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ABSTRACT

A weakly o-minimal structure M = (M,≤,+, . . .) expanding an ordered group (M,≤,+) is
called non-valuational iff for every cut 〈C,D〉 of (M,≤) definable in M, we have that inf{y − x :
x ∈ C, y ∈ D} = 0. The study of non-valuational weakly o-minimal expansions of real closed fields
carried out in [MMS] suggests that this class is very close to the class of o-minimal expansions
of real closed fields. Here we further develop this analogy. We establish an o-minimal style cell
decomposition for weakly o-minimal non-valuational expansions of ordered groups. For structures
enjoying such a strong cell decomposition we construct a canonical o-minimal extension. Finally,
we make attempts towards generalizing the o-minimal Euler chararacteristic to the class of sets
definable in weakly o-minimal structures with the strong cell decomposition property.

0 Introduction

A good measure of complexity of a weakly o-minimal structure is its depth, a concept studied in
[Ve] and [BVT]. A weakly o-minimal structure M = (M,≤, . . .), where ≤ denotes a dense linear
ordering without endpoints, is said to be of depth 0 iff for every infinite definable set U ⊆M and
every definable function f : U −→ M , where M denotes the set of all cuts of (M,≤) definable
in M, there is a partition of U into a finite set X and convex open definable sets I0, . . . , Ik such
that for every i ≤ k, f � Ii is constant or strictly monotone and continuous. In particular, every
o-minimal structure has depth 0. Without formally stating the definition of depth, we will only
point out that (a) expansions of o-minimal structures by convex predicates are of depth 0 or 1, in
particular real closed valued fields have depth 1; (b) the depth of a model of a weakly o-minimal
theory is always finite. Generally speaking, the lower is the depth of the structure, the easier are
the definable sets to understand.

In this paper we exclusively deal with weakly o-minimal structures of depth 0. The property
of a weakly o-minimal structure M = (M,≤, . . .) being of depth 0 is equivalent to the condition
that every equivalence relation on M definable in M has only finitely many infinite classes (see
Lemma 1.4). In the presence of the ordered group structure, depth 0 is characterized by each of
the following: (a) the absence of non-trivial proper definable subgroups, and (b) the fact that for
any cut 〈C,D〉 definable in M, inf{y − x : x ∈ C, y ∈ D} = 0. A weakly o-minimal expansion of
an ordered group in which the latter holds is after [MMS] said to be of non-valuational type. This
is because a weakly o-minimal expansion of a real closed field is of depth 0 iff the underlying field
has no nontrival convex definable valuations.

The principal goal of this paper is to develop essential model theory for weakly o-minimal non-
valuational expansions of ordered groups. Our most important results are contained in §2 and §3.
In §2 we introduce a notion of a strong cell and prove an o-minimal style strong cell decomposition
theorem. This in two ways improves a similar result from [MMS]. Firstly, we work with expansions
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of ordered groups instead of real closed fields. Secondly, we use more sophisticated strong cells,
i.e. strong cells in our sense are strong cells in the sense of [MMS], but not conversely. In §3,
given a weakly o-minimal structure M with the strong cell decomposition property we construct
its canonical o-minimal extension M.

In §4, for sets definable in weakly o-minimal structues with the strong cell decomposition
property, we propose a weak variant of Euler characteristic, whose values lie in the ring Z[ 12 ].

Throughout the paper we often refer to [MMS] and [We] for basic results concerning weak
o-minimality.

1 Notation and preliminaries

Consider a dense linear ordering (M,≤) without endpoints. A subset I of M is said to be convex
in (M,≤) iff for any a, b ∈ I and c ∈ M with a ≤ c ≤ b, we have that c ∈ I. If additionally I 6= ∅
and inf I, sup I ∈M ∪{−∞,+∞}, then I is called an interval in (M,≤). A maximal convex subset
of a non-empty subset of M is called its convex component. A pair 〈C,D〉 of non-empty subsets of
M is called a cut in (M,≤) iff C < D and C ∪D = M . A cut 〈C,D〉 for which supC ∈M will be
usually identified with the element supC ∈M . A first order structure M = (M,≤, . . .) expanding
(M,≤) is o-minimal [weakly o-minimal] iff every subset of M , definable in M, is a finite union of
intervals [respectively: convex sets] in (M,≤). Weak o-minimality unlike o-minimality in general
is not preserved under elementary equivalence. We say that a complete first order theory is weakly
o-minimal iff all its models are weakly o-minimal. Clearly, an L-structure M = (M,≤, . . .) has
weakly o-minimal L-theory iff for every formula ϕ(x, y) ∈ L(M), there is n ∈ N+ such that for
every a ∈M |x|, the set ϕ(a,M) has at most n convex components.

Assume that M = (M,≤, . . .) is a weakly o-minimal structure. A cut 〈C,D〉 in (M,≤) is called
definable in M iff the sets C,D are definable in M. The set of all cuts 〈C,D〉 definable in M
and such that D has no lowest element will be denoted by M . The set M can be regarded as
a subset of M by identifying an element a ∈ M with the cut 〈(−∞, a], (a,+∞)〉. After such an
identification, M is naturally equipped with a dense linear ordering extending (M,≤): 〈C1, D1〉 ≤
〈C2, D2〉 iff C1 ⊆ C2. Clearly, (M,≤) is a dense substructure of (M,≤).

The topological dimension of an infinite definable set X ⊆ Mm is defined by the following
condition: dim(X) ≥ k iff there is a projection π : Mm −→ Mk such that π[X] contains an open
box. Non-empty finite sets have dimension 0 whereas dim(∅) = −∞. Theorem 4.2 from [MMS]
together with [Ar] imply that if M = (M,≤, . . .) is a weakly o-minimal structure and X,Y ⊆Mm

are sets definable in M, then dim(X ∪ Y ) = max(dim(X),dim(Y )). A definable set Y ⊆ Mm is
said to be large in X iff dim(X \ Y ) < dim(X). In §2 we will use the following fact.

Fact 1.1 [We, Lemma 2.1] Assume that M = (M,≤, . . .) is a weakly o-minimal structure, m ∈
N+, a ∈ Mm, I ⊆ M is an open interval, and X ⊆ Mm+1 is a set definable in M such that for
every b ∈ I, there is an open box B containing a and contained in {x ∈ Mm : 〈x, b〉 ∈ X}. Then
dim(X) = m+ 1.

The projection from Mm onto Mm−k dropping coordinates i1, . . . , ik will be denoted by πm
i1,...,ik

.

The projection from Mm onto Mk [from M
m

onto M
k
] dropping all coordinates except i1, . . . , ik

will be denoted by %m
i1,...,ik

[%m
i1,...,ik

respectively].
If m ∈ N+ and X ⊆Mm is a non-empty definable [over A ⊆M ] set, then a function f : X −→

M is said to be definable [over A] iff the set {〈x, y〉 ∈ X ×M : f(x) > y} is definable [over A]. A
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function f : X −→ M ∪ {−∞,+∞} is said to be definable iff f is a definable function from X to
M or (∀x ∈ X)(f(x) = −∞), or (∀x ∈ X)(f(x) = +∞).

The following lemma will be referred to as the (local) monotonicity theorem. Recall that if
I ⊆M is an open interval and f : I −→M , then f is said to be locally increasing on I iff for any
element a ∈ I, there is an open interval J ⊆ I containing a such that f � J is strictly increasing.
In a similar manner we define locally constant and locally strictly decreasing functions.

Lemma 1.2 ([MMS, Theorem 3.3], [Ar]) Assume that M = (M,≤, . . .) is a weakly o-minimal
structure and A ⊆ M . If U ⊆ M is an infinite A-definable set and f : U −→ M [respectively:
f : U −→ M ] is an A-definable function, then there is a partition of U into A-definable sets
X, I0, . . . , Im such that X is finite, I0, . . . , Im are non-empty convex open sets, and for every
i ≤ m, f � Ii is locally constant or locally strictly increasing [and continuous], or locally strictly
decreasing [and continuous].

Lemma 1.3 If M = (M,≤, . . .) is a weakly o-minimal structure, I ⊆ M is a non-empty convex
open definable set and f : I −→ M is a definable function, then the limits lim

x→(inf I)+
f(x) and

lim
x→(sup I)−

f(x) exist in M ∪ {−∞,+∞}.

Proof. We will only prove the existence of lim
x→(inf I)+

f(x). For c ∈M define

I1(c) = {x ∈ I : f(x) < c}, I2(c) = {x ∈ I : f(x) = c}, I3(c) = {x ∈ I : f(x) > c}.

Clearly, 〈I1(c), I2(c), I3(c)〉 is a partition of I into definable sets. For i ∈ {1, 2, 3} define Xi =
{c ∈ M : Ii(c) is coinitial with I}. Again, 〈X1, X2, X3〉 is a partition of M , X1 > X2 > X3 and
|X2| ≤ 1. Note that

• if X1 = ∅, then X3 = M and lim
x→(inf I)+

f(x) = +∞;

• if X3 = ∅, then X1 = M and lim
x→(inf I)+

f(x) = −∞;

• if X1 6= ∅ and X3 6= ∅, then lim
x→(inf I)+

f(x) = inf X1 = supX3 ∈M ;

• if X2 = {b}, b ∈M , then lim
x→(inf I)+

f(x) = b.

This finishes the proof.

We say that a weakly o-minimal structure M = (M,≤, . . .) has strong monotonicity iff for every
A ⊆M , every infinite A-definable set I ⊆M and every A-definable function f : I −→M , there is
a partition of I into a finite set X and convex open A-definable sets I0, . . . , Ik such that for every
i ≤ k, one of the following conditions holds.

• f � Ii is constant;

• f � Ii is strictly increasing and for any a, b ∈ Ii with a < b and any c, d ∈ M with f(a) <
c < d < f(b), there is x ∈ (a, b) with c < f(x) < d; in particular, f � Ii is continuous;

• f � Ii is strictly decreasing and for any a, b ∈ Ii with a < b and any c, d ∈ M with f(a) >
c > d > f(b), there is x ∈ (a, b) with c > f(x) > d; in particular, f � Ii is continuous;
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It is easy to see that a weakly o-minimal structure has strong monotonicity iff its depth equals
0. Note that the notion of strong monotonicity defined above differs from that introduced in [Ve].
If M has the strong monotonicity, then for any open interval I ⊆ M and any definable function
f : I −→ M , there is an open interval I ′ ⊆ I such that the function f � I ′ is continuous. Hence,
by [We, Theorem 4.2], the topological dimension for sets definable in M has the usual addition
property. Moreover, if m ∈ N+, B ⊆Mm is an open box and f : B −→M is a definable function,
then there is an open box B′ ⊆ B such that f � B′ is continuous. By [We, Corollary 4.3], the
definable closure has the exchange property in M.

Lemma 1.4 If M = (M,≤, . . .) is a weakly o-minimal structure, then the following conditions
are equivalent.

(a) M has the strong monotonicity.
(b) Every equivalence relation on M definable in M has only finitely many infinite classes.

Proof. (a)=⇒(b). Assume that M has the strong monotonicity and E is an equivalence relation
on M definable in M. For a ∈M , denote by C(a) the convex component of E(a,M) containing a.
In case supC(a) < +∞, define f(a) ∈M as the supremum of C(a). Otherwise put f(a) = a. The
function f is definable in M and constant on C(a) whenever a ∈ M and supC(a) < +∞. Now,
the strong monotonicity of M implies that E has only finitely many infinite equivalence classes.

(b)=⇒(a). Assume that A ⊆ M , I ⊆ M is an infinite set and f : I −→ M is an A-definable
function. By the local monotonicity theorem, there is a partition of I into a finite set and infinite
convex open A-definable sets I0, . . . , Ik such that for any i ≤ k, f � Ii is locally constant or locally
stictly increasing, or locally strictly decreasing. Fix i ≤ k such that f � Ii is, say, locally strictly
increasing. There is an A-definable equivalence relation E on Ii whose classes are the maximal
convex subsets of Ii on which f is strictly increasing. (b) implies that E has only finitely many
infinite classes, which are necessarily A-definable. The same argument applies if f � Ii is locally
strictly decreasing or locally constant. In this way we obtain a partition of I into a finite set and
A-definable open convex sets J0, . . . , Jl such that for every i ≤ l, f � Ji is constant or strictly
monotone. Fix i ≤ l such that f � Ji is strictly monotone, and define an equivelence relation on
M as follows: a ∼ b iff a = b, or a 6= b and for every x ∈ Ji we have that f(x) < min(a, b) or
f(x) > max(a, b). Clearly, every equivalence class of ∼ is a convex set. By the assumption, ∼ has
only finitely many infinite classes. The remaining classes are singletons. Hence there is a partition
of Ji into a finite set Xi and convex open A-definable sets J i

0, . . . , J
i
ki

such that for any j ≤ ki and
b ∈ M with inf{f(x) : x ∈ J i

j} < b < sup{f(x) : x ∈ J i
j} we have that b/∼= {b}. From this the

strong monotonicty of M follows.

