), σ)) ⊆Def((Θ(K), σ), (K,σ)).

Thus we need to show that if θ is a (K,σ)-definable subset of Θ(K)r, then θ(Θ(K)) is

definable in the Ldiff -structure (Θ(K), σ).

Step 1 The big step is done for us: Proposition 7.1 (5) of [9] tells us that Θ(K) is

stably embedded in (K,σ). Thus we may assume that θ is definable with parameters

from Θ(K).

Step 2 Consider the elimination form for ACFA described in 2.3.1. By that form

we may also assume that θ =
∨k
i=1 ∃t θi(x, b, t) with b ∈ Θ(K), and t a single variable

and each θi a quantifier-free Ldiff -formula in parameters b. Clearly it suffices to assume

that k = 1. Next, we can put θ1 in conjunctive-disjunctive form (
∨
∧); at this stage it

is clear that it suffices to assume that θ1 consisists of a single disjunct. Now we recall

the additional feature of the elimination form in 2.3.1: there is an r ∈ N such that if

x0 ∈ K then θ1(x0, b, t) has at most r solutions in t. This means that for θ1(Θ(K)),

all such solutions must lie in the unique r-degree extension of Θ(K). But the unique

r-degree extension of Θ(K) and the extension of σ to any particular automorphism of

that extension are parameter definable in (Θ(K), σ). So it follows that θ1(x, b, t)(Θ(K))

may be defined by a formula in (Θ(K), σ), and then so too can ∃t(θ1(x, b, t))(Θ(K)).

�

3.4 Definable automorphisms of a perfect bounded PAC

field

Let us remind ourselves that K is pseudo-algebraically closed (PAC) if every absolutely

irreducible variety defined over K has a K-rational point. K is said to be bounded

if its absolute Galois group Gal(K) is small, namely has, for any n ∈ N, only finitely

many open subgroups of index n. Equivalently, K has only finitely many extensions of

degree n for any n (see [17] Definition 1.4).

This section is devoted to showing the following:
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PROPOSITION 3.4.1 Let K be a pure, perfect, bounded PAC field. Then K has

no definable automorphisms apart from integer powers of the Frobenius automorphism

x 7→ xp. In characteristic 0 there is only the trivial automorphism.

At the end of the section, we use this result to characterise all infinite difference fields

interpretable in a pseudo-finite field K. The proposition shows that our fractional

powers of the Frobenius are genuine extensions of the theory of pseudo-finite fields.

This was not immediately clear: in [9] proposition 7.1 it is shown that a model of

PSF(m,n,p) embedded as a fixed field of a model of ACFA, considered with all the in-

duced structure, has SU -rank 1. So the reduct theory PSF(m,n,p) that we consider also

has SU -rank 1. However, the theorem we shall prove shows that the automorphism

must add complexity. The proof makes use of only a few facts about algebraic groups.

In this section, we letK be a perfect, bounded PAC field. We shall use a dimension dim,

as is used in [17]. For V an algebraic set with a definable subset of X ⊆ V , we denote

the Zariski closure of X in V by V̄ . Also, an arbitrary definable set X in r variables may

be seen as a subset of Ar. We define dim(X) to be the algebraic-geometric dimension

of the Zariski closure X̄ in Ar. Thus we may refer to the ‘dimension’ of a definable

set, and dim is what is meant. Throughout this section we work under the assumption

that σ is a definable automorphism in the language of rings (with parameters) of K.

Eventually we will see that σ is a power of Frobenius. Originally this proof was seen

for pseudo-finite fields, but the proof only depends on the following fact about perfect,

bounded PAC fields. It is stated in [17] Fact 1.6(i):

FACT 3.4.2 Let F be a perfect, bounded PAC field. If X ⊆ Fn, Y ⊆ Fm are

definable in F , f : X 7→ Y is a definable surjection and dim(f−1(a)) = d for all a ∈ Y ,

then dim(X) = dim(Y ) + d.

This fact will eventually allow us to extend the definable automorphism σ of K to a

definable automorphism of K̃.

DEFINITION 3.4.3 An algebraic group, G , will be an abstract variety over K̃ with

two morphisms µ : G × G 7→ G, and ι : G 7→ G, and an identity, e, which make G a

group.
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We state a well-known lemma:

LEMMA 3.4.4 Let G be an algebraic group and H ⊆ G a subgroup. Then H̄ is an

algebraic subgroup.

DEFINITION 3.4.5 Let Ga denote the algebraic group (A1,+). Let Gm denote the

algebraic group (A1\{0}, ·). Recall that Ga and Gm are varieties over K̃. Let Ja be

the definable group ({(x, σ(x)) : x ∈ K},+) ⊆ Ga×Ga. Let Jm be the definable group

({(x, σ(x)) : x ∈ K ∧ x 6= 0}, ·) ⊆ Gm ×Gm. Let Ha be the closure of Ja in Ga ×Ga.

Let Hm be the closure of Jm in Gm ×Gm. �

LEMMA 3.4.6 Ha and Hm both have algebraic-geometric dimension 1.

PROOF By Fact 3.4.2, the dimension of the closure of a set defined in a perfect,

bounded PAC field is preserved under a definable bijection. But either of the coor-

dinate projections of Ja or Jm gives a bijection to a dense subset of the affine line.

�

LEMMA 3.4.7 The Zariski topology on Gm×Gm is the subspace topology induced by

the inclusion Gm ×Gm ⊆ Ga ×Ga.

PROOF The Zariski topology on Gm×Gm is just the affine Zariski topology given by

the coordinate ring K[x, y](xy). The inclusion Gm×Gm ⊆ Ga×Ga induces the inclusion

of coordinate rings K[x, y] ⊆ K[x, y](xy). Thus a Zariski closed set of Gm ×Gm is the

set of zeros of a function on the right-hand side of this inclusion, and equally well the

set of zeros of its numerator, which is an element of the left-hand side, considered in

Gm ×Gm. �

LEMMA 3.4.8 Let π1a and π2a denote the left and right projections of Ha ⊆ Ga×Ga

into Ga, and similarly π1m and π2m of Hm ⊆ Gm ×Gm into Gm. Then the following

hold:

1. All the projections are onto.

2. For each projection, the fibres above any point are finite and equal.
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3. For x 6= 0 ∈ A1, | π−1
1a (x) |= | π−1

1m(x) | and | π−1
2a (x) |=| π−1

2m(x) |.

PROOF (1) Both these projections are in fact projections of algebraic groups, so

fibres are cosets or are empty. So all fibres have the same dimension and multiplicity.

Because K is infinite, Ja has infinite πia-images and Jm has infinite πim-images for

1 ≤ i ≤ 2, and so too Ha and Hm. We have that Ha and Hm are dimension 1 (Lemma

3.4.6), so their respective πia and πim-images (1 ≤ i ≤ 2) are dimension 1 subgroups of

Ga and Gm respectively. A dimension 1 subgroup of a connected algebraic group is of

course the group itself.

(2) Since both source and image of a given projection are dimension 1, generically

the fibres must be finite. But the fibres are all cosets with natural definable bijections

between them, so all fibres then have the same finite size.

(3) Firstly we show Hm = Ha ∩ Gm×Gm. By Lemma 3.4.7, there is a closed subset

M of Ga ×Ga such that Hm = M ∩Gm ×Gm. But then

Hm = M ∩Gm ×Gm = (M ∪ {0, 0}) ∩Gm ×Gm ⊇ Ha ∩Gm ×Gm ⊇ Hm (3.9)

In expression 3.9, the first inclusion arises because M ∪ {0, 0} ⊇ Hm ∪ {0, 0} ⊇ Jm ∪

{0, 0} = Ja; since M ∪ {0, 0} is closed in Ga × Ga, it must thus contain J̄a = Ha.

Expression 3.9 implies Hm = Ha ∩ Gm × Gm. This means that Hm is obtained from

Ha by discarding the π1a fibre over 0 and the π2a fibre over 0- that is, by discarding a

finite number of points. So above any generic point of A1 we have the stated equalities.

By the fibre uniformity the equalities hold everywhere. �

LEMMA 3.4.9 Let x ∈ A1. Then | π−1
ia (x) |= 1, (i = 1 or 2). If x 6= 0 then

| π−1
im(x) |= 1, (i = 1 or 2). Also, Hm is obtained from Ha by the removal of {0,0}.

PROOF Consider Ha, π1a, say, and the fibre above 0. It is isomorphic to a finite

additive subgroup of a field, i.e. an abelian p-group of size pr, where in the characteristic

0 case, r = 0. On the other hand, consider Hm, π1m and the fibre above 1. It is

isomorphic to a finite multiplicative subgroup of a field, i.e a group of roots of unity.

In the characteristic p case its order must be coprime to p. By the uniformity of fibre
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size we deduce that r=0, and the fibre size is 1. Now it follows that only the point

{0,0} could have been deleted in the passage from Ja to Jm, otherwise we would have

a contradiction to fibre size. The same arguments apply for π2a and π2m. �

Thus, Lemma 3.4.9 shows that Ha and Hm represent a definable automorphism of

algebraically closed fields extending the automorphism represented by Ja and Jm.

To complete the proof of Proposition 3.4.1 we must show that the only definable auto-

morphisms of an algebraically closed field in the language of fields are integral powers

of the Frobenius automorphism. I could not find a reference.

PROPOSITION 3.4.10 The only definable automorphisms of an algebraically closed

field are powers of the Frobenius.

PROOF Again, we suppose σ is a definable automorphism of an algebraically closed

field. Let x be generic over a base of definition, B. Then σ(x) lies in dcl(x,B). Since

dcl(x,B) is the purely inseparable closure of the field generated by (x,B), then

σ(x) = (
f(x)
g(x)

)p
−r
,

where f and g are some polynomials with coefficients in the field generated by B, r ∈ N,

p is the characteristic of the algebraically closed field, and if p = 0 then r = 0. Letting

σ′ = Frobrσ we relabel σ = σ′, and now

σ(x) =
f(x)
g(x)

(3.10)

We assume that f(x) and g(x) are in lowest common form.

Suppose that Ha is the graph of the automorphism σ. Suppose it has coordinates

(x, y). Then equation 3.10 shows that on Ha, f(x)− yg(x) = 0 holds generically. So it

holds on the whole of Ha. Say x ∈ A1 and g(x)=0. Then f(x) = 0, so g(x) and f(x)

share a root. But they are in lowest common form, so we may assume that g(x) = 1.

Now it is clear that y = f(x) defines an absolutely irreducible variety. And it is clear

that in this case it has dimension 1 and contains Ha, also absolutely irreducible and of

dimension 1. So y = f(x) defines Ha. Let y = 0. There must be a unique solution to
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f(x) = 0. So f(x) = xs for some s ∈ N. Letting y=1, s is seen to be a power of the

characteristic. �

Of course, it is interesting to characterise all interpretable difference fields in K. We

have the following:

PROPOSITION 3.4.11 Let (L′, τ ′) be a difference field interpretable in the pseudo-

finite field K. Then in K there is a definable difference field (L, τ) and a definable

isomorphism of difference fields i : (L′, τ ′) ∼= (L, τ), such that L is a finite extension

of K, and Frobrτ ∈ Gal(L/K) for some r ∈ Z.

PROOF By [15] Theorem 9.1, every infinite interpretable field in K is definably iso-

morphic to a finite extension of K. So there is a definable, finite field extension L of

K and a definable isomorphism of fields i : L′ 7→ L. Then define τ = iτ ′i−1.

We may suppose that K is elementarily equivalent to an ultraproduct of finite fields:

K ≡ K∗ where K∗ =
∏
i∈N Fpdi/ ∼. Supposing that [L : K] = s, we may also assume

that L ≡ L∗ where L∗ =
∏
i∈N Fpdis/ ∼. So we may assume that L∗ is a definable

extension of K∗. Using Los’s Theorem, and the fact that if F1 ⊆ F2 is a containment

of finite fields then any automorphism of F2 restricts to an automorphism of F1, we

see that any definable automorphism of L∗ restricts to an automorphism of K∗. By

elementary equivalence it follows that the restriction τ |K is an automorphism of K. By

Proposition 3.4.1, τ |K = Frob−r|K for some r ∈ Z. Thus (Frobrτ)|K =id. �

We presented the proof using [15] Theorem 9.1, because that theorem is applicable to

all perfect, bounded PAC fields. The above theorem should, thus, generalise to the

perfect, bounded PAC context.

3.5 An Asymptotic theory for finite difference fields

In this section, let m and l be coprime natural numbers with l > 1, and let p be a

prime. We show that the class of structures C(m,l,p) = {(Fpkl+m ,Frobk) : k ∈ N)} forms

a 1-dimensional asymptotic class.
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We begin with an important remark:

REMARK 3.5.1 Lemma 2.3.9 holds for the theory PSF(m,l,p). The reader may

verify that the proof transfers. Furthermore, suppose that θ(x, y) is a formula in

Ldiff , and length(x)=n. The reader may verify that for any (M,σ) an ω1-saturated

model of PSF(m,l,p), and y0 ∈ P (θ)(M), then degσ(θ(x, y0)) ≤ n · l. This follows

from the fact that for any single element y1 ∈ M , then σl(y1) = yp
−m

1 , and so

aclσ(y1) ⊆ aclalg(y1, σ(y1), . . . , σl−1(y1)). It is a simple corollary that σ-degree is uni-

formly definable in PSF(m,l,p). �

DISCUSSION/DEFINITION 3.5.2 There is an operator Fix from difference

fields (K,σ) to difference fields (M, τ) whose automorphism satisfies Frobmτ l=id:

M = {x : x ∈ K ∧ σl(x) = xp
−m}

Fix((K,σ)) = (M,σ|M )

In the consistency proof for PSF(m,l,p), it was shown that if (K,σ) |= ACFAp then

Fix((K,σ)) |= PSF(m,l,p).

We may specify specific subdomains of the domain of all difference fields where we may

define an inverse to Fix:

Let Dp be the class of difference fields {(F̃p,Frobk) : k ∈ N}. The class C(m,l,p) is

uniformly interpretable in Dp by the formula Fix(Frobmσl) : σl(x) = xp
−m

. More-

over, there is a perfect matching Fix : Dp 7→ C(m,l,p) such that Fix((F̃p,Frobk)) =

(Fplk+m ,Frobk). Let Fix−1 denote the inverse of this matching Fix on the subdomain

Dp of difference fields. For convenience, we may abuse notation and also let Fix−1

denote the embedding Fix−1: Fplk+m ⊂ F̃p.

Let us consider the subdomain of the class of difference fields given by non-principal ul-

traproducts Dp,npu = {
∏
k∈N(F̃p,Frobk)/ ∼: ∼ a non-principal ultrafilter on N}. Then

Fix(
∏
k∈N(F̃p,Frobk)/ ∼) =

∏
k∈N(Fplk+m ,Frobk)/ ∼, and so if we let Cm,l,p,npu =

{
∏
k∈N(Fplk+m ,Frobk)/ ∼: ∼ a non-principal ultrafilter on N}, then Fix is a perfect

matching between Dp,npu and Cm,l,p,npu. So we may define Fix−1 on this sub-domain
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of difference fields, and again, abusing notation, also let Fix−1 denote the containment

Fix−1:
∏
k∈N Fplk+m/ ∼ ⊂

∏
k∈N F̃p/ ∼.

There is a map Fix : Ldiff 7→ Ldiff such that: either (i) let (M,σ) ∈ C(m,l,p) and

(K,σ) ∈ Dp be such that Fix((K,σ)) = (M,σ), or (ii) let (M,σ) ∈ Cm,l,p,npu and let

(K,σ) ∈ Dp,npu be such that Fix((K,σ)) = (M,σ). Then, for any formula ϕ(y) ∈ Ldiff ,

and any tuple a ∈M

(M,σ) |= ϕ(a) ⇐⇒ Fix−1((M,σ)) |= ϕFix(Fix−1(a))

In particular, there is a bijection between ϕ(a) in (M,σ) and ϕFix(Fix−1(a)) in Fix−1((M,σ)).

The operator Fix is defined inductively on complexity. If ϕ(x) is a quantifier-free for-

mulae, then ϕFix(x) = ϕ(x) ∧ (x ∈ Fix(Frobmσl)). For a formula ϕ(x) = ∃z(ψ(x, z)),

then ϕFix(x) = ∃z(z ∈ Fix(Frobmσl) ∧ ψFix(x, z)); for a formula ϕ(x) = ¬ψ(x), then

ϕFix(x) = ¬ψFix(x).

PROPOSITION 3.5.3 The first criterion for asymptotic classes is satisfied by the

class C(m,l,p).

PROOF Let ϕ(x, y) be a ∅-definable family of sets in Ldiff . By Remark 3.5.1, the sub-

family of ϕ(x, y) given by ϕn(x, y) : ϕ(x, y) ∧ degσ(ϕ(x, y)) = n is uniformly definable

in PSF(m,l,p). Also, the bound in 3.5.1 shows that there are only finitely many such

sub-families ϕn(x, y). Theorem 2.1.1 shows that for each ϕn(x, y) the class C(m,l,p) has

asymptotic estimates that satisfy the first criterion for asymptotic classes: to obtain a

set of asymptotic estimates over C(m,l,p) for ϕn(x, y) one may use the estimates over Dp

for ϕFix
n (x, y) obtained in 2.1.1. Since there are only finitely many sub-families ϕn(x, y),

there are in total a finite number of dimension/measure estimates over C(m,l,p) for the

family ϕ(x, y). We deduce that the first criterion for asymptotic classes is satisfied by

C(m,l,p). �

REMARK 3.5.4 The estimates obtained in 2.1.1 are shown there to be uniformly

definable over the class Dp. That is, the second criterion for asymptotic classes is

satisfied over Dp. It is not immediate that the second criterion is satisfied over C(m,l,p).
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DEFINITION 3.5.5 Suppose (M,σ) |= PSF(m,l,p), (K,σ) |= ACFAp, and Fix((K,σ)) =

(M,σ). We call (M,σ) an embedded model of PSF(m,l,p), or say that M is embedded

in K.

REMARK 3.5.6 Let T be a completion of PSF(m,l,p). Then by Theorem 3.3.15,

there is a model (M,σ) of T of the form (M,σ) =
∏
k∈N(Fplk+m ,Frobk)/ ∼, where the

right hand side is a non-principal ultraproduct of finite difference fields. Let (K,σ) =∏
k∈N(F̃p,Frobk)/ ∼, Then (M,σ) =Fix((K,σ)). So, for any completion T of PSF(m,l,p)

there is an embedded model of T , where the embedded model (M,σ) ∈ Cm,l,p,npu, and

the corresponding (K,σ) ∈ Dp,npu.

PROPOSITION 3.5.7 Let ϕ(x, y) be a ∅-definable family of σ-closed sets. Then the

second criterion for asymptotic classes is satisfied in C(m,l,p) with respect to the family

ϕ(x, y).

PROOF Let θ(x, y) = ϕFix(x, y). Now suppose that θn,µi are from Theorem 2.1.1

relative to this choice of θ(x, y).

Consider the statement:

(*) there is a formula ϕn,µi definable without parameters such that for any (K,σ) ∈

Dp,npu, and (M,σ) =Fix((K,σ)), then

ϕFix
n,µi(K) = θn,µi(K) (3.11)

Suppose we can show (*): by Remark 3.5.6, we know that there are embedded models

(M,σ) ∈ Cm,l,p,npu for every completion of PSF(m,l,p). Since PSF(m,l,p) is the almost

theory of the class C(m,l,p) we may then deduce that equation 3.11 is satisfied in all

but finitely many (M,σ) ∈ C(m,l,p), with (K,σ) =Fix−1((M,σ)) (considering Fix as a

bijection between Dp and C(m,l,p)). Thus to prove the proposition it suffices to show (*).

To ease notation, we let (K,σ) ∈ Dp,npu and we let (M,σ) = Fix((K,σ)) be an embed-

ded model of PSF(m,l,p). We shall also quantify over all ‘pairs (K,M)’; this means to
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quantify over all pairs where (M,σ) ∈ Cm,l,p,npu is embedded in (K,σ) ∈ Dp,npu.

Now examine the ‘construction’ of θn,µi : the construction depends only on the fact that

a finite set of properties of algebraic sets and σ-closed sets are uniformly stratifiable

across algebraically closed fields and models ofACFA. Suppose Γ = {γ1(v1), γ2(v2), . . . γs(vs)}

is the set of formulae defining the necessary uniform stratifications to construct θn,µi .

Over all pairs (K,M), the families of algebraic sets/σ-closed sets that are stratified by

the formulae in Γ in order to construct θn,µi are all families of the form A(x, y) where

we may uniformly, definably specify that y ∈ M (see Propositions 2.3.11 and 2.3.13).

So it follows that we may assume that uniformly over pairs (K,M), for each 1 ≤ r ≤ s,

γr(K) takes its values in M . Thus, it suffices to show that for each 1 ≤ r ≤ s, there is

a formula δr(vr) such that over all pairs (K,M), γr(K) = δFix
r (K).

