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Abstract. We introduce and study some local versions of o-minimality, requir-
ing that every definable set decomposes as the union of finitely many isolated
points and intervals in a suitable neighborhood of every point. Motivating ex-
amples are the expansions of the order of reals by sine, cosine and other periodic
functions.
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1 Introduction

O-minimal structures ([6], [3]) exclude certain “popular” and widely studied
expansions of the reals, for instance those by trigonometric functions such as
sine, cosine, and tangent. The obstruction is that these functions are periodical,
which results in the definability of the integers (an infinite sequence of isolated
points) in the corresponding structure. O-minimality is recovered if one restricts
these functions to a suitable neighborhood of 0 [9], and in fact the expansion
R, of the real field by restricted analytic functions provides one of the most
interesting examples of o-minimal structures.

One may wonder whether referring to “local” versions of o-minimality (that is,
assuming o-minimality only in a suitable neighborhood of any given element)
can ensure a reasonable model theoretic environment to approach sine and re-
lated functions.

These notes are devoted to discussing some of these local adaptations of o-
minimality. We always deal with expansions A of dense linear orders (4, <).
In § 2 we introduce a weak notion of local o-minimality requiring that for every
element a € A, and every definable subset X of A, there is an interval around
a on which X can be broken into a union of finitely many isolated points and
intervals. A stronger form of local o-minimality is considered in § 3, dealing
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with structures A for which there is an interval around a where every definable
set X decomposes in the way described above. We observe, that if A expands
the ordered field of real numbers then these two notions coincide, but this is not
true in general. We discuss both of these notions, listing in each case the ele-
mentary properties —such as Exchange Principle— they enjoy or lack. Actually
one has to acknowledge that the positive features of these structures are not the
dominant ones. In spite of this, it may be of interest to have a general picture of
what occurs. It is natural to expect that strongly locally o-minimal structures
exhibit better behaviour, and it turns out that this is the case, including for
instance a correspondence between types and cuts, as well as a nice description
of w-categoricity (developed in § 4). The final sections of this paper are devoted
to studying (strongly) locally o-minimal groups and rings.

We refer to the classical sources on o-minimality ([6] and [3]) and weak o-
minimality ([4]). See also [2], [5] as general references about Model Theory.
The study of local o-minimality is part of the Ph.D. Thesis of the second author
[10]. She would like to thank her Ph.D. advisor David Marker for introducing
her to this notion, and for his helpful input during her initial investigation of
the subject.

Both the authors thank Assaf Hasson for his interest in this work and for point-
ing out an error in a previous version of the paper.

2 Locally o-minimal structures

Definition 2.1 Let A = (4, <, ...) be a structure expanding a dense linear
order without endpoints (A, <). A is called locally o-minimal if and only if, for
every a € A and every definable X C A, there is an interval I around a such
that X NI is a finite union of points and intervals.

Note that the previous definition makes sense even for expansions of arbitrary
orderings. It is easily seen for instance, that an expansion of a discrete order
without endpoints is locally o-minimal (for every element a just take the single-
ton {a} itself as an open interval between the predecessor and the successor of
a). So in this setting local o-minimality becomes trivial and loses its interest.
Consequently we choose to restrict our attention to dense linear orders without
endpoints.

Clearly, o-minimal structures are locally o-minimal. But even weakly o-minimal
structures are so.

Proposition 2.2 Every weakly o-minimal structure A is locally o-minimal.

Proof. By definition of weak o-minimality, every subset of A definable in A is a
finite union of convex subsets. Let a € A and X be a definable subset of A. We
want to find an interval I containing a such that X NI is a finite union of isolated
points and intervals. We can assume that a € X; otherwise we refer to A — X
and after finding for a ¢ X, an interval I allowing a suitable decomposition of
I — X into points and intervals, we can deduce a similar representation of X N 1.



Look to the left of a. Either there is some € < a in A such that |e, a] N X = {a},
or for every € < a in A there is some ¢ € A such that € < ¢ < a and ¢ € X,
in which case, due to weak o-minimality, there is some € < a in A such that
Je,a] € X. In conclusion, we can find € < a in A such that either Je, a]NX = {a}
orle, a] C X.

A similar interval can be found to the right of a. Let § be its right endpoint
and let I =]e, §[. Then X N1 is either {a}, or |e, a], or [a, 6], or the whole I. -

This provides many noteworthy examples of locally o-minimal structures, see
[4], § 2.

Example 2.3 To get an expansion of the reals that is not locally o-minimal,
just take (R, <, Q, ...). As Q is dense and codense in R, it overlaps every
interval in R in a dense codense subset.

We will now provide a further characterization of local o-minimality.

Proposition 2.4 A structure A = (A, <, ...) expanding a dense linear order
without endpoints (A, <) is locally o-minimal if and only if, for every a € A
and every definable X C A, there are ¢, d in A such that ¢ < a < d and either
XNle, d[ or e, d[—X is equal to one of the following:

(i) {a},
(ii) Je, al,
(i11) [a, d],
(iv) the whole interval Je, dJ.

Proof. (<) In every case XN|c, d] is a finite union of isolated points and
intervals, indeed either a singleton or the union of at most two (possibly half-
closed) intervals.

(=) Suppose that A is locally o-minimal. Take a, X and the corresponding
interval I around a. First assume that a is in X, hence a is in the union of
points and intervals decomposing X in ]e, d[. If a is an isolated point in this
union, then restrict I and get ¢ < a < d such that a is the only element of
X between ¢ and d. If a is in the interior of some interval of this union, then
replace I by the interior of this interval. Finally, if a is the left or right endpoint
of some interval, again restrict I to (ii) or (iii) respectively. If a ¢ X, refer to
Je, d[—X instead of XN]e, d[.

Corollary 2.5 Local o-minimality is preserved under elementary equivalence.

Proof. Local o-minimality can be described as follows: For every formula
(v, W) of the language, “for every a and b there are ¢ < a < d such that the

elements x between ¢ and d satisfying ¢(x, b) correspond to one of the 8 cases
described in Proposition 2.4”.

We will present some further examples of structures that are locally o-minimal
but not weakly o-minimal. The following proposition provides useful criteria
which can be applied to obtain such structures.



Proposition 2.6 Let A = (A, <, ...) be a locally o-minimal structure, M a
subset of A% such that, for every a = (a1, az) € M, {y2 € A : (a1, y2) €
M} is definable in A. Let M be the structure with domain M, totally ordered
lezicographical by <ien (i.e., for every a = (a1, az) and b = (by, ba) in M,
a <jez b if and only if in A a1 < by and, if ax = by, then as < by). Assume two
further conditions on M:

1. M is definable in A, meaning that for every formula ¢(0) of the language
of M there is a formula ¢'(v1, U3) of the language of A such that, for
every tuple @ in M, M = o(@) if and only if A = (a1, d3);

2. for every a = (a1, ag) € M, there is an interval I around ag in A such
that {a1} x I C M.

Then M is locally o-minimal.