Assume that M = (M,≤,+, . . .) is a weakly o-minimal structure expanding an ordered group
(M,≤,+). Then (M,≤,+) is divisible and abelian (see [MMS, Theorem 5.1]). A cut 〈C,D〉 in
(M,≤) is called non-valuational iff inf{y − x : x ∈ C and y ∈ D} = 0. The structure M is
called non-valuational (or of non-valuational type) iff all cuts in (M,≤) definable in M are non-
valuational. Otherwise M is said to be valuational (or of valuational type). If M is non-valuational
and N ≡M, then also N is non-valuational.

Lemma 1.5 Assume that M = (M,≤,+ . . .) is a weakly o-minimal expansion of an ordered group
(M,≤,+). The following conditions are equivalent.

(a) M is of non-valuational type.
(b) Every subgroup of (M,≤,+) definable in M is either trivial or equal M .
(c) M has the strong monotonicity.
(d) Every equivalence relation on M , definable in M, has only finitely many infinite classes.
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Proof. The equivalence of (c) and (d) has been established in Lemma 1.4.
(a)=⇒(b). Suppose for a contradiction that (M,≤,+) has a proper non-trivial subgroup H

which is definable in M. By Lemma 5.2 from [MMS], H is convex. Let ε ∈ H ∩ (0,+∞). Then
for any x ∈ H and y > H, we have that y − x > ε, which means that M is of valuational type.

(b)=⇒(d). Suppose that there is a definable equivalence relation E on M with infinitely many
infinite classes. Let E′ be the equivalence relation on M whose classes are convex components of
E-classes. Each E-class has finitely many convex components, therefore the equivalence relation
E′ has infinitely many infinite classes, and these classes are convex. (b) implies that if B is an
infinite E′-class with inf B, supB ∈M , then the set IB := {b1 − b2 : b1, b2 ∈ B} is not a subgroup
of (M,+). Then JB := {b ∈ IB : b + b ∈ IB} is a proper subset of IB , and the set defined by a
formula

ϕ(x) ≡ ∀y(E′(x, y) ∧ y < x −→ E′(x+ x− y, x))

does not contain B but has a non-empty intersection with B. Hence ϕ(M) is not a union of finitely
many convex sets, which contradicts weak o-minimality of M.

(d)=⇒(a). Suppose that M has a definable valuational cut 〈C,D〉. There is a positive ε ∈M ,
such that d− c > ε whenever c ∈ C and d ∈ D. Let

G0 = {g ∈M : g ≥ 0 and (∀c ∈ C)(g + c ∈ C)};
G = G0 ∪ {−g : g ∈ G0}.

Then G is a convex subgroup of (M,+). Since ε ∈ G and C 6= M , the group (G,+) is not trivial
and the index [M : G] is infinite. Thus the equivalence relation E(x, y) ≡ x− y ∈ G has infinitely
many classes.

Now assume that M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion of an
ordered group (M,≤,+). For every cut 〈C,D〉 definable in M we have that C −D := {x− y : x ∈
C and y ∈ D} = (−∞, 0) and D − C = (0,+∞). The set M can be naturally equipped with an
operation of addition (to be denoted by +):

〈C1, D1〉+ 〈C2, D2〉 = 〈C1 + C2, D1 +D2〉.

It is easy to see that (M,≤,+) is an ordered divisible abelian group and (after suitable identification
of elements), (M,≤,+) is a dense subgroup of it.

If M = (R,≤,+, ·, . . .) is a weakly o-minimal structure expanding an ordered field (R,≤,+, ·),
then by Theorem 5.3 from [MMS], (R,≤,+, ·) is real closed. The structure M regarded as an
expansion of the ordered group (R,≤,+) is of non-valuational type iff there are no non-trivial
valuations of the field (R,≤,+, ·) definable in M (see [MMS, Theorem 6.3]). In R, apart of the
operation of addition, we can define an operation of multiplication in the following way.

〈C1, C2〉 · 〈D1, D2〉 = 〈E1, E2〉,

where
E2 = C2 ·D2, E1 = R \ E2

if C2 ⊆ (0,+∞) or D2 ⊆ (0,+∞), and

E2 = int(C1 ·D1), E1 = R \ E2

in case C2 ∩D2 ∩ (−∞, 0) 6= ∅. It is not difficult to check that (R,≤,+, ·) is a real closed field and
(R,≤,+, ·) is a dense subfield of it.
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For a tuple a = 〈a1, . . . , am〉 ∈Mm we define ‖a‖ =
m∑

i=1

|ai|. Distance between two non-empty

definable sets X,Y ⊆ Mm is a non-negative element of M defined as dist(X,Y ) = inf{‖x − y‖ :
x ∈ X, y ∈ Y }.

2 The strong cell decomposition property

Assume that M = (M,≤, . . .) is a weakly o-minimal structure. Below, for every m ∈ N+ we
inductively introduce strong cells in Mm and their completions in M

m
. The completion in M

m

of a strong cell C ⊆ Mm will be denoted by C. We also introduce the strong cell decomposition
property, a notion which will be used throughout the rest of the paper.

(1) A one-element subset of M is a strong 〈0〉-cell in M . If C ⊆ M is a strong 〈0〉-cell, then
C := C.

(2) A non-empty convex open definable subset of M is a strong 〈1〉-cell in M . If C ⊆ M is a
strong 〈1〉-cell in M , then C := {x ∈M : (∃a, b ∈ C)(a < x < b)}.

Assume that m ∈ N+, i1, . . . , im ∈ {0, 1} and suppose that we have already defined strong
〈i1, . . . , im〉-cells in Mm and their completions in M

m
.

(3) If C ⊆ Mm is a strong 〈i1, . . . , im〉-cell in Mm and f : C −→ M is a continuous definable
function which has a (necessarily unique) continuous extension f : C −→ M , then Γ(f) is a
strong 〈i1, . . . , im, 0〉-cell in Mm+1. The completion of Γ(f) in M

m+1
is defined as Γ(f).

(4) If C ⊆Mm is a strong 〈i1, . . . , im〉-cell in Mm and f, g : C −→M∪{−∞,+∞} are continuous
definable functions which have (necessarily unique) continuous extensions f, g : C −→ M
such that f(x) < g(x) for x ∈ C, then the set

(f, g)C := {〈a, b〉 ∈ C ×M : f(a) < b < g(a)}

is called a strong 〈i1, . . . , im, 1〉-cell in Mm. The completion of (f, g)C in M
m+1

is defined as

(f, g)C := (f, g)C := {〈a, b〉 ∈ C ×M : f(a) < b < g(a)}.

(5) We say that C ⊆Mm is a strong cell in Mm iff there are i1, . . . , im ∈ {0, 1} such that C is a
strong 〈i1, . . . , im〉-cell in Mm.

A strong cell C ⊆Mm, m ≥ 2, is called a refined strong cell iff each of the boundary functions
appearing in its definition assumes values in one of the following sets: {−∞}, {+∞}, M , M \M .
Refined strong cells in M coincide with strong cells in M .

Definition 2.1 Assume that M = (M,≤, . . .) is a weakly o-minimal structure and C ⊆ Mm is
a strong cell. We say that a definable function f : C −→ M is strongly continuous iff f has a
(necessarily unique) continuous extension f : C −→M . A function which is identically equal −∞
or +∞, and whose domain is a strong cell will be also called strongly continuous.
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Note that according to the above definition, all functions appearing in the definition of a strong
cell are strongly continuous. The following trivial example illustrates the difference between cells,
strong cells and refined strong cells.

Example. Fix a positive irrational number α and consider a first-order structure M = (Q,≤
,+, P ), where (Q,≤,+) is the ordered group of rationals and P denotes a unary predicate inter-
preted as the set of all rationals greater than α. By [BP], the structure M has a weakly o-minimal
theory. Obviously, it is of non-valuational type. Define unary funtions f, g and h1 as follows:

f(x) = 0, g(x) = α, and h1(x) = |x− α|+ α

for x ∈ Q. Let also

h2(x) =
{
α if x < α
2α otherwise.

The functions f, g, h1 and h2 are all definable in M and continuous in the order topology. Moreover,
f, g and h1 are strongly continuous while h2 is not. Note that

• (f, g)Q is a refined strong cell in Q2;

• (f, h1)Q is a strong cell but not a refined strong cell;

• (g, h1)Q and (f, h2)Q are cells but not strong cells.

Definition 2.2 Assume that M = (M,≤, . . .) is a weakly o-minimal structure. Below we induc-
tively define the notion of strong cell decomposition (or decomposition into strong cells in Mm) of
a non-empty definable set X ⊆Mm, m ∈ N+.

(a) If X ⊆ M is a non-empty definable set and D = {C0, . . . , Ck} is a partition of X into
strong cells in M , then D is a decomposition of X into strong cells in M .

(b) Assume that m ∈ N+, X ⊆Mm+1 is a non-empty definable set and D = {C0, . . . , Ck} is a
partition of X into strong cells in Mm+1. We say that D is a decomposition of X into strong cells
in Mm+1 iff {πm+1

m+1 [C0], . . . , πm+1
m+1 [Ck]} is a decomposition of πm+1

m+1 [X] into strong cells in Mm.

Definition 2.3 Assume that M = (M,≤, . . .) is a weakly o-minimal structure, m ∈ N+, X,Y ⊆
Mm are definable sets, X 6= ∅ and D is a decomposition of X into strong cells in Mm. We say
that D partitions Y iff for every strong cell C ∈ D, either C ⊆ Y or C ∩ Y = ∅.

Definition 2.4 A weakly o-minimal structure M = (M,≤, . . .) is said to have the strong cell
decomposition proerty iff for any m, k ∈ N+ and any definable sets X1, . . . , Xk ⊆ Mm, there is a
decomposition of Mm into strong cells which partitions each of the sets X1, . . . , Xk.

In an obvious way we can introduce the notion of a decomposition of a definable set into refined
strong cells [partitioning a given finite family of definable sets]. The proof of the following fact is
a routine exercise.

Fact 2.5 Assume that M = (M,≤, . . .) is a weakly o-minimal structure with the strong cell de-
composition property and m ∈ N+.

(a)m If k ∈ N+ and X1, . . . , Xk ⊆Mm are definable sets, then there is a decomposition of Mm

into refined strong cells partitioning each of the sets X1, . . . , Xk.
(b)m If X ⊆ Mm is a non-empty definable set and f : X −→ M is a definable function, then

there is a decomposition D of X into refined strong cells in Mm such that for every D ∈ D, we
have that f � D is strongly continuous and

(∀x ∈ D)(f(x) ∈M) or (∀x ∈ D)(f(x) ∈M \M).
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Lemma 2.6 If M = (M,≤, . . .) is a weakly o-minimal structure with the strong cell decomposition
property, then

(a) Th(M) is weakly o-minimal;
(b) M has the strong monotonicity;
(c) (in case M expands an ordered group) M is of non-valuational type.

Proof. (a) Fix m ∈ N+, a definable set X ⊆ Mm+1 and a strong cell decomposition D of Mm

partitioning X. For a ∈Mm, the number of convex components of {b ∈M : 〈a, b〉 ∈ X} does not
exceed the cardinality of D. Hence Th(M) is weakly o-minimal.

(b) Assume that I ⊆M is an infinite definable set and f : I −→M is a definable function. By
the monotonicity theorem, the set I can be partitioned as I = X ∪ I0 ∪ . . .∪ Im, where X is finite
and I0, . . . , Im are infinite open convex definable sets such that for any i ≤ m, f � Ii is locally
constant or locally strictly increasing, or locally strictly decreasing. Fix i ≤ m and suppose that
f � Ii is locally strictly increasing. By assumption, the set {〈x, y〉 ∈ Ii ×M : f(x) > y} is a union
of finitely many strong cells in M2. Since the boundary functions appearing in the definition of
a strong cell extend to continuous functions on completions of their domains, the set Ii can be
decomposed as Ii = Yi ∪ J i

0 ∪ . . .∪ J i
ki

, where Yi is finite and J i
0, . . . , J

i
ki

are open convex definable
sets, and for any j ≤ ki, the function f � Ii is strictly increasing and strongly continuous.