The first Γ-formula is θn(x, y). Let ϕn(x, y) be the sub-family of ϕ(x) of σ-degree n,

where σ-degree is measured in PSF(m,l,p). For a pair (K,M) and a notion of model

theory or notion we have defined in this chapter, let us denote by superscript K if the

notion is taken to be relative to (K,σ), and by superscript M , if it is taken to be rela-

tive to (M,σ). Let X ⊆ M . The reader may verify that aclσK(X) = aclKalg(aclM
σ

(X)),

and it follows that for y ∈M degMσ (y/X) = degKσ (y/X). Thus θn(x, y) = ϕFix
n (x, y).

Relative to θn(x, y), the formulae in 2.3.3, extn(ϕ), algn(ϕ), shiftn(ϕ) and 4n(ϕ)

are quantifier-free and without parameters. Since θn(x, y) is uniformly a family of

sets in M with M -parameters, the reader may verify that the proofs of Propositions

2.3.11 and 2.3.13 with respect to θn work equally well relative to the sets extMn (ϕ) :

extn(ϕ) ∧ (σl(x) = xp
−m

), algMn (ϕ): algn(ϕ) ∧ (σl(x) = xp
−m

), and shiftMn (ϕ):

shiftn(ϕ) ∧ (σl(x) = xp
−m

). Now extMn (ϕ), algMn (ϕ) and shiftMn (ϕ) are relevant sets

in Γ, and clearly they are all Fix-images.

The reader may verify that there is a G ∈ N such that the proofs of Propositions

2.3.11 and 2.3.13 work equally well with the L-rational points of the algebraic sets Bj

of Proposition 2.3.11, where L is the extension of M of a fixed finite degree G. Note
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that G is chosen so that uniformly over all pairs (K,M), the irreducible components

of the Bj are all definable over L. In Propositions 2.3.11 and 2.3.13, the Bj are made

use of in the following way:

(i) to uniformly count the number of irreducible components Vi of the Bj which are of

algebraic dimension n, and contain a generic point of the form (x, σ(x)).

(ii) to stratify the irreducible components counted in (i) by the degree of π1 and the

inseparable degree of π2.

There are formulae γi and γii in Γ that achieve (i) and (ii). We must find their Fix-

preimages:

For (i) we may parameter interpret the degree G extension of any M |= PSF(m,l,p).

Call such an extension L. We may then interpret the set of L-rational points of Vi.

Using parameters, we may define any generic extension τ of σ to L. Then we may

parameter define an embedding 4n ∩ Vi(L) ⊆ Vi(L), where 4n is with respect to

τ . By Remark 3.5.1, we may then parameter define the set of components Vi where

dimalg(4n(ϕ) ∩ Vi(L)) = n, and this serves to parameter define those irreducible com-

ponents Vi which have a generic point of the form (x, τ(x)). Now, we must get rid of

parameters:

Claim: Suppose M ∈ Cm,l,p,npu, and L is its degree G-extension. Suppose that τ is

an extension of σ, generic over M . Then any point (x0, τ(x0)) ∈ Vi(L) is in fact,

(x0, τ(x0)) ∈ Vi(M).

Proof of Claim: θ(x, y) is a family of M -rational sets. This is by construction; con-

cretely, we may assume that if x = (x1 . . . xr), then θ(x, y) contains the conjuncts

σl(xi) = xp
−m

i for each 1 ≤ i ≤ r. The reader verifies, by chasing the definitions of

shiftn(ϕ) and 4n(ϕ), and by noting that Fix(Frobmτ l(L)) = M , that this directly

implies the claim. End of Proof of Claim
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Thus, it does not matter how we extend σ to τ , as long as τ is a generic extension. The

set of generic extensions of σ to L is ∅-definable. As soon as counting the components

is independent of the parameters we choose to interpret the degree-G extension L of

M , and the extension of σ to an automorphism of L, the reader may easily verify that

we may dispense with parameters in our stratifications of (i). Thus there is a δi such

that γi(K) = δFix
i (K).

For (ii), these stratifications count the numbers of irreducible components of the Bj

which have particular ACF -stratifiable properties. Since these are properties in alge-

braically closed fields, the formulae involved are quantifier-free. We deduce that there

is a δ such that γii(K) = δFix
ii (K). �

THEOREM 3.5.8 C(m,l,p) is a 1-dimensional asymptotic class.

PROOF Propositions 3.5.7 and 3.5.3 show that C(m,l,p) forms an asymptotic class

relative to families of σ-closed sets. In terms of Definition 2.4.2 we let R(x) := x = x.

Then C(m,l,p) satisfies Elwes’ definition for asymptotic classes (Definition 2.4.2) with re-

spect to R(x) for all families of σ-closed sets. We may immediately apply Lemma 2.4.3

to deduce that C(m,l,p) satisfies Elwes’ definition for asymptotic classes with respect to

R(x) for all families of quantifier-free sets.

Analogously to methods used in [10] Theorem 3.7, Theorem 3.3.14 part (ii) reduces

proving that C(m,l,p) is an asymptotic class to proving the theorem for families θ(x, y)

where

θ(x, y) :=
r∨
i=1

ri∧
j=1

∃t(fij(x, t, y)) (3.12)

t is a single variable, fij(x, t, y) is quantifier-free, and there is an e ∈ N such that for any

M ∈ C and x0, y0 ∈ M we have |fij(x0,M, y0)| ≤ e. Now, by the inclusion-exclusion

principle, it suffices to prove the theorem for any conjunction
∧r
j=1 ∃t(fj(x, t, y)). But

then let s = t1, . . . , tr. We have
r∧
j=1

∃t(fj(x, t, y)) ⇐⇒ ∃s(
r∧
j=1

fj(x, tj , y)) (3.13)

But let ψ(xs, y) :=
∧r
j=1 fj(x, tj , y). Then there is an b ∈ N such that for any M ∈ C

and x0, y0 ∈M , |{s ∈M : M |= ψ(x0s, y0)}| ≤ b. So we may now apply Lemma 2.4.4
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to deduce that C(m,l,p) is an asymptotic class relative to all families of sets. All that

remains is to compute the dimension of the asymptotic class C(m,l,p).

Let Dp = {(F̃p,Frobk) : k ∈ N}. Inspection of 2.1.1 and 2.1.2 shows that for any

Ldiff -formula θn(x, y), and for all (F̃p,Frobk) ∈ Dp with finitely many exceptions, for

any y0 ∈ P (θ)(F̃p) the asymptotic estimate for |θn(x, y0)| chosen by Theorem 2.1.1 is

µ | Fix(Frobk)(F̃p) |n. Here, Fix(Frobk)(F̃p) is the fixed field in F̃p of the automorphism

Frobk, and it has cardinality pk; also, µ is one of a finite number of measure constants.

Proposition 3.5.7 shows that the estimates on C(m,l,p) arise from the estimates on Dp

from 2.1.1; in turn, the latter arise as combinations of estimates from Theorem 2.1.2.

That is, for any Ldiff -formula θ(x, y), and for all (Fpkl+m ,Frobk) ∈ C(m,l,p), for any

y0 ∈ P (θ)(Fpkl+m), the estimate we choose for |θ(Fpkl+m , y0)| is the estimate chosen in

2.1.1 for |θFix(F̃p,Fix−1(y0)|. Since | Fplk+m |= plk+m = pm· | Fix(Frobk) |l, by analogy

with the algebraically closed case, we might guess that the field Fpk was uniformly

definable inside (Fplk+m , σ) as the fixed field of σ, and consequently the dimension of

the asymptotic class is l. But in fact | Fix(Frobk)(F̃p)∩Fplk+m |≤ pm, so things are not

so simple.

The dimension of the class is 1. For suppose there was a 0-definable θ(x, y) with x one

variable, and a stratification formula θj,µ(y) with j < l. Then we can choose a non-

principal ultraproduct (M,σ) =
∏
i∈N(Fplki+m ,Frobki)/ ∼U , and a tuple a ∈ M such

that θj,µ(a) holds. So θ(x, a) ⊆M and degσ(θ(x, a)) = j < l = degσ(M). Also, (M,σ)

embeds into the ultraproduct (K,σ) =
∏
i∈N(F̃p,Frobki)/ ∼U , and (K,σ) |= ACFAp.

We then have degσ(θFix(K,Fix−1(a))) = j < l and θFix(K,Fix−1(a)) ⊆Fix(Frobmσl)(K).

But this contradicts the result [9] Proposition 7.1 (1). �
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4.1 Chapter Introduction

This chapter is divided into two principal sections. The first section is devoted to defin-

ing uniform parameter bi-interpretations, strongly uniform parameter bi-interpretations,

and proving a transfer result: a class of structures which is strongly, uniformly param-

eter bi-interpretable with an asymptotic class is itself an asymptotic class. Intuitively,

part (i) of 1.2.7 should hold for a class of structures C, if C’s members are bi-interpretable

structure by structure with the members of an asymptotic class D. Part (ii) of 1.2.7 is

harder to transfer, and we need uniformity in the family of bi-interpretations between

the members of C and the members of D in order to obtain a result. The necessary

uniformities are the basis of what is called ‘uniform parameter bi-interpretations’ and

‘strongly uniform parameter bi-interpretations’.

The second section provides technical tools for generating interpretations in the context

of groups. These tools are then applied in the following chapter.

4.2 Uniformly Parameter-Definable Bi-interpretations

.

NOTATION 4.2.1 To ease notation, all variable and constant references will be

to tuples. We need to specify what this means: in this section, from Definition 4.2.2

onwards, we treat parameter bi-interpretations. We use constant tuple variables such as

x and w throughout. This might seem peculiar since various parts of a bi-interpretation

require different length tuples: for instance, the interpretation of an n-ary relation

requires tuples of length n, but the isomorphism from the underlying set to its re-

interpretation within itself requires a 1 + k-length tuple, where k is the tuple-length

of the set in which this re-interpretation occurs. But we simply think of x as a large

enough ‘bank’ of free variables to code all possible parts of the bi-interpretation. There

is no need for a particular part to use all of the elements of x.

In this section, we shall be in the following situation: L is a language; C is a class of

L-structures and θ(x, y) is a formula in L. What will be important is to distinguish

between the free variable y which parameterises the family of sets θ(x, y) throughout C,
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and a particular set θ(x, ay) for some ay ∈ C. We need to carefully distinguish between

these two. For clarity, our notation will be as presented: ay will be a specific parameter

(and by our convention, in fact a tuple of parameters) in some member C ∈ C, where

its subscript y indicates the free variable in θ(x, y).

DEFINITION 4.2.2 Suppose D is a class of L-structures and suppose we have a

system of subsets S = {XD ⊆ Dm : D ∈ D}. We say S is ‘uniformly parameter-

definable’ or UPD if there is a 0-definable L-formula X(x, y) such that ∀D ∈ D,

XD = X(x, ay) for some tuple ay ∈ D. In such a situation we refer to the variable y

as the witnessing variable, and the variable x as the free variable. In the text we will

refer to UPD in several ways: an object is UPD (uniformly parameter-definable); we

give a UPD (uniform parameter definition); we UPD (uniformly parameter define).

DEFINITION 4.2.3 Suppose C is a class of L1-structures and D is a class of L2-

structures. The following define a uniform parameter bi-interpretation between D and

C:

1. L1 and L2 are finite languages. By this we mean that both L1 and L2 have a

finite number of relations and functions.

2. There is a perfect matching m from C to D.

3. There is a finite set J1 = {θ1i(x, y) : 1 ≤ i ≤ n1} of L1-formulas, and a finite set

J2 = {θ2i(w, z) : 1 ≤ i ≤ n2} of L2-formulas, an L1-definable function i1(x, y)

and an L2-definable function i2(w, z), such that:

let L1 be a finite list of the functions, relations, and constants of L1, and let

L2 be a finite list of the functions, relations, and constants of L2. We demand

there be bijections f1 : J1 ≡ L2 and f2 : J2 ≡ L1 and that for each matched pair

C ∈ C, D ∈ D such that D = m(C), there be a parameter bi-interpretation ΩC,D

between D and C, where there are tuples ay ∈ C and az ∈ D such that

(a) for each 1 ≤ i ≤ n1, θ1i(x, ay) defines the interpretation of f1(θ1i(x, y)) in

the bi-interpretation ΩC,D.

(b) for each 1 ≤ i ≤ n2, θ2i(w, az) defines the interpretation of f2(θ2i(w, z)) in

the bi-interpretation ΩC,D.
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(c) i1(x, ay) is the isomorphism between C and its re-interpretation C∗∗ in ΩC,D.

(d) i2(w, az) is the isomorphism between D and its re-interpretation D∗∗ in

ΩC,D.

In this context we shall say that ay ∈ C is a witness to the interpretation of m(C)

in C inside the uniform interpretation of D in C, and we denote this particular

interpretation m(C)(ay). We shall say that the pair ay, az is witness to the bi-

interpretation between D and C inside the uniform bi-interpretation between C

and D.

DEFINITION 4.2.4 Let D = m(C). Suppose that ay is a witness to the interpre-

tation of D inside C. Any such witness induces an interpretation of the language L2

inside Def(C). Let us describe some well-defined maps:

1. Any interpretation m(C)(ay) induces a map Intay : L2 7→ L1(C).

2. Let L1,c be the language L1 augmented by constant symbols for the uniform

interpretation of D in C. For a tuple ay ∈ C, let Subay : L1,c 7→ L1(C) be the

map obtained by setting the constant symbols c to be the tuple ay. Notice in

addition that Subay has a natural inverse defined on its image inside L1(C); the

inverse is obtained simply by replacing any occurence of the tuple ay with the

constant symbols c.

3. Similarly, we have the map P from L1,c to the zero definable parsed families of

L1. The map P simply replaces the tuple c with a tuple y and treats the resulting

y as a family parameter, and not a free variable.

4. There is a natural embedding as sets B : L2 ↪→ L1,c, such that for any witness

ay ∈ C to the interpretation of D in C, the equation Intay =Subay ◦B holds.

5. We also have the map I1 := P ◦ B. We note that for any witness ay we have

I1 = PSub−1
ay Intay . Notice that these various maps can be taken to respect

formula parsings.
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6. All of the above was done with respect to an interpretation m(C)(ay). We could

describe the same maps relative to C(az), az ∈ D, and d a tuple of constant

symbols adjoined to L2. We obtain:

(a) Subaz : L2,d 7→ L2(D);

(b) P2, which is a map from L2,d to the zero definable parsed families of L2.

(c) B2 : L1 ↪→ L2,d, such that for any witness az ∈ D to the interpretation of

C in D, the equation Intaz =Subaz ◦B2 holds.

(d) I2 := P2 ◦B2, such that for any witness az we have I2 = P2Sub−1
az Intaz .

NOTATION 4.2.5 We adopt the following notation for the rest of the section.

Suppose, as in Chapter 2, that the parameter set of a definable family θ(x, y) in a

structure C is denoted by P (θ)(C). Also, inside a parameter bi-interpretation between

structures C and D, denote by C∗ the interpreted version of C living in D and by

D∗ the interpreted version of D living in C. In these circumstances, call the actual

witnessing isomorphisms α : D 7→ D∗ and β : C 7→ C∗.

REMARK 4.2.6 Let us informally describe the purpose of the following Definition

4.2.7. Uniform parameter bi-interpretations are not natural in one striking sense. For

each pair of matched structures we need to specifically pick the parameters that make

the bi-interpretations. It would be convenient if we had a definable mechanism for

picking those parameters. Practically, we shall require such a mechanism in 4.2.10,

which is central to the thesis. With this purpose in mind, Definition 4.2.7 is natural.

In the following definition we inherit the notation of 4.2.3 and 4.2.5:

DEFINITION 4.2.7 Suppose C are D are uniformly parameter bi-interpretable.

Then they are strongly uniformly parameter bi-interpretable if additionally there is an

L1-formula Γ(y, t), where for any C ∈ C and D = m(C):

1. C |= ∃yt(Γ(y, t))

2. For ay, at ∈ C, we have C |= Γ(ay, at) if and only if there is a tuple of witnesses

ay, az to the bi-interpretation between C and D such that α(az) = at.

We call Γ(y, t) a defining formula for the strongly uniform parameter bi-interpretation.
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EXAMPLE 4.2.8 We now build up a very easy, informal example of a uniform and

strongly uniform parameter bi-interpretation. We do not give all the details, but focus

on the intuition. We begin with two very similar classes of structures: C = { pure sets

of size n2 + n : n ∈ N} and D = { pure sets of size n2 : n ∈ N}, both in the language

L of pure sets. We shall denote by cn the member of C with n2 + n elements, and by

dn the member of D with n2 elements. Then there is a natural matching m : C ≡ D

such that m(cn) = dn. At this stage there is no uniform parameter bi-interpretation

between the classes. As we progress we enrich the language L in various ways and

augment the C and D classes accordingly. Once we have augmented, then henceforth

the class and all references to the class suppose it to be in the richer language.

Suppose that we add two unary predicates B (for blue) and G (for green) to the lan-

guage of pure sets to make LB,G, and we augment C to be a class of LB,G-structures.

We do this so that for each n ∈ N, cn has exactly n2 green elements and exactly n

blue elements, and no element is both blue and green. At this stage it is possible to

uniformly interpret D in C with our matching m. We simply interpret dn as the green

elements of cn. However there is no way of uniformly interpreting C in D.

Suppose now that we add a single binary relation E(x, y) to the language of pure sets

to make LE and we augment D to be a class of LE structures. We do this so that for

each n ∈ N, E is an equivalence relation on dn with exactly two equivalence classes:

one of size n, and the other of size n2 − n. Then consider the following formula in LE ,

in the single variables y, x1 and x2:

θblue(x1, x2, y) =def x1 = y ∧ ¬E(x2, y) (4.1)

θgreen(x1, x2, y) =def x2 = y (4.2)

θ(x1, x2, y) =def θblue(x1, x2, y) ∨ θgreen(x1, x2, y) (4.3)

For each dn let ay ∈ dn be an element such that the equivalence class E(ay) has size

n2 − n. Then we may define cn in dn via the formula θ(x1, x2, ay), the green elements

being interpreted by θgreen(x1, x2, ay), and the blue elements by θblue(x1, x2, ay). If we

had picked ay such that E(ay) has size n, then we cannot interpret cn in this way. Is

our uniform parmater bi-interpretation complete? No, we have new considerations.
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Firstly, how can we now uniformly interpret D in C? I cannot see a natural way to do

so that yields a uniform parameter bi-interpretation. Roughly speaking, this is because

from the point of view of the uniform bi-interpretation, we shall need a uniformly de-

finable bijection between the green elements of cn and the underlying set used in the

interpretation of dn. Since there are effectively no uniformly definable maps from blue

elements to green elements without bounded domain, essentially green elements need

to form the domain of the intepretation of dn. But then it becomes very difficult to

interpret the equivalence class of size n2 − n.

Secondly, the interpretation is not strongly uniform in the sense of 4.2.7. This is because

we have no zero definable mechanism to distinguish between the two equivalence classes.

To solve the first issue we augment LB,G by a binary predicate s(x, y), to make LB,G,s,

where s stands for ‘section’. We augment C to a class of LB,G,s-structures by inter-

preting s in each cn as an injective function from the blue elements into the green

elements. To solve the second problem, let us add to LE a unary predicate R (for red),

and augment D to be a class of LE,R-structures. Let us do this so that for each dn,

exactly 3 elements of dn, all in the equivalence class of size n2 − n, are coloured red;

this is a bit arbitrary, but is merely an example of what can work. We may now exhibit

a strong uniform bi-interpretation between C as a class of LB,G,s-structures, and D as

a class of LE,R structures:

• We interpret dn in cn via the following LB,G,s-formulae, where the parameter

y = y1y2y3 is a tuple of 3 elements:

Underlying set =def G(x) (4.4)

E(x1, x2, y) =def G(x1) ∧ G(x2) ∧ [(∃wz(x1 = s(w) ∧ x2 = s(z)))

∨ (6 ∃w(x1 = s(w)) ∧ 6 ∃z(x2 = s(z)))] (4.5)

R(x, y) =def 6 ∃v[y1 = s(v) ∨ y2 = s(v) ∨ y3 = s(v)] ∧ ∨3
i=1x = yi

(4.6)

• We interpret cn in dn via LE,R-formulae given in expressions 4.1, 4.2, 4.3, and
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the following formula to interpret the section s:

s : θblue 7→ θgreen : (y, x, y) 7→ (x, y, y) (4.7)

• We include the uniform isomorphisms for completeneness. On the C-side the

uniform isomorphism is

iC, green elements : x 7→ (x, y, y) (4.8)

iC, blue elements : x 7→ (y, s(x), y) (4.9)

On the D-side the uniform isomorphism is

iD : x 7→ (x, y, y) (4.10)

All that remains is to give the formula giving the strong uniform parameter bi-

interpretation. In the uniform parameter bi-interpretation, the parameters are

used only in defining cn in dn. The parameters are the three red elements of dn;

these are always going to be interpreted in the complement of the s-image of the

blue elements in the green elements of cn. But any such three elements will suffice

to construct the parameter bi-interpretation. Thus, the formula, in y empty and

t = t1t2t3, is:

Γ(y, t) =def t1 6= t2 ∧ t1 6= t3 ∧ t2 6= t3 ∧ 6 ∃t[∨3
i=1ti = s(t)] (4.11)

REMARK 4.2.9 It is not obvious that Definition 4.2.7 is symmetric. Nor do we re-

quire it to be symmetric. The exact direction of the uniform parameter bi-intepretation

would always be clear from the language of the formula Γ(y, t). However, for clarity,

where necessary we shall say explicitly ‘strongly uniformly parameter bi-intepretable

on the C-side’, to mean that the formula Γ(y, t) is in L1. We shall always use this defi-

nition in connection with Proposition 4.2.10 and Lemma 4.2.11 below. To understand

the nature of the definition it is important to consider it in relation to those two results:

In Proposition 4.2.10, we see that if D is an asymptotic class, and C is strongly uni-

formly parameter bi-interpretable with D on the C-side, then C is an asymptotic class.