Note that Proposition 2.6 applies in particular to the case where M itself is
definable in A.

Proof. Let X C M be definable in M. Take a € X, a = (a1, a2). Then {yz €
A : (a1, y2) € M} is definable in A, and by 1) X' = {y € A : (a1, y2) € X} is
also definable in A. By local o-minimality, there are bs < ¢o in A such that as is
in the (say open) interval |ba, c2] and |ba, c2[NX’ can be written in A as a finite
union Uj<xI; where each I; (j < k) is a point or an interval. We refer here for
simplicity to an open ]bg, cs[, but it is easily seen that our argument works even
with respect to closed, or half-closed intervals. By 2), we can assume that both
b = (a1, b2) and ¢ = (a1, c2) belong to M and that the whole interval ]b, [ is in
M. For every j <k, put I; = {a1} x I;. Then each I} is a point or an interval
in M and |b, c[NX = U;<I;. In conclusion, M is locally o-minimal.

We will apply this criterion to prove the local o-minimality of a series of moti-
vating examples, and most importantly of the expansion of the additive ordered
group of reals (R, <, +) by the sine function; this was first observed by David
Marker and Charles Steinhorn (personal communication).

Theorem 2.7 (Marker-Steinhorn) The expansion of the additive ordered group
of reals (R, <, +) by the sine function is locally o-minimal.

Proof. The expansion of the real ordered field by the sine function restricted
to the interval [—m, [ is locally o-minimal, indeed o-minimal as a structure
definable in the more general expansion of the real ordered field by restricted
analytic functions, Ry, [9]. Incidentally, observe that the ordered group of
integers (Z, <, +) is also locally o-minimal provided that we enlarge our setting
from the particular case of dense orders to discrete ones (however we will not
need this fact here, and will simply refer to the ordered group of integers).
Observe that (R, <, sin) can be viewed as the ordered sum of infinitely many
copies of the interval [—m, 7|, one copy [—7 + 2mn, m + 27n| for every integer
n. In other words, (R, <, sin) can be regarded as the direct product of the



integers (more precisely of (27Z, <) where sin acts as 0) and [—7, 7[, with
lexicographic ordering and the sine function restricted to [—m, 7[. The elements
of this structure can be identified with the pairs (n, ) where n is an integer
and x a real number in [—7, 7[; the correspondence with R being given by
(n, ) — 2mn + z for every n and x. Thus we can apply Proposition 2.6 to
Z x [—m, 7| viewed as a subset of the direct product of two copies of (R, <,
+, sin) (where sin is meant restricted to [—m, 7[), equipped with the structure
given by (n, )+ (n/, ') = (n+n/, c+2') if -7 < z+2' <m, (n, z)+ (', 2') =
(n+n'+1, z+a'—2n) if x+2’ > wand (n, )+ (0, ') = (n+n' -1, x4+’ +2m)
if t+2’ < —7, and of course sin (n, ) = sin z for every choice of integers n, n’
and real numbers xz, 2/ in [—7, 7[. Observe that M = Z x [—m, «[ satisfies the
assumptions of Proposition 2.6 as a subset of the locally o-minimal structure
A = (R, <, +, sin) (where sine is restricted to [—7, 7[). In fact, for every
integer n, the set of the real numbers x € [—m, 7| for which (n, x) € M is
definable, is simply the interval [—m, w[. We have just seen that M satisfies
Condition 1) in Proposition 2.6, and it is easily checked that 2) also holds.
Thus the expansion of the additive group of reals by the sine function is locally
o-minimal.

Observe that (R, <, +, sin) is not weakly o-minimal, as the integers form a
definable subset consisting of infinitely many isolated points. Note also that
if we involve multiplication we lose local o-minimality; in other words (R, <,
+,+, sin) is not locally o-minimal. In fact the integers are definable in this
enlarged structure both as a set, via the formula sin7v = 0, and as a ring, via
the restrictions of the addition and multiplication of R; so even the rationals
can be defined as the quotients r - s~1, where ~ and s range over the integers
with s # 0. Therefore, due to what we observed in Example 2.3, the resulting
structure cannot be locally o-minimal.

Additionally the argument in Theorem 2.7 can be used to produce further,
similar locally o-minimal expansions of the ordered group of reals, for instance
that by the cosine function, or by both sine and cosine, more generally by
periodic analytic functions (admitting a common multiple of their periods).

We will once again apply Proposition 2.6 to obtain two more examples of locally
o-minimal structures.

Examples 2.8 1. (R", <jey, +, ) with addition and multiplication defined
componentwise and lexicographic ordering is locally o-minimal. This is
clear when n = 1. For n > 1, just apply Proposition 2.6 suitably many
times. Observe that the resulting structure is not weakly o-minimal when
n > 2, because the set of tuples @ = (ay, ..., a,) in R™ such that ag =
... =ay = 0 is definable via 7- (1, 0, ..., 0) = 7.

2. Consider the ordered group (R>° x R, <jcz, *, (1,0)) where <;., denotes
the lexicographic order and * is defined in the following way: For a and
a’ positive reals and b, V' reals, (a, b) * (a/, V') = (a-a’, a- b’ + D).
Proposition 2.6 ensures that this ordered group is locally o-minimal be-
cause R>Y, <., and * are definable in the o-minimal ordered real field,



and condition 2) is also easily satisfied.

However the resulting structure is not weakly o-minimal, because the set
of ordered pairs (a, 0) with a a positive real number is definable as the
centralizer of (2, 0).

Another direct consequence of Proposition 2.6 is the following;:

Corollary 2.9 The direct sum of finitely many locally o-minimal structures
(ordered lexicographically by <ie..) is locally o-minimal.

Note that this no longer holds if we refer to infinite direct sums.

Example 2.10 Let R be the expansion of the ordered field of reals by a 1-ary
relation symbol P to be interpreted as the set of the roots of the polynomial
x-(22—1), hence as {0, £1}. So R is o-minimal. Consider the direct power R
as an ordered structure with lexicographic ordering <;.,. Thus the elements of
R form an ordered sequences of real numbers 7 = (7;);c., such that r; = 0
for every suitably large i. Furthermore, for r, s in R“), r <., s means that
if 7 is the least index such that r; # s;, then r; < s;. Addition and P are
defined componentwise in R(“). A given sequence r is in P(R“)) if and only if
r; € P(R) for every i € w. Take the sequence 0 = (0);c,, and any interval |a, b[
around it in R). Without loss of generality one can assume

a=1(0,0,...,a;,0,...), b=(0,0,...,b;,0,...)

with a; = —1 and b; = 1 for some i € w. P(R“) is a definable set but its
intersection with ]a, b[ consists of the elements

Cc = (O7 O, ooy Ciy Cig 1y Cig2,y - )

where for all j >4 ¢; is 0 or £1 and almost everywhere 0. So this intersection
contains infinitely many points, but no intervals. Therefore R() cannot be
locally o-minimal.