(c) follows from (b) and Lemma 1.5.

Note that the strong cell decomposition property of a weakly o-minimal structure M is not
implied by any of the (independent) conditions (a), (b) of Lemma 2.6. If M = (R,≤,+, ·, V ) is
a real closed valued field, then by [BP] or [Bz], Th(M) is weakly o-minimal. However, M lacks
the strong monotonicity, and consequently, the strong cell decomposition property. The structure
defined in section 2.5 of [MMS] has the strong monotonicity but not the strong cell decomposition
property, and its theory is not weakly o-minimal. It turns out that in general even the conjunction
of (a) and (b) is insufficient for the strong cell decomposition property, as illustrated by the
following example. Let M = (M,≤, P ), where M := N × Q is ordered lexicographically by ≤,
and M |= P ((m, q), (n, r)) iff m = n and r − q ∈ {0, 1}. It is not difficult to see that Th(M) is
weakly o-minimal. For n ∈ N, let Rn = {n} × Q. By [Bz], the structure N := (M, Rn : n ∈ N)
has a weakly o-minimal theory. Moreover, N has the strong monotonicity, but P (M) ⊆ M2

cannot be decomposed into finitely many strong cells in M2. Indeed, let f(〈m, q〉) = 〈m, q〉 and
g(〈m, q〉) = 〈m, q+ 1〉 for 〈m, q〉 ∈M . Both functions are definable in N and strongly continuous.
However, for any natural m we have that lim

q−→+∞
f(〈m, q〉) = lim

q−→+∞
g(〈m, q〉).

The remaining part of this section is devoted to showing that for a weakly o-minimal structure
expanding an ordered group, strong monotonicity implies the strong cell decomposition property.
In other words we will prove (see Theorem 2.15) that weakly o-minimal non-valuational expansions
of ordered groups enjoy the strong cell decomposition property.

It has to be noted that sets definable in weakly o-minimal non-valuational expansions of ordered
groups are much more difficult to handle than sets definable in o-minimal structures. Strong cells in
general are not definably connected. When working with definable functions, we often have to pay
attention to their extensions to completions of strong cells. Let f, g : M −→ M be two definable
and strongly continuous functions such that f(x) < g(x) whenever x ∈M and lim

x→b
f(x) = lim

x→b
g(x)

for some b ∈M \M . Of course, (f, g)M is not a strong cell. Let ϕ(x, y) be a formula saying that
g(x) − f(x) > y > 0. If (f, g)(−∞,b) and (f, g)(b,+∞) are strong cells, then for any d > 0, some
interval I with inf I < b < sup I has an empty intersection with ϕ(M,d). The following Lemma
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2.7(a) guarantees that the number of such b’s is finite, so we can partition M into finitely many
convex open sets J with the property that (f, g)J is a strong cell.

Also, it is not clear whether the intersection of a definable family of closed bounded sets must
be nonempty. The following series of lemmas together with condition (b)m in Theorem 2.15 were
designed to deal with difficulties of this sort.

Lemma 2.7 Assume that M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion of
an ordered group (M,≤,+) and A ⊆M .

(a) If I ⊆M is a non-empty open A-definable set and ϕ(x, y) is an L(A)-formula such that

• if d > 0, then ϕ(M,d) is an open subset of I,

• ϕ(M,d2) ⊆ ϕ(M,d1) whenever 0 < d1 ≤ d2,

•
⋃

d>0

ϕ(M,d) = I,

then there is a partition of I into convex open A-definable sets I0, . . . , Is such that for every i ≤ s,
if I ′ ⊆ Ii is an open interval with inf Ii < inf I ′ < sup I ′ < sup Ii, then I ′ ⊆ ϕ(M,d) for some
d > 0.

(b) Assume that I ⊆ M is a non-empty convex open definable set and E(x, y, z) is an L(M)-
formula such that for every a ∈ I, the formula E(x, y, a) defines an equivalence relation Ea on M
with finitely many classes each of which is a convex set. Then there is n ∈ N+ such that Ea has
at most n equivalence classes as a varies over I.

Proof. (a) Assume that I ⊆ M and ϕ(x, y) ∈ L(A) satisfy the assumptions of the lemma. Let
E be an equivalence relation on I such that for any a, b ∈ I, M |= E(a, b) iff for some d > 0, the
elements a, b belong to the same convex component of ϕ(M,d). All equivalence classes of E are
convex open sets. By Lemma 1.5, E has only finitely many equivalence classes: I0, . . . , Is. These
are necessarily A-definable. Clearly, 〈I0, . . . , Is〉 is a partition of I satisfying our demands.

(b) Fix an L(M)-formula E(x, y, z) satisfying the assumptions of (b). It is easy to see that there
is an L(M)-formula ϕ(y1, y2, x) such that for any a, b1, b2 ∈M , we have thatM |= ϕ(b1, b2, a) iff the
classes [b1]Ea , [b2]Ea are both infinite and inf[b1]Ea < b1 < sup[b1]Ea = inf[b2]Ea < b2 < sup[b2]Ea .

Also, for every non-empty convex open definable set J ⊆ M , there is an L(M)-formula
ψJ(y1, y2, x, z) such that for any a, b1, b2 ∈ M and d > 0, we have that M |= ψJ(b1, b2, a, d)
iff the following conditions are satisfied

• a ∈ J and (a− d, a+ d) ∩ J ⊆ ϕ(b1, b2,M);

• the function f : (a− d, a+ d) ∩ J −→M defined by f(c) = sup[b1]Ec = inf[b2]Ec is constant
or strictly monotone and strongly continuous on (a− d, a+ d) ∩ J .

Claim. The interior of the (A-definable) set

C := {a ∈ I : M |= (∀y1, y2)(ϕ(y1, y2, a) −→ (∃z > 0)ψI(y1, y2, a, z))}.

is cofinite in I.

Proof of the claim. To establish the claim, it is enough to show that the set I \ C is finite.
Suppose that I \ C contains an open interval J . For a ∈ J define

Y (a) = {〈b1, b2〉 ∈M2 : M |= ϕ(b1, b2, a) ∧ ¬(∃z > 0)ψJ(b1, b2, a, z) and
M |= (∀y1, y2 ≤ b1)(ϕ(y1, y2, a) −→ (∃z > 0)ψJ(y1, y2, a, z))}, and

f(a) = sup{b1 ∈M : (∃b2 > b1)(〈b1, b2〉 ∈ Y (a))}.
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Clearly, f is a definable function from J to M . By the strong monotonicity, there is an open
interval J1 ⊆ J such that f � J1 is strongly continuous. For a ∈ J1, denote by g(a) the supremum
of an infinite equivalence class of Ea whose infimum is f(a), and by h(a) the infimum of an infinite
equivalence class of Ea whose supremum is f(a). By the strong monotonicity there are a1, a2 ∈ J1

and b1, b2 ∈ M such that a1 < a2 and h(a) < b1 < f(a) < b2 < g(a) whenever a ∈ (a1, a2). But
then for every a ∈ (a1, a2), there is d > 0 such that M |= ψJ1(b1, b2, a, d). This contradicts our
definition of f and finishes the proof of the Claim.

Now, let J be a convex component of int(C). Then for every a ∈ J ,

M |= (∀y1, y2)[ϕ(y1, y2, a) −→ (∃z > 0)ψJ(y1, y2, a, z)].

So for every a ∈ J , there is d > 0, d ∈M , such that

M |= (∀y1, y2)[ϕ(y1, y2, a) −→ (∃z1, z2)(ψJ(z1, z2, a, d) ∧ E(y1, z1, a) ∧ E(y2, z2, a))].

Let

u(x, y) ≡ x ∈ J ∧ (∀y1, y2)[ϕ(y1, y2, x) −→ (∃z1, z2)(ψJ(z1, z2, x, y) ∧ E(y1, z1, a) ∧ E(y2, z2, a))].

Clearly, the convex open A-definable set J and the formula u(x, y) satisfy the assumptions of (a),
so there is a partition of J into convex open definable sets J0, . . . , Js such that for any i ≤ s and
any open interval J ′ ⊆ Ji, if inf Ji < inf J ′ < supJ ′ < supJi, then J ′ ⊆ u(M,d) for some d > 0.
For a given i ≤ s, the number of equivalence classes of Ea is constant as a varies over Ji. This
finishes the proof.

Assume that M = (M,≤, . . .) is a weakly o-minimal structure, m ∈ N+, B ⊆ Mm is an open
box, f : B −→ M is a definable function, i ∈ {1, . . . ,m} and a = 〈a1, . . . , am〉 ∈ B. In the
definitions below we will use the following notation. By Bi(a) we will denote the set of tuples
〈b1, . . . , bm〉 ∈ B such that bj = aj whenever j 6= i. Also, by fi,a we will denote the function from
%m

i [B] into M sending c ∈ %m
i [B] to f(b), where b ∈ Bi(a) is the unique tuple such that %m

i (b) = c.
Note that if Bi(a) = Bi(a′), then the functions fi,a, fi,a′ coincide. Also, if m = 1 and a ∈ B, then
f1,a = f .

Definition 2.8 Assume that M = (M,≤, . . .) is a weakly o-minimal structure, m ∈ N+, B ⊆Mm

is an open box in Mm, f : B −→M is a definable function, and i ∈ {1, . . . ,m}. We say that
(a) f is i-constant iff for every a ∈ B, the function fi,a is constant;
(b) f is i-strictly increasing iff for every a ∈ B, the function fi,a is strictly increasing;
(c) f is i-strictly decreasing iff for every a ∈ B, the function fi,a is strictly decreasing.

Definition 2.9 Assume that M = (M,≤, . . .) is a weakly o-minimal structure, m ∈ N+, B ⊆Mm

is an open box and f : B −→ M is a definable function. We say that f is coordinate strongly
continuous iff for every i ∈ {1, . . . ,m}, f is either i-constant or i-strictly increasing and strongly
continuous, or i-strictly decreasing and strongly continuous.

The proof of the following lemma is similar to the proof of Lemma 1.10 from [We].

Lemma 2.10 Assume that M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion
of an ordered group (M,≤,+), m ∈ N+, B ⊆ Mm is an open box and f : B −→ M is a definable
function. Then there is an open box B′ ⊆ B such that f � B′ is coordinate strongly continuous.
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Proof. For m = 1 the lemma is a consequence of the strong monotonicity of M. Let m ≥ 1. Fix a
definable function f : B×I −→M , where B ⊆Mm is an open box and I ⊆M is an open interval.
For a ∈ B and b ∈ I, let ga(b) = f(a, b) and denote by I(a) the maximal convex open subset of I
for which inf I(a) = inf I and ga � I(a) is constant or strictly monotone and strongly continuous.
For a ∈ B, let h(a) = sup I(a). Clearly h : B −→M is a definable function, so by [Ar] and [MMS,
Theorem 4.3], there are an open box B0 ⊆ B and an open interval I0 ⊆ I such that sup I0 < h(a)
whenever a ∈ B0. Let

X1 = {a ∈ B0 : ga � I0 is constant};
X2 = {a ∈ B0 : ga � I0 is strictly increasing and strongly continuous };
X3 = {a ∈ B0 : ga � I0 is strictly decreasing and strongly continuous }.

As B0 = X1 ∪ X2 ∪ X3, at least one of the sets X1, X2, X3 contains an open box B1. Suppose
for example that B1 ⊆ X1. It is clear that f � B1 × I0 is (m + 1)-constant. Repeating the above
procedure for the remaining coordinates, we obtain an open box B′ ⊆ B1 × I0 such that f � B′ is
coordinate strongly continuous.

Definition 2.11 Assume that M = (M,≤,+, . . .) is a weakly o-minimal expansion of an ordered
group (M,≤,+), m ≥ 2, B ⊆ Mm is an open box, f : B −→ M is a definable function, i, j ∈
{1, . . . ,m} and i 6= j.

(a) f is 〈i, j〉-constant iff for any a, b ∈ B with πm
i (a) = πm

i (b), the function fj,b − fj,a :
%m

j [B] −→M is constant.
(b) f is 〈i, j〉-strictly increasing [decreasing] iff for any a, b ∈ B with πm

i (a) = πm
i (b) and

%m
i (a) < %m

i (b), the function fj,b − fj,a : %m
j [B] −→M is strictly increasing [decreasing].