Here, we see the lack of symmetry. We know that D is asymptotic; since we have a
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sequence of parameter bi-interpretations, we know that asymptotic estimates for de-

finable sets in C exist in some form or another. We need additional uniformities in

order that part (ii) of Definition 1.2.7 is satisfied for families of sets in C. A uniform

parameter bi-interpretation almost does the trick: now families of sets θ(x, y) in C are

interpreted inside families of sets θ∗(w, zy1) in D. At this stage, we attempt to define

the asymptotic estimates on C by stating:

‘θn,µ(x, y) is the sub-family of θ(x, y) where:

if ay ∈ P (θn,µ)(C) and if az ∈ D witnesses the uniform parameter bi-interpretation

between C and D, then θ(x, ay) is interpreted by θ∗(w, azβ(ay)), and azβ(ay) ∈

P (θ∗n,µ)(D).’

The problems are that we need to state this all in L1, and we need to be able to identify

the parameters az which actually witness the bi-interpretation. The reader can see this

as the purpose of Γ(y, t).

PROPOSITION 4.2.10 1. Suppose D is an n-dimensional asymptotic class in a

language L2. Suppose C is a class of L1-structures and suppose C is strongly uniformly

parameter bi-interpretable with D on the C-side. Then C is an asymptotic class.

2. In the situation in part 1, suppose that D is a 1-dimensional asymptotic class. In

the notation of 4.2.3, suppose that the perfect matching of the bi-interpretation is m.

Suppose that ϕ(w, z) is a family of L2-sets such that for any C ∈ C there is az ∈ m(C),

and in the strong uniform parameter bi-interpretation, the underlying set of C is inter-

preted in m(C) by ϕ(w, az). Suppose that in D, the family of sets ϕ(w, z) is uniformly

of a fixed dimension d. Then C is a d-dimensional asymptotic class, and d is the min-

imal possible asymptotic dimension for C.

PROOF 1. Let ψ(u, v) ∈ L1 be an arbitrary family of sets. Suppose C ∈ C and D ∈ D

and D = m(C), where m is the matching of the strong uniform bi-interpretation. Let

Γ(y, t) be an L1-formula defining the strong uniform parameter bi-interpretation. as in

Definition 4.2.7. Consider the ∅-definable family ψ1(u1, zv1) = I1(ψ(u, v)) in L2, where
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I1 is as in 4.2.4. Our notation is intended to convey that the map I1 includes the uniform

interpretation parameter tuple z as a family parameter; if az ∈ D is a witness to the in-

terpretation of C in D inside the uniform parameter bi-interpretation, then ψ1(u1, azv1)

becomes a family of sets in this interpreted version of C. Since D is an asymptotic class,

the parameter set zv1 is partitionable by formulae ψ1,ni,µi(zv1) for 1 ≤ i ≤ i0 that give

uniform, asymptotic estimates across the class D for the cardinalities of the sub-families

that they define. The reader should note that if length(u1) = l, then for each 1 ≤ i ≤ i0

we have 0 ≤ ni ≤ n · l. Now consider the family ψ2(u2, ytv2) = I2(ψ1(u1, zv1)), and

the definable-without-parameters formula ψ2,ni,µi(ytv2) = I2(ψ1,ni,µi(zv1)). As above,

our notation is intended to convey that the map I2 includes the uniform interpretation

parameter tuple y as a family parameter.

We may suppose that the family of sets that define the underlying set of C in D is

given by the formula ϕ(w, z). Let us suppose that I2(ϕ(w, z)) = ϕ2(w2, yt), and that

the parameter set z of ϕ(w, z) is partitionable by formulae ϕnj ,νj (z) for 1 ≤ j ≤ j0

that give uniform, asymptotic estimates across the class D for the cardinalities of the

sub-families that they define. We also have that ϕ2,nj ,νj (yt) = I2(ϕnj ,νj (z)).

Then for any C ∈ C and ayat ∈ C, if C |= Γ(ay, at), then by chasing the definitions we

see that the following happen:

1. D may be interpreted inside C as D∗, and C may be interpreted inside D as C∗.

There are isomorphisms α : D ∼= D∗ and β : C ∼= C∗. These isomorphisms have

specific properties described in the next items.

2. For av ∈ C, then as a set β(ψ(u, av)) = ψ1(u1, α
−1(at)β(av)), and αβ(ψ(u, av)) =

ψ2(u2, ayatαβ(av)), and the maps β and αβ are of course bijections. Also,

C |= ψ2,ni,µi(ayatαβ(av)) if and only if D |= ψ1,ni,µi(α
−1(at)β(av)).

Next, αβ(C) = α(ϕ(w,α−1(at))) = ϕ2(w2, ayat), and this is of course a bijection.

Also, C |= ϕ2,nj ,νj (ayat) if and only if D |= ϕnj ,νj (α
−1(at)).
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3. Let us consider the formula

Φnj ,νj (yt) =def Γ(y, t) ∧ ϕ2,nj ,νj (yt) (4.12)

If C |= Φnj ,νj (ayat), it follows from our analysis in the previous item and the

definition of asymptotic classes 1.2.7 that:

| |C| − νj |m(C)|
nj
n || = o(|m(C)|

nj
n ) (4.13)

where the little o notation has meaning as we take the limit |m(C)| −→ ∞. We

see equation 4.13 as a ‘calibration ’ equation: it tells us how to rescale mea-

sure/dimension units in the D-class, to measure/dimension units in the C-class.

4. Remembering that the composite isomorphism αβ is definable in the uniform

parameter bi-interpretation via the formula i1(·, ay), let us next consider the

formula:

Ψ1,ni,µi(y, t, v) =def Γ(y, t) ∧ v2 = i1(v, y) ∧ ψ2,ni,µi(ytv2)

Ψ0,ni,µi(v) =def ∃yt(Ψ1,ni,µi(y, t, v)) (4.14)

If C |= Ψ1,ni,µi(av), then it follows from our analysis in the previous items and

the definition of asymptotic classes 1.2.7 that:

||ψ(C, av)| − µi|m(C)|
ni
n || = o(|m(C)|

ni
n ) (4.15)

where the little o notation has meaning as we take the limit |m(C)| −→ ∞. We

see equation 4.15 as the raw measure/dimension definition for a C-set interpreted

in the D-class.

We now combine the raw measure/dimension definition with the calibration equa-

tion. Let nij = ni
nj

and let µij = µi

ν

ni
nj
j

. Consider the formula:

Ψnij ,µij (v) = ∃yt[Ψ1,ni,µi(y, t, v) ∧ Φnj ,νj (yt)] (4.16)

Claim: Suppose C |= Ψnij ,µij (av). Then

||ψ(C, av)| − µij |C|nij | = o(|C|nij ) (4.17)
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Proof of Claim: Firstly, let R = RC be the remainder term such that

|C|nij = ν
nij
j |m(C)|

ni
n · (1 +

R

νj |m(C)|
nj
n

)nij (4.18)

We know from equation 4.13 that as |m(C)| −→ ∞, R

νj |m(C)|
nj
n

−→ 0. The reader

can verify the following crude bounds easily:

∀r ∈ R, 0 ≤ r ≤ 1 : (1 + r)nij ≤ 1 + nij · 2nij−1r (4.19)

∀r ∈ R, 0 ≤ r ≤ 1 : (1− r)nij ≥ 1− nij · 2nij−1r (4.20)

It follows that there is c0 ∈ R+ such that:

ν
nij
j |m(C)|

ni
n − c0R|m(C)|

ni−nj
n ≤ |C|nij ≤ νnijj |m(C)|

ni
n + c0R|m(C)|

ni−nj
n

(4.21)

Rearranging, we have:

|C|nij − c0R|m(C)|
ni−nj
n

ν
nij
j

≤ |m(C)|
ni
n ≤ |C|

nij + c0R|m(C)|
ni−nj
n

ν
nij
j

(4.22)

which we can conveniently substitute into equation 4.15 to obtain:

µi

ν
nij
j

|C|nij−(R1+
µic0R|m(C)|

ni−nj
n

ν
nij
j

) ≤ |ψ(C, av)| ≤
µi

ν
nij
j

|C|nij+(R1+
µic0R|m(C)|

ni−nj
n

ν
nij
j

)

(4.23)

where we know from equation 4.15, that as |m(C)| −→ ∞, R1

|m(C)|
ni
n
−→ 0, and

again, we know from equation 4.13 that as |m(C)| −→ ∞, R

νj |m(C)|
nj
n

−→ 0.

Define ε =def R1 + µic0R|m(C)|
ni−nj
n

ν
nij
j

. It is clear from equation 4.21 that as

|m(C)| −→ ∞ then |C|nij

|m(C)|
ni
n
−→ ν

nij
j . Combining this with the asymptotic

property of the remainder R stated above, we have that as |C| −→ ∞, ε has

o(|C|nij ). End of Proof of Claim

The reader can verify that the sets {Ψnij ,µij (v) : 1 ≤ i ≤ i0, 1 ≤ j ≤ j0} stratify

the family ψ(u, v).

The dimension of the asymptotic class is apparent from our analysis. The di-

mensions nij always have as their denominator a number nj , where nj is one of
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the possible dimensions of the family ϕ(w, z), the family of L2-sets in which

the underlying sets of the members of C are interpreted in the uniform pa-

rameter bi-interpretation. Suppose the possible dimensions of ϕ(w, z) in D are

{nj : 1 ≤ j ≤ j0}. Let nC =
∏j0
j=1 nj . Then nC is a possible dimension for the

asymptotic class C, and the minimal possible dimension of C is a divisor of nC .

2. C is an asymptotic class by Part 1. Furthermore, applying the last paragraph

of the proof of Part 1, the minimal possible dimension of C is a divisor of d. But

since D is uniformly interpretable in C, the underlying sets of the members of D are

uniformly interpreted in C. If, asymptotically, the underlying sets of the members of

C are d-dimensional in C, then conversely, the underlying sets of the members of D

are asymptotically 1-dimensional in C, and the result follows. (For the flavour of the

counting that needs to be done for a thorough verification, the reader may look at our

very thorough proof of Part 1; this verification is similar.) �

LEMMA 4.2.11 Suppose C and D are uniformly bi-interpretable classes. Inherit the

notation of 4.2.3, 4.2.4 and 4.2.7. If in addition:

1. There is a formula ζ(z), where for any D ∈ D, then ζ(D) is non-empty, and for

az ∈ D with ζ(az), then the L1-structure determined by J2(az) is isomorphic to

m−1(D).

2. There is a formula η(y), where for any C ∈ C, then for ay ∈ C, η(ay) holds if

and only if the L2-structure determined by J1(ay) is isomorphic to some member

of D.

Then C and D are strongly uniformly bi-interpretable.

Proof Notice that the assumption for η is different to that for ζ; we do not know a

priori that for ay ∈ C with η(ay), then J1(ay) interprets m(C), only that it interprets

some member of D; but we do know that if J1(ay) interprets a member of D then η(ay)

holds. We make no claim that ζ captures all possible bi-interpretation parameters.

Let us suppose that I2(θ2i(w, z)) = θ2,2i(w2, y, t) for each 1 ≤ i ≤ n2, and that

I2(i2(w, z)) = i2,2(w2, y, t). Then, since C andD are uniformly parameter bi-interpretable,
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for any C ∈ C, there are tuples ay, at ∈ C, such that J1(ay) interprets D = m(C) as

D∗, I2(J2)(ayat) re-interprets C inside D∗ as C∗∗ say, and i2,2(w2, ay, at) witnesses an

isomorphism between α(D∗∗) and α(D). Now let I2(ζ(z)) = ζ2(y, t). Notice that by

the assumptions of the lemma we may also assume that C |= ζ2(ay, at), and C |= η(ay).

By 4.2.3, the languages L1 and L2 are finite, so we may define the following inside L1:

Γ(y, t) = {yt : J1(y) interprets an L2-structure; I2(J2)(yt) interprets an L1-structure;

i1(x, y) is an isomorphism of L1-structures; i2,2(w2, y, t) is an isomorphism of L2-

structures; ζ2(y, t) and η(y) hold. }.

Since Γ(ay, at) holds, we see that C |= ∃yt(Γ(y, t)). For any ayat ∈ C with C |=

Γ(ay, at), it is clear that we have a parameter bi-interpretation between C and some

L2-structure D′. But Γ(y, t) ⇒ η(y), so D′ ∈ D. Also, Γ(y, t) ⇒ ζ2(y, t), and so D′

must be reinterpreting m−1(D′). But then C = m−1(D′) and so D′ = m(C) = D.

Thus we have a strong uniform parameter bi-interpretation. �

Lemma 4.2.11 will be used extensively in the next chapter. In general, the least obvious

requirement in applying the lemma will be its clause 1. This inspires the following

definition:

DEFINITION 4.2.12 Suppose the class C is UPD in class D. Again, inherit

the notation of 4.2.3, 4.2.4 and 4.2.7. Then C is uniformly interpreted in D via the

L2-formulae J2 = {θ2i(w, z) : 1 ≤ i ≤ n2}. Suppose that there is a formula ζ(z), where

for any D ∈ D and az ∈ D with ζ(az), then J2(az) interprets m−1(D). Then we say C

is strongly UPD in D.

4.3 Results on Generating Asymptotic Classes of Groups

4.3.1 GS1 Theories

Let us note that the dimension of the dimension/measure pair introduced in 1.2.8 is

not necessarily the S1-rank. Furthermore, a measurable theory is not necessarily an

S1-theory, according to Hrushovski’s Definition 4.2 in [15]; we have already described

this in 1.2.5, but for convenience we transcribe that definition here:
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DEFINITION 4.3.1 We define a rank S1(θ) of a first order formula θ in an ℵ0-

saturated structure. S1(θ) > 0 iff θ has infinitely many solutions. S1(θ) > n + 1 iff

there exists a sequence bi of indiscernibles (over a set of definition for θ) and a formula

ϕ(x, y), such that:

1. S1((ϕ(x, b1) ∧ ϕ(x, b2)) ≤ n.

2. S1(θ ∧ ϕ(x, bi)) > n for each i.

If not S1(θ) > n and n is the least such, we say that S1(θ) = n. If q is a partial type,

S1(q) = min{S1(θ) : q implies θ}. S1(a/B) = S1(tp(a/B)).

The reader will notice that in a measurable theory dim has very similar properties to

the S1-rank: it increases in the same manner, and it is definable. The reason such a

theory is not necessarily an S1-theory is that the S1-rank may differ from dim, and the

S1-rank itself may not be definable. This is the case with the theory ACFA. We would

like to use the useful group generation theorems available for supersimple groups, in

our context. This induces us to define GS1-theories (generalised S1-theories):

DEFINITION 4.3.2 Let M be an ℵ0-saturated model and let dim be a function

from Def(M) to N. Let θ be a formula. Then dim is a generalised S1-rank if

1. dim(θ) > 0 iff θ has infinitely many solutions.

2. dim (θ) > n + 1 if there exists a sequence bi of indiscernibles (over a set of

definition for θ) and a formula ϕ(x, y) such that (i) dim(ϕ(x, b1) ∧ ϕ(x, b2)) ≤ n;

and (ii) dim(θ ∧ ϕ(x, bi)) > n for each i.

If such a dimension dim is understood we may refer to it as a GS1-rank for M. Con-

versely, if we refer to the GS1-rank of a structureM or one if its definable subsets then

implicit is the assumption that M is equipped with a dimension dim which satisfies

the two clauses.

For a partial type P , dim(P )=min{dim(θ) : P ` θ}.

A complete first order theory T is a GS1-theory with respect to dim if:
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1. dim is a generalised S1-rank.

2. dim is monotonic.

3. For every formula ϕ(x, y) and integer m, {b : dim(ϕ(x, b)) = m} is a ∅-definable

set.

The next lemma shows that finite GS1-rank implies finite D-rank. The Shelah D-rank

is described in [29] 5.1.13.

LEMMA 4.3.3 (i) Let M |= T be an ℵ0-saturated model, where T is a GS1-theory

with respect to dim. Suppose that {bi : i ∈ ω} is an indiscernible sequence of M-

elements over the defining parameters a of θ(x, a), and suppose that ϕ(M, bi) ⊆ θ(M, a)

for all i. Suppose that {ϕ(M, bi) : i ∈ ω} is inconsistent. Then dim(θ(M, a)) >

dim(ϕ(x, bi)).

(ii) If T is a GS1-theory, then for any definable set X, dim(X) ≥ D(X).

PROOF Notice that by the definability of rank property for GS1-theories, dim is

preserved under automorphisms.

Say that dim(ϕ(x, bi)) = d. By indiscernibility and the inconsistency assumption,

let us assume that {ϕ(M, bi) : i ∈ ω} is k-inconsistent. It follows that there is

1 ≤ c < k such that dim(∩ci=1ϕ(x, bi)) = d and dim(∩c+1
i=1ϕ(x, bi)) < d. Now let

χj = ∩c−1
i=1ϕ(x, bi) ∩ ϕ(x, bj). Then by indiscernibility, and the preservation of dim

under automorphisms, dim(χj) = d for all j ≥ c. By monotonicity of dim we have

dim(χj ∩ χl) < d for all l 6= j ≥ c. It follows that dim(θ(M, a)) > d by the definition

of GS1-rank.

We show that D(X) ≥ r implies dim(X) ≥ r. This is done by induction on r. The

case r = 0 is obvious.

Suppose D(X) ≥ r + 1. Then we may suppose that {bi : i ∈ ω} is an indiscernible

sequence of M-elements over the defining parameters of X, ϕ(M, bi) ⊆ X for all i,
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D(ϕ(M, bi)) ≥ r and {ϕ(M, bi) : i ∈ ω} is k-inconsistent for some k ∈ N . Then by

induction we have dim(ϕ(M, bi)) ≥ r, and so applying the previous part of the lemma

we have dim(X) ≥ r + 1. �

THEOREM 4.3.4 (i) Let T be a measurable theory, with measure dimension func-

tion dim. Then T is a GS1-theory with respect to dim.

(ii) The almost theory of an asymptotic class is a GS1-theory. In particular, the theory

PSF(m,l,p) is a GS1-theory.

PROOF (i) he reader can recall Definition 1.2.8 for measurable structures and theories.

There are three clauses for T to satisfy to be a GS1-theory with respect to dim. Condi-

tion (3), that the measure dimension is definable, follows from axiom (iib) of Definition

1.2.8. Condition (2), the monotonicity of dim, is a direct application of axiom (iii) for

measurable structures. We must now show that dim is a generalised S1-rank.

Suppose that dim is not a generalised S1-rank. Thus, there is M |= T where M is

ℵ0-saturated, n ∈ N, a ∈ M , θ(x, y) and ψ(x, y) formulas, θ = θ(M,a) such that

dim(θ) = n, {bi : i ∈ N} a sequence of M -elements indiscernible over a, ψi = ψ(M, bi)

such that dim(ψi ∩ ψj) < n for all i 6= j ∈ N, and dim(θ ∩ ψi) ≥ n for all i ∈ N.

Let us suppose that the measure function for the measurable model M is µ, and let

us suppose that µ(θ) = r > 0. Let χi = θ ∩ ψi. Since χi ⊆ θ, it is an easy deduction

from axiom (iii) for measurable structures that dim(χi) = n. Since the sequence bi is

indiscernable over a, we may assume that for all i ∈ N, that µ(χi) = s > 0. Now for

any j ∈ N, let Yj = ∪ji=1χi.

Claim: For j ∈ N, we have dim(Yj) = n and µ(Yj) = js.