On the other hand, the fact that weakly o-minimal structures are locally o-
minimal, implies that local o-minimality inherits several negative features of
the weakly o-minimal framework [4]; in particular we cannot expect a global
monotonicity theorem, and prime models over subsets may sometimes not exist.
One may wonder if locally o-minimal structures A satisfy a local monotonicity
property, meaning that for any definable 1-ary function f of A and any point
a € A, there exists an interval I containing a that can be broken up into a
finite union of points and intervals, on each of which f is monotone or constant.
Recall that local monotonicity holds in weakly o-minimal structures [4]; though
it sometimes fails in the wider framework of locally o-minimal structures.

Proposition 2.11 There exist locally o-minimal structures without local mono-
tonicity.

This is proven by the following example.



Example 2.12 Consider the rational order (Q, <) with —1 and 0 as distin-
guished elements and the opposite function viewe as a map f from negative to
positive rationals. Now surround every negative rational a # —1 by an “in-
finitesimal” neighbourhood, again isomorphic to the rational order. In this way
the half line Q<! is replaced by the direct product Q<~! x Q with the lexi-
cographic order, and the same is true of the open interval of Q with endpoints
—1 and 0. Extend f to this larger domain by assuming that, for every negative
rational a # —1, f acts constantly on the neighbourhood around a (and takes
it to —a). Let A be the structure obtained in this way. It is easily seen that A
is locally o-minimal. Also, the function f is locally constant around every point
a < 0 of A but —1. On the contrary, no interval around —1 can be broken into
finitely many subintervals on which f is monotone or constant.

Observe that also the Exchange Principle fails in A. In fact, if a € A, a < 0 and
a # —1, then a is not in the algebraic closure of the empty set, f(a) is definable
over a, but the converse is not true. -

3 Strongly locally o-minimal structures

The conclusions of the previous section suggest that local o-minimality is too
weak. Accordingly we explore here a more powerful variant.

Definition 3.1 An ordered structure A expanding a dense linear order without
endpoints (A, <) is said to be strongly locally o-minimal if and only if for every
point a € A there exists an interval I around a, such that for every definable
set X, X NI is a finite union of intervals and points.

This means that the interval I endowed with the structure induced by A (that
is, by taking the traces in I and its cartesian powers of the parametrically defin-
able sets of A as the definable sets of I) is o-minimal. This easily implies that a
strongly locally o-minimal structure A satisfies a weak form of local monotonic-
ity, in the following sense.

Remark 3.2 As said, let A be any strongly locally o-minimal structure. Fix a
point a in A and take an interval I such that every definable set intersects I in
a finite union of intervals and points. Apply the proof of global monotonicity
valid in the o-minimal setting [6] to I with its induced structure. Deduce that
every function f from I to I definable in A has monotonicity in 1.

However local monotonicity fails even in the strongly locally o-minimal frame-
work. In fact, the structure A4 in Example 2.12 is strongly locally o-minimal.
Let us compare now local o-minimality and strong local o-minimality. It is clear
that every strongly locally o-minimal structure is locally o-minimal. Actually
the converse implication is also sometimes true.

Proposition 3.3 If A = (4, <, ...) is locally o-minimal and for every a € A
there exist b, ¢ € A with b < a < ¢ such that the interval [a, b] is compact with
respect to the interval topology, then A is strongly locally o-minimal.



Proof. Take any a € A. Then there exists b, ¢ € A with b < a < ¢ such
that [b, ] is compact. Choose any definable subset X of A. We will show that
X N b, ¢] is a finite union of points and intervals. For every z in [b, | take an
interval I, around x such that X N I, is a finite union of intervals and points.
Then U, ¢pp, ¢ Lo is an open cover of [b, ¢]. As [b, c] is compact, there must exist
a finite subcover (J;¢ ; 1 of U,¢pp, o o (for some finite index set J). As X U J;
is a finite union of points and intervals for every j, it must be the case that
XN UjeJ I; is a finite union of points and intervals. -

Corollary 3.4 Every extension of (R, <) that is locally o-minimal, is strongly
locally o-minimal.

In fact any bounded interval in R is compact with respect to the interval topol-
ogy. In particular, the expansion of the real order by addition and sine (as well
as by other similar periodic analytic functions) is strongly locally o-minimal.

Remark 3.5 We will now emphasize another noteworthy property of the key
motivating example of (strongly) locally o-minimal structures, i.e. (R, <, +,
sin). This property strengthens the notion of strong local o-minimality itself.
For simplicity let R = (R, <, +, sin), and acl denote model theoretic algebraic
closure. The additional condition R satisfies is the following:

(C) For every a € R there are b, ¢ € acl((}) such that b < a < ¢ and b, ¢[
intersects every definable subset X of R in finitely many isolated points
and intervals.

In fact, take an integer n for which 7n < a < 7(n 4+ 2) and recall that
Jmn, w(n+2)[ with its induced structure is o-minimal. Observe that mn € acl(0)
for every integer n. This is trivial when n = 0 (as 0 is the identity element of
the group law), while, for n positive, 7n can be defined as the n-th element
t > 0 for which sint = 0 and, for n negative, 7n is the opposite of 7 - (—n) with
respect to +.

Notice that (C) fails in arbitrary strongly locally o-minimal structures, see Ex-
ample 2.12; or Example 3.9 below. On the other hand (C) implies strong local
o-minimality.

If we enlarge our setting from expansions of the real order to arbitrary expan-
sions of dense linear orderings without endpoints, then we encounter locally
o-minimal non strongly locally o-minimal structures.

Proposition 3.6 There exists a locally o-minimal structure that is not strongly
locally o-minimal.

This is witnessed by the following example.

Example 3.7 We consider a structure A = (4, <, ...) with a distinguished
element 0 and 1-ary relations A;, B;, P; and Q; (i € w). We require that the
following conditions hold:



(i) A= Uen(4;UB;)U{0},
(i)
)
)

A; < Aijpq and B; > By for all i € w,
(iii) A; <0< B; for all i € w,

(iv) for all i € w both A; and B; are isomorphic copies of R with the usual
ordering,

(v) for all i € w, P; is a subset of A; order isomorphic to the integers, and
similarly @; is a subset of B; again order isomorphic to the integers.

The definable sets in this structures are finite unions of copies of R, Z, R — Z,
intervals and points. In particular A is locally o-minimal.

To see that A is not strongly locally o-minimal take any interval around 0, say
la, b] with a € A; and b € B; for some i and j in w. Without loss of generality
one can assume ¢ = j. Then the definable set P;; is a copy of Z which intersects
Ja, b[ in infinitely many isolated points.

We will now alternate between describing basic abstract properties of strong
local o-minimality, and introducing further examples that illustrate them. For
instance, the structures A in the previous examples 2.12 and 3.7 are not weakly
o-minimal. On the other hand there are weakly o-minimal structures which are
not strongly locally o-minimal. In other words strong local o-minimality, unlike
local o-minimality, is not implied by weak o-minimality.