Definition 2.12 Assume that M = (M,≤,+, . . .) is a weakly o-minimal expansion of an ordered
group (M,≤,+).

(a) If I ⊆M is an open interval, then a function f : I −→M is called monotonically strongly
continuous iff f is constant or strictly monotone and strongly continuous.

(b) If m ≥ 2 and B ⊆Mm is an open box, then a function f : B −→M is called monotonically
strongly continuous iff f is coordinate strongly continuous and for any i, j ∈ {1, . . . ,m}, i 6= j, f
is either 〈i, j〉-constant or 〈i, j〉-strongly increasing, or 〈i, j〉-strongly decreasing.

Lemma 2.13 Assume that M = (M,≤,+ . . .) is a weakly o-minimal non-valuational expansion
of an ordered group (M,≤,+), I, J ⊆ M are open intervals and f : I × J −→ M is a definable
function. There are open intervals I ′ ⊆ I and J ′ ⊆ J such that f � I ′×J ′ is monotonically strongly
continuous.

Proof. By Lemma 2.10, without loss of generality we can assume that f is coordinate strongly
continuous. Below, we will show how to find open intervals I ′ ⊆ I and J ′ ⊆ J such that the
function f � I ′×J ′ is either 〈1, 2〉-constant or 〈1, 2〉-strictly increasing, or 〈1, 2〉-strictly decreasing.

For a1, a2 ∈ I define a function αa1,a2 : J −→ M as follows: αa1,a2(y) = f(a2, y) − f(a1, y).
There is an L(M)-formula E(x, y, z, t) such that for any a1, a2, b, c ∈ M , M |= E(b, c, a1, a2) iff
inf I < a1 < a2 < sup I and one of the following conditions is satisfied.

• b, c < J ;

• b, c > J ;
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• b = c ∈ J ;

• b 6= c and there is an open interval U ⊆ J containing b, c such that αa1,a2 � U is constant or
strictly monotone.

Clearly, for any a1, a2 ∈ I with a1 < a2, the formula E(x, y, a1, a2) defines an equivalence relation
Ea1,a2 on M , which has finitely many equivalence classes, each of which constitutes a convex set.

By Lemma 2.7(b), for every a1 ∈ I, there is n(a1) ∈ N+ such that the equivalence relation
Ea1,a2 has at most n(a1) equivalence classes whenever a2 ∈ I and a2 > a1. For a1, a2 ∈ I with
a1 < a2 and for i ∈ {1, . . . , n(a1)} define gi(a1, a2) as the supremum of the i-th equivalence class of
Ea1,a2 if Ea1,a2 has at least i equivalence classes, and +∞ in case Ea1,a2 has less than i equivalence
classes.

Fix a1 ∈ I. Let b0 < . . . < bk ∈ M be all distinct limits of the form lim
a2−→a+

1

gi(a1, a2),

i ∈ {1, . . . , n(a1)} (existence of these is guaranteed by Lemma 1.3). Note that if j < k, (bj , bj+1) ⊆
J and ε > 0, then there are b, c ∈ (bj , bj+1), i < n(a1) and a ∈ (a1, sup I) such that 0 <
bi+1 − c+ b− bi < ε, and gi(a1, a2) < b < c < gi+1(a1, a2) whenever a2 ∈ (a1, a). This justifies our
next step.

There is an L(M)-formula F (x, y, z) such that for a1, b, c ∈ M we have that M |= F (b, c, a1)
iff a1 ∈ I and one of the following conditions holds.

• b, c < J ;

• b, c > J ;

• b = c ∈ J ;

• b, c ∈ J , b 6= c and there is a > a1, a ∈ I, such that for every a2 ∈ (a1, a), we have that
M |= E(b, c, a1, a2).

Clearly, for every a1 ∈ I, the formula F (x, y, a1) defines an equivalence relation F a1 on M which
has at most 2n(a1) equivalence classes (some limits of the form lim

a2−→a+
1

gi(a1, a2) might belong to

M). By Lemma 2.7(b), the number of equivalence classes of F a is bounded as a varies over I.
There are an open interval I1 ⊆ I and definable functions h1, h2 : I1 −→ J∪{inf J, supJ} such that
for every a1 ∈ I1, h1(a1) < h2(a1) and (h1(a1), h2(a1)) is an equivalence class of F a1 . By Lemma
1.5, without loss of generality we can assume that h1, h2 are strongly continuous. Then it is easy
to see that there are open intervals I2 ⊆ I1 and J2 ⊆ J such that h1(a) < inf J2 < supJ2 < h2(a)
whenever a ∈ I2. Let

X1 = {a1 ∈ I2 : (∃a > a1)(∀a2 ∈ (a1, a))(αa1,a2 � J2 is constant)};
X2 = {a1 ∈ I2 : (∃a > a1)(∀a2 ∈ (a1, a))(αa1,a2 � J2 is strictly increasing)};
X3 = {a1 ∈ I2 : (∃a > a1)(∀a2 ∈ (a1, a))(αa1,a2 � J2 is strictly decreasing)}.

Clearly, I2 = X1 ∪X2 ∪X3, so at least one of the sets X1, X2, X3 contains an open interval. Say
for instance that X1 contains an open interval I3. For a1 ∈ I3 define

u(a1) = sup{a > a1 : (∀a2 ∈ (a1, a))(αa1,a2 � J2 is constant)} − a1.

It is easy to see that there are an open interval I4 ⊆ I3 and d > 0 such that (∀a1 ∈ I4)(u(a1) > d).
This implies that (∀a1 ∈ I4)(∀a2 ∈ (a1, a1 + d))(αa1,a2 � J2 is constant). Let I ′ ⊆ I4 be an open
interval of length at most d and let J ′ = J2. Then (∀a1, a2 ∈ I ′)(αa1,a2 � J ′ is constant).
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Lemma 2.14 Assume that M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion
of an ordered group (M,≤,+), m ∈ N+, B ⊆ Mm is an open box and f : B −→ M is a definable
function.

(a) There is an open box B′ ⊆ B such that f � B′ is monotonically strongly continuous.
(b) If f is monotonically strongly continuous, then f is strongly continuous.

Proof. (a) For m ∈ N+ we will inductively prove the following statement.

(∗)m If B ⊆ Mm is an open box and f : B −→ M is a definable function, then there is an open
box B′ ⊆ B such that f � B′ is monotonically strongly continuous.

Note that (∗)1 is a consequence of the strong monotonicity while (∗)2 follows from Lemma 2.13.
So suppose that m ≥ 2 and (∗)m holds. Assume that B ⊆Mm is an open box, I ⊆M is an open
interval and f : B × I −→ M is a definable function. By Lemma 2.10, there are an open box
B0 ⊆ B and an open interval I0 ⊆ I such that f � B0 × I0 is coordinate strongly continuous. For
a ∈ B0 and b ∈ I0 define gb(a) = f(a, b) and

Ub = {a ∈ B0 : there is an open box B′0 ⊆ B0 containing a
such that gb � B′0 is monotonically strongly continuous}.

By (∗)m, Ub is large in B0 whenever b ∈ I0, so the set
⋃

b∈I0

Ub × {b} must be large in B0 × I0.

Otherwise, there would exist an open box B′0 ⊆ B0 and an open interval I ′0 ⊆ I0 such that
B′0 × I ′0 ⊆ (B0 × I0) \

⋃
b∈I0

Ub × {b}. The latter would mean that Ub is not large in B0 for b ∈ I ′0.

Since the set
⋃

b∈I0

Ub × {b} is large in B0 × I0, there are an open box B1 ⊆ B0 and an open

interval I1 ⊆ I0 such that B1 × I1 ⊆
⋃

b∈I0

Ub × {b}. Fix a ∈ B1, and for b ∈ I1 define

Vb =
⋃
{C ⊆ B1 : C is an open box whose center is a and such that

gb � C is monotonically strongly continuous}.

Let V =
⋃

b∈I1

Vb × {b}. By Fact 1.1, dim(V ) = m + 1, so there are an open box B2 ⊆ B1 and an

open interval I2 ⊆ I1 such that B2 × I2 ⊆ V . Our choice of B2 and I2 guarantees that for every
b ∈ I2, the function gb � B2 is monotonically strongly continuous. For b ∈ I2 and i ∈ {1, . . . ,m}
define

α(b, i) =

 −1 if gb � B2 is i-strictly decreasing and strongly continuous
0 if gb � B2 is i-constant
1 if gb � B2 is i-strictly increasing and strongly continuous.

Also, for b ∈ I2 and i, j ∈ {1, . . . ,m}, i 6= j define

β(b, i, j) =

 −1 if gb � B2 is 〈i, j〉-strictly decreasing
0 if gb � B2 is 〈i, j〉-constant
1 if gb � B2 is 〈i, j〉-strictly increasing.

Now, for b ∈ I2 define

γ(b) = 〈α(b, i) : 1 ≤ i ≤ m〉 and
δ(b) = 〈β(b, i, j) : i, j ∈ {1, . . . ,m}, i 6= j〉.

There is an open interval I3 ⊆ I2 such that 〈γ(b), δ(b)〉 is constant as b varies over I3. Note that
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• for every i ∈ {1, . . . ,m}, f � B2 × I3 is either i-constant or i-strictly increasing and strongly
continuous, or i-strictly decreasing and strongly continuous;

• for any i, j ∈ {1, . . . ,m}, i 6= j, f � B2×I3 is either 〈i, j〉-constant or 〈i, j〉-strictly incsreasing,
or 〈i, j〉-strictly decreasing.

Repeating the above argument we can find an open box B′ ⊆ B2 × I3 such that for any distinct
i1, . . . , im ∈ {1, . . . ,m+ 1}, the following conditions are satisfied.

• For every i ∈ {i1, . . . , im}, f � B′ is either i-constant or i-strictly increasing and strongly
continuous, or i-strictly decreasing and strongly continuous.

• For any i, j ∈ {i1, . . . , im}, i 6= j, f � B′ is either 〈i, j〉-constant or 〈i, j〉-strictly incsreasing,
or 〈i, j〉-strictly decreasing.

Clearly, f � B′ is monotonically strongly continuous.

(b) For m ∈ N+ we will inductively prove the following condition (∗)m.

(∗)m If B ⊆ Mm is an open box, a ∈ B, f : B −→ M is a monotonically strongly continuous
definable function and ε > 0, ε ∈M , then there is an open box C ⊆ B such that a ∈ C and
for any tuples c, d ∈ C which differ on at most one coordinate, we have that |f(c)−f(d)| < ε.

The condition (∗)1 being obvious, suppose that (∗)m holds. Assume that B ⊆Mm is an open
box, I ⊆ M is an open interval, 〈a, b〉 ∈ B × I, f : B × I −→ M is a monotonically strongly
continuous definable function, and ε > 0. Fix b1, b2 ∈ I such that b1 < b < b2 and consider
functions g, h : B −→M defined as follows:

g(x) = f(x, b1) and h(x) = f(x, b2) for x ∈ B.

By (∗)m, there is an open box C ⊆ B such that a ∈ C, cl(C) ⊆ B (here cl(C) denotes the closure
of C in Mm in the usual topology of Mm) and for any tuples a1, a2 ∈ C which differ on at most
one coordinate we have that

|g(a1)− g(a2)| < ε and |h(a1)− h(a2)| < ε.

There are b3, b4 ∈M such that b1 < b3 < b < b4 < b2 and if v is a vertex of the box C, then

|f(v, b4)− f(v, b3)| < ε.

In the following two claims we will show that for any c, d ∈ C × (b3, b4) which differ on at most
one coordinate, we have that |f(c)− f(d)| < ε.

Claim 1. If u ∈ C, then |f(u, b4)− f(u, b3)| < ε.

Proof of Claim 1. Fix a tuple 〈u1, . . . , um〉 ∈ C. Denote by 〈ai1
1 , . . . , a

im
m 〉, where i1, . . . , im ∈

{0, 1} and a0
j < a1

j for j ∈ {1, . . . ,m}, the vertices of C. Also for η : {1, . . . ,m} −→ {0, 1} and
i ≤ m define tuples w(η, i) as follows:

w(η, 0) = 〈aη(1)
1 , . . . , aη(m)

m 〉;

w(η, i) = 〈aη(1)
1 , . . . , a

η(m−i)
m−i , um+i−1, . . . , um〉 (1 ≤ i ≤ m).