Proof of Claim: The dimension claim is clear from axiom (iii) for measurable

structures, since we have χ1 ⊆ Yj ⊆ θ, and dim(χ1) = dim(θ) = n. We prove the

second statement by induction on j. For j = 1 it is clear. Now Yj+1 = Yj ∪ χj+1 =
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Yj
∐
χj+1\(Yj ∩ χj+1). Notice that by axiom (iii) for measurable structures,

dim(Yj ∩ χj+1) = dim(∪ji=1χi ∩ χj+1)

= max(dim(χi ∩ χj+1) : 1 ≤ i ≤ j)

< n

Since dim(χj+1) = n, axiom (iii) for measurable structures now implies that µ(χj+1\(Yj∩

χj+1)) = µ(χj+1) = s, and so we now have:

µ(Yj+1) = µ(Yj
∐

χj+1\(Yj ∩ χj+1))

= µ(Yj) + µ(χj+1\(Yj ∩ χj+1)))

= js+ s

= (j + 1)s

and our induction proof is complete. End of proof of claim

Now pick j0 > r
s . Then dim(θ)= dim(Yj0) = n, µ(Yj0) = j0s > r = µ(θ), but Yj0 ⊆ θ.

Clearly this contradicts axiom (iii) for measurable structures.

(ii) The almost theory of an asymptotic class is a measurable theory. So from part

(i), it must be a GS1-theory. We saw in Theorem 3.3.15 that PSF(m,l,p) is the almost

theory of the class of difference fields Cm,l,p. �

COROLLARY 4.3.5 (i) Every GS1-theory is supersimple.

(ii) Every measurable theory T is supersimple.

PROOF (i) By 4.3.3 (ii) the D-rank is finite. But by [19] Section 6, if D-rank is

finite, then S1-rank, SU -rank and D-rank agree for all formulas. So this means that a

GS1-theory has finite SU -rank and is, by[29] 5.1.5, supersimple.

(ii) This now follows directly from 4.3.4 and part (i). �
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4.3.2 Basic lemmas for uniform parameter bi-interpretations between

finite simple groups and finite and finite difference fields

This is a technical section detailing group generation lemmas and definable isomor-

phism extension lemmas of which we shall make use.

FACT 4.3.6 By 4.3.5, the basic facts about group generation in supersimple theories

hold in GS1-theories. In particular, Theorem 5.4.5 and Remark 5.4.7 of [29] hold. They

are a version of Zilber’s Indecomposability Theorem in the context of groups with simple

theories. We report these results in appropriate versions for groups in GS1-theories,

and prove our versions making very great use of Theorem 5.4.5 and Remark 5.4.7 of

[29] and their proofs.

THEOREM 4.3.7 Let G be a definable group in a GS1-theory. Let Xi be definable

subsets of G (i ∈ I). Then there exists a definable subgroup H of G such that:

(i) H ⊆ X±1
i1
X±1
i2
. . . X±1

im
for some i1, . . . , im ∈ I (every element of H is a product of

a bounded number of elements of the Xi’s and their inverses.)

(ii) Xi/H is finite for each i ∈ I.

PROOF Firstly, Theorem 5.4.5 gives this result except for one important detail:

the group H given by that theorem is hyperdefinable. However, examining the proof

of Theorem 5.4.5, it is clear that the H given there is type-definable. So we have a

type-definable group H. By Corollary 4.3.5, we are working in a supersimple theory.

Thus, by Theorem 5.5.4 of [29], H = ∩i∈IHi, where the Hi are definable groups.

Since H ⊆ X±1
i1
X±1
i2
. . . X±1

im
, we have H ∩ G\X±1

i1
X±1
i2
. . . X±1

im
= ∅. Thus ∩i∈IHi ∩

G\X±1
i1
X±1
i2
. . . X±1

im
= ∅, and so by compactness there is a finite set I0 ⊆ I such that

∩i∈I0Hi∩G\X±1
i1
X±1
i2
. . . X±1

im
= ∅. Let H0 = ∩i∈I0Hi. Then H0 witnesses our theorem.

�

Here is our version of Remark 5.4.7 of [29]:
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PROPOSITION 4.3.8 In the last theorem assume that the collection of sets Xi is

invariant under a set of automorphisms A. Then H may be chosen in 4.3.7 such that

H is A-invariant.

PROOF Since we work in a GS1-theory, we may take an H of some maximum possible

GS1-rank m that witnesses Theorem 4.3.7. Consider the class Θ := {θ(H) : θ ∈ A}.

Any member of Θ witnesses Theorem 4.3.7, and they all have GS1-rank m.

Claim: The members of Θ are uniformly commensurable.

Proof of claim: If not, then by compactness there are two members say H1, H2 ∈ Θ

such that H1/(H1 ∩ H2) = ∞. We may re-apply Theorem 4.3.7 to the set of groups

{H1, H2}. The result is a definable group H such that H satisfies Theorem 4.3.7 with

respect to the Xi, and such that H1/(H ∩H1) and H2/(H ∩H2) are both finite. This

means that the GS1-rank of H ∩H1 is also m.

Now suppose that H/(H1 ∩H) is finite. Then H ∩H2/(H1 ∩H ∩H2) would be finite.

Since H2/(H ∩ H2) is finite it would follow that H2/(H1 ∩ H ∩ H2) would be finite,

and so also H2/(H1 ∩ H2) would be finite. The latter is against our assumption, so

we deduce that H/(H1 ∩H) is infinite. This means that the GS1-rank of H is strictly

greater than the GS1-rank of H1∩H. But the latter is m. We then have a contradiction

to the maximality of m as a rank of a group witnessing Theorem 4.3.7 with respect to

the Xi. End of proof of claim

We may now apply the Bergman-Lenstra Theorem as reported in [29] as Theorem

4.2.4. We apply it to the uniformly commensurable family of subgroups Θ. It yields

a definable group N ⊆ 〈Xi〉, such that N is A-invariant. This is exactly a definable

group we are seeking.�.

We refer to the above collectively as Hrushovski’s Group Generation Lemma, orHGGL.

In fact, additional information about the HGGL-generated groups can be extracted

from Hrushovski’s work in [15] and from [29], and we wish to make use of that infor-

mation. So we present this material:
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PROPOSITION 4.3.9 Let G be a group definable inside a model with GS1-theory.

Let B = 〈Xi : i ∈ I〉 be the group generated by the Xi inside G. Then there is a defin-

able group H so that H / B, Xi/H is finite for each i ∈ I, and H ⊆ X±1
i1
X±1
i2
. . . X±1

il

for some ij ∈ I.

PROOF Let J = {bXib
−1 : b ∈ B, i ∈ I}. Then we may apply Theorem 4.3.7

and Proposition 4.3.8 to conclude that there is a definable, normal H / B, where

H ⊆ Y ±1
i1
Y ±1
i2

. . . Y ±1
im

, and each Yij = bXijb
−1 for some ij ∈ I and bj ∈ B. Now

bj ∈ B, so bj ∈ X±ib,j,1 . . . X
±1
ib,j,mj

. Thus

H ⊆ X±1
ib,1,1

. . . X±1
ib,1,m1

X±1
i1
X±1
ib,1,1

. . . X±1
ib,1,m1

. . . X±1
ib,m,1

. . . X±1
ib,m,mm

X±1
im
X±1
ib,m,1

. . . X±1
ib,m,mm

Theorem 4.3.7 and Proposition 4.3.8 also give that Xi/H is finite for each i ∈ I, so this

concludes the proof. �

We begin by giving two immediate consequences of the HGGL.

LEMMA 4.3.10 Suppose G is a simple group and is definable in a model with GS1-

theory. Suppose G interprets an isomorphic copy of itself G∗ via an Lgroups(G)-interpretation.

Suppose that we have an isomorphism i : G ∼= G∗. Suppose X ⊆ G is an Lgroups(G)-

definable infinite subset of G, and suppose the restriction i|X is Lgroups(G)-definable.

Then i is Lgroups(G)-definable.

PROOF Let J = {gXg−1 : g ∈ G}. Clearly, if i|X is Lgroups(G)-definable, then i|X−1

is Lgroups(G)-definable. Also, i|gXg−1 is Lgroups(G)-definable for any g ∈ G. So i|Y is

Lgroups(G)-definable, where Y = X±1
1 . . . X±1

l is some product of sets Xi ∈ J . By 4.3.9,

there is such a Y and a definable subgroup H, such that H ⊆ Y , X/H is finite, and

H / G. Since X/H is finite and X is infinite, it follows that H 6= 1. So H = G. So

Y = G, and i = i|G = i|Y . Thus, i is Lgroups(G)-definable. �

Using the above lemmas, we may simplify the criteria for existence of a bi-interpretation

between a simple group G, and an infinite structure S such that S has a GS1-theory .

LEMMA 4.3.11 Suppose G is a simple group. Let S be an infinite structure with

GS1-theory, and suppose S interprets G. Also, suppose that G interprets the structure
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S. Suppose that the underlying set of the interpretation of S in G is a subset of G,

and that there is a LS-definable isomorphism between S and its re-interpretation in G.

Then S and G are bi-interpretable.

PROOF Let us draw a diagram and explain what we are given:

GU ⊇ SU −→ G2

↘ iG ↘ iG

↗ iS ↗ iS

SD −→ GD ⊇ S2

1 The diagram has several copies of G and several copies of the structure S. The top

row shows G (copy GU ) containing a definable copy of S (copy SU ). We witness the

isomorphism between S and SU by isomorphism iS : SD ∼= SU . The bottom row shows

S (copy SD) interpreting a definable copy of G (copy GD). We witness the isomorphism

between G and GD by isomorphism iG : GU ∼= GD. The isomorphism iS induces an

interpretation of a copy of G (copy G2) inside SU ; G2 may be seen as a re-interpretation

of GU inside itself. Similarly, the isomorphism iG induces an interpretation of a copy

of S (copy S2) inside GD; S2 may thus be seen as a re-interpretation of SD inside

itself. The conditions of the lemma state that the composite isomorphism iGS = iG ◦ iS

may be taken to be definable in the structure S. Suppose that it is defined by the

LS-formula θiGS (x, y, aS) for some aS ∈ S. Let us suppose that θ1,iGS (x1, y1, iS(aS)) is

the interpretation of θiGS (x, y, aS) inside the interpretation of SU inside GU . To prove

that S and G are bi-interpretable, we need to show that the composite isomorphism

iSG = iS ◦ iG is definable inside the group GU .

We begin by showing that the restriction iSG|SU is definable in GU . Let aw ∈ SU , and

let ax ∈ SD be such that aw = iS(ax). Then

iG(aw) = iG ◦ iS(ax)

= {!x ∈ S2 : θiGS (x, ax, aS)}
1The subscripts U and D in the diagram are for up and down, and are merely to separate out

different interpretations of S and G.
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Thus

iS ◦ iG(aw) = iS ◦ iG ◦ iS(ax)

= iS({!x ∈ S2 : θiGS (x, ax, aS)})

= {!x ∈ G2 : θ1,iGS (x1, iS(ax), iS(aS))}

= {!x ∈ G2 : θ1,iGS (x1, aw, iS(aS))}

This shows that the restriction iSG|SU is definable inGU by the formula θ1,iGS (x1, y1, iS(aS)).

But now the result follows from Lemma 4.3.10. �

We now give a uniform parameter version of Lemma 4.3.10:

LEMMA 4.3.12 Let C be a class of finite simple groups. Let D be a class of finite

structures in a finite language, and suppose that the almost theory of D is a GS1-theory.

Suppose that C and D are matched via a matching m, and that we have a collec-

tion Ω := {ΩC,D : C ∈ C, D = m(C)} of parameter bi-interpretations between pairs

(C,m(C)).

Additionally, suppose that Ω is known to satisfy all the requirements to be a uniform

parameter bi-interpretation, except for the clause of 4.2.3 demanding for class C uni-

formly definable isomorphisms between groups and their re-interpretations. Suppose

that for any pair C ∈ C, D ∈ D with C = m(D), that the underlying set of the in-

terpretation of D in C inside ΩC,D, is a subset of C. Then C and D are uniformly

parameter bi-interpretable using Ω.

PROOF With respect to m and J , all that is missing is to show the uniformly defin-

able isomorphism for structures and their re-interpretations in C.

We proceed by assuming the lemma is not true, and deriving a contradiction. A

contradiction to the lemma involves an infinite set of tuples {(Cj , Dj , C
∗
j , C

∗∗∗
j , D∗∗j , ij) :

j ∈ ω}, where

• Cj ∈ C and Dj = m(Cj).
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• C∗j is the interpretation of Cj in Dj , inside ΩCj ,Dj .

• C∗∗∗j is the re-interpretation of C∗j inside itself, inside ΩCj ,Dj .

• D∗∗j ⊆ C∗j is the re-interpretation of Dj inside itself, inside ΩCj ,Dj .

• ij is the isomorphism between C∗ and C∗∗∗ inside ΩCj ,Dj .

• The ij is not Lgroups-uniformly parameter definable across {C∗j : j ∈ ω}.

• However, the restrictions ij |D∗∗j are uniformly Lgroups-parameter definable across

{C∗j : j ∈ ω}.

To derive a contradiction, it suffices to show that the ij are Lgroups-uniformly parameter

definable across {C∗j : j ∈ ω}. We choose to work with C∗j and not the Cj because the

former come embedded inside the Dj , and so we may apply our results about groups

definable inside models with GS1-theories. The reader can verify that we still obtain

results about Lgroups- definability.

Now we may take a non-principal ultraproduct of the Dj and work inside this structure.

We obtain a tuple (D,C∗, C∗∗∗, D∗∗, i), where

• D =
∏
j∈ωDj/ ∼.

• D∗∗ =
∏
j∈ωD

∗∗
j / ∼.

• C∗ =
∏
j∈ω C

∗
j / ∼.

• C∗∗∗ =
∏
j∈ω C

∗∗∗
j / ∼.

• C∗ and C∗∗∗ are isomorphic as groups via an isomorphism i, but this isomorphism

may not be Lgroups-parameter definable. However, D∗∗ ⊆ C∗ and i|D∗∗ is Lgroups-

parameter definable.

Thus we may apply Lemma 4.3.11 to deduce that i is Lgroups-parameter definable

via some formula θi(x, y, aC∗). Now suppose that the ultraproduct element aC∗ has

a representative (aj : j ∈ ω). Then it follows that for all but finitely many j ∈

ω, θi(x, y, aj) defines ij . The exceptions may be explicitly handled and we have the

necessary contradiction. �
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REMARK 4.3.13 Lemma 4.3.12 will be crucial in the following chapter. We will

apply the lemma to classes C of finite simple groups of a fixed Lie Type and Lie Rank,

and to classes D, where for a given C, we choose D to be the class of fields of definition

or difference fields of definition of the groups in C. For ease, let us refer to the latter

two types of structure as just ‘definition fields’. Lemma 4.2.11 will also be critical: we

shall work to show uniform parameter bi-interpretations between the classes of group

and fields, and then apply 4.2.11 to show that we have strong uniform parameter bi-

interpretations.
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5.1 Chapter Introduction

In this chapter we parse the finite simple groups of Lie type into various classes. For

a given class C of Chevalley groups in our parsing, we exhibit a strong uniform bi-

interpretation with a class of pure finite fields. Then, for a given class C of twisted

groups in our parsing, we exhibit a strong uniform bi-interpretation with a class of

its ‘definition fields’. Definition fields will be expansions of pure fields in which the

members C are naturally interpretable. It transpires that they are either pure fields or

difference fields.

As a result of our constructed bi-interpretations, we can apply Proposition 4.2.10 and

the theory of finite fields, and the theory of finite fields with a fractional power of the

Frobenius, to conclude that our classes of finite simple groups are asymptotic classes.

The chapter is organised as follows: section 5.2 constructs strong uniform parameter

bi-interpretations for Chevalley groups. Then section 5.3 presents strong uniform pa-

rameter bi-interpretations for twisted simple groups where all roots are of the same

length. Finally, in section 5.4, the case of twisted simple groups with roots of differing

lengths is presented.

5.2 Chevalley Groups

5.2.1 Background

This is a technical section that we need; it does contain some results and notation

around Chevalley groups, but Chapter 16 of [1] would serve much better as an intro-

duction, and [4] contains all the details.

DISCUSSION 5.2.1 We begin by presenting our notation, and some facts about

the algebraic objects we use. We follow [4]. We shall work over a family C of Chevalley

groups of a fixed Lie type and Lie rank. We begin by defining the underlying Lie

algebra uniformly. The trick is the use of the Chevalley basis. Suppose L is a simple

Lie algebra over C. Suppose Φ is a root system for L and L = H ⊕
∑

r∈Φ Lr is a

Cartan decomposition of L. Let Π be a fundamental system in Φ. Basis elements of
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H (hr : r ∈ Π) and basis elements for the root spaces (er : r ∈ Φ) may be picked, so

that the brackets of all pairs of these basis elements are integral combinations of basis

vectors. The coefficients of multiplication are explicitly stated in [4] Theorem 4.2.1.

Such a basis is known as a Chevalley basis. With this presentation, we may extend the

basis elements only by coefficients in Z, and view the resulting object as a Lie algebra

over Z. Call that object LZ. Now let K be an arbitrary field. Clearly there are natural

homomorphisms from LZ into Lie algebras LK = K ⊗Z LZ. The bracket [, ] on LK

is uniformly definable as the bilinear extension of the bracket on the Chevalley basis

elements. Thus, the Lie algebras LK are uniformly definable over all fields. Relative

to this UPD of the LK , the group of linear automorphisms GL(LK) is also UPD over

all fields.

Now we review the definition of the root subgroups. For each er above, and ζ ∈ K, the

mapping ad ζer is a nilpotent derivation of LK . It is easy to see from the description

of the ad action on the basis of a Cartan decomposition that there is an upper bound

n ∈ N so that for all K, and all er ∈ LK we have (ad er)n = 0. This means that the

root subgroups

Xr(K) = {exp(ad ζer) = 1 + ζ ad er +
ζ2(ad er)2

2!
+ . . .

ζn−1(ad er)n−1

(n− 1)!
: ζ ∈ K}

are UPD over all K. We shall frequently work with the root subgroups and we use the

following notation:

xr(ζ) =def exp(ad ζer)

Now for K a finite field, and L a simple Lie algebra over C, the Chevalley group L(K) is

the group of linear isomorphisms of LK generated by the root subgroups Xr(K) above

([4] 4.4).

Since we work over classes of fixed Lie type and Lie rank, we shall at times talk about

an ambient L, Φ, Π, and W (the Weyl group of L). In the case of Φ and Π recall

that we may fix a Chevalley basis over Z, and then Φ and Π may be given a concrete

meaning with respect to this basis.

We now present a further collection of facts and lemmas which we use. The notations

used in the following ‘fact’ will be used in the constructions of the bi-interpretations.
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FACT 5.2.2 We assume we have a field K, a Chevalley group G = L(K) and its

adjoint representation on a Lie algebra LK . We assume LK comes equipped with a

root system Φ and a root ordering ≺. The root ordering ≺ is not arbitrary; we assume

it is of the specific kind described in [4] Chapter 2, and from Φ and ≺, we assume that

we have the associated fundamental system of positive roots Π. We also take W to be

the Weyl group for Φ.

1. For a fixed root r ∈ Φ we denote the group A1(K)r to be the group 〈Xr, X−r〉.

In chapter 6 of [4] a homomorphism hSL2 from SL2(K) onto 〈Xr, X−r〉 is con-

structed. We have

hSL2 :

 1 t

0 1

 7→ xr(t)

and

hSL2 :

 1 0

t 1

) 7→ x−r(t)

In the notation of Carter, for the diagonal elements

hSL2 :

 t 0

0 1
t

 7→ hr(t)

We denote by Hr the group comprising the elements hr(t) for t ∈ K×. Of course

Hr is isomorphic to K×, and Xr to K+. There are other important elements that

can be defined via the homomorphism hSL2 :

nr(t) =def hSL2

 0 t

−t−1 0


We also define

nr =def nr(1)

An important group will be N , the subgroup of G generated by H and the

elements nr for all r ∈ Φ.

2. In [4] 7.1 the group H is defined as the product of all the Hr for r ∈ Φ. It is a

commutative group, commonly known as a maximal torus.

3. By definition, U is the group generated by the roots subgroups Xr for r ∈ Φ+. It

is a fact that U is a maximal unipotent subgroup of G. Suppose that r1, r2, . . . , rl
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are the members of Φ+ in their ≺-order. Theorem 5.3.3 of [4] shows that each

element x ∈ U is expressible uniquely as a product string xr1(t1)xr2(t2) . . . xrl(tl).

Call this a Chevalley expression for x, and call U = Xr1Xr2 . . . Xrl the Chevalley

cell presentation for U .

Let V be the opposite group to U . That is, V is the group generated by the root

subgroups Xr for r ∈ Φ−. Of course, V is also a maximal unipotent subgroup of

G, and has a Chevalley cell presentation.