Example 3.8 Consider the expansion of the ordered field of real algebraic num-
bers Ry by a relation P for the subset | — m, m[. So P is a definable convex
subset but is not an interval. It is known that this structure is weakly o-minimal,
see [4], Proposition 2.1. Take a, € in Rqyy, 0 < € < % and consider the interval
Ja—¢€, a+e¢[. Choose two rationals r < v’ such that a—e < m+r <a <w+7r' <
a+ €[. Then the real algebraic numbers between 7+ r and 7+ form a convex
subset of Ja — €, a + €[, and in fact a definable subset, in particular the set of
points x such that x — 7’ is in P but x — r is not. But X cannot be decomposed
into a finite union of elements and intervals.

Observe that the strongly locally o-minimal version of Proposition 2.6 holds. In
other words, if we replace in the statement of Proposition 2.6 “locally o-minimal”
by “strongly locally o-minimal” everywhere, then the resulting statement is still
true. Similarly, Corollary 2.9 remains valid if one replaces “locally o-minimal”
by “strongly locally o-minimal” everywhere.

Furthermore, straightforward arguments using compactness and elementary chains
show that every locally o-minimal structure A admits an elementary extension
A’, where for every a in A there are ¢ < a < d in A’, such that for every subset X
definable in .4, XN]e¢, d[ is as described in Proposition 2.4. Note that repeating
this procedure cannot directly provide a strongly locally o-minimal elementary
extension of 4. But it does suggest how to build a locally o-minimal non strongly
locally o-minimal structure, and even shows that strong local o-minimality, un-
like local o-minimality, is not preserved under elementary equivalence.



Example 3.9 Enlarge the ordered set of real algebraic numbers by countably
many l-ary relations P, (n a positive integer), where for every n P, is inter-
preted by the convex subset | — =, Z[. This determines a sequence of nested
convex subsets which are not intervals and whose intersection is the point 0. It
is easily seen that this structure is not strongly locally o-minimal. Take a = 0
and observe that for every real algebraic € > 0, one can find n such that P, is
included in | — ¢, €[ which provides a convex subset that cannot be decomposed
into a union of points and intervals. On the other hand, our structure is weakly
o-minimal (as it is definable in the weakly o-minimal expansion of the ordered
field of real algebraic numbers by P;) and consequently locally o-minimal. Also,
observe that a straightforward application of compactness provides an elemen-
tary extension where the intersection of the (interpretations of) P, enlarges to
a neighbourhood around 0. So one can define an open interval around 0 in
this intersection. It follows that this elementary extension is strongly locally
o-minimal.

Observe that the algebraic closure of () is empty, so even in this strongly locally
o-minimal elementary extension there is no interval around 0 with algebraic end-
points as in condition (C). In fact there is no interval with endpoints algebraic
over 0 that works.

Corollary 3.10 Strong local o-minimality is not preserved under elementary
equivalence.

Hence the following result is worthy of interest.

Theorem 3.11 Fuvery model of the first order theory of R = (R, <, +, sin) is
strongly locally o-minimal.

Proof. Let us modify slightly what we observed in Remark 3.5 by adding to R
two new (-definable 1-ary functions f and g as follows: for every a € R,

* f(a) is the maximal real ¢ < a such that sint = 0 and sin is increasing
around t,

* g(a) is the minimal real ¢ > a such that sint = 0 and sin is increasing
around t.

Then f(a) < a < g(a). Also, I(a) =]f(a), g(a)[ is an interval of the form
127n, 27(n + 1)] for some integer n (hence of diameter 27), unless a itself is in
27Z, in which case f(a) = a — 27, g(a) = a+ 27 and the diameter of I(a) is 4.
For every a, I(a) with the structure induced by R is o-minimal, which implies
that for every formula (v, W) there is a positive integer k = k(p, a) such that,
for every tuple m in R, (R, m) N I(a) can be written as the union of at most
k isolated points or intervals. This bound k depends a priori on ¢ but also on
a. But for a < @' in R — and a, a’ ¢ 27Z for simplicity— the translation by
f(a")— f(a) = g(a’) — g(a) determines a bijection between I(a) and I(a’) taking
the definable subsets of the former interval to the definable subsets of the latter,
and conversely. Let

O'(v, @, 2) + Julp(u, ©) Av=u+z).
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Then, for every m and ¢ in R, ¢'(R, m, q) = ¢(R, m) + ¢. In particular
P(R, m) = ¢'(R, m, 0). It follows that k(p, a) < k(¢’, a) for every a. On
the other hand it is easily seen that k(y’, a) = k(¢’, a’) for every a < o’ in
R —and a, a’ out of 27Z for simplicity—. This provides a uniform bound k()
(depending only on ¢ and hence valid for every a € 27Z) on the maximal number
of isolated points and intervals necessary to decompose the various p(R, ) in
I(a). Tt is easy to extend this bound to a K (¢) which is also valid for a € 27Z.
In conclusion, R satisfies

* f(a) < a < g(a) for every a
and, for every formula (v, W), the first order sentence saying that

* for every a and i, (R, m)NI(a) can be written as the union of at most
K () isolated points and intervals.

So these statements transfer to every model A of the first order theory of R.
Thus also A is strongly locally o-minimal. -

Of course the previous theorem remains valid if sin is replaced or accompanied
by the other elementary trigonometric (periodical) functions.

Example 3.12 Look at Example 2.6.3 in [4]. It provides an expansion A of
the order of rationals by countably many equivalence relations E,, (n a natural
number) such that the following conditions hold:

(i) Ep has a unique equivalence class, that is, the whole domain of the struc-
ture,

(ii) for every natural number n, E,, 1 refines the classes of F,, into infinitely
many open convex classes that are again densely ordered without end-
points.

It is easily seen that one can arrange things in order to produce a structure A
that is not strongly locally o-minimal. However, A is weakly o-minimal and
hence locally o-minimal. Also, the first order theory of A does not have a prime
model, as highlighted in [4].

Corollary 3.13 Prime models over subsets may not exist in a first order theory
of a strongly locally o-minimal structure.

In conclusion, some crucial properties valid in the o-minimal case no longer hold
in the strongly locally o-minimal setting. Nevertheless, an intriguing connection
between types and cuts —resembling that of o-minimal models, see [6], § 3— can
be established even for (certain) strongly locally o-minimal structures. We now
give more details on this subject.

Remark 3.14 Let A be a strongly locally o-minimal structure. Suppose that
b < c are two elements in A and every definable subset of A intersects ]b, ¢[ in
finitely many points or intervals. Let T'(v) be a cut in A containing the formulas
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b < v and v < ¢. Then there is a unique 1-type over A extending I'(v).

This is due to the fact that for every definable subset X of A, both ]b, ¢[NX
and ]b, ¢[—X can be expressed as unions of finitely many points and intervals,
and of course, only one interval can be consistent with I'(v).

On the other hand, there do exist cuts in strongly locally o-minimal structures
that do not satisfy the assumption in Remark 3.14, and can be enlarged to at
least 2 1-types over A. Example 4.1 in the next section will confirm this.