To prove Claim 1, we will inductively on i ≤ m show that

14



(∆)i if η : {1, . . . ,m} −→ {0, 1}, then |f(w(η, i), b4)− f(w(η, i), b3)| < ε.

The condition (∆)0 is a consequence of our choice of b3 and b4. Let 0 ≤ i < m, η :
{1, . . . ,m} −→ {0, 1}, and suppose that (∆)i holds. Let ϑ0, ϑ1 : {1, . . . ,m} −→ {0, 1} be functions
defined by the conditions:

ϑ0(m− i) = 0, ϑ1(m− i) = 1 and ϑ0(j) = ϑ1(j) = η(j) for j 6= m− i.

Since f is 〈m+ 1,m− i〉-constant or 〈m+ 1,m− i〉-srictly incressing, or 〈m+ 1,m− i〉-strictly
decreasing by (∆)i, we have that

|f(w(η, i+ 1), b4)− f(w(η, i+ 1), b3)| ≤
max(|f(w(ϑ0, i), b4)− f(w(ϑ0, i), b3)|, |f(w(ϑ1, i), b4)− f(w(ϑ1, i), b3)|) < ε.

This proves Claim 1.

Claim 2. If c, d ∈ C × (b3, b4) differ on at most one coordinate, then |f(c)− f(d)| < ε.

Proof of Claim 2. Assume first that c, d ∈ C × (b3, b4) do not differ on the first m coordinates.
There are c′ ∈ C×{b3} and d

′ ∈ C×{b4} such that c, d, c′, d
′
do not differ on the first m coordinates.

Since f is coordinate strongly continuous, by Claim 1 we have that

|f(c)− f(d)| ≤ |f(c′)− f(d
′
)| < ε.

Now fix i ∈ {1, . . . ,m} and assume that c, d ∈ C × (b3, b4) do not differ on coordinates j 6= i.
There are c′, d

′ ∈ C × {b1} and c′′, d
′′ ∈ C × {b2} such that

• c, c′, c′′ do not differ on the first m coordinates;

• d, d
′
, d
′′

do not differ on the first m coordinates.

Then the tuples c′, d
′

do not differ on coordinates j 6= i, and similarly c′′, d
′′

do not differ on
coordinates j 6= i. Our assumptions guarantee that

|f(c)− f(d)| ≤ max(|f(c′)− f(d
′
)|, |f(c′′)− f(d

′′
)|) < ε.

This proves Claim 2 and finishes the proof of (∗)m+1.

Now, for the proof of (b), consider an open box B ⊆ Mm, m ∈ N+, and a monotonically
strongly continuous definable function f : B −→ M . Let a ∈ B and ε > 0, ε ∈ M . By (∗)m,
there is an open box C ⊆ B such that a ∈ C and for any tuples c, d ∈ C which differ on at most
one coordinate we have that |f(c)− f(d)| < ε

m . From this one can easily infer that for any tuples
c, d ∈ C, we have that |f(c) − f(d)| < ε. As this works for arbitrary ε > 0, the limit lim

x−→a
f(x)

exists in B. Moreover, if a ∈ B, then f(a) = lim
x−→a

f(x). Hence f is strongly continuous.

Assume that M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion of an ordered
group (M,≤,+), m ∈ N+ and C = Cm+1 ⊆ Mm+1 is a strong open cell. By definition, for every
i ∈ {1, . . . ,m}, there are strong open cells Ci ⊆ M i and strongly continuous definable functions
fi : Ci −→ M ∪ {−∞} and gi : Ci −→ M ∪ {+∞} such that f i(a) < gi(a) for a ∈ Ci, and
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Ci+1 = (fi, gi)Ci . For ε > 0 such that 2ε < supC1− inf C1, we define ε-approximations of the cells
C1, . . . , Cm+1 as follows (1 ≤ i ≤ m):

C1(ε) = {x ∈ C1 : dist({x},M \ C1) > ε};
hi(ε) = min(ε, sup{z ∈M : (fi + 2z, gi − 2z)Ci(ε) is a strong cell}) =

min(ε, sup{z ∈M : inf
x∈Ci(ε)

(fi(x)− gi(x)− 4z) > 0});

Ci+1(ε) = (fi + hi(ε), gi − hi(ε))Ci(ε).

Note that Ci(ε) is a strong cell whenever i ∈ {1, . . . ,m+1} and 0 < 2ε < supC1−inf C1. Moreover,

• ε ≥ dist(Ci(ε),M i \ Ci) > 0;

• if ε′ ∈ (0, ε), then Ci(ε) ⊆ Ci(ε′);

•
⋃

ε>0
Ci(ε) = Ci.

Theorem 2.15 Assume that M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion
of an ordered group (M,≤,+), A ⊆M and m ∈ N+.

(a)m If k ∈ N+ and X1, . . . , Xk ⊆ Mm are A-definable sets, then there is a decomposition of
Mm into A-definable strong cells partitioning each of the sets X1, . . . , Xk.

(b)m Assume that U ⊆ Mm is a non-empty open A-definable set and ϕ(x, y), where |x| = m,
is an L(A)-formula such that

• ϕ(M,d) is an open subset of U whenever d > 0;

• ϕ(M,d2) ⊆ ϕ(M,d1) whenever 0 < d1 ≤ d2;

•
⋃

d>0

ϕ(M,d) = U .

Then there is a decomposition D of U into strong cells in Mm such that for every open cell D ∈ D,
if B ⊆ D is an open box with dist(B,Mm \D) > 0, then B ⊆ ϕ(M,d) for some d > 0.

(c)m If X ⊆Mm is a non-empty A-definable set and f : X −→M is an A-definable function,
then there is a decomposition of X into A-definable strong cells such that for every D ∈ D, f � D
is strongly continuous.

(d)m If X ⊆ Mm is a non-empty definable set and E(x, y, z) is an L(M)-formula such that
|z| = m and for every a ∈ X, E(x, y, a) defines an equivalence relation on M with finitely many
classes, then there is n ∈ N+ such that for every a ∈ X, the equivalence relation defined by
E(x, y, a) has at most n equivalence classes.

(e)m If X ⊆ Mm+1 is a definable set, then there is a positive integer n such that for any
a ∈ πm+1

m+1 [X], the set {b ∈M : 〈a, b〉 ∈ X} has at most n convex components.

Proof. (a)1 is obvious by the weak o-minimality of M. (b)1, (c)1 and (d)1 are consequences of
Lemma 2.7 and the strong monotonicity of M. Let m ∈ N+ and suppose that the conditions
(a)m–(d)m hold.

Proof of (d)m =⇒(e)m. Assume that X ⊆ Mm+1 is a definable set. For a ∈ Mm denote by
R(a) the set of all elements b ∈M for which 〈a, b〉 ∈ X, and define the following formula.

E(x, y, z) ≡ [x ≤ y ∧ ([x, y] ⊆ R(z) ∨ [x, y] ∩R(z) = ∅)] ∨
[y ≤ x ∧ ([y, x] ⊆ R(z) ∨ [y, x] ∩R(z) = ∅)].
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Clearly, for every a ∈ Mm, E(x, y, a) defines an equivalence relation Ea on M , whose number of
equivalence classes is not lower than the number of convex components of R(a). By (d)m, there
exists n ∈ N+ such that for every a ∈Mm, Ea has at most n equivalence classes. Hence, for every
a ∈Mm, the set R(a) has at most n convex components.

Proof of (a)m+1. Assume that X1, . . . , Xk ⊆Mm+1 are definable sets. By (e)m, there is n ∈ N+

such that for any a ∈Mm and η : {1, . . . , k} −→ {0, 1}, the set {b ∈M : 〈a, b〉 ∈ Xη(1)
1 ∩. . .∩Xη(k)

k }
has at most n convex components (here X0

i denotes Xi whereas X1
i = Mm \ Xi). For a ∈ Mm

denote by 〈I0(a), . . . , Is(a)(a)〉 the unique partition of M into convex sets such that

• I0(a) < . . . < Is(a)(a);

• for every i ≤ s(a), there is η : {1, . . . , k} −→ {0, 1} such that Ii(a) is a convex component of
{b ∈M : 〈a, b〉 ∈ Xη(1)

1 ∩ . . . ∩Xη(k)
k }.

Clearly, s(a) ≤ n · 2k whenever a ∈Mm. For a ∈Mm and i ≤ s(a) define:

αi(a) =


0 if inf Ii(a) = −∞,
1 if inf Ii(a) ∈ Ii(a),
2 if inf Ii(a) ∈M \ Ii(a),
3 if inf Ii(a) ∈M \M ;

βi(a) =


1 if sup Ii(a) ∈ Ii(a),
2 if sup Ii(a) ∈M \ Ii(a),
3 if sup Ii(a) ∈M \M,
4 if sup Ii(a) = +∞;

γi(a) = η iff Ii(a) ⊆ {b ∈M : 〈a, b〉 ∈ Xη(1)
1 ∩ . . . ∩Xη(k)

k }.

For a ∈ Mm, let θ(a) = {〈i, αi(a), βi(a), γi(a)〉 : i ≤ s(a)} and {θ0, . . . , θl} = {θ(a) : a ∈ Mm}.
By (a)m, there is a decomposition D0 of Mm into strong cells in Mm partitioning each of the sets
{a ∈ Mm : θ(a) = θi}, i ≤ l. To finish the proof, by (a)m, it is enough to show that for every
D ∈ D0, there is a decomposition of D×M into strong cells in Mm+1 which partitions each of the
sets X1 ∩ (D ×M), . . . , Xk ∩ (D ×M).

Fix D ∈ D0 and let sD = s(a) for a ∈ D. By (a)m, our assertion is obvious in case dim(D) < m,
so assume that D is open. For i ≤ sD define functions fi, gi : D −→M ∪ {−∞,+∞} as follows:

fi(a) = inf Ii(a), gi(a) = sup Ii(a), a ∈ D.

Clearly, f0(a) = −∞, gsD
(a) = +∞ and gi(a) = fi+1(a) whenever a ∈ D and 0 < i < sD.

Note that for every i ≤ sD, the set {a ∈ D : fi(a) = gi(a)} is either empty or equal to D.
Let h0, . . . , hr denote all distinct functions appearing in {fi, gi : i ≤ sD}, enumerated so that
−∞ = h0(a) < . . . < hr(a) = +∞ for a ∈ D. By (c)m, there is a decomposition CD of D into
strong cells such that on each cell from CD, the functions h0, . . . , hr are strongly continuous. Again,
by (a)m, without loss of generality we can assume that CD = {D}.

There is an L(A)-formula ϕ(x, z) such that for any a ∈Mm and d > 0, M |= ϕ(a, d) iff a ∈ D
and hi+1(a)− hi(a) > d for 0 ≤ i < r. Note that

• ϕ(M,d) is an open definable subset of D;

• ϕ(M,d1) ⊆ ϕ(M,d2) for 0 < d2 ≤ d1

•
⋃

d>0

ϕ(M,d) = D.

17



By (b)m, there is a decomposition D1 of D into strong cells in Mm such that for every open cell
C ∈ D1, if B ⊆ C is an open box such that dist(B,Mm \C) > 0, then B ⊆ ϕ(M,d) for some d > 0.
This implies that if i < sD and C is an open cell in D1, then hi(x) < hi+1(x) for all x ∈ C and
(hi, hi+1)C is a strong open cell in Mm+1. Now, using (a)m we can easily find a decomposition of
Mm+1 into strong cells in Mm+1 satisfying our demands.

Proof of (b)m+1. Assume that U ⊆ Mm+1 is a non-empty open A-definable set and ϕ(x, y),
where |x| = m + 1, is an L(A)-formula satisfying the requirements of (b)m+1. By (a)m+1, there
is a decomposition D0 of U into A-definable strong cells. In what follows we will inductively
find cell decompositions D1, . . . ,Dm+1 of U into strong cells in Mm+1 such that Di+1 refines Di

whenever i ≤ m, and for every i ∈ {1, . . . ,m + 1}, if C is an open cell in Di and 0 < 2ε <
sup %m+1

1 [C]− inf %m+1
1 [C], then the following conditions are satisfied.