4. In [4] section 7.1 it is shown that

hr(λ)xs(t)hr(λ)−1 = xs(λArst) (for r, s ∈ Φ+, λ, t ∈ K×)

Recall that Ars = 2(r,s)
(r,r) where (r, s) is the Killing form on the roots r, s. The

tables of Ars values are on pp. 45 of [4]. In particular, H acts on root subgroups

by conjugation. From here on, unless specifically stated, when we refer to the

action of H-elements on U or its subgroups, we mean by conjugation. Now let

P = Z[Φ]. Each h ∈ H induces a character χ : P 7→ K× such that χ may be

defined via the action of h on the root subgroups:

xs(χ(s) · t) = hxs(t)h−1 (for s ∈ Φ, xs(t) ∈ Xs)

and so χ(s) = λArs when h = hr(λ).

5. Let w ∈ W . We let Ψ1 = {r ∈ Φ+ : w(r) ∈ Φ+}, and Ψ2 = {r ∈ Φ+ : w(r) ∈

Φ−}. We let U+
w =

∏
r∈Ψ1

Xr and U−w =
∏
r∈Ψ2

Xr. Using the commutator rules

for multiplication of root elements (see [4] section 5.2), it is easy to see that U+
w

and U−w are subgroups of U .

Theorem 7.2.2 of [4] shows there is a natural homomorphism N � W with kernel

H. For each w ∈ W we pick a representative preimage nw ∈ N , with n1 = 1.

Then the unique Bruhat decomposition (corollary 8.4.4 of [4]) states that each

element of G has a unique expression in the form g = u1hnwu where u1 ∈ U ,

h ∈ H, w ∈W and u ∈ U−w .
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6. Let r, s ∈ Φ and t, l ∈ K×. The following formulae all come from [4]:

nr(1) = nr ([4] 6.4.4)

nr(−1) = n−1
r ([4] 6.4.4)

nr(t) = xr(t)x−r(−t−1)xr(t) ([4] 6.4.4)

hr(t) = nr(t)nr(−1) ([4] 6.4.4)

nrxs(t)n−1
r = xwr(s)(ηr,st) ([4] 7.2.1)

Here ηr,s = ±1. Some facts about ηr,s are presented in [4] 6.4.3 - in particular

ηr,sηr,−s = 1. So ηr,s = ηr,−s = 1 or ηr,s = ηr,−s = −1. We also immediately

deduce from these facts that:

nr(1)2 = nr(−1)−2 = hr(−1)−1 = hr(−1)

and we now use them again to calculate nr(t)hs(l)nr(t)−1:

nr(t)hs(l)nr(t)−1

= hr(t)nrxs(l)x−s(−l−1)xs(l)xs(−1)x−s(1)xs(−1)n−1
r hr(t)−1

= hr(t)((nrxs(l)n−1
r )(nrx−s(−l−1)n−1

r )(nrxs(l)n−1
r ) ·

(nrxs(−1)n−1
r )(nrx−s(1)n−1

r )(nrxs(−1)n−1
r ))hr(t)−1

= hr(t)(xwr(s)(ηr,sl)xwr(−s)(−ηr,−sl
−1)xwr(s)(ηr,sl) ·

xwr(s)(−ηr,s)xwr(−s)(ηr,−s)xwr(s)(−ηr,s))hr(t)
−1

= hr(t)nwr(s)(ηr,sl)nwr(s)(−ηr,s)hr(t)
−1

= hwr(s)(l)

Thus we deduce that for any w ∈W and nw ∈ N we have nwhs(l)n−1
w = hw(s)(l).

By Section 7.1 of [4] we have that hs(l) induces the character r 7→ l
2

(s,r)
(s,s) where

(, ) is the Killing form and r ∈ Φ. Similarly hw(s)(l) induces the character r 7→

l
2

(w(s),r)
(w(s),w(s)) .

REMARK 5.2.3 Exceptions: Suppose we have a uniform parameter bi-interpretation/strong

uniform parameter bi-interpretation between classes C and D, except for a finite number

of exceptions. Specifically, suppose C = Cexceptions
∐
Cuniform, D = Dexceptions

∐
Duniform,

|Cexceptions| = |Dexceptions| = l for some l ∈ N, we have a matching m between C
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and D such that m(Cexceptions) = Dexceptions, and we have a uniform parameter bi-

interpretation/strong uniform parameter bi-interpretation between classes Cuniform and

Duniform via the matchm. Then we may extend the uniform parameter bi-interpretation/strong

uniform parameter bi-interpretation to one between C and D via the match m. This

is because the languages are finite by definition, and because asymptotic classes treat

finite structures, definition formulae can always be augmented to treat special, excep-

tional pairs explicitly. On the other hand, if |Cexceptions| = ∞, then, of course, the

appropriate Cuniform/Duniform subclasses must be specified.

5.2.2 Statement of theorem

Let us begin by discounting the few non-simple Chevalley groups. In all the following

statements, the following groups are excluded: A1(2) and A1(3), C2(2) = B2(2) and

G2(2), and as demanded in Remark 5.2.3, we also explicitly deem |K| > 3.

With these provisos, the theorem we prove is:

THEOREM 5.2.4 Let CL,n be the class of all finite Chevalley groups of a fixed Lie

type L and fixed Lie rank n. For G ∈ CL,n , G = L(K) and G may be matched uniquely

with K. With this matching, CL,n is strongly uniformly parameter bi-interpretable with

the class of finite fields.

The cardinalities of the Chevalley groups have been explicitly determined. Conse-

quently, the first part of the lemma is clear, since for q 6= q′ inspection shows |L(Fq)| 6=

|L(Fq′)|.

We now use Lemma 4.3.12 to show the second part of the theorem. In the following

sections we break the task into three parts:

1. In 5.2.3 we give the uniform interpetation of the group L(K) in the field K.

2. In 5.2.4 we give the uniform interpretation of the field K in the group L(K).

3. In 5.2.4 we also give the uniform isomorphism between K and its re-interpretation

inside itself.

4. In 5.2.5 we apply Lemmas 4.2.11 and 4.3.12 to conclude the theorem.
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5.2.3 Chevalley groups: Interpreting L(Fq) in Fq uniformly

In Discussion 5.2.1 we showed that LK and thus GL(LK) are UPD over the class of

fields. We also demonstrated that the root subgroups were UPD. Now by definition

the root subgroups generate the simple group G = L(K).

If we fix the algebra L, and let the finite field K vary, explicit bounds may be given for

the length of product strings of root subgroup elements needed to generate the entire

group L(K). These uniform bounds on generation of L(K) by root subgroups show

that the class CL,n is uniformly interpretable inside the class of finite fields. We now

give a proof of the existence of these bounds:

LEMMA 5.2.5 There is an m ∈ N and a map ϕ : {1, 2, . . .m} 7→ Φ such that for

every G = L(K) ∈ CL,n

G =
m∏
i=1

Xϕ(i)(K)

PROOF By the Bruhat decomposition ([4] 8.4.4) we need to show only an upper

bound for generation of H, U , V (the opposite group to U) and N (see 5.2.2 (1) for

details about these groups). For U and V the necessary result is 5.2.2 (3).

If we follow [4] section 6.1 1 , we see that any element x ∈ SL2(K) may be written x = 1 ζ1

0 1

  1 0

ζ2 1

  1 ζ3

0 1

, or x =

 1 0

ζ1 1

  1 ζ2

0 1

  1 0

ζ3 1

  1 ζ4

0 1


for ζ1, ζ2, ζ3, ζ4 ∈ K. Thus by 5.2.2 (1) every element hr(ζ) is generated in a product of

four root subgroups. Since we have assumed that the Lie rank of G is n, it follows that

any element of H is the product of at most n elements of type hr(ζ) for some r ∈ Φ and

ζ ∈ K. So it now follows that every element of H is generated in a product of 4n root

subgroups. From our description these 4n subgroups are UPD across CL,n. In fact,

this is virtually the same proof as for N . We use the natural isomorphism N/H ∼= W ,

where W is the Weyl group of L. The element nr(t) ∈ 〈Xr, X−r〉 (see [4] pp.96 for

1In fact, there is a typo in [4] 6.1.1: its final matrix equation should read

 α 0

0 α−1

 = 1 0

α−1 − 1 1

  1 1

0 1

  1 0

α− 1 1

  1 −α−1

0 1


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a precise definition), and so it is lies in the product of at most four root subgroups.

However, the image of nr(t) in W is a reflection in the hyperplane perpendicular to r.

These reflections generate W ; W is finite and so its generation by reflections certainly

has an absolute upper bound! Since H is boundedly generated, and every element of

W has a representative generated by a product of boundedly many root subgroups,

it follows that N is also generated by a product of boundedly many root subgroups.

Again the definition of these root subgroups is UPD over CL,n and this follows from

our description. �

REMARK 5.2.6 In terms of Definition 4.2.12, 5.2.5 means that the Chevalley groups

are strongly UPD in finite fields.

5.2.4 Chevalley groups: Interpreting Fq in L(Fq) uniformly and the

uniform isomorphism from a field of definition to its re-interpetation

In this section all we are given is CL,n, the family of Chevalley groups of type L. We

will produce a uniform parameter interpretation of the class of finite fields inside CL,n.

We work with a typical G ∈ CL,n, and for some adjoint representation of G let us fix

a root system Φ, a root ordering ≺, a positive system Φ+ and a fundamental basis Π.

We denote the underlying field of G as K. I make no claim here of uniform definability.

All we are doing is fixing an adjoint representation of G as in the previous subsection.

Our first aim in this subsection is to interpret K uniformly over CL,n. Here is the key

lemma:

LEMMA 5.2.7 There is m ∈ N such that if |K| > 7, H is uniformly parameter

definable over CL,n, as the intersection ∩mi=1CG(hi) of centralisers of some m of its

non-trivial elements.

PROOF Since we have assumed at the beginning of this section that |K| > 3, there

is ζ ∈ K× such that ζ2 6= 1. Let r ∈ Φ. Then by 5.2.2 (4), hr(ζ) ∈ H is an

element with non-trivial conjugation action on the root subgroup Xr. Now clearly

H ≤ CG(hr(ζ)). Suppose g ∈ ∩r∈Φ+CG(hr(ζ)). Fix an arbitrary r ∈ Φ+ and for

ease denote hr(ζ) by h. Then by the unique Bruhat decomposition (5.2.2 (5)) we may
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write g = u1h1nwu where where u1 ∈ U , h1 ∈ H, w ∈ W and u ∈ U−w . Now no-

tice that hgh−1 = hu1h
−1 · h1 · hnwh−1huh−1. Since H / N (5.2.2 (5)) we may write

hnwh
−1 = h2nw′ for some w′ ∈W . Further, by 5.2.2 (4), hu1h

−1 ∈ U and huh−1 ∈ U−w .

So by the unique Bruhat decomposition we have the equations u1 = hu1h
−1, h1 = h1h2,

nw = nw′ and u = huh−1. Thus h2 = 1. Also, by the Chevalley expression for elements

of U (5.2.2 (3)) and the fact that h acts non-trivially on the root subgroup r, it is

immediate that neither u nor u1 have an r-component in their Chevalley expression.

Since r was chosen arbitrarily, we conclude that u = u1 = 1 and g ∈ N .

Claim: For each n ∈ N\H there is h ∈ H such that n does not commute with h.

Proof of Claim: Let n ∈ N\H. Suppose n maps to w under the natural homomor-

phism from N to W . Let s, r ∈ Φ. Then by 5.2.2 (6), we have (i) nhs(l)n−1 = hw(s)(l),

(ii) hs(l) induces the character χ where χ(r) = l
2

(s,r)
(s,s) and (iii) hw(s)(l) induces the char-

acter χ′ where χ′(r) = l
2

(w(s),r)
(w(s),w(s)) . Now if n and hs(l) commute then hs(l) = hw(s)(l)

and χ = χ′. In Section 3.4 of [4] it is shown that |2 (r,s)
(r,r) | ≤ 3. Thus if χ = χ′ then l must

satisfy an equation lk1−k2 = 1, where 0 ≤ k1 = 2 (s,r)
(s,s) ≤ 3 and 0 ≤ k2 = 2 (w(s),r)

(w(s),w(s)) ≤ 3.

Select l∗ to be a generator for the cyclic group K×. Then we see that for |K| > 7, if

χ = χ′, then for (l∗)k1−k2 = 1, we require that k1 = k2, and so (s,r)
(s,s) = (w(s),r)

(w(s),w(s)) for

all r ∈ Φ. Since w is an isometry of L as a Euclidean space, and since Φ spans L, we

have (s−w(s), v) = 0 for all v ∈ L. Setting v = s−w(s) we see that this implies that

s = w(s). Now there is some s∗ ∈ Φ such that w(s∗) 6= s∗. We conclude that n does

not commute with hs∗(l∗). End of proof claim

Since H is a normal commutative subgroup of N , it follows that for each non-identity

coset nH of the quotient group N/H, we may pick hw ∈ H such that hw does not

commute with any element of nH.

Thus for all finite fields with |K| > 7, H is UPD and is defined asH = ∩r∈Φ+CG(hr(ζ))∩w∈W

CG(hw). �

COROLLARY 5.2.8 H is uniformly definable in any family of finite Chevalley groups
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of fixed Lie type and Lie rank. So too are the root subgroups Xr.

PROOF The first statement follows by Lemma 5.2.7.

Referring to 5.2.2 (1) and (4), let us examine the conjugation action of Hr on a root

subgroup Xr: hr(ζ)xr(t)hr(ζ−1) = xr(ζ2t). It follows that Xr may be presented as the

union of at most two Hr-orbits. Since the whole of H acts on Xr via conjugation, it

is clear that Xr may be presented as the union of at most two H-orbits. We have now

seen that H is UPD, and so the root subgroups Xr are also UPD. �

We will use dot · notation for the H conjugation action on Xr. So for h ∈ H and

x ∈ Xr we denote hxh−1 by h · x.

We shall give a uniform parameter interpretation of K in L(K) in the case where Xr is

the union of two H-orbits. In most cases there is, in fact, only one orbit; we exhibit the

harder case. In such a case we must have [K× : (K×)2] = 2, since for any root r and

ζ, a ∈ K× we have hr(ζ) ·xr(a) = xr(aζ2). So pick ξ ∈ K× with ξ a non-square. We let

X×r = Xr\{0} and split X×r into two uniformly parameter definable subsets: H · xr(1)

and H · xr(ξ). We now give a uniform parameter definition for a multiplication ⊗ on

X×r . The parameters used are xr(ξ), xr(ξ2) and xr(1).

• If xr(a), xr(b) ∈ H · xr(1) then let ha be such that ha · xr(1) = xr(a) and let hb

be such that hb · xr(1) = xr(b). We define xr(a)⊗ xr(b) = hahb · xr(1).

• If xr(a) ∈ H · xr(1), xr(b) ∈ H · xr(ξ), then let ha be such that ha · xr(1) = xr(a)

and let hb be such that hb · xr(ξ) = xr(b). We define xr(a)⊗ xr(b) = hahb · xr(ξ).

• If xr(a) ∈ H ·xr(ξ), xr(b) ∈ H ·xr(ξ), then let ha be such that ha ·xr(ξ) = xr(a),

let hb be such that hb · xr(ξ) = xr(b) and let hc be such that hc · xr(1) = xr(ξ2).

We define xr(a)⊗ xr(b) = hahbhc · xr(1).

The reader will verify that this gives a well-defined, commutative multiplication on

X×r . The UPD field structure on Xr is given by (i) Xr is the underlying set, (ii) field

addition is the L(K) group operation, (iii) field multiplication is ⊗ defined above, (iv)

the additive identity is the identity of L(K), and (v) the multiplicative identity is the
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parameter xr(1).

We now give the UPD isomorphism from K to (Xr, ·,⊗, id(L(K)), xr(1)). This will

show that our interpreted structure is a field. Using 5.2.1 we see that there is a UPD

isomorphism i+ given by

i+ : K 7→ Xr(K); ζ 7→ exp(ad ζer) (ζ ∈ K)

We claim that the map i+ is a uniform definable isomorphism of fields. Certainly

it is an additive isomorphism. It is a routine check that i+|K× is a multiplicative

homomorphism. (To get the flavour, in the harder cases of twisted simple groups we

explicitly write the verifications; this is done at the end of subsection 5.3.4.)

5.2.5 Conclusion of proof of Theorem 5.2.4

REMARK 5.2.9 Suppose we have a class C, and a uniform parameter interpreta-

tion inside C of a class D cofinite in the class of finite fields, all via formulae J(x, y).

Then J(x, y) can be augmented to a set of formulae J∗(x, y) whereby for any C ∈ C

and ay ∈ P (J∗)(C), J∗(x, ay) interprets a member of D: all that is done is to only

accept those ay whereby the resulting J∗(x, ay) |= ‘Theory of Fields’, and the resulting

J∗(x, ay) is not isomorphic to any of the exceptions - those finite fields not in D. Note

that this is a result depending only on the finite axiomatisation of the Theory of Fields,

and the additional assumption that the set of exceptions is finite.

Our first step is to prove that a uniform parameter bi-interpretation exists between

CL,n and the class of finite fields. We aim to apply Lemma 4.3.12. But the results of

sections 5.2.4 and 5.2.3 put us exactly in a position to apply that lemma.

Next, we aim to apply Lemma 4.2.11 to show that, in fact, we have a strong uniform

parameter bi-interpretation. We work with the notation of that lemma. Then, of

the requirements to apply the lemma, we have shown the existence of the uniform

parameter bi-interpretation. Remark 5.2.6 shows that clause 1 of the requirements of

Lemma 4.2.11 is satisfied, and 5.2.9 demonstrates that clause 2 is satisfied.
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5.3 Twisted simple groups with same length roots

In this section we give strong uniform parameter bi-interpretations for twisted simple

groups where the underlying Chevalley group is of type A, D or E6.

5.3.1 Background

Most technical material will come from [4].

The finite twisted simple groups can be obtained as subgroups in the fixed points of

certain automorphisms of Chevalley groups. The automorphism may be taken to be the

product of a ‘graph automorphism’ and a ‘field automorphism’. Graph automorphisms

are extensions of symmetries of the Dynkin diagram. They are described in great detail

in sections 12.2 and 12.3 of [4]. Field automorphisms are described on pp. 200 of [4],

and the particular field automorphisms used in the construction of the various twisted

simple groups are explicitly defined on pp. 225. For a Chevalley group G = L(K) a

‘field automorphism’ of G derives from a field automorphism of K.

NOTATION 5.3.1 In the sequel we mention many results that apply generally to

the families of groups, fields and difference fields that we define. We refer to a typical

family in Theorem 5.3.3 as a class T , and if L is a Lie algebra, and K a field, we refer

to the twist of L(K) via a graph automorphism of order i as iL(K). Here i = 2 except

for the case 3D4(K). We refer to a typical member of T as G1 or G1(K). A typical

overlying Chevalley group L(K) will be referred to as G. We will assume that G is

given by its adjoint representation on a Lie algebra L of Lie rank n, and that we are

given a Chevalley basis, a root system Φ, a root ordering ≺, a fundamental system

Π, a unipotent subgroup U , its opposite V , a maximal torus H, etc. We will refer

to the automorphism of G from which G1 is defined as σ. The field of definition of

the overlying Chevalley group is referred to as K and the fixed field of the defining

automorphism is referred to as K0. So K is a degree 2 or 3 extension of K0. The

automorphism σ is constructed using two automorphisms f and g where f is a field

automorphism and g is a graph automorphism. As said, the graph automorphism g

arises from a symmetry of the Dynkin diagram which extends to a map g̃ from Φ to

itself. The notation typically used is f(t) = t̄ (t ∈ K), and g̃(r) = r̄ (r ∈ Φ).
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We now present some facts about twisted simple groups of Lie type:

DISCUSSION 5.3.2 1. A twisted simple group of Lie type begins with a symme-

try ρ of the Dynkin diagram associated to its overlying Chevalley group. Propo-

sition 12.2.3 of [4] illustrates how the symmetry ρ extends to a permutation

¯: Φ 7→ Φ, and how this permutation defines an automorphism of the overlying

Chevalley group: to summarise, there exist numbers γr = ±1 such that the map

xr(t) 7→ xr̄(γrt) can be extended to an automorphism of G. The graph automor-

phism is described in more detail below.

The second principal ingredient in the construction of the twisted Chevalley group

is a group ‘field automorphism’. These automorphisms are defined in section 12.2

of [4]. To summarise, if G = G(K) and f is an automorphism of K, then the

map xr(t) 7→ xr(f(t)), r ∈ Φ, t ∈ K, extends to an automorphism of G, and such

an automorphism is called a field automorphism of G.

The automorphism σ used to define G1 can be taken to be a product of a field

and graph automorphism of G.

2. For twisted groups, there are important counterparts to the subgroups V , U , H

and N ; we transcribe Definition 13.4.2 of [4]:

(a) U1 is the set of elements x ∈ U such that σ(x) = x.