Our results become sharper when we restrict our attention to strongly locally
o-minimal expansions of the ordered reals. It turns out that strong local o-
minimality has a nice characterization in this particular setting.

Proposition 3.15 Let A be an expansion of (R, <). Then A is strongly locally
o-minimal if and only if, for every cut T'(v) in A containing both a formula b < v
for some b € R and a formula v < ¢ for some ¢ € R, there is a unique 1-type
over A extending I'(v).

Proof. First assume A strongly locally o-minimal. Fix two reals b and ¢ with
b<v<cel(v). For every x € [b, ¢, x is contained in a suitable open interval
I, intersecting every definable subset of A in the union of finitely many points
and intervals. The I, form an open cover of [b, ¢| where x ranges over [b, ¢].
As [b, c] is compact, a finite subcovering I; (j < t, ¢ a suitable positive integer)
can be extracted. Then b, ¢[ satisfies the assumption of Remark 3.14, which
implies that I'(v) can be extended to a 1-type over A in a unique way.

To prove the converse, take any b < ¢ in R.. If cuts in |b, ¢[ extend uniquely to
1-types, then ]b, ¢[ with the structure induced by A (i. e., assuming the traces
of definable sets in A are the definable sets) is o-minimal. This shows that A is
strongly locally o-minimal. -

Continuing our investigation of strongly locally o-minimal expansions A of
(R, <), it remains for us to show how the cuts corresponding to +oo extend to
types.

Assume that A is not o-minimal. Then there exists a formula p(v) (possibly
with parameters from R) such that ¢(A) cannot be expressed as a union of &
points and intervals for any positive integer k. But this decomposition is always
possible after restricting to any interval |b, ¢[ with b < ¢. This means that both
©(v) and its negation are consistent with the cut I'y oo (v) = {v < ¢ : c€ R} or
with the cut T'_(v) = {v > b : b € R} (possibly with both). Hence I' ;o (v)
or I'_ . (v) (possibly both) extend to at least 2 1-types over A.

Further assumptions on A suggested by the key motivating example (R, <,
+, sin) —and, above all, condition (C) in Remark 3.5— imply some other note-
worthy model theoretic properties in A.

Proposition 3.16 Let A be a (strongly) locally o-minimal structure satisfying
(C). Then, for every subset B of A, the isolated types of the first theory of
(A, b)pep are dense.
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Proof. We have to show that for every formula ¢(vy, ..., v;) with parameters
from B, if p(A!) is not empty, then there is some complete formula ¥ (v, ..., v;)
with parameters from B, such that 1(A') C p(A!). Arguing as in [6], Lemma
3.1, one sees that the crucial step in the proof is the case I = 1. So let us deal
with this case. Take a € ¢(A). By (C) there are b and ¢ in acl(()) such that
b < a < c and |b, ¢[ with the structure induced by A is o-minimal. Now proceed
as in [6], Lemma 3.1, referring to b, c[Np(A). -

Proposition 3.17 Let A be a (strongly) locally o-minimal structure satisfying
(C). Then A satisfies the Exchange Principle: For every a, o’ € A and finite
subset B of A, if a’ € acl(a, B) — acl(B), then a € acl(a’, B).

Proof. As (strong) local o-minimality and (C) are not affected by adding
parameters, we can assume B = ). Refer to b, ¢ € acl(B), b < a < ¢, |b, (]
o-minimal and proceed as in [6], Theorem 4.1. H

Actually a weaker hypothesis on A is sufficient to ensure the last conclusion.
Simply refer to b and ¢ a’-definable rather than (-definable. In other words,
assume that for every aj, as € A, there are two (-definable functions f and ¢
such that f(a1) < a2 < g(a1) and ]f(a1), g(ai)] is o-minimal with respect to
the induced structure. Then replace b and ¢ by f(a’) and g(a’) respectively.
Observe that the Exchange Principle may fail even in some strongly locally o-
minimal elementary extensions of the structure A satisfying it. For instance, we
know that (R, <, +, sin) fulfills condition (C), and so satisfies the Exchange
Principle; also every model of the first order theory of this structure is strongly
locally o-minimal. But take a real r such that s = sinr is not in acl()). In
a suitable elementary extension A’ of (R, <, +, sin) one can find ¢ > R such
that sint = s. Then s € acl(t) — acl() but ¢ & acl(s) (as s belongs to R and ¢
does not).

4 w-categorical structures

In this section we will investigate w-categorical strongly locally o-minimal struc-
tures. Recall that w-categorical o-minimal structures are classified in [6], Section
6, while w-categorical weakly o-minimal structures are investigated in [1]. Here
we obtain a nice, although partial, description in the strongly locally o-minimal
setting. The following example will be useful to help illustrate what is going on.

Example 4.1 We will build an w-categorical strongly locally o-minimal struc-
ture A that is not weakly o-minimal. To do so, consider an equivalence relation
E on a dense linear order without endpoints (A, <) such that

e cach FE-class is a isomorphic copy of (Q, <, —) where — denotes opposite,
e each F-class is a convex subset of A,

e the quotient set of E (with respect to the order inherited by A) is again
a dense linear order without endpoints.
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This ultimately provides a dense linear order without endpoints, expanded by
the equivalence relation F, and a l-ary function f admitting infinitely many
fixed points (again ordered as the rationals), one in every E-class; on each E-
class f is a mirror symmetry around this fixed point (just as — is around 0
in (Q,<)). It is easily seen that the structure A built in this way is strongly
locally o-minimal; also, a back-and-forth argument shows that its theory is w-
categorical. However A is not weakly o-minimal, because the fixed points form
an infinite definable non-convex set.

Observe that the equivalence relation E can be definably recovered from the
remaining structure. In fact, let g denote the (definable) 1-ary function such
that, for every a in A,

e if f(a) = a, then g(a) is also a,
o if f(a) > a, then g(a) is the least element b > a satisfying f(b) = b,
e if f(a) < a, then g(a) is the greatest element b < a satisfying f(b) = b.

Then it is easily seen that two elements a, a’ of A are equivalent in E if and
only if g(a) = g(a’).

Let us refer to this example also to clarify what we claimed in the previous
section, just after Remark 3.14, about types and cuts. Take any cut I'g(v) in
the quotient A/E (viewed as a copy of the order of rationals). Let I'g(v) be of
the form B < v < C' where BU C'is a partition of A/F and B < C.

Assume for simplicity that B has no maximum and C' has no minimum. Form
a cut I'(v) in A with the formulas v > b for E(b, A) € B and v < ¢ for
E(e, A) € C. Observe that this cut extends to 3 different 1-types over A,
according to whether f(v) < v, or f(v) = v, or f(v) > v is satisfied.

When B has a maximum, or C' has a minimum, we can also extend this cut to
a new element in the F-class corresponding to this maximum or minimum.

With this example in mind, let us begin our analysis of strongly locally o-
minimal w-categorical structure.