(∗)1 (for i = 1)(∀a ∈ πm+1
m+1 [C(ε)])(∃d > 0)[{b ∈M : 〈a, b〉 ∈ C(ε)} ⊆ ϕ(a,M, d)];

(∗)i (∀a ∈ %m+1
1,...,m+1−i[C(ε)])(∃d > 0)[{b ∈M : 〈a, b〉 ∈ %m+1

1,...,m+2−i[C(ε) \ ϕ(M,d)]} = ∅]
in case 1 < i ≤ m;

(∗)m+1 (for i = m+ 1)(∃d > 0)(%m+1
1 [C(ε) \ ϕ(M,d)] = ∅).

This is clearly sufficient as for any open cell C ∈ Dm+1 and any open boxB ⊆ C with dist(B,Mm+1\
C) > 0, there are ε > 0 and d > 0 for which B ⊆ C(ε) ⊆ ϕ(M,d). Our construction will consist in
three steps.

Step 1. Let C ∈ D0 be an open strong cell. For a ∈ πm+1
m+1 [C] and d > 0 define R(a, d) = {c ∈

M : 〈a, c〉 ∈ ϕ(M,d)}. Note that for every a ∈ πm+1
m+1 [C],

•
⋃

d>0

R(a, d) = {c ∈M : 〈a, c〉 ∈ C};

• (by (e)1) there is n(a) ∈ N+ such that R(a, d) has at most n(a) convex components as d
varies over (0,+∞).

There is an L(A)-formula E(x, y, z) such that for any a ∈ πm+1
m+1 [C] and b1, b2 ∈ M , M |=

E(b1, b2, a) iff one of the following conditions is satisfied.

• b1, b2 < {c ∈M : 〈a, c〉 ∈ C};

• b1, b2 > {c ∈M : 〈a, c〉 ∈ C};

• 〈a, b1〉, 〈a, b2〉 ∈ C and there is d > 0 such that b1, b2 belong to the same convex component
of R(a, d).

Clearly, for every a ∈ πm+1
m+1 [C], the formula E(x, y, a) defines an equivalence relation Ea on M

whose equivalence classes are convex infinite sets. For every a ∈ πm+1
m+1 [C], the equivalence relation

Ea has only finitely many equivalence classes. By (d)m, there is n ∈ N+ such that Ea has at most
n equivalence classes as a varies over πm+1

m+1 [C]. The ordering of the structure determines a natural
ordering of equivalence classes of Ea, a ∈ πm+1

m+1 [C]. For i ∈ {1, . . . , n} define

Xi = {〈a, c〉 ∈ πm+1
m+1 [C]×M : c is in the i-th equivalence class of Ea}.

By (a)m+1, there is a decomposition DC
0 of of C into strong cells in Mm+1 partitioning each of

the sets X1, . . . , Xn. By (a)m+1 there is a cell decomposition D1 of U partitioning each of the cells
from DC

0 , where C is an open cell from D0.
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We claim that for open cells from D1, condition (∗)1 holds. Let C be an open cell from D1 and
let ε > 0 be an element of M such that 0 < 2ε < sup %m+1

1 [C]− inf %m+1
1 [C]. For a ∈ πm+1

m+1 [C(ε)]
and d > 0, the set {b ∈M : 〈a, b〉 ∈ C∩ϕ(M,d)} is convex and

⋃
d>0

{b ∈M : 〈a, b〉 ∈ C∩ϕ(M,d)} =

{b ∈ M : 〈a, b〉 ∈ C}. Hence there is d > 0 for which {b ∈ M : 〈a, b〉 ∈ C(ε)} ⊆ ϕ(a,M, d). This
completes the proof of (∗)1.

Step i + 1 (1 ≤ i < m). Suppose we have already constructed strong cell decompositions
D1, . . . ,Di, i < m, of U satisfying our demands. Let C be an open cell in Di. For d > 0, ε > 0
with 2ε < sup %m+1

1 [C]− inf %m+1
1 [C] and a ∈ %m+1

1,...,m−i[C(ε)] define

R(a, d, ε) = {c ∈M : 〈a, c〉 ∈ %m+1
1,...,m+1−i[C(ε)] \ %m+1

1,...,m+1−i[C(ε) \ ϕ(M,d)]}.

Our inductive assumption about Di guarantees that for every ε > 0 with 2ε < sup %m+1
1 [C] −

inf %m+1
1 [C] we have that ⋂

d>0

%m+1
1,...,m+1−i[C(ε) \ ϕ(M,d)] = ∅.

Consequently for a ∈ %m+1
1,...,m−i[C(ε)],⋃
d>0

R(a, d, ε) = {c ∈M : 〈a, c〉 ∈ %m+1
1,...,m+1−i[C(ε)]}.

By (e)1, for any a ∈ %m+1
1,...,m−i[C(ε)] and any ε > 0 with 2ε < sup %m+1

1 [C] − inf %m+1
1 [C], there

is n(a, ε) ∈ N+ such that the set R(a, d, ε) has at most n(a, ε) convex components as d varies
over (0,+∞). There is an L(A)-formula E(x, y, z, t) such that for any a ∈ %m+1

1,...,m−i[C(ε)], any
b1, b2 ∈M , and any ε > 0 with 2ε < sup %m+1

1 [C]− inf %m+1
1 [C], M |= E(b1, b2, a, ε) iff one of the

following conditions is satisfied.

• b1, b2 < {c ∈M : 〈a, c〉 ∈ %m+1
1,...,m+2−i[C(ε)]};

• b1, b2 > {c ∈M : 〈a, c〉 ∈ %m+1
1,...,m+2−i[C(ε)]};

• 〈a, b1〉, 〈a, b2〉 ∈ %m+1
1,...,m+1−i[C(ε)] and there is d > 0 such that b1, b2 belong to the same

convex component of R(a, d, ε).

For any a ∈ %m+1
1,...,m−i[C(ε)] and any ε > 0 with 2ε < sup %m+1

1 [C] − inf %m+1
1 [C], the formula

E(x, y, a, ε) defines an equivalence relation Ea,ε on M with finitely many equivalence classes each
of which is a convex set. By Lemma 2.7(b), the number of equivalence classes of Ea,ε is bounded
by some n(a) ∈ N+ as ε varies over (0,+∞). There is an L(A)-formula F (x, y, z) such that for any
a ∈Mm−i and b1, b2 ∈M we have that M |= F (b1, b2, a) iff one of the following conditions holds.

• b1, b2 < {c ∈M : 〈a, c〉 ∈ %m
1,...,m+1−i[C]};

• b1, b2 > {c ∈M : 〈a, c〉 ∈ %m
1,...,m+1−i[C]};

• b1 = b2;

• 〈a, b1〉, 〈a, b2〉 ∈ %m+1
1,...,m+1−i[C], b1 6= b2, and there are ε0 > 0 and an open interval J ⊆ M

such that for any c1, c2 ∈ J and any ε ∈ (0, ε0), we have that M |= E(c1, c2, a, ε).
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Clearly, for every a ∈ %m+1
1,...,m−i[C], the formula F (x, y, a) defines an equivalence relation on M

with finitely many equivalence classes. Moreover, the equivalence classes of F a are convex sets.
By (d)m−i, there is n ∈ N+ such that for every a ∈ %m+1

1,...,m−i[C], the equivalence relation F a has
at most n equivalence classes. For j ∈ {1, . . . , n} define

Xj = {〈a, c〉 ∈ %m+1
1,...,m+1−i ×M : c is in the i-th equivalence class of F a}.

Let C be a decomposition of Mm+1−i into strong cells partitioning each of the sets X1, . . . , Xn.
There is a decomposition DC

i of C such that %m+1
1,...,m+1−i[DC

i ] partitions all cells from CC . Now by
(a)m+1, there is a decompositon of U into strong open cells partitioning each of the cells from DC

i ,
where C is an open cell from Di.

Step m+1. Suppose that we have already constructed D1, . . . ,Dm satisfying our demands. Fix
C ∈ Dm and ε > 0 with 2ε < sup %1[C]− inf %1[C]. Our construction guarantees that⋂

d>0

%m+1
1 [C(ε) \ ϕ(M,d)] = ∅.

For d > 0 and ε > 0 with 2ε < sup %m+1
1 [C]− inf %1[C] define

R(d, ε) = %m+1
1 [C(ε)] \ %m+1

1 [C(ε) \ ϕ(M,d)].

For every ε > 0 with 2ε < sup %m+1
1 [C]− inf %m+1

1 [C] we have that
⋃

d>0

R(d, ε) = %m+1
1 [C(ε)]. Let

E(x, y, t) be an L(A)-formula such that for any b1, b2 ∈M and any ε > 0 with 2ε < sup %m+1
1 [C]−

inf %m+1
1 [C], we have that M |= E(b1, b2, ε) iff one of the following conditions holds.

• b1, b2 < %m+1
1 [C(ε)];

• b1, b2 > %m+1
1 [C(ε)];

• b1, b2 ∈ %m+1
1 [C(ε)] and b1, b2 are in the same convex component of R(d, ε) for some d > 0.

Clearly, for every ε > 0 with 2ε < sup %m+1
1 [C] − inf %m+1

1 [C], the formula E(x, y, ε) defines an
equivalence relation Eε on M with finitely many equivalence classes. Repeating an appropriate
argument from Step 2 we define an equivalence relation F on M which has finitely many equivalence
classes all of which are convex sets whose boundary points are limits of functions determined by
boundary points of the equivalence classes of E(x, y, ε) as ε tends to 0. Let CC be a decomposition
of %m+1

1 [C] into strong cells partitioning all the equivalence classes of E. There is a decomposition
DC

m of C such that %m+1
1 [DC

m] partitions all cells from CC . Now by (a)m+1, there is a decompositon
of U into strong open cells partitioning each of the cells from DC

m, where C is an open cell from
Dm.

Proof of (c)m+1. Assume that X ⊆Mm+1 is a non-empty A-definable set and f : X −→M is
an A-definable function. By (a)m+1, without loss of generality we can assume that X is a strong
cell in Mm+1. Below we consider two cases.

Case 1. dim(X) ≤ m. There is a projection π : Mm+1 −→ Mm dropping one coordinate
such that π[C] is a strong cell in Mm. Let g : π[C] −→ C be the map defined by g(π(a)) = a,
a ∈ C. By (c)m, there is a decomposition D0 of π[C] into strong A-definable cells in Mm such
that the function f ◦ g is strongly continuous on every strong cell from this decomposition. Let
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D1 = {g[D] : D ∈ D0}. Clearly, D1 is a decomposition of D into strong cells in Mm+1, and for
every C ∈ D0, we have that f � D is strongly continuous.

Case 2. dim(X) = m + 1. There is an L(A)-formula ϕ(x, y), |x| = m + 1, such that for any
a ∈Mm+1 and d ∈M , M |= ϕ(a, d) iff a ∈ X, d > 0 and there is an open box B ⊆ X containing
a such that the edges of B are of length d and f � B is monotonically strongly continuous. By
Lemma 2.14 , the set X ′ :=

⋃
d>0

ϕ(M,d) is large in X. By (a)m+1, there is a decomposition D of

X into strong cells in Mm+1 partitioning X ′. By (a)m+1, (c)m and the argument from Case 1,
without loss of generality we can assume that f restricted to any cell from D of dimension ≤ m is
strongly continuous.

Fix an open cell C ∈ D. To finish the proof, by (a)m+1, it is enough to find a decomposition
of C into strong cells such that f is strongly continuous on each cell from this decomposition. Let
ψ(x, y) ≡ ϕ(x, y) ∧ x ∈ C. Note that

• ψ(M,d) is an open subset of C for every d > 0;

•
⋃

d>0

ψ(M,d) = C;

• ψ(M,d1) ⊆ ψ(M,d2) whenever 0 < d2 ≤ d1.

By (b)m+1, there is a decomposition D′ of C into strong cells in Mm+1 such that for any open
cell C ′ ∈ D′ and any open box B′ ⊆ C ′ with dist(B,Mm+1 \ C ′) > 0, there is d > 0 such that
B ⊆ ψ(M,d). This means that for every a ∈ C

′
, there in an open box B ⊆ C ′ such that a ∈ B

and B ⊆ ψ(M,d) for some d > 0. But then f � B is strongly continuous. Consequently, f � C ′ is
strongly continuous. Again, by (a)m+1 and (c)m, there is a deecomposition D′′ of C into strong
cells in Mm+1 refining D′ and such that for every D ∈ D′′, f � D is strongly continuous.