(b) V 1 is the set of elements x ∈ V such that σ(x) = x.

(c) G1 is the group generated by U1 and V 1.

(d) H1 is the intersection of G1 and H.

(e) N1 is the intersection of G1 and N .

3. An isometry τ of the Lie algebra based upon the Dynkin diagram symmetry may

be defined. For any r ∈ Π, τ(r) is a positive multiple of r̄, and it transpires that

τ acts by conjugation on W . Thus the twisted Weyl subgroup W 1 ≤ W may be

defined by W 1 = {w ∈W : τw = wτ}.



5.3. TWISTED SIMPLE GROUPS WITH SAME LENGTH ROOTS 171

In addition, Proposition 12.2.2 of [4] tells us that in the case that all roots of

L have the same length, then τ coincides with the Dynkin diagram symmetry,

τ(Φ) = Φ and τ is an isometry with respect to the Killing form. In this case, the

graph automorphism¯described above is τ .

4. In section 2.5 of [4] parabolic subgroups are described: let J be a subset of Π. In

brief, define VJ to be the subspace spanned by the roots J , ΦJ =def Φ ∩ VJ , and

WJ to be the subgroup of W generated by the fundamental reflections wr with

r ∈ J . Then it transpires that ΦJ is a system of roots in VJ , J is a fundamental

system in ΦJ , and the Weyl group of ΦJ is WJ . The subgroups WJ and their

conjugates in W are called parabolic subgroups of W .

The Dynkin diagram symmetry also induces an equivalence relation on Φ. The

equivalence classes are the sets w(Φ+
J ) as w runs through the twisted Weyl group

W 1 and J runs through the orbits of Π under the graph symmetry. For r ∈ Φ we

refer to the equivalence class of r as S(r). For S an equivalence class, we define

XS =
∏
r∈S Xr, and X1

S to be the σ-fixed points of XS .

We will consider groups of type A as an example. Inspection of the Dynkin

diagram shows that in type A, S may take three forms. For now, n = 2m or

n = 2m+ 1. Here is the Dynkin diagram of type A2m:

. . .◦−◦−◦−◦−◦

l |

. . .◦−◦−◦−◦−◦

The Dynkin diagram symmetry is indicated by the arrow. It is clear that in this

case all the S are of type A1×A1, except for the swap on the right, where S = A2.

Here is the Dynkin diagram of type A2m+1:
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. . .◦−◦−◦−◦−◦

\

l ◦

/

. . .◦−◦−◦−◦−◦

Here all equivalence classes S are of type A1 × A1, except for the fixed node on

the right where S is of type A1.

The types of equivalence classes just described represent the types of all the

equivalence classes found in twisted simple groups of Lie type with all roots of

the same length.

Lemmas 13.6.3 and 13.6.4 of [4] give specific information about the form of X1
S

elements and their multiplication:

If S has type A1 then X1
S consists of elements xr(t) with t = t̄. Elements multiply

in an obvious way in this case. We will not concern ourselves with type A1×A1.

If S has type A2 then X1
S consists of elements xr(t)xr̄(t̄)xr+r̄(u) where u +

ū = −Nr,r̄tt̄. Here Nr,r̄ is a structure coefficient. We may write an element

xr(t)xr̄(t̄)xr+r̄(u) unambiguously as xS(t, u). The multiplication is then xS(t1, u1)xS(t2, u2) =

xS(t1 + t2, u1 + u2 −Nr,r̄ t̄1t2).

5. The next important fact is Proposition 13.6.1 of [4]: U1 =
∏
S⊆Φ+ X1

S , where the

product may be taken in any order.

6. We investigate H1 = H ∩G1. Theorem 13.7.2 and Theorem 7.1.1 of [4] give the

relevant information: suppose that P = Z[Φ] has free basis Π = {p1, p2, . . . , pn}.

We work with the Killing form ( , ) on the root system of L. We have seen

in 5.2.2 (4) how H may naturally be considered as a set of K-characters on P .

Further information is found in Section 7.1 of [4]; we now outline some important
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theory found there:

Because we are working with the Killing form on the Euclidean space generated

by the roots Φ, we may consider dual bases in the same space. Let {q1, . . . , ql}

be the dual basis to the basis {hpi = 2pi
(pi,pi)

: 1 ≤ i ≤ n}. Specifically, we mean

that q1, . . . , qn are defined by:

(hpi , qj) =

 1 if i = j

0 if i 6= j


Let Q = Z[{qi : 1 ≤ i ≤ n}]. The lattice P is a sublattice of Q. The characters

on P induced by H are the restrictions of the free group of K-characters on Q

(Theorem 7.1.1 of [4]). We will denote the free basis of Q consisting of the qi as

Ω. The qj are called the fundamental weights of L. We know that each pi is a

linear combination of the qj :

pi =
l∑

j=1

µijqj

The coefficients µij are easy to compute, since using the Killing form we see

(hpj , pi) = µij . So µij = 2 (pj ,pi)
(pj ,pj)

= Aji, where the quantity Aji is the ji’th entry

of the Cartan matrix for L. For the specific cases we will be interested in, the

Cartan matrix is known explicitly and can be easily referenced. A good place to

start with this material is [4] 7.1.

It transpires that if we define the K-character on Q: χr,λ(a) = λ2(r,a)/(r,r) for

some r ∈ Ω, a ∈ Q,λ ∈ K, these characters generate H (also 7.1.1). Theorem

13.7.2 gives a characterisation of the elements in H1: they are the elements of H

which induce characters of P that are the restrictions to P of the self-conjugate

characters of Q. In short, H1 is the set of H-elements χ with χ(ā) = χ(a) for

a ∈ Q.

So let J(r) be the orbit of r under g. Let Π1 = {J(r) ⊆ Π : g−orbit of r is size 1},

Π2 = {J(r) ⊆ Π : g − orbit of r is size 2}, and Π3 = {J(r) ⊆ Π : g −

orbit of r is size 3}. We include all sizes of orbit so the result we quote is valid
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for all twisted groups with roots all of the same length. For J(r) ∈ Π1 we consider

characters χ1,r,λ = χr,λ where λ = λ̄. For J(r) ∈ Π2 we consider characters of

the form χ2,r,λ = χr,λ · χr̄,λ̄. For J(r) ∈ Π3 we consider characters of the form

χ3,r,λ = χr,λ · χr̄,λ̄ · χ¯̄r,¯̄λ
. Thus an element h ∈ H1 is one which induces a char-

acter of the form
∏
J(r)∈Π1

χ1,r,λr ·
∏
J(r)∈Π2

χ2,r,λr ·
∏
J(r)∈Π3

χ3,r,λr . Conversely,

suppose that h ∈ H, and h induces a character χ on P . By Theorem 7.1.1 of

[4] we may assume that χ is a character on Q. We have seen above that in the

case of roots all of the same length, τ is an isometry which restricts to a per-

mutation of Ω. So we may define a character χ′ on Q such that for all q ∈ Ω,

then χ′(q) = χ(q̄), and if τ has order three we may define a character χ′′ on Q

such that for all q ∈ Ω, then χ′′(q) = χ(¯̄q). Then we may find h′ ∈ H such

that h′ induces the character which is the restriction of χ · χ′, or χ · χ′ · χ′′ in

the order 3 case. Notice that h′ ∈ H1. Thus every character on P of the form∏
J(r)∈Π1

χ1,r,λr ·
∏
J(r)∈Π2

χ2,r,λr ·
∏
J(r)∈Π3

χ3,r,λr is induced by some h ∈ H1.

7. Proposition 13.5.3 of [4] gives a unique Bruhat decomposition for twisted simple

groups of Lie type: we transcribe it. ‘Each element of G1 has a unique expression

g = u′hnwu, where u′ = U1, h ∈ H1, w ∈ W 1, nw ∈ N1 and u ∈ (U−w )1 the set

of σ-invariant elements of U−w . ’

5.3.2 Statement of theorem

The only twisted group with roots all the same length that is not simple is 2A2(4) ([4]

14.4.1). It is excluded from the following discussion. Again, in all the bi-interpretations

constructed in the sequel, we exclude groups derived from the exceptional, non-simple

Chevalley groups listed at the beginning of the Chevalley groups section. We also

assume |K| > 3. With these provisos the theorem we prove is

THEOREM 5.3.3 (a) Fix n ∈ N with n ≥ 2. Let TA,n = {2Al(q2) : q a prime power}.

There is a strong uniform parameter bi-interpretation between TA,n and the class of fi-

nite fields. The strong uniform parameter bi-interpretation matches the group 2An(q2)

with Fq.

(b) Fix n ∈ N with n ≥ 3. Let TD,n = {2Dn(q2) : q a prime power}. There is a strong
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uniform parameter bi-interpretation between TD,n and the class of finite fields. The

strong uniform parameter bi-interpretation matches the group 2Dn(q2) with Fq.

(c) Let TE,6 = {2E6(q2) : q a prime power}. There is a strong uniform parameter bi-

interpretation between TE,6 and the class of finite fields. The strong uniform parameter

bi-interpretation matches the group 2E6(q2) with Fq.

(d) Let TD,4,3 = {3D4(q3) : q a prime power}. There is a strong uniform parameter

bi-interpretation between TD,4 and the class of finite fields. The strong uniform param-

eter bi-interpretation matches the group 3D4(q3) with Fq.

REMARK 5.3.4 [10] arose in answer to the question ‘Is there a formula ϕ(Y ) in the

language of rings that defines in each finite field of the form Fq2 its subfield Fq?’: the

answer is no. It follows from this and Theorem 5.3.3 that there is no uniform parameter

bi-interpretation matching 2An(q2) with the pure field of q2 elements. If there were, we

could compose uniform parameter bi-interpretations: since 2An(q2) would be uniformly

parameter bi-interpretable with both the pure field of q2 elements and the pure field of

q elements, it would follow that the pure field of q2 elements would uniformly interpret

the pure field of q elements. Similarly, by the results in the section on Chevalley groups,

there is no uniform parameter bi-interpretation matching TA,n and the class CA,n which

matches 2An(q2) with An(q2). Similar results apply to the other twisted families in

Theorem 5.3.3.

We now use Lemma 4.3.12 to prove the second part of the theorem. In the following

sections we break the task into three parts:

1. In 5.3.3 we give the uniform interpetation of the group iL(K) in the field K0.

2. In 5.3.4 we give the uniform interpretation of the field K0 in the group iL(K).

3. In 5.3.4 we also give the uniform isomorphism betweenK0 and its re-interpretation

inside itself.

4. In 5.3.5 we apply Lemmas 4.2.11 and 4.3.12 to conclude the theorem.

Here K0 refers to the subfield of K specified in Theorem 5.3.3.
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5.3.3 Twisted groups with roots of the same length: Uniform inter-

pretation of G1 ∈ T in Fq

We begin by making some general statements using what we already know:

In all the cases of Theorem 5.3.3 except for TD,4,3, the twisted groups are built out of

a Chevalley group defined over the field Fq2 . In the case of TD,4,3, the twisted group

is built out of a Chevalley group defined over Fq3 . Thus, we first strongly, uniformly

parameter define Fq2 inside Fq in (a),(b),and (c) of 5.3.3, and we strongly uniformly

define Fq3 inside Fq in case (d). These interpretations come complete with a strongly

uniformly parameter definable embedding of Fq inside Fqi (i=2 or 3 depending on the

case). This is a classical result; one reference is [6] pp. 31.

Second, we give UPD definitions of the overlying Chevalley groups using our UPD

field extensions: in 5.3.3 (a) we strongly uniformly parameter define the groups An(q2)

using our UPD of Fq2 ; in (b) we uniformly parameter define the groups Dn(q2); in

(c) we strongly uniformly parameter define the groups E6(q2) using our UPD of Fq2 ;

and finally in (d) we strongly uniformly parameter define the groups D4(q3) using our

UPD of Fq3 . This makes use of the work in Section 5.2.

The next step is to interpret the automorphism σ used to define the twisted groups.

Proposition 12.2.3 of [4] characterises the graph automorphism for all groups built on

Lie algebras where roots all have the same length. From 12.2.3 and the Bruhat decom-

position (or even just compactness), these graph automorphisms are UPD inside the

class of finite fields. Since the graph symmetry in cases (a), (b) and (c) of 5.3.3 ([4]

pp. 200) is of order 2, the field automorphism required to define σ is of order 2 as well

(see pp. 225 of [4]); for case (d) the field automorphism is of order 3. Since we have

interpreted Fqi (i= 2 or 3 depending on the case) inside Fq these field automorphisms

are easy to define. Then by the definition of the group field automorphism (pp.200) and

the Bruhat decomposition (or again, even just compactness), the field automorphism

is clearly uniformly definable. The reader can see additional details about the group

field automorphism in 5.3.2 (1).
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We have shown in Section 5.2 that the the root subgroups of a Chevalley group are

UPD in fields. Thus, by the Chevalley cell presentation of the unipotent group U and

its opposite V (see 5.2.2 (3)), U and V are both UPD. Thus, so are the subgroups

U1 = {u ∈ U : σ(u) = u} and V 1 = {v ∈ V : σ(v) = v}. By definition, G1 = 〈U1, V 1〉.

In order to show that G1 is UPD, what is needed is that for any member G1 of T , U1

and V 1 generate G1 in an absolutely bounded number of steps. We prove this:

LEMMA 5.3.5 There is n ∈ N and a function ϕ : {1, 2, . . . , n} 7→ {U1, V 1} such

that for any G1 ∈ T we have

G1 =
n∏
i=1

ϕ(i)(K)

PROOF Suppose this were not so. Let T be a counterexample. Then define i = 2

if T is from case (a,b,c) and define i = 3 if T is from case (d) of 5.3.3. Then there

is a sequence of twisted groups indexed by j ∈ N: (G1(Fqij ) ∈ T : qj a prime power)

such that the minimum number of steps for V 1(Fqij ) and U1(Fqij ) to generate G1(Fqij )

is greater than j.

Let K be a non-principal ultraproduct of the Fqj . Then K is a pseudo-finite field.

Further, we may apply Los’ theorem to all the objects we have shown to be UPD in

the Fqj : the ultraproduct of the interpreted Fqij is a degree i extension of K; call it

Ki. The ultraproduct of the σj is a definable automorphism σ which is a product of

a definable graph automorphism and a definable field automorphism of Ki. Thus, the

ultraproduct of the V 1(Fqij ) is V 1(Ki) and the ultraproduct of the U1(Fqij ) is U1(Ki).

By [4] Theorem 14.4.1, G1(Ki) = 〈U1(Ki), V 1(Ki)〉 is a simple group. We now work

inside G1(Ki). We denote it G1, and refer to U1, V 1, etc.

So, by our construction, U1 and V 1 do not generate G1 in finitely many steps. However,

at the ultraproduct level, all the objects we have defined have been defined in a pure

pseudo-finite field. So we may apply Proposition 4.3.9: it shows that there is a definable

group H ⊆ (U1V 1)n for some n ∈ N such that H / 〈U1, V 1〉 and H/U1 and H/V 1 are

finite. Since G1 = 〈U1, V 1〉 and since G1 is simple, it follows that H = G1. So we have

a contradiction. �
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5.3.4 Twisted groups with roots of the same length: Uniform inter-

pretation of Fq in G1(Fqi), (i = 2 or 3), and the uniform isomor-

phism from a field of definition to its re-interpretation)

DISCUSSION 5.3.6 We intend to interpret the field inside twisted root subgroups

X1
S (see Discussion 5.3.2 (4)). We now run through the cases and declare our intentions

specifically. We shall set n = 2m or n = 2m+ 1.

In a class of groups of the form A2m with Dynkin diagram

. . .◦−◦−◦−◦−∗

l |

. . .◦−◦−◦−◦−∗

we intend to interpret the field on X1
S where S is the type A2 equivalence class gen-

erated by the starred pair of roots. This is the only time we interpret on an A2-type

equivalence class S. If the class of groups is 2A2m with m ≥ 2 then order the roots in the

diagram top left to bottom left, so the starred roots are pm and pm+1. Inspection of the

Cartan matrix shows that pm = −qm−1 +2qm−qm+1 and pm+1 = −qm+2qm+1−qm+2,

where the qi are in the dual basis as defined in Discussion 5.3.2 (6), as is the use of

the Cartan matrix to make these computations . Since, in the case of roots all being of

equal length, the graph automorphism is both an isometry with respect to the Killing

form and restricts to a permutation of Π, and since we can see that pm+i = pm−i+1, it

follows that qm+i = qm−i+1; the details about τ being an isometry are found in 5.3.2

(3). In the case where m = 1, then p1 = 2q1 − q2 and p2 = −q1 + 2q2.

In all other cases we interpret the field on X1
S where S is an equivalence clas of type

A1. Here are diagrams indicating our choices.
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Here is the Dynkin diagram of A2m+1 with m ≥ 1:

. . .◦−◦−◦−◦−◦

\

l ∗

/

. . .◦−◦−◦−◦−◦

Here we interpret the field on X1
S , where S = pm+1 and pm+1 = −qm + 2qm+1 − qm+2.

Again, qm+1 = qm+1 and qm+2 = qm. These equations follow from inspection of the

Cartan matrix and the fact that the graph automorphism¯is an isometry (see 5.3.2 (3)

for the isometry facts, and 5.3.2 (6) for the use of the Cartan matrix). The case m = 0

is irrelevant, since 2A1(Fq) ∼= A1(Fq).

In the case of 2Dm with m ≥ 3, the Dynkin diagram is:

◦

/

. . . ◦−◦−◦ −◦−∗

\

◦

Again we label from left to right, then top, bottom. So we interpret on the A1 equiva-

lence class generated by the root pm−2. We have pm−2 = −qm−3 + 2qm−2− qm−1− qm,

and qm−3 = qm−3, qm−2 = qm−2, and qm = qm−1. The isomorphism 2D2(q2) ∼= A1(Fq2)

means we may omit the case m = 3.

In the case of 3D4 the diagram is:

◦

/

◦ −�

\

◦
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Here we shall interpret the field on X1
S where S is the class of the node labelled by a

clockwise rotation; this is the node fixed by the symmetry (the clockwise rotation is to

indicate the symmetry). In this case we have p2 = −q1 + 2q2 − q3 − q4 where q3 = q̄1,

q4 = q̄3, and q1 = q̄4.

The final case is groups of type 2E6. The Dynkin diagram is:

◦−◦−◦−◦−◦

|

∗

So here p4 = −q3 + 2q4, q3 = q̄3 and q4 = q̄4.

To construct the interpretations we shall need that H1 is UPD in T . The first step is

the following:

LEMMA 5.3.7 There is f ∈ N such that if |K| ≥ f , for each r ∈ Φ there is h ∈ H1

such that the character χ induced by h satisfies χ(r) 6= 1.

PROOF Fix r ∈ Φ+. From 5.3.2 (6) we may write r =
∑n

j=1 ajqij with aj ∈ N and

qij ∈ Ω. This sum depends only on the Lie type and rank of L, and not on the field K.

If there is a q = qij in the sum such that q̄ = q then select λ ∈ K×\1 such that λ = λ̄.

In 5.3.2 (6) we saw that there is an h ∈ H1 such that h induces the character χ, where

χ(q) = λ and χ(q′) = 1 for all q′ ∈ Ω\{q}. Such an h is sufficient for the lemma.

Otherwise, there is q = qij such that q 6= q̄. Pick λ ∈ K× and notice that by Discussion

5.3.2 (6) there is an h ∈ H1 such that h induces the character χ where

• if we are in case (a), (b) or (c) of Theorem 5.3.3 then χ(q) = λ, χ(q̄) = λ̄ and

χ(q′) = 1 for all q′ ∈ Ω\{q, q̄}.
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• if we are in case (d) of Theorem 5.3.3 then χ(q) = λ, χ(q̄) = λ̄, χ(¯̄q) = ¯̄λ and

χ(q′) = 1 for all q′ ∈ Ω\{q, q̄, ¯̄q}.

In the first case, there are integers fixed integers a and b, independent of K, such that

χ(r) = λaλ̄b. In the second case, there are fixed integers a, b and c, independent of

K, such that χ(r) = λaλ̄b ¯̄λ
c
. Thus, since the field automorphisms for groups with

roots all the same size are of order 2 or 3, the automorphism is λ 7→ λ|K|
1
i with i = 2

or 3 depending on which case. But then examine the equations 1 = λa+b·|K|
1
2 and

1 = λa+b·|K|
1
3 +c·|K|

2
3 . For the first , if |K| > a+ b · |K|

1
2 , then not all λ ∈ K× are roots

of this equation. For the second, if |K| > a + b · |K|
1
3 + c · |K|

2
3 , then not all λ ∈ K×

are roots of this equation. Pick χ corresponding to a λ ∈ K× that is not a root of the

relevant equation. Pick h ∈ H1 that induces χ, and this is the h we sought. �

LEMMA 5.3.8 There is m, f ∈ N, such that for |K| > f , the subgroup H1 is uni-

formly parameter definable in any of the families of Theorem 5.3.3 as the intersection

∩mi=1CG1(hi) of some m of its elements.