For the moment we will work with an arbitrary structure A expanding a dense
linear order without endpoints (A, <). So A may not be w-categorical or
strongly locally o-minimal. Let L denote the language of A. Define a binary
relation FE in A in the following way: For every z and y in A, E(x, y) holds if
and only if either x = y, or if I denotes the open interval with endpoints x and
y, then for every formula (v, @) of L there exists a positive integer k, such
that for every tuple @ in A, ¢ (A, @) NI can be expressed as the union of at most
k points or intervals of A (note that k is depending on ¢(v, W) but also on x
and y).

In other words, given two elements x < y in A, stating F(z, y) is equivalent
to saying that for every L-formula ¢(v, @) there exists some positive integer k
such that the following first order condition C(¢p, k) holds :

C(y, k) : For every a, (A, @)N|x, y[ can be written as the union of at most k
points or intervals.
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This needs to be stated for all L-formulas ¢(v, @), where the tuple @ and its
length also vary.

Lemma 4.2 E is an equivalence relation in A, and every class of E is a convex
set.

Proof. Observe in particular, that for every z < y < z in A, L-formula (v, W)
and tuple @ in A, if both |z, y[ and |y, z[ intersect p(A, @) in finitely many (and
indeed boundedly many) points and intervals, then the same is true of |z, 2],
and conversely. —

Thus without any danger of confusion, for  and y in A one can write
E(xz, A)<E(y, A) <= z<uy,
which also equips the quotient set A/FE with a linear order relation.

Lemma 4.3 Let x < y be two elements in A equivalent with respect to E. Then
|z, y[ with the structure induced by A, is o-minimal.

Proof. Just apply the definition of F. 4

Actually there are at least two ways a subset X of A, and in particular an
equivalence class of E, can inherit the structure of A. The former is the one we
already considered above, that is to take as definable sets of X the traces in X
of parametrically definable sets of A (possibly involving parameters out of X);
this will be called the structure induced by A on X. The latter is to take the
traces in X of (-definable sets of A as relations in X; the resulting structure will
be called the pure structure induced by A on X. Observe that X, if infinite,
cannot be w-categorical with respect to the (full) structure induced by A; in
fact, no infinite structure remains w-categorical after naming its elements.

Remark 4.4 Observe that the conclusion of Lemma 4.3 may fail when we
refer to E-classes, even if we work in a strongly locally o-minimal structure.
For example, look at R = (R, <, +, sin). This is a strongly locally o-minimal
structure on which F acts trivially, defining a unique equivalence class coinciding
with the whole domain R and then definable in a trivial way (but not as an
interval with real endpoints). Moreover R is not o-minimal.

But things change if we assume w-categoricity in addition to strong local o-
minimality.

Theorem 4.5 Let A be a strongly locally o-minimal w-categorical structure.
Assume that the language L of A is finite. Then the following statements hold.
1. E is (-definable in A.

2. Every equivalence class of E in A is infinite (so a dense linear order);
furthermore the class is o-minimal with respect to the structure induced by
A, and w-categorical with respect to the pure structure induced by A.
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8. When x ranges over A there are only finitely many types of E-classes
E(z, A) (viewed as pure first order structures induced by A) up to ele-
mentary equivalence.

4. The quotient set A/E, regarded as a coloured totally ordered set with
finitely many colours with respect to <, and a colour for every type of
E-class (viewed as pure structures) up to elementary equivalence, is w-
categorical.

5. Every model of the theory of A is strongly locally o-minimal.

Proof. 1) By w-categoricity for every formula ¢(v, @) there is a positive integer
k() (depending only on ¢) such that for every @ and x < y in A, if E(z, y)
holds then C(¢p, k(p)) also holds. Otherwise for every positive integer k one can
find @, x and y such that z < y, and E(z, y) — consequently ¢(A, @)N]z, y[, and
w(A, m)N]z, y[ for all tuples m of A, can be written as the union of boundedly
many isolated points and intervals — but in the case of d this decomposition
requires more that k pieces. This eventually produces infinitely many types of
(I + 2)-tuples (z, y, @) over {); each type corresponding to a positive integer h,
such that for every m, o(A, m)N]z, y[ is the union of at most h isolated points
or intervals, but @ needs exactly h points or intervals. Furthermore the sequence
of the h is increasing and unbounded. This contradicts w-categoricity.

Again by w-categoricity there must be a finite set ® of formulas ¢(v, @) such
that for x < y in A, E(x, y) holds if and only if « and y satisfy C(p, k(p)) for
every formula ¢ in ®. Otherwise, for every finite ® one can find x < y in A
satisfying C(ip, k(y¢)) for every ¢ in ® but not equivalent with respect to F, so
failing to satisfy C(¢, k(1)) for some further formula . This ultimately yields
infinitely many 2-types over () and contradicts w-categoricity. So in conclusion,
E is (-definable as claimed.

2) Let « € A. Due to strong local o-minimality there is an interval ]b, ¢[ around x
in A, such that for every L-formula (v, @), and tuple @ from A, p(A, @)Nb, [
can be decomposed as the union of at most k points and intervals for some
positive integer k. Let ! denote the length of @. As in 1) we can apply w-
categoricity and uniformly bound & when @ ranges over A’ (otherwise, for every
k, one can find @ for which ¢(A, @)N]b, [ consists of finitely many points and
intervals, but not less than k41 points and intervals, and this eventually provides
infinitely many [-types over {b, c}).

Now choose b, ¢ in A with b < b < x < ¢ < ¢ and observe that the whole
interval |b’, ¢[ is included in the equivalence class of & with respect to E.

The fact that the FE-class of x, endowed with the structure induced by A is
o-minimal, again depends on the hypotheses that A is strongly local o-minimal
and w-categorical. In fact, due to what we have just shown, there is an interval
10, ¢[C E(z, A) around z such that for every L-formula ¢(v,@) and tuple @
in A, (A, @)NJb’, ¢[ is the union of at most k() points and intervals for a
suitable common bound k(p). Even if we enlarge this interval o/, ¢/[ within
E(z, A), this value k(¢) remains the same.

This implies that k() itself, or possibly k(¢) 4+ 1 or k(p) + 2 works as a bound
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for the whole class E(z, A). Let us explain why.

Choose (v, W), @ and b’ < ¢’ in E(x, A) such that ¢(A, @)N)b’, ¢[ is the union
of k(¢), and not less than k() points and intervals (without loss of generality we
can arrange things to obtain our result just for k(p)). Fix such a decomposition
of p(A, @)NJY', ¢[. Put

B ={reE(x, A :r<V}, C={reEx A :r>c}.

Let us check what happens when we involve B’ in our considerations; C’ can
be treated in a similar way. Let I denote the leftmost connected component of
the given decomposition of ¢(A, @)N]v', ¢'[.

If I is a singleton or an interval whose left endpoint is > ¥, then no element
r € B’ can satisfy ¢(v, @) unless r is the possible minimum of B’. Otherwise, if
r € Bis not this minimum and s € B’ is any element < r, then |s, ¢[ contradicts
the choice of k(). But also in the case when B’ has a minimum, and r is this
minimum, it is easily seen that k(p) 4+ 1 works as a bound in E(z, A) instead
of k(p).