Proof of (d)m+1. Assume that X ⊆Mm+1 is a non-empty definable set, E(x, y, z) is an L(M)-
formula such that |z| = m+ 1 and for every a ∈ X, E(x, y, a) defines on M an equivalence relation
Ea with finitely many classes. Without loss of generality we can assume that each equivalence
class of Ea is convex whenever a ∈ X. By (a)m+1 and (d)m, we can also assume that X is an open
strong cell.

There is an L(M)-formula ϕ(t1, t2, z) such that for any a ∈ X and b1, b2 ∈M , M |= ϕ(b1, b2, a)
iff the classes [b1]Ea , [b2]Ea are both infinite and

inf[b1]Ea < b1 < sup[b1]Ea = inf[b2]Ea < b2 < sup[b2]Ea .

For a ∈Mm+1 and d > 0 denote by B(a, d) the open box whose center is a and whose edges are of
length d. There is an L(M)-formula ψ(y1, y2, x, z) such that for any a ∈ X, b1, b2 ∈M and d ∈M ,
we have that M |= ψ(b1, b2, a, d) iff the following conditions are satisfied.

• B(a, d) ⊆ X ∩ ϕ(b1, b2,M);

• the function f : B(a, d) −→ M defined by f(c) = sup{d ∈ (b1, b2) : inf E(d1,M, c) ≤ b1} is
monotonically strongly continuous on B(a, d).

Let
C = {a ∈ X : M |= (∀y1, y2)(ϕ(y1, y2, a) −→ (∃z > 0)ψ(y1, y2, a, z))}.

We claim that dim(X \ int(C)) ≤ m. For the latter, it suffices to show that dim(X \ C) ≤ m.
Indeed, if dim(X \ C) ≤ m and dim(X \ int(C)) = m + 1, then int(C \ int(C)) 6= ∅, which is
impossible.
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Suppose for a contradiction that the set X \ C contains an open box B. For a ∈ B define

Y (a) = {〈b1, b2〉 ∈M2 : M |= ϕ(b1, b2, a) ∧ ¬(∃z > 0)ψ(b1, b2, a, z) and
M |= (∀y1, y2 ≤ b1)(ϕ(y1, y2, a) −→ (∃z > 0)ψ(y1, y2, a, z))}, and

f(a) = sup{b1 ∈M : (∃b2 > b1)(〈b1, b2〉 ∈ Y (a))}.

Clearly, f is a definable function from B to M . By Lemma 2.14, there is an open box B1 ⊆ B
such that f � B1 is strongly continuous. For a ∈ B1, denote by g(a) the supremum of the infinite
equivalence class of Ea whose infinmum is f(a), and by h(a) the infimum of the infinite equivalence
class of Ea whose supremum is f(a). It is easy to see that there is an open box B2 and b1, b2 ∈M
such that h(a) < b1 < f(a) < b2 < g(a) whenever a ∈ B2. But then for every a ∈ B2, there is
d > 0 such that M |= ψ(b1, b2, a, d). This contradicts our definition of f .

By (a)m+1 there is a decomposition of X into strong cells in Mm+1 partitioning C. Fix an
open cell X0 from this decomposition. By (d)m, we will be done if we prove that the number of
equivalence classes of Ea is bounded by some n ∈ N+ as a varies over X0. Note that for every
a ∈ X0,

M |= (∀y1, y2)(ϕ(y1, y2, a) −→ (∃z > 0)ψ(y1, y2, a, z)).

So for every a ∈ X0, there is d > 0 such that

M |= (∀y1, y2)[ϕ(y1, y2, a) −→ (∃z1, z2)(ψ(z1, z2, a, d) ∧ E(y1, z1, a) ∧ E(y2, z2, a)].

Let

u(x, y) ≡ x ∈ X0 ∧ (∀y1, y2)[ϕ(y1, y2, x) −→ (∃z1, z2)(ψ(z1, z2, x, y) ∧ (y1, y2) ∩ (z1, z2) 6= ∅)]}

Clearly, the formula u(x, y) satisfies the hypothesis of (b)m+1, so there is a decomposition D of
X0 into strong cells in Mm+1 such that for every open cell D ∈ D, if B ⊆ D is an open box with
dist(B,Mm \ D) > 0, then B ⊆ u(M,d) for some d > 0. Note that the number of equivalence
classes of Ea is constant as a varies over an open cell from D. By (a)m+1 and (d)m this finishes
the proof.

Corollary 2.16 If M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion of an
ordered group (M,≤,+), then M has the strong cell decomposition property and Th(M) is weakly
o-minimal.

Corollary 2.17 If M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion of an
ordered group (M,≤,+), m ∈ N+ and X1, . . . , Xk are sets definable in M, then there is a decom-
position of Mm into refined strong cells definable in M which partitions each of the sets X1, . . . , Xk.

3 Canonical o-minimal extension

Assume that M = (M,≤, . . .) is a weakly o-minimal structure with the strong cell decomposition
property. Below, for any m ∈ N+ and i1, . . . , im ∈ {0, 1} we introduce 〈i1, . . . , im〉-cells in M

m
and

so called elementary functions whose domains are 〈i1, . . . , im〉-cells in M
m

.

(1) A one-element subset of M
m

is called a 〈0, . . . , 0〉-cell in M
m

, where 〈0, . . . , 0〉 is a sequence
of zeros of length m.
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(2) If C is a refined strong 〈1〉-cell in M , then C is called a 〈1〉-cell in M . Note that %1
1[C]∩M =

C ∩M = C is an open refined strong cell in M .

(3) If C = {a} ⊆M
m

and I is a 〈1〉-cell in M , then C×I is a 〈0, . . . , 0, 1〉-cell in M
m+1

. Clearly,
%m+1

m+1[C × I] ∩M = I ∩M is an open refined strong cell in M .

Assume that i1, . . . , im ∈ {0, 1}, i1 + . . . + im > 0 and suppose that we have already defined
〈i1, . . . , im〉-cells in M

m
. Let {j1, . . . , jk} = {j ∈ {1, . . . ,m} : ij = 1} and suppose we know that if

C ⊆M
m

is an 〈i1, . . . , im〉-cell in M
m

, then %m
j1,...,jk

[C]∩Mk is an open refined strong cell in Mk.

(4) Let C be an 〈i1, . . . , im〉-cell in M
m

and consider D = %m
j1,...,jk

[C] ∩Mk, an open refined
strong cell in Mk. If f is a strongly continuous definable function from D to M or a strongly
continuous definable function from D to M \M , then Γ(f ◦(%m

j1,...,jk
� C)) is an 〈i1, . . . , im, 0〉-

cell in M
m+1

. Note that %m+1
j1,...,jk

[Γ(f ◦ (%m
j1,...,jk

� C))] ∩Mk = D is an open refined strong
cell in Mk.

(5) Let C be an 〈i1, . . . , im〉-cell in M
m

and consider D = %m
j1,...,jk

[C]∩Mk, an open refined strong
cell in Mk. If f, g : D −→M ∪ {−∞,+∞} are strongly continuous definable functions such
that

• all values of f lie in one of the sets: {−∞}, M , M \M ,

• all values of g lie in one of the sets: M , M \M , {+∞}, and

• f(x) < g(x) for x ∈ D,

then the set

(f ◦ %m
j1,...,jk

, g ◦ %m
j1,...,jk

)C := {〈a, b〉 ∈ C ×M : (f ◦ %m
j1,...,jk

)(a) < b < (g ◦ %m
j1,...,jk

)(a)}

is called an 〈i1, . . . , im, 1〉-cell in M
m+1

. Note that %m+1
j1,...,jk,m+1[(f ◦ %m

j1,...,jk
, g ◦ %m

j1,...,jk
)C ]∩

Mk = (f, g)D is an open refined strong cell in Mk+1.

In a standard way we introduce the notion of cell decomposition of a subset of M
m

into cells
in M

m
[paritioning a given set].

Remark 3.1 If m > 1, X,Y ⊆Mm and D is a decomposition of X into cells in M
m

partitioning
Y , then {π[D] : D ∈ D} partitions π[Y ].

Definition 3.2 Assume that M = (M,≤, . . .) is a weakly o-minimal structure with the strong cell
decomposition property and C is a cell in M

m
. A function f : C −→ M ∪ {−∞,+∞} is called

elementary iff one of the following conditions holds.
(a) f(x) = +∞ for all x ∈ C;
(b) f(x) = −∞ for all x ∈ C;
(c) f : C −→M and Γ(f) is a cell in M

m+1
.

In the following lemma and its proof, for k ∈ N+ we will denote by

ψk
0 (x1, . . . , xk), . . . , ψk

sk
(x1, . . . , xk)

the quantifier-free formulas in the language {≤} isolating all complete types over ∅ in the theory
of dense linear orderings without endpoints.
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Lemma 3.3 Assume that M = (M,≤, . . .) is a weakly o-minimal structure with the strong cell
decomposition property and m ∈ N+.

(a)m If k ∈ N+ and C1, . . . , Ck are cells in M
m

, then there is a decomposition of M
m

into cells
in M

m
which partitions each of the cells C1, . . . , Ck.

(b)m If C is a cell in M
m

, k ∈ N+ and f1, . . . , fk : C −→ M are elementary functions,
then there is a decomposition of C into cells in M

m
partitioning each of the sets {x ∈ C :

ψk
j (f1(x), . . . , fk(x))}, j ≤ sk.

Proof. We use induction on m. (a)1 is obvious. For the proof of (b)1, assume that C is a cell in
M and f1, . . . , fk : C −→ M are elementary functions. The assertion of (b)1 is trivial in case C
is a singleton, so assume that C = I, where I ⊆ M is an open convex and definable (in M) set.
There are definable functions g1, . . . gk : I −→M such that for every i ∈ {1, . . . , k}, we have that

• fi = gi;

• (∀x ∈ I)(gi(x) ∈M) or (∀x ∈ I)(gi(x) ∈M \M).

By the assumption there is a decomposition D of I ×M into refined strong cells in M2 which
partitions each of the sets {〈x, y〉 ∈ I×M : ψk+1

j (y, g1(x), . . . , gk(x))}, j ≤ sk+1. Let π : M2 −→M
be the projection dropping the second coordinate. By Remark 3.1, for any X,Y ∈ D, either
π[X] = π[Y ] or π[X] ∩ π[Y ] = ∅. Moreover, the set C \

⋃
X∈D

π[X] is finite. If a1, . . . , al are all its

elements, then {π[X] : X ∈ D}∪{a1, . . . , al} is a decomposition of C into cells in M satisfying our
demands.

For the rest of the proof fix m ∈ N+ and suppose that the conditions (a)m and (b)m are true.

Proof of (a)m+1. Assume that C1, . . . , Ck are cells in M
m+1

and let π : M
m+1 −→M

m
be the

projection dropping the last coordinate. Then π[C1], . . . , π[Ck] are cells in M
m

. By (a)m there is
a decomposition D of M

m
into cells in M

m
which partitions each of the cells π[C1], . . . , π[Ck]. For

a cell D ∈ D denote by JD the set of all j ∈ {1, . . . ,m} such that D ⊆ π[Cj ]. Fix a cell D ∈ D
with JD 6= ∅. For every j ∈ JD one of the following conditions holds.

• There is an elementary function f : D −→M such that (D ×M) ∩ Cj = Γ(f).

• There are elementary functions f1, f2 : D −→ M ∪ {−∞,+∞} such that f1(x) < f2(x) for
x ∈ D and (D ×M) ∩ Cj = (f1, f2)D.

Let fD
1 , . . . , f

D
l be all elementary functions from D to M appearing in the above representa-

tions. By (b)m, there is a decomposition DD of D which partitions each of the sets {x ∈ D :
ψl

i(f1(x), . . . , fl(x))}, l ≤ sl. In case for every j ∈ JD we have that D × M ⊆ Cj we take
DD = {D}. By (a)m, there is a decomposition D1 of M

m
into cells in M

m
which partitions

every cell from
⋃

D∈D
DD. For D ∈ D1 let gD

0 < . . . < gD
lD

be all elementary functions from D to

M ∪ {−∞,+∞} appearing in the representations of all cells of the form (D ×M) ∩ Cj together
with −∞ and +∞. Let

E = {(gD
i , g

D
i+1)D : i < lD and D ∈ D1} ∪ {Γ(gD

i ) : 1 ≤ i < lD and D ∈ D1}.