PROOF We offer a proof similar to the one in Lemma 5.2.7. Let g ∈ G1. By the

unique Bruhat decomposition for twisted groups (5.3.2 (6)), we may write g uniquely

as g = u′h0nwu for some u′ ∈ U1, h0 ∈ H1, nw ∈ N1, and u ∈ (U−w )1. Then let

h ∈ H1. So hgh−1 = hu′h−1h0hnwh
−1huh−1. It is easily verified using 5.3.2 (2) that

hu′h−1 ∈ U1 and hnwh
−1 ∈ N1. Since h preserves all root subgroups Xr under con-

jugation, it follows that hU−w h
−1 = U−w , and so huh−1 ∈ (U−w )1. Thus, if g = hgh−1,

then u′ = hu′h−1, nw = hnwh
−1 and u = huh−1. By Lemma 5.3.7, for all sufficiently

large |K| we may select parameters hr ∈ H1 for each r ∈ Φ+, such that, as in Lemma

5.2.7, the character induced by hr satisfies χ(r) 6= 1. Now suppose g ∈ ∩r∈Φ+CG1(hr).

Then u′ = hru
′h−1
r so u′ cannot have a non-trivial r-component in its Chevalley ex-

pression (see 5.2.2 (3)). It follows that u′ = 1, and by the same logic, u = 1. Thus,

∩r∈Φ+CG1(hr) ≤ N1.

Now let n1 ∈ N1\H1, and suppose n1 maps to w1 ∈W 1 in the natural homomorphism.

Let s ∈ Φ be such that w1(s) 6= s. There are three cases:

1. Suppose s lies in a τ -orbit of size 1. Then we consider elements of H1 of the form
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hs(l) such that l = l̄. By 5.2.2 (6) we have nhs(l)n−1 = hw1(s)(l). In this case,

as in Lemma 5.2.7, for |K0| > 7 we may find l∗ ∈ K×0 such that hs(l∗) does not

commute with n.

2. Suppose s lies in a τ -orbit of size 2. Then we consider elements of H1 of the

form hs(l)hs̄(l̄). By 5.2.2 (6) and the fact that τ commutes with w1 ([4] pp.217)

we have nhs(l)hs̄(l̄)n−1 = hw1(s)(l)hw1(s)
(l̄). At the level of characters hs(l)

induces the character χ where χ(r) = l
2

(s,r)
(s,s) , hw1(s)(l) induces the character χ′

where χ′(r) = l
2

(w1(s),r)

(w1(s),w1(s)) , hs̄(l̄) induces the character χ̄ where χ̄(r) = l̄
2

(s̄,r)
(s̄,s̄) and

finally h
w1(s)

(l̄) induces the character χ̄′ where χ̄′(r) = l̄
2

(w1(s),r)

(w1(s),w1(s)) . Now for n

to commute with hs(l)hs̄(l̄) we must have χχ̄ = χ′χ̄′. Now let Γ = |K0|, and let

l∗ be a generator for the cyclic group K×. Recall that for all r, s ∈ Φ we have

|2 (r,s)
(r,r) | ≤ 3. Now fix r ∈ Φ. Let a = 2 (s,r)

(s,s) , b = 2 (s̄,r)
(s̄,s̄) , c = 2 (w1(s),r)

(w1(s),w1(s))
and d =

2 (w1(s),r)

(w1(s),w1(s))
. Then −3 ≤ a, b, c, d ≤ 3. If χχ̄ = χ′χ̄′, then (l∗)a+Γb = (l∗)c+Γd. So

we must satisfy

(∗) (l∗)(a−c)+Γ(b−d) = 1

Then |K| | ((a− c) + Γ(b− d)). Since |b− d| < 7, for Γ > 7 it is clear that for (*)

to be satisfied then b = d and a = c. But this was for an arbitrary r ∈ Φ. So it

follows that for all r ∈ Φ, 2 (s,r)
(s,s) = 2 (w1(s),r)

(w1(s),w1(s))
. The argument is now similar to

5.2.7: since w1 is an isometry, it follows that (s, r) = (w1(s), r) for all r ∈ Φ. So

s = w1(s), and we have a contradiction.

3. Suppose s lies in a τ -orbit of size 3. We proceed exactly as in the previous case,

except this time relative to the H-element hs(l)hs̄(l̄)h¯̄s( ¯̄l∗). Again, for |K0| > 7

we may equate terms of characters, as in the previous case of this lemma, and

the proof is of the same form.

Thus, for each w1 ∈W 1, we may find hw1 ∈ H1 such that hw1 does not commute with

any element of the coset n1H1 in N1. It now follows that H1 = (∩r∈Φ+CG1(hr)) ∩

(∩w1∈W 1CG1(hw1)). �

REMARK 5.3.9 The cardinalities of the twisted Chevalley groups have been ex-

plicitly determined: see Section 14.3 and particularly Theorem 14.3.2 of [4]. Even

without this, the fact that the language of groups is finite implies that there are only
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finitely many isomorphism classes of Chevalley groups or twisted Chevalley groups of

any fixed type and cardinality less than some fixed bound B.

COROLLARY 5.3.10 H1 is uniformly definable in any of the families of Theorem

5.3.3.

PROOF By Lemma 5.3.8, and Remarks 5.2.3 and 5.3.9. �

DEFINITION 5.3.11 In 5.3.6, we indicated that we would interpret the field on

twisted root subgroups X1
S, for the equivalence class S of a specific choice of root. We

call such a root a ‘candidate root’.

LEMMA 5.3.12 (a) Consider a twisted root subgroup X1
S of type A1 generated by a

candidate root r. Then H1 acts naturally on X1
S\{1} by conjugation, and there are at

most two H1-orbits in X1
S.

(b) Consider a twisted root subgroup X1
S of type A2 in a group of type 2A2m. We as-

sume S = {r, r̄, r + r̄} where r is a candidate root. If we write a typical element of

X1
S as xS(t, u) (see 5.3.2 (4)) then we may consider the subgroup of X1

S of elements

where t = 0. Call this group Z. Then H1 acts by conjugation on Z\{1} and there is

a number n ∈ N which bounds the number of H1-orbits that cover X1
S, the bound being

over all finite simple twisted groups.

PROOF (a) In 5.3.2 (4) we saw that X1
S is the collection of σ-fixed points of XS .

Since in this case XS = Xr and clearly H1 fixes Xr, it also fixes X1
S = Xr ∩ G1. To

check the number of orbits observe the various expressions in 5.3.6 for r in terms of

the dual basis. Each expression included an integral multiple m of an element of the

dual basis which is fixed by the graph automorphism, where 1 ≤ m ≤ 2 . Call that

fixed vector q. Now let λ = λ̄ be a fixed element of K. Then the Q-character χλ which

sends q to λ and all other q′ ∈ Ω to 1 is a self-conjugate Q-character. So its restriction

to P is induced by some h ∈ H1. But χλ(r) = λm. Now recall, from 5.3.2 (4), that

X1
S = {xr(t) : t = t̄}, and recall also that hxr(t)h−1 = xr(χλ(r)t) = xr(λmt). If m = 1,

then it is plain then that there is one H1-orbit in X1
S . If m = 2 then the χλ-characters
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act as the squares of the fixed field, and there are two H1-orbits.

(b) Here, we have two cases. If m = 1, then by 5.3.2 (6), r + r̄ = qm + qm+1, and

if m > 1 then r + r̄ = −qm−1 + qm + qm+1 − qm+2. The reader can verify that

Z = {xr+r̄(u) : u = −ū}. Now let h ∈ H1. Then by the character characterisa-

tion of elements of H1 (see 5.3.2 (6)), h induces a character χ on Z[Ω] such that, say,

a = χ(qm−1) = χ(qm+2) if m > 1 and a = 1 if m = 1, and b = χ(qm) = χ(qm+1). We

have hxr+r̄(u)h−1 = xr+r̄(aābb̄u). If xr+r̄(u) ∈ Z then u = −ū, so aābb̄u = −aābb̄u.

Thus, hxr+r̄(u)h−1 ∈ Z, and so H1 acts on Z by conjugation.

Now suppose we pick u0, u1 ∈ K×, such that u0 = −ū0 and u1 = −ū1. Then let λ = u1
u0

.

We see that λ = λ̄. Let K−0 = {u ∈ K : u = −ū}, and K−,×0 = K−0 \{0}. So any two

elements of K−,×0 have a ratio in the fixed field K0.

Now let λ ∈ K0. Define χ so that χ(qm) = λ, χ(qm+1) = λ, and for all other q′ ∈ Ω,

χ(q′) = 1. Notice that for all q ∈ Ω, χ satisfies χ(q̄) = χ(q). Thus, there is h ∈ H1

such that hxr+r̄(t)h−1 = xr+r̄(λ2t). Now we can express K×0 as at most two cosets of

its subgroup (K×0 )2. Thus K−,×0 is at most orbits of (K×0 )2 under left multiplication.

It follows that Z is covered by at most two orbits of H1. �

We now give the uniform interpretations of the field. For all cases other than classes

TA,2m we take the underlying set to be X1
S as in 5.3.12 (a). For classes TA,2m we take

the underlying set to be Z as in 5.3.12 (b).

We begin by doing all cases other than classes TA,2m. We use the parameter xr(1).

Now pick u0, u1 ∈ K× such that u0 = ū0 and u1 = ū1. By the previous lemma, there

are h0, h1 ∈ H1 such that xr(u0) = h0xr(1)h−1
0 , and xr(u1) = h1xr(1)h−1

1 . We define

the multiplication:

xr(u0)⊗ xr(u1) = h1h0xr(1)h−1
0 h−1

1

This is well-defined: let h2 and h3 be two other H1 elements playing the role of
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h0 and h1. Suppose that hi induces the character χi on P . Then xr(χ0(r)) =

h0xr(1)h−1
0 = xr(u0) = h2xr(1)h−1

2 = xr(χ2(r)) and xr(χ1(r)) = h1xr(1)h−1
1 =

xr(u1) = h3xr(1)h−1
3 = xr(χ3(r)). Thus χ0(r) = χ2(r) and χ1(r) = χ3(r). So

h3h2xr(1)h−1
2 h−1

3 = xr(χ3χ2(r)) = xr(χ1χ0(r)) = h1h0xr(1)h−1
0 h−1

1 .

In K0 we can uniformly define the map i+ : K 7→ Xr such that i+(u) = xr(u). We

have remarked that the UPD of K in K0 comes complete with a UPD embedding of

K0 into K. Call that embedding e. So we may define the UPD composite map

itw : K0 7→ X1
S ; itw = i+ ◦ e

This composite map is the isomorphism between K0 and its re-interpretation inside G1.

We now interpret the field for classes TA,2m. Since Z (see Lemma 5.3.12 (b)) is perhaps

covered by two copies of H1, we consider such a case. By considering ratios we again

can interpret the field. So let K−0 = {u ∈ K× : u = −ū}, let K−,×0 = K−0 \{1}, and

fix some u0 ∈ K−,×0 . There is an isomorphism of additive groups B : K−0
∼= K0 given

by B(u) = u
u0

. Notice that u1
u0

u2
u0

=
u1u2
u0
u0

. We can pull back the multiplication on K0

using B to define a multiplication ⊗ on K−,×0 : u1 ⊗ u2 = u1u2
u0

.

We now turn this multiplication into one on Z{1}. The two orbits of Z{1} under H1

acting by conjugation are ϑ0 = {xr+r̄(u) : u ∈ K×, u = −ū, u
u0

a square in K×} and

ϑ1 = {xr+r̄(u) : u ∈ K×, u = −ū, u
u0

not a square in K×}. We select u1 such that

u1 = −ū1 and u1 is not in the H1-orbit of u0. Let u2 = u2
1
u0

. Notice that u2 = −ū2.

In the multiplication definition we will use three parameters: xr+r̄(u0), xr+r̄(u1) and

xr+r̄(u2). We need to break the multiplication definition into three parts:

1. To multiply two elements a, b of ϑ0: notice there are h0 and h1 such that a =

h0xr+r̄(u0)h−1
0 and b = h1xr+r̄(u0)h−1

1 . Then define a⊗b = h1h0xr+r̄(u0)h−1
0 h−1

1 .

2. To multiply two elements a ∈ ϑ0 and b ∈ ϑ1 : notice there are h0 and h1

such that a = h0xr+r̄(u0)h−1
0 and b = h1xr+r̄(u1)h−1

1 . Then define a ⊗ b =

h1h0xr+r̄(u1)h−1
0 h−1

1 .
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3. To multiply two elements a, b of ϑ1: notice there are h0 and h1 such that a =

h0xr+r̄(u1)h−1
0 and b = h1xr+r̄(u1)h−1

1 . Then define a⊗b = h1h0xr+r̄(u2)h−1
0 h−1

1 .

The reader can check these maps are well-defined, by elementary character properties.

We now show that the uniformly parameter definable map

iAtw : K0 7→ Z; iAtw(λ) = xr+r̄(λu0) (λ ∈ K0)

is an isomorphism. Additively, this is clearly an isomorphism. Let us check multipli-

cation:

• Let λ2, ν2 ∈ (K×0 )2. There are hλ, hν ∈ H1 such that xr+r̄(λ2u0) = hλxr+r̄(u0)h−1
λ

and xr+r̄(ν2u0) = hνxr+r̄(u0)h−1
ν . So by clause 1 of the multiplication definition,

iAtw(λ2ν2) = xr+r̄(λ2ν2u0) = hλhνxr+r̄(u0)h−1
ν h−1

λ = xr+r̄(λ2u0)⊗xr+r̄(ν2u0) =

iAtw(λ2)iAtw(ν2).

• Let λ ∈ K×0 \(K
×
0 )2 and ν2 ∈ (K×0 )2. Then we may write λu0 = η2u1. Thus

there are hη, hν ∈ H1 such that xr+r̄(η2u1) = hηxr+r̄(u1)h−1
η and xr+r̄(ν2u0) =

hνxr+r̄(u0)h−1
ν . So by clause 2 of the multiplication definition, iAtw(λν2) =

xr+r̄(λν2u0) = xr+r̄(η2ν2u1) = hηhνxr+r̄(u1)h−1
ν h−1

η = xr+r̄(ν2u0)⊗xr+r̄(η2u1) =

xr+r̄(ν2u0)⊗ xr+r̄(λu0) = iAtw(ν2)iAtw(λ).

• Let λ, ν ∈ (K×0 )\(K×0 )2. Then we may write λu0 = η2u1 and νu0 = ζ2u1

. Thus there are hη, hζ ∈ H1 such that xr+r̄(η2u1) = hηxr+r̄(u1)h−1
η and

xr+r̄(ζ2u1) = hζxr+r̄(u1)h−1
ζ . So by clause 3 of the multiplication definition,

iAtw(λν) = xr+r̄(λνu0) = xr+r̄(η2ζ2u2) = hηhζxr+r̄(u2)h−1
ζ h−1

η = xr+r̄(η2u1) ⊗

xr+r̄(ζ2u1) = xr+r̄(νu0)⊗ xr+r̄(λu0) = iAtw(ν)iAtw(λ).

5.3.5 Conclusion of proof of Theorem 5.3.3

Our first step is to prove 5.3.3 just for uniform parameter bi-interpretations, and not yet

for strong uniform parameter bi-interpretations. We aim to apply Lemma 4.3.12. But

the results of Sections 5.3.3, and 5.3.4 put us exactly in a position to apply that lemma.

Next, we aim to apply Lemma 4.2.11 to show that, in fact, we have a strong uniform

parameter bi-interpretation. We work with the notation of that lemma: C is the class
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of groups, D is the class of fields. Then, of the requirements to apply the lemma, we

have shown the existence of the uniform parameter bi-interpretation. Next we show

that a given family of twisted groups is strongly UPD in finite fields: we know that

the overlying Chevalley group is strongly UPD. Further, since we have worked with a

Chevalley basis, we have seen that the generating root subgroups are strongly UPD.

But the maximal unipotent subgroup U and its opposite group V are then clearly

strongly UPD by the big cell presentation of the maximal unipotent subgroup: see [4]

Theorem 5.3.3.

For finite fields, we have stated that their unique n-degree extensions, with embedding,

are also strongly UPD: this is, once more, because the theory of fields is finitely ax-

iomatisable. It follows that U1 and V 1 are strongly UPD. We may then apply Lemma

5.3.5 to conclude that G1 is strongly UPD.

Once again, Remark 5.2.9 demonstrates that clause 2 of Lemma 4.2.11 is also satisfied.

We may thus apply Lemma 4.2.11 to conclude the theorem.

5.4 The remainder of the twisted groups

The families of finite simple groups of Lie Type that remain are those twisted groups

whose underlying Lie algebras do not have root systems all of whose roots have the

same length. So in this section we examine the following classes:

Let SUZ be the class of finite simple groups of type 2B2, the Suzuki groups.

Let REEF be the class of finite simple groups of type 2F4, the Ree groups of F -type.

Let REEG be the class of finite simple groups of type 2G2, the Ree groups of G-type.

Let Tdiff = SUZ ∪REEF ∪REEG be the class of twisted groups built over difference

fields.
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DISCUSSION 5.4.1

1. All general results about twisted simple groups in 5.3.2 remain valid here. Those

that do not are, in particular, those that pertain to simple groups built from Lie

algebras whose root systems have all roots of the same length.

2. A finite simple group in Tdiff is constructed using only a finite simple group of

type B2, F4 or G2 as appropriate, and an appropriate group automorphism θ.

Let us describe this in detail for each of the subclasses SUZ, REEF and REEG:

For any group 2B2(K) we have |K| = 22i+1 for some i ∈ N. So let us consider the

class of finite difference fields C(1,2,2), and suppose (K,σ) ∈ C(1,2,2). Then 2B2(K)

is constructed using firstly B2(K) and a graph automorphism of B2(K). These

are both UPD over C(1,2,2) - (see Section 5.2). Secondly, a field automorphism

of B2(K) is required. The field automorphism extends the action of σ on K.

Suppose that {xr(t) : t ∈ K} is one of the strongly uniformly definable root

subgroups; then the action of the field automorphism is the expected one:

σ(xr(t)) = xr(σ(t))

That the action can be extended toB2(K) strongly uniformly follows from Lemma

5.2.5. It follows that the groups U1 and V 1 of 2B2 are UPD in C(1,2,2). However,

we do not know yet that 2B2 itself is UPD in C(1,2,2), because we lack a theorem

like 5.3.5.

Identically, for any group 2F4(K) we have |K| = 22i+1 for some i ∈ N, and the

same analysis as for groups of type 2B2 shows that the groups U1 and V 1 of 2F4

are UPD in C(1,2,2).

The groups 2G2 are similar. However, for any group 2G2(K) we have |K| = 32i+1

for some i ∈ N. So this time we work with the class of finite difference fields

C(1,2,3), and suppose (K,σ) ∈ C(1,2,3) . Similar to the groups in SUZ and REEF ,

a group 2G2(K) is constructed using firstly G2(K) and a graph automorphism

of G2(K) which are both UPD over C(1,2,3), and then a field automorphism of
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G2(K) which extends the action of σ on K. Our conclusion is identical: the

groups U1 and V 1 of 2G2 are UPD in C(1,2,3).

For details about the graph automorphisms used to build the groups in Tdiff , see

[4] Sections 12.3 and 12.4, which are devoted to this. That they are UPD is

clear. The relevant field automorphisms are described on page 225 of [4], at the

beginning of Section 13.4.

3. We shall be required to introduce more notation and to recapitulate a few more

notions from [4]. We work specifically with the notation of 5.3.2 (6). Additionally,

for now let G = G(K) be a Chevalley group over the field K, with maximal torus

H. We have already mentioned in 5.3.2 (6) that the elements h ∈ H correspond

to characters on the free group Q = Z[{qi : 1 ≤ i ≤ n}]. We denote by χpi,ti

the character with χpi,ti(qi) = ti and χpi,ti(qj) = 1 for j 6= i. In terms of the

free subgroup of Q, P = Z[Φ], let a, r ∈ P , then χr,t(a) = t
2

(r,a)
(r,r) - the reader will

recall from 5.3.2 (6) and 5.2.2 (4) that (·, ·) is the Killing form. Suppose that

h ∈ H and h induces the character χr,t on Q. Then in this section we shall write

h = hr(t). More generally, if h induces the character χ on Q, then in this section

we shall write h = h(χ).

4. Let us describe the group H1 for groups of type 2B2, 2F4 and 2G2. Again, let us

assume that G1 = G1((K,σ)), so the field automorphism used for the defining

automorphism θ is σ. The theorem we make use of is Theorem 13.7.4 of [4]. It

states that the elements h(χ) ∈ H which are fixed by θ are the ones for which

χ(r̄) = χ(r)λ(r̄)σ. Here λ(r) is 1 if r is a short root, λ(r) is 2 if r is a long root

and the group is of type 2B2 or 2F4, and λ(r) is 3 if r is a long root and the group

is of type 2G2.