Thus assume that I is an interval with b’ as a left endpoint.

If B’ is included in, or disjoint from (A, @) then we are done, as k(p) is a
bound even in E(z, A). If the only point of B’ satisfying ¢(v, @) is the possible
minimum of B’ then k(p) + 1 works.

If B’ can be decomposed as the union of two non-empty sets Iy < I1, where I
is an interval extending I to the left and included in ¢(A, @), and Iy is disjoint
from (A, @), then again we are done. If B’ has a similar decomposition Iy U Iy
where I; is a convex set, but not an interval, then for r any element in Iy |r, ¢/
contradicts the definition of E.

In the remaining cases one finds in B’ three points s < ro < r; with ry € (A, @)
and m € ¢(A, @). But then |s, ¢/[ contradicts our assumptions.

This proves that the E-class of x with the structure induced by A is o-minimal.
Of course this conclusion applies even to the pure structure induced by .A.
But the E-class of x is also w-categorical with respect to this pure structure,
which is (-definable in the w-categorical structure A (in the finite language L).
This means, by [6], Theorem 6.1, that there exists a finite subset of elements
€1y ..., G in E(z, A) dividing it in intervals I; =|c¢j, ¢j41[ with 1 < j < m
and possibly Iy =] — 0o, ¢1[, I =]¢m, +00[ (where oo refer to E(x, A)), and
an equivalence relation R among the j with 0 < 7 < m, such that for each
(4, h) € R there is a unique definable monotone bijection f;j between I; and
I, so that f; ; is the identity of I; for every j and f; 4 = fn,qf;n for all (h, ¢),
(4, h) € R. Also, as L is finite, the theory of E(z, A), viewed as a pure structure
induced by A is finitely axiomatizable (see [6], Corollary 6.2).

3) Otherwise infinitely many 1-types arise over §) in A, and this contradicts the
w-categoricity of A.

4) It is clear that A/F is interpretable in A without parameters as the quotient
set of the ()-definable equivalence relation E. Also its order and its colours can
be first order defined in .4 without using any parameters. This implies that
A/E, regarded as a coloured linearly ordered set is w-categorical as claimed.
5) A consequence of what we have seen so far is that for every formula ¢(v, @) of

17



L, A satisfies the first order L-sentence stating that for every x, there exist b, ¢
such that b < x < ¢ and for every @ p(A, @)N]b, c[ can be written as the union of
at most k(p) points and intervals for some suitable k(). Then the same holds
in every structure B elementarily equivalent to .[A. With this in mind, let us show
that B is indeed strongly locally o-minimal. We proceed by contradiction. Let
a € B witness that strong local o-minimality fails. Take a formula @g(v, wp) of
L. Then there exist by < a < ¢g in B such that for every ag, ¢o(B, ay)N]bo, col
is the union of at most k(pg) points or intervals. As a contradicts strong local
o-minimality, the same interval ]bg, ¢ cannot work for every formula of L, and
so there are ;1 (v, wy) and dj such that o1 (B, d1)N]bo, co[ cannot be expressed
as the union of at most k(¢1) points and intervals. However a smaller interval
]b1, ¢1] around a can satisfy this further condition (and still preserve the previous
one). Repeating this procedure gives pairs (b,, ¢,) (with n ranging over the
naturals numbers) with pairwise different 2-types over a. But this contradicts
the w-categoricity of B and A, and hence proves strong local o-minimality. -

Remarks 4.6 (i) For a classification of w-categorical coloured linear order-
ings (possibly with infinitely many colours) see [7] and [8].

(ii) The points dividing a given F-class in the way described at the end of
2) can arise as interpretations of distinguished constants of L, but also as
images of locally constant (-definable functions. For instance, in Example
4.1, the function f is symmetric on each E-class around a fixed point z,
and z is not a constant in the language of the whole structure A, but is
the image of the ()-definable function g, which is constant in the class.

(iii) Observe that Theorem 4.5 neglects the possible additional interactions .4
can establish within the various F-classes, for instance the further struc-
ture A/E can inherit. [1] witnesses the difficulties arising in the general
analysis of w-categoricity even in the (simpler) weakly o-minimal case.

However a partial converse of Theorem 4.5 can be stated, in the following terms.
Proposition 4.7 Suppose that the following hypotheses hold:

1. LetR = (R, <, Cy, ..., Cp) be an w-categorical coloured order with finitely
many colours Cy, ..., Cn. Colours are regarded here as 1-ary relations
partitioning R.

2. For every i < m associate to C; an o-minimal w-categorical first order
theory T; such that different colours correspond to different theories.

3. For every r € R of colour C; replace r with a (countable) model A, of T;.

4. Finally, let E be an equivalence relation with a class for every r € R; the
class is just the domain A, of A,.

Let A= (A, <, E, ...) be the structure built in this way. Then A is w-categorical
and strongly locally o-minimal.
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Proof. Let B be a countable model of the theory of A. Thus the quotient
set B/E, regarded as a coloured linear order, is elementarily equivalent to R,
and as such, is isomorphic to R. Let F' be an isomorphism between R and the
coloured linear order of domain B/FE. Also, for every r € R, let Bp(,, denote
the E-class corresponding to F(r) in B; so Bp(,) is the domain of a countable
structure that is elementarily equivalent to 4, and as such, is isomorphic to A,.,
say by F,.. By combining F' and the F). in a suitable way one eventually builds
an isomorphism between .4 and B. This proves the w-categoricity of A.

To prove strong local o-minimality, observe that the 1-type of an element x over
A (as well as over any model of the theory of A) is fully determined by the
following:

e if z is already in the E-class of some element of A (so in the E-class
corresponding to some 1 € R, say of colour ¢;), the 1-type of s over A, in
Ti;

e if z isin a “new” E-class (say of colour ¢;), its type over ) in T; and then
the type of its E-class over R.

This clearly implies strong local o-minimality: For every a € A, take b < a < ¢
in the E-class of a and use the fact that this E-class (as a model of some suitable
T;) is o-minimal.

5 Groups

We deal here with locally o-minimal expansions A of ordered groups (written
additively) (4, <, +, 0).

Let H be a subgroup of A definable in A, a € H. Then there is an interval
around a such that H N[ is a finite union of points and intervals. Thus either

1. there is an interval containing a, included in H, or
2. a is the only point of H in a suitably large interval around a.

The same holds for every element b in H: for instance, if Ja — h, a + h[ is an
interval in H, then ]b — h, b+ h[ is an interval in H containing b (just translate
the former interval by adding b— a to each endpoint). Then in order to examine
H we can refer to the behaviour of 0 with respect to the previous two cases.

Case 1. There is an interval I around 0 such that I C H. We can assume H is
closed under inverses, and hence is symmetric with respect to 0. Without loss
of generality H = [—a, a] for some a > 0. Observe that 2a € H, and indeed
[-2a, 2a] C H (in fact, for every b with a < b < 2a, 0 < b — a < a, whence
b—a€ Handsob=(b—a)+aisin H as well). By repeating this argument
one ultimately proves that [—na, na] C H for every positive integer n.