It also states that for Tdiff -groups defined over finite fields, then h ∈ H1 if and

only if h is fixed by the defining automorphism θ. Since our work also relates to

twisted simple groups over pseudo-finite difference fields, it is worthwhile remark-

ing that Theorem 13.7.4 of [4] also holds for ultraproducts of Tdiff -groups. This

is a direct consequence of 5.4.3 part (ii), and it is the reason we include that result.
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Let (K,σ) be an appropriate finite or pseudo-finite difference field, and σ satis-

fying Frobσ2 = id. ‘Appropriateness’ will be clear from the context of the next

three paragraphs:

So now, let us consider a group 2B2((K,σ)). The overlying Chevalley group

is B2(K). Suppose that Π = {a, b} with a the short root and b the long root

(see [4] 12.3 for details). Then we have H = {ha(s)hb(t) : s, t ∈ K×}. Let

h = ha(s)hb(t) ∈ H. By Lemma 13.7.1 of [4] and Proposition 12.3.3 of [4],

we have θ(ha(s)hb(t)) = hb(s2σ)ha(tσ). If h ∈ H1, then we have ha(s)hb(t) =

hb(s2σ)ha(tσ). In terms of characters, we must have the equality χa(s)χb(t) =

χa(tσ)χb(s2σ). It follows that χa(s) = χa(tσ), and χb(t) = χb(s2σ). Then these

equations are satisfied if and only if s = tσ. So

H1 = {ha(tσ)hb(t) : t ∈ K×}

Now let us consider a group 2G2((K,σ)). The analysis is identical with the

following amendment: By Lemma 13.7.1 of [4] and Proposition 12.4.1 of [4], we

have θ(ha(s)hb(t)) = hb(s3σ)ha(tσ). However, the result is still the same:

H1 = {ha(tσ)hb(t) : t ∈ K×}

Now let us consider 2F4. Suppose Π = {c, a, b, d} with c and a short, and b and

d long (see [4] 12.3 for details). A similar analysis shows that

H1 = {hc(sσ)ha(tσ)hb(t)hd(s) : t, s ∈ K×}

The exceptional non-simple twisted groups excluded from the results in this last section

are 2B2(2), 2G2(3) and 2F4(2) ([4] 14.4.1).

We make use of difference fields of the form (Fp2k+1 ,Frobk) so in terms of Chapter 2

and the theories PSF(m,n,p): n = 2, m = 1.

To begin, we must prove an analogue to Theorem 5.3.5, but for the groups in Tdiff . Our

theorem and proof will be virtually identical to 5.3.5, but we shall make very strong
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use of our results in Chapters 2 on the theory PSF(m,l,p), and of our results in Chapter

3 on GS1-theories:

LEMMA 5.4.2 There is n ∈ N and a function ϕ : {1, 2, . . . , n} 7→ {U1, V 1} such

that for any G1 ∈ Tdiff we have

G1 =
n∏
i=1

ϕ(i)(K)

PROOF Suppose this were not so. We may assume that all the exceptions come from

one of the classes SUZ, REEF or REEG. Call this class T ; define q = 3 if T = REEG

and define q = 2 otherwise. Then we may assume that there is a sequence of groups

in T indexed by i ∈ N: G1(Fq2ki+1) ∈ Tdiff such that the minimum number of steps for

V 1(Fq2ki+1) and U1(Fq2ki+1) to generate G1(Fq2ki+1) is greater than j.

Since T corresponds to an overlying class of Chevalley groups, we denote by L(F )

a member of the latter over the field F . Now, consider the difference fields E =

{(Fq2ki+1 ,Frobki) : i ∈ N}. Let (K,σ) be a non-principal ultraproduct of the members

of E. Then (K,σ) |= PSF(1,2,q). Further, we may apply Los’s theorem to all the ob-

jects we have shown to be UPD in the (Fq2ki+1 ,Frobki): the ultraproduct of the Frobki

is σ, the ultraproduct of the L(Fq2ki+1) is L(K), the ultraproduct of the UPD group

automorphisms of L(Fq2ki+1) described in 5.4.1 (2) is a definable automorphism γ which

is a product of a definable graph automorphism and a definable field automorphism of

L(K). Thus, the ultraproduct of the V 1(Fq2ki+1) is V 1(K) and the ultraproduct of the

U1(Fq2ki+1) is U1(K). By [4] Theorem 14.4.1, G1(K) = 〈U1(K), V 1(K)〉 is a simple

group. We now work inside G1(K). We denote it G1, and refer to U1, V 1, etc.

So, by our construction, U1 and V 1 do not generate G1 in finitely many steps. However,

at the ultraproduct level, all the objects we have defined have been defined in (K,σ).

Since (K,σ) |= PSF(1,2,q) we may apply Theorem 4.3.4 to deduce that (K,σ) is a

group of finite GS1-rank. So we may apply Proposition 4.3.9: it shows that there is a

definable group H ⊆ (U1V 1)n for some n ∈ N such that H / 〈U1, V 1〉 and H/U1 and

H/V 1 are finite. Since G1 = 〈U1, V 1〉 and since G1 is simple, it follows that H = G1.

So we have a contradiction. �
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COROLLARY 5.4.3 (i) Let T ∈ {SUZ,REEG, REEF }, and let q = 3 if T =

REEG, and q = 2 otherwise. Then the class T is UPD in the class of finite difference

fields C(1,2,q).

(ii) (The ultraproduct of finite Tdiff-groups is the T -group built over the ultraproduct

of the defining difference fields): Let T ∈ {SUZ,REEF , REEG}; define q = 3 if

T = REEG and define q = 2 otherwise. Let {G1((Ki, σi)) : i ∈ N} be a sequence of

T -groups where for an appropriate difference field (K,σ), G1((K,σ)) is the T -group

built over the difference field (K,σ). Suppose that all the Ki are finite fields. Let U be

an ultrafilter on N. Let G1
ult =

∏
i∈NG

1((Ki, σi))/ ∼U . Let (K,σ) =
∏
i∈N(Ki, σi)/ ∼U .

Then G1((K,σ)) ∼= G1
ult.

PROOF (i) Let T ∈ {SUZ,REEG, REEF }, and let q = 3 if T = REEG, and q = 2

otherwise. Firstly, in Discussion 5.4.1 (2) we explained that for T , the subgroups U1

and V 1 are UPD in C(1,2,q). Then it follows by 5.4.2 that for T , G1 is also UPD in

C(1,2,q).

(ii) This now follows simply from part (i). �

We must also work, similarly as we have done in previous sections, to show that H1 is

UPD.

LEMMA 5.4.4 Let G1 = G1(K) ∈ Tdiff . There is f ∈ N such that if |K| ≥ f , for

each r ∈ Φ there is h ∈ H1 such that the character χ induced by h satisfies χ(r) 6= 1.

PROOF Let Π be the fundamental system for the root system of the Lie algebra of the

Chevalley group above G1. So Π is a free basis for Z[Φ]. Let σ be the automorphism of

K which is the underlying field automorphism in the construction of G1. Also, suppose

that q = char(K), and |K| = q2n+1 for some n ∈ N. Now let Π∗ = {c, a, b, d}, where

Π∗ ⊇ Π and c = d = 0, if the type of G1 is not 2F4, and Π∗ = Π otherwise. We let a, c

be short roots and we let b, d be long roots. Let r ∈ Φ. Then r = ea+ fb+ gc+ hd for

some integers e, f, g, h independent of |K|. There are two cases to consider:
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Suppose that either of e, f 6= 0. Then using 5.4.1 (4) again, we may find h ∈ H1

which induces a character χ such that χ(a) = t, χ(b) = tqσ, χ(c) = χ(d) = 1, for any

t ∈ K×. So χ(r) = te(tqσ)f . Thus, by 5.4.1 (2), χ(r) = te+fq
n+1

. But for all large

enough K, there must be t ∈ K× such that te+fq
n+1 6= 1. We pick h ∈ H1 that induces

a corresponding χ.

If e = f = 0 then either of c, d 6= 0. The exact analysis of the previous paragraph

holds, replacing a with c, b with d, e with g, and f with h. �

This allows us to prove the Tdiff -analogue to Lemma 5.3.8:

LEMMA 5.4.5 There is f ∈ N, such that for |K| > f , the subgroup H1 is uniformly

parameter definable in any of the families SUZ, REEF or REEG.

PROOF We begin by applying 5.4.4 and the unique Bruhat decomposition for twisted

groups (5.3.2 (6)). By Bruhat, we may write any g ∈ G1 uniquely as g = u′h0nwu for

some u′ ∈ U1, h0 ∈ H1, nw ∈ N1, and u ∈ (U−w )1. Then let h ∈ H1. Identically to the

first paragraph of the proof of 5.3.8, if g = hgh−1, then u′ = hu′h−1, nw = hnwh
−1

and u = huh−1. Now consider u: by 5.2.2 (3) u has a unique Chevalley cell presen-

tation: u = xr1(t1)xr2(t2) . . . xrn(tn). If h does not commute with any of the xri(ti),

then h does not commute with u. But then, for large enough |K|, for each r ∈ Φ+ we

may select hr ∈ H1 such that hr does not commute with any element of Xr\{0}. So

H1 ⊆ ∩r∈Φ+CG1(hr) ⊆ N1.

Let J1 = ∩r∈Φ+CG1(hr). By [4] Section 13.3, we have |W 1(2B2)| = 2, |W 1(2G2)| = 2

and |W 1(2F4)| = 16. Consider the uniformly parameter definable set:

(J1)16 = {g16 : g ∈ J1}

Then (H1)16 ⊆ (J1)16 ⊆ H1. But inspecting our characterisations of H1 for the Tdiff -

families in 5.4.1 (4), we see that |H1/(H1)16| ≤ 256. It follows that H1 is uniformly

parameter definable. �

PROPOSITION 5.4.6 (i) There is a uniform parameter bi-interpretation between

C(1,2,2) and SUZ.
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(ii) There is a uniform bi-interpretation between C(1,2,2) and REEF .

(iii) There is a uniform parameter bi-interpretation between C(1,2,3) and REEG.

PROOF In the following, we use the notation K∗ for the interpretation of a field K

in a group G. The reader should not confuse K∗ with the multiplicative subgroup of

the field K, which is referred to as K×. Again, we inherit the general notation of the

previous sections.

For each part of the theorem we break the uniform bi-interpretation into parts:

(a) We describe the perfect matching m between a class of difference fields and a class

of groups.

(b) We exhibit a UPD of the group m((K,σ)) in the difference field (K,σ). We denote

the interpretation m((K,σ))∗.

(c) We exhibit a UPD of (K,σ) in m((K,σ)). We denote the interpretation (K,σ)∗.

(d) We conclude the theorem by applying Lemmas 4.2.11 and 4.3.12.

With this in hand we begin with (i):

(a) The matching is straightforward, and arises from Discussion 5.4.1 (2). Every group

in SUZ is a group 2B2(K) where K is a field of cardinality 22ki+1 for some ki ∈ N. So

we match m : C(1,2,2) ↔ SUZ by m((F22ki+1 ,Frobki)) = 2B2(F22ki+1).

(b) This is 5.4.3 part (i).

(c) Let (K,σ) be an arbitrary member of C(1,2,2). We work with 2B2(K). In [4] (pp.

234-236) the following two facts are established about 2B2(K):

(1) With respect to a system of fundamental roots {a, b} in the Dynkin diagram of

type B2 there is a twisted root subgroup X1
S consisting of elements:

xa(tσ)xb(t)xa+b(tσ+1 + u)x2a+b(u2σ)
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for all t, u ∈ K.

(2) Expressing an element of X1
S(uniquely) as xs(t, u) = α(t)β(u) where

α(t) = xa(tσ)xb(t)xa+b(tσ+1) (5.1)

β(u) = xa+b(u)x2a+b(u2σ)

then

xs(t1, u1)xs(t2, u2) = xs(t1 + t2, u1 + u2 + tσ1 t2) (5.2)

Then as in 5.4.1 (4) we have:

H1 = {ha(tσ)hb(t) : t ∈ K×}

• H1 is UPD in SUZ By adjusting the resulting UPD formula (Lemma 5.2.3) we

see H1 is UPD.

• Consider the subgroup Z(X1
S) = {β(u) : u ∈ K}. Now using the Cartan marix

we see that h(t)β(u)h(1
t ) = β(t · u). So H1 acts on Z(X1

S) via conjugation with

one orbit. Thus Z(X1
S) is UPD. Exactly as in previous sections we may use

the conjugation action of H1 on Z(X1
S) to define a multiplication on Z(X1

S)\{0}.

A full field structure on Z(X1
S) is obtained by interpreting field addition as G1

multiplication restricted to Z(X1
S). This is done explicitly in [27] pp.72.

With this interpreted field structure on Z(X1
S) there is a UPD isomorphism of

fields i : K 7→ Z(X1
S) sending u ∈ K to β(u).

So with the field structure of K being UPD in G1, we focus on interpreting the auto-

morphism σ.

We begin by verifying that {α(s) : s ∈ K} is a uniformly parameter-definable set. Let

h ∈ H1. So h = ha(tσ)hb(t) for some t ∈ K×. Then we have

ha(sσ)hb(s)xr(t)hb(
1
s

)ha(
1
sσ

)

= ha(sσ)(xr(sAbr · t))ha(
1
sσ

)

= xr(sσ·Aar · sAbr · t)
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So using this we compute the action of H1 on an element α(t) where by α(t) we mean

an element α(t)β(0).

ha(sσ)hb(s)(xa(tσ)xb(t)xa+b(tσ+1)hb(
1
s

)ha(
1
sσ

)

= xa(s2σ · 1
s
· tσ)xb(

1
s2σ
· s2 · t)xa+b(s · tσ+1) (5.3)

Letting ε = 1
s2σ
·s2 ·t we see expression 5.3 is xa(εσ)xb(ε)xa+b(εσ+1) and this shows that

{α(t) : t ∈ K} is closed under the action of H1. Look at the orbit of α(1). It suffices

to show that for all t ∈ K× there exists s ∈ K× with t = s2−2σ. Since s 7→ s2−2σ

is a multiplicative homomorphism of K× and we are considering K a finite field of

characteristic 2, it suffices to show the kernel of the homomorphism is trivial. But then

s2−2σ = 1

⇒ s1−σ = 1

⇒ s = sσ ⇒ s = sσ = sσ
2

=
√
s

⇒ s = 1

(5.4)

The conclusion is that the set {α(t) : t ∈ K} is a UPD set, since it is the orbit

of any of its elements under the conjugation action of the UPD group H1. So let

A = {α(t) : t ∈ K} and let B = Z(X1
S) = {β(u) : u ∈ K}. Since Z(X1

S) was also

UPD, we conclude that X1
S itself is UPD. We also conclude that there are UPD

coordinate functions fα : X1
S 7→ A and fβ : X1

S 7→ B well-defined by the equation

x ∈ X1
S ⇒ x = fα(x) · fβ(x).

Now consider the following two UPD maps mi : A 7→ B:

m1(α(t)) = fβ(α(1) · α(t))

m2(α(t)) = fβ(α(t) · α(1))

(5.5)
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Computing, we see that m1(α(t)) = β(t) and m2(α(t)) = β(tσ). So consider the map

m2m
−1
1 : B 7→ B. With respect to the UPD interpretation of the field K, the au-

tomorphism m2m
−1
1 is seen to be a UPD interpretation of σ. So we let K∗ = B and

σ∗ = m2m
−1
1 , and this is the UPD interpretation of (K,σ) in 2B2(K).

(d) The choice of UPD isomorphism is now clear from the interpretation:

We define

i : K 7→ K∗; u 7→ β(u)

σ 7→ σ∗

The reader can verify that i is an isomorphism of difference fields.

As usual, we now apply Lemma 4.3.12 to show that we have a uniform parameter bi-

interpretation, and Lemma 4.2.11 to show that we have a strong uniform parameter

bi-interpretation. That clause 1 of the requirements to apply 4.2.11 is satisfied was

emphasized in part (b) of the proof. Clause 2 is satisfied simply because difference

fields of characteristic 2 whose automorphism σ satisfies:

∀x : σ2(x2) = x

are finitely axiomatisable (proof: I just did it).

(ii) Since 2F4 has a twisted root group X1
S with S of type B2, the proof is identical to

that for the Suzuki groups 2B2.

(ii) The proof is identical to the proof of (i), with everything relativised to the Ree

groups. There is one non-trivial verification- that the finite simple groups of type
2G2 interpret the necessary difference field automorphism. As above, we outline the

necessary facts from [4] (13.6.3) and (13.6.4): here S = {a, b, a+b, 2a+b, 3a+b, 3a+2b}.

Again, X1
S is UPD. The elements of X1

S in this case are of the (unique) form
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xa(tσ)xb(t)xa+b(tσ+1 + uσ)x2a+b(t2σ+1 + vσ)x3a+b(u)x3a+2b(v)

Expressing this x ∈ X1
S as x = xs(t, u, v) = α(t)β(u)γ(v) where

α(t) = xa(tσ)xb(t)xa+b(tσ+1)x2a+b(t2σ+1)

β(t) = xa+b(uσ)x3a+b(u)

γ(v) = x2a+b(vσ)x3a+2b(v)

(5.6)

we have the product formula

xs(t1, u1, v1)xs(t2, v2, u2) = xs(t1+t2, u1+u2−t1t3σ2 , v1+v2−t2u1+t1t3σ+1
2 −t21t3σ2 ) (5.7)

Now in ( [27] chap.5 Lemma 5) the following interpretation of K inside 2G2(K) is given:

The underlying set is Z(X1
S) = {γ(v) : v ∈ K}, the addition is group G1 multiplication,

and the multiplication is from the conjugation action of H1 on Z(X1
S), where H1 is as

in 5.4.1 (4).

Let A = {α(t) : t ∈ K}, B = {β(u) : u ∈ K} and C = {γ(v) : v ∈ K}. We begin by

showing that A and B are UPD. To that end consider the action of H1 on A. Letting

h = ha(yσ)hb(y), we have

hα(t)h−1 = xa(y2σ · 1
y
· tσ)xb(y−3σ · y2 · t)xa+b(y−σ · y · tσ+1)x2a+b(yσ · t2σ+1)

and letting ε = y−3σ · y2 · t we see the RHS is just α(ε). Again, to show A is definable,

it is enough to show that the H1 action has one non-trivial orbit. This reduces to

showing that for any t ∈ K× there exists y ∈ K× such that t = y2−3σ. Since we are

working in finite fields, and y 7→ y2−3σ is a homomorphism K× 7→ K× we need only

show the kernel is trivial. But then

y2−3σ = 1⇒ y2 = y3σ ⇒ y2σ = y ⇒ yσ = y2σ2 ⇒ y2σ = y4σ2

Thus y3 = y12σ2
= y4

Thus y = 1
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In the case of B, again say h ∈ H1 = ha(yσ)hb(y). Then

hβ(u)h−1 = xa+b(y−σ · y · uσ)x3a+b(y3σ · y−1 · u)

and letting ε = y3σ · y−1 · u this is indeed β(ε). The UPD of B reduces in this case

to showing that the action of H1 on B has exactly two non-trivial orbits. This comes

from the fact that the multiplicative homomorphism y 7→ y3σ−1 has kernel {±1}. Here

it is easy: y3σ−1 = 1⇒ y3σ = y ⇒ y = yσ ⇒ y = yσ
2

= y
1
3 ⇒ y3 = y ⇒ y = ±1.

So as with the Suzuki group we have UPD coordinate functions fα : X1
S 7→ A, fβ :

X1
S 7→ B and fγ : X1

S 7→ C, well-defined by the equation ∀x ∈ X1
S x = fα(x)fβ(x)fγ(x).

Now we must give a uniform parameter definition for the automorphism. So consider

the following two UPD maps mi : A 7→ B:

m1 : A 7→ B α(t) 7→ fβ(α(t) · xs(−1, 0, 0))

m2 : A 7→ B α(t) 7→ fβ(xs(−1, 0, 0) · α(t)) (5.8)

Inspection of expression 5.8 shows that m1(α(t)) = β(t) and m2(α(t)) = β(t3σ). So

letting f = m2 ◦m−1
1 we have f(β(t)) = β(t3σ) Now we transfer this morphism to C.

Consider the map

T : B 7→ C β(t) 7→ fγ ◦ (β(t) · xs(−1, 0, 0))

Computing, we see that i = T ◦f ◦ T−1 is an isomorphism from C onto itself such that

i′(γ(v)) = γ(v3σ). We have a UPD automorphism of the interpreted field. The inverse

of the frobenius is of course definable, so the automorphism of fields γ(v) 7→ γ(vσ) is

UPD. �
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