Assume now (A, <, +, 0) is archimedean, i.e. for every a, bin A with0 < a <b
there is some positive integer n such that na > b. Then the previous analysis
shows that H = A.

19



Without the archimedean assumption we can say that A has a big convex (pos-
sibly non-definable) subgroup {b € H : —na < b < na for some positive integer
n}. Observe that in Example 1 of 2.8, the pairs (0,b) with b a real number form
a convex definable subgroup but do not exhaust the whole domain.

Example 5.1 To obtain an example of a dense definable subgroup that is
not convex, refer to Proposition 2.6 and take the locally o-minimal structure
R = (R, <, +, 0, sin). Incidentally, observe that the discrete additive group of
integers is definable in this structure via the formula sin 7v = 0. By Proposi-
tion 2.6, the ordered group M = (Z x R, <jez, +, (0, 0)) is locally o-minimal
(and indeed strongly locally o-minimal) as a structure definable in R (as usual
<lex denotes here the lexicographic order, while + is defined componentwise).
The formula Jw(v = w+w) defines in M the subgroup (2Z) x R, which is dense
with respect to <;., but not convex.

Case 2. There is h € A, h > 0 such that for every a € H, a is the only point
of H in |Ja — h, a + hl.

Assume (A, <, +, 0) is archimedean. Then for every 0 < a < b in H there is
a positive integer n such that b — a < nh. So there are at most n elements
of H between a and b. In other words H is discrete and indeed, again by the
archimedean assumption, isomorphic to the ordered group of integers. Note
that the (additive) subgroup defined by sinwv = 0 in Example 2.7 lies in case
2. Observe that if archimedeanity fails, then case 2 includes further examples of
a different nature. For instance, in Example 2 in 2.8 the centralizer H of (2, 0)
is not discrete, but each point of H is the only representative of H in a suitably
large neighbourhood.

Nevertheless, we can state the following at least in the archimedean case:

Lemma 5.2 Let A be a locally o-minimal expansion of an archimedean (dense)
ordered group (A, <, +,0), and H a non-zero definable subgroup of this group.
Then either H = A or H is isomorphic to the ordered group of integers.

The comparison with the o-minimal case [6], Theorem 2.1, raises two further
questions:

a) Is A abelian?
b) If yes, is A divisible?

We will first deal with question a). Clearly we cannot expect A to be abelian
in the general (possibly non-archimedean) case, see Example 2 in 2.8. But we
claim that commutativity holds at least when A is archimedean. In fact, we
know that under this assumption, any nonzero subgroup - and in particular
the centralizer C(a) of a generic element a € A- is either all of A or a discrete
subgroup. We will exclude the latter possibility.

If a = 0, then its centralizer is A. So take a # 0. Without loss of generality
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we can assume a > 0. Suppose that C(a) is discrete. Again without loss of
generality we can assume that a is the least positive element in C'(a), in other
words ]0, a[NC(a) = 0. By local o-minimality, there is some € > 0 in A such
that either for every x in the interval ]0,€¢] a +x > z + a or for every x in this
interval a + <  + a. Assume for simplicity the former case (the latter can be
treated in a similar way). Observe that the property a + x > = + a is preserved
under addition. In fact, if both x and y satisfy it, then

at(z+y)=(ata)+y>(r+a)ty=r+(aty) >z+(y+a)=(r+y)+a

Hence the points in Je, 2¢] also satisfy it, as such a point z can be written as
€+ (—e+x) where 0 < —e+ 2 < €. Proceed inductively to obtain a+z >z +a
for every x €]0, ne] and for every positive integer n. Now use the archimedean
assumption to find n such that a < ne; then the previous considerations lead to
the contradiction a + a > a + a.

We will now treat question b). Assume A is abelian, whence nA is a subgroup
of A for every integer n > 1. Observe that nA is dense: for a < b in A (and
hence na < nb in nA), there is ¢ € A between a and b so that na < nc < nb.
This implies that for an archimedean A, nA equals A for every n.

In the general case nA is cofinal as well: for every a > 0in A, na > a. Moreover
Example 5.1 provides a locally o-minimal ordered abelian group A such that
2A # A.

Thus at least in the archimedean case we can state the following.

Theorem 5.3 Let A be an archimedean locally o-minimal ordered group. Then
A is abelian and divisible; in particular A is o-minimal.

6 Rings

Here we deal with locally o-minimal expansions of ordered rings. We will use
ring to mean an associative ring with identity 1.

Example 1 in 2.8 provides a ring of this kind which is not a field. But the
following also holds:

Lemma 6.1 Let A= (A, <, +, -, 0, 1) be a locally o-minimal archimedean or-
dered ring. Then A is an ordered field.

Proof. The center C(A) of A, i.e., the set of points of A commuting with every
element of A with respect to -, is a definable additive subgroup of A including
the integers (that is, the multiples of 1 in A). It cannot be discrete because for
a <bin C(A), % is in C(A) as well. Due to Lemma 5.2, C(A) = A, whence
A is commutative.

Now, for every non-zero r € A consider r - A. This is again a definable additive
subgroup of A, and is dense because for a < b in A, any element ¢ between a

and b satisfies r-a <r-c¢ <r-b. Thusr- A = A, and there is some s € R for
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which r-s=1.
In conclusion A is a field as claimed. -

We can say even more.

Proposition 6.2 Let A a locally o-minimal archimedean ordered field. Then
every positive element of A is a square.

Proof. The multiplicative ordered group A>° of positive elements of A is also
archimedean. The squares in A form a multiplicative subgroup of A>°, and this
subgroup is dense (for a < ¢ < bin A, a? < ¢? < b?). By Lemma 5.2, every
positive element of A is a square.

Lemma 6.3 A strongly locally o-minimal ordered field A is real closed.

Note that we do not use an assumption of archimedeanity here.

Proof. Let b < ¢ be two elements in A, and f(x) a polynomial in A[x] such
that f(b) > 0 and f(¢) < 0. Choose any element a € A. Use strong local
o-minimality to obtain an interval I around a such that I with the structure
induced by A is o-minimal. Take b’ < ¢’ in I and form the polynomial f'(x) =
f(X) where

c—b
It is clear that /() = f(b) > 0 and f'(¢’) = f(c) < 0. By the o-minimality of
I (and by the same argument as in [6], Theorem 2.3) there is an intermediate
root 1’ of f/(z) between b’ and ¢’. Let

c—b

r= S =)0,

then b < r < ¢ and f(r) = f'(+') = 0, in other words f(z) admits a root
between b and ¢. In conclusion A satisfies the intermediate value property for
polynomials and is therefore real closed. —

By combining Lemmas 6.1 and 6.3 we obtain as an immediate consequence:

Theorem 6.4 A strongly locally o-minimal archimedean ordered ring is a real
closed field, and hence is o-minimal.
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