Clearly, E is a cell decomposition of M
m+1

partitioning each of the cells C1, . . . , Ck.
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Proof of (b)m+1. Assume that C is an 〈i1, . . . , im+1〉-cell in M
m+1

, k ∈ N+ and f1, . . . , fk :
C −→M are elementary functions. Below we consider two cases.

Case 1. There is j ∈ {1, . . . ,m + 1} such that ij = 0. Let π : M
m+1 −→ M

m
denote the

projection dropping the j-th coordinate. There are elementary functions g1, . . . , gk : π[C] −→ M
such that f1 = g1 ◦ π, . . . , fk = gk ◦ π. (b)m implies that there is a cell decomposition D1 of π[C]
which partitions the sets {z ∈ π[C] : ψk

l (g1(z), . . . , gk(z))}, l ≤ sk. Let D = {π−1[D]∩C : D ∈ D1}.
D is a cell decomposition of C satisfying our demands.

Case 2. i1 = . . . = im+1 = 1. There are D, a refined strong open cell in Mm+1 and functions
g1, . . . , gk : D −→M , definable in M, such that D = C and for every i ∈ {1, . . . , k} we have that

• fi = gi;

• (∀x ∈ I)(gi(x) ∈M) or (∀x ∈ I)(gi(x) ∈M \M).

By the assumption there is C, a decomposition of Mm+2 into refined strong cells in Mm+2

which partitions each of the sets {〈x, y〉 ∈ D × M : ψk+1
l (g1(x), . . . , gk(x), y)}, l ≤ sk+1. By

(a)m+1, there is a decomposition D of M
m+1

into cells in M
m+1

which partitions each of the cells
in {π[D] : D ∈ C} ∪ {C}. Note that if E ∈ D and E ⊆ C \

⋃
{π[D] : D ∈ C}, then E is not open

in M
m+1

. In such a situation, by an argument given in Case 1, there is a decomposition DE of
E partitioning each of the sets {x ∈ E : ψk

j (f1(x), . . . , fk(x))}, j ≤ sk. Again, by (a)m+1, there is

a decomposition of M
m+1

which partitions each of the cells in {π[D] : D ∈ C} ∪ {C} ∪
⋃

E∈D
DE .

This provides a decomposition of C satisfying our demands.

Now, we are in a position to construct a canonical o-minimal extension M of a weakly o-minimal
structure M with strong cell decomposition.

For any m ∈ N+ and any refined strong cell C ⊆Mm definable in M, denote by RC an m-ary
relational symbol. If we interpret RC in Mm as C, then clearly the structures

M and M′ := (M,≤, RM
′

C : C is a refined strong cell)

have the same definable sets. Moreover, Th(M′) admits elimination of quantifiers. Now, interpret
RC in M

m
as C, the completion of C. In what follows we will show that the structure M :=

(M,≤, RMC ) is o-minimal.
We will start the proof by showing that for every m ∈ N+, the following conditions are satisfied.

(a) (Dm(M),∩,∪,c , ∅,Mm) is a Boolean algebra.

(b) If X ∈ Dm(M), then X ×M,M ×X ∈ Dm+1(M).

(c) If 1 ≤ i ≤ j ≤ m, then Xi,j
m := {〈x1, . . . , xm〉 ∈M

m
: xi = xj} ∈ Dm(M).

(d) If X ∈ Dm+1(M) and π : M
m+1 −→ M

m
is the projection dropping the last coordinate,

then π[X] ∈ Dm(M).

(e) {〈x, y〉 ∈M2
: x < y} ∈ D2(M).

(f) D1(M) = {X ⊆M : X is a finite union of intervals in (M,≤)}.
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That Dm(M) is a Boolean algebra follows easily from Lemma 3.3 and the fact that ∅,Mm ∈
Dm(M). Note that if C is a cell in M

m
, then C ×M = (−∞,+∞)C is also a cell in M

m+1
. To

complete the proof of (b) we show inductively on m the following.

(∗)m If C is a cell in M
m

, then M × C is a cell in M
m+1

.

It is clear that (∗)1 holds. So let C be a cell in M
m+1

and suppose that (∗)m holds. Let D = π[C],
where π : M

m+1 −→ M
m

is the projection dropping the last coordinate. Clearly D is a cell in
M

m
. If C = Γ(f), where f : D −→ M is an elementary function, then M × C = Γ(f1), where

f1 : M ×D −→ M is an elementary function defined as f1(a, b) = f(b) for a ∈ M and b ∈ D. By
the inductive hypothesis, M ×D is a cell in M

m
, so Γ(f1) is a cell in M

m+1
. If C = (f, g)D, where

D is a cell in M
m

and f, g : D −→M ∪{−∞.+∞} are elementary functions such that f(b) < g(b)
for b ∈ D, then M × C = (f1, g1)M×D, where f1, g1 : M ×D −→ M are given by f1(a, b) = f(b)
and g1(a, b) = g(b) for a ∈M and b ∈ D.

For the proof of (c), notice that
• if i = j, then Xi,j

m = M
m

;
• if i < j < m, then Xi,j

m = Xi,j
m−1 ×M ;

• if i < j = m, then Xi,j
m = Γ(f), where f : M

m−1 −→M is given by f(x1, . . . , xm−1) = xi.
In each case Xi,j

m is a cell in M
m

.
If C is an 〈i1, . . . , im, im+1〉-cell in M

m+1
, then π[C] is an 〈i1, . . . , im〉-cell in M

m
. From this

(d) follows.
(e) holds because {〈x, y〉 ∈ M2

: x < y} is a cell in M
2
. Note that C ⊆ M is a cell in M iff C

is a singleton or C is an open interval in (M,≤). This implies (f).
Now, by [vdD, Chapter I], for every positive integer m, the family of subsets of M

m
definable in

M coincides with Dm(M) and the structure M is o-minimal. The structure M′ is a substructure
of M, but in general not an elementary substructure.

Note that if C is a cell in M
m

, then C ∩Mm is either empty or is a refined strong cell in Mm.
Consequently, if X ⊆M

m
is a set definable in M, then X ∩Mm is definable in M.

Fact 3.4 If M = (M,≤,+, . . .) is a weakly o-minimal non-valuational expansion of an ordered
group (M,≤,+), then the canonical o-minimal extension M of M expands the ordered group
(M,≤,+). If M = (R,≤,+, ·, . . .) is a weakly o-minimal non-valuational expansion of a real
closed field (R,≤,+, ·), then the canonical o-minimal extension M of M expands the real closed
field (R,≤,+, ·).

Proof. The addition operation in M is a strongly continuous function from M ×M onto M , so
its graph is a refined strong cell in M3. The completion of this cell is the graph of addition in M ,
as well as a cell in M

3
. The second part is proved in a similar manner.

4 An Euler characteristic

The usual Euler characteristic for an o-minimal structure M = (M,≤, . . .) assigns to each definable
set X ⊆ Mm an integer E(X). If D is a cell decomposition of X, then E(X) =

∑
D∈D

(−1)dim(D).

An analogous definition for sets definable in models of weakly o-minimal theories does not make
sense since it depends on the cell decomposition. In this section we introduce a reasonably well
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behaving generalization of the Euler characteristic to sets definable in weakly o-minimal structures
with the strong cell decomposition property.

For a weakly o-minimal structure M = (M,≤, . . .) with the strong cell decomposition property
and m ∈ N+, denote by Defm(M) the family of all subsets of Mm definable in M. Below we
inductively define a map χm : Defm(M) −→ Z

[
1
2

]
and call it Euler characteristic. To simplify

notation we omit the subscript m.

(0) χ(∅) := 0.

(1) If a ∈M , then χ({a}) := 1.

(2) If I ⊆M is a non-empty convex open definable set, then

χ(I) :=


−1 if inf I ∈M ∪ {−∞} and sup I ∈M ∪ {+∞}
− 1

2 if inf I ∈M ∪ {−∞} and sup I ∈M \M
− 1

2 if inf I ∈M \M and sup I ∈M ∪ {+∞}
0 if inf I, sup I ∈M \M.

Assume that m ∈ N+ and suppose that we have already defined the Euler characteristic for refined
strong cells in Mm.

(3) If C ⊆ Mm is a refined strong cell and f : C −→ M is a strongly continuous definable
function, then χ(Γ(f)) := χ(C).

(4) If C ⊆ Mm is a refined strong cell and f : C −→ M ∪ {−∞}, g : C −→ M ∪ {+∞} are
strongly continuous definable functions such that (f, g)C is a refined strong cell in Mm+1

(so in particular χ((f(a), g(a))) is constant as a varies over C), then χ((f, g)C) := χ(C) ·
χ((f(a), g(a))).

(5) If X ⊆ Mm is a non-empty definable set and D is a decomposition of X into refined strong
cells, then χD(X) :=

∑
D∈D

χ(D) (this definition a priori depends on D, so for the time being

we will use the notation χD instead of χ).

Lemma 4.1 If C ⊆Mm is a refined strong cell and D is a decomposition of C into refined strong
cells in Mm, then χ(C) = χD(C).

Proof. The assertion of the Lemma is clear for m = 1. Suppose it is true for decompositions of
refined strong cells in Mm into refined strong cells. Let C ⊆Mm+1 be a refined strong cell, D its
decomposition into refined strong cells in Mm+1, and π : Mm+1 −→Mm the projection dropping
the last coordinate. If C is a refined strong 〈i1, . . . , im, 0〉-cell, i.e. C = Γ(f), where f : π[C] −→M
is a strongly continuous definable function, then by the inductive assumption we obtain

χ(C) = χ(π[C]) = χπ[D](π[C]) =
∑

B∈π[D]

χ(B) =

∑
B∈π[D]

χ(Γ(f � B)) =
∑
D∈D

χ(D) = χD(C)

Assume that C is a refined strong 〈i1, . . . , im, 1〉-cell in Mm+1. There are strongly continuous
definable functions f : π[C] −→M ∪ {−∞} and g : π[C] −→M ∪ {+∞} such that C = (f, g)π[C].
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For every B ∈ π[D], there are definable functions fB
0 , . . . , f

B
t(B) : B −→M ∪ {−∞,+∞} such that

(fB
0 , f

B
t(B))B = C ∩ (B×M) and for every i ∈ {0, . . . , t(B)− 1}, (fB

i , f
B
i+1)B is a refined strong cell

in Mm+1. For B ∈ π[D] fix aB ∈ B and define

JB = {i ∈ {1, . . . , t(B)− 1} : fB
i is a function from B to M}.

Fix also a ∈ π[C]. The cells from D that map onto B under π are:

(fB
i , f

B
i+1)B , i < t(B), and Γ(fB

i ), i ∈ JB .

Using this notation and the inductive assumption we obtain

χ(C) = χ(π[C]) · χ((f(a), g(a))) = χπ[D](π[C]) · χ((f(a), g(a))) =∑
B∈π[D]

χ(B) · χ((f(a), g(a))) =
∑

B∈π[D]

χ(B) · χ((fB
0 (aB), fB

t(B)(aB))) =

∑
B∈π[D]

χ(B) ·

 ∑
i<t(B)

χ(fB
i (aB), fB

i+1(aB)) +
∑
i∈JB

χ({fB
i (aB)})

 =

∑
B∈π[D]

χ(B) ·

 ∑
i<t(B)

χ((fB
i (aB), fB

i+1(aB)) + |JB |

 =

∑
B∈π[D]

 ∑
i<t(B)

χ((fB
i , f

B
i+1)B) +

∑
i∈JB

χ(Γ(fB
i ))

 = χD(C).

Now, repeating the argument from the proof of Proposition 2.2 from [vdD], we can easily
show that the Euler characteristic χD(S) does not depend on D. Note that if M is an o-minimal
structure, then χ is Z-valued and coincides with the o-minimal Euler characteristic.

To prove the next theorem one can essentially rewrite the proofs of analogous results from
[vdD].

Theorem 4.2 Assume that M = (M,≤, . . .) is a weakly o-minimal structure with the strong cell
decomposition property and m,n ∈ N+.

(a) If X,Y ⊆Mm are definable sets, then χ(X ∪ Y ) = χ(X) + χ(Y )− χ(X ∩ Y ).
(b) If S ⊆Mm+n is a definable set and k ∈ Z

[
1
2

]
, then the set X := {a ∈Mm : χ(Sa) = k} is

definable and χ(
⋃

a∈X

{a} × Sa) = χ(X) · k.

(c) If X ⊆Mm and Y ⊆Mn are definable sets, then χ(X × Y ) = χ(X) · χ(Y ).

Assume that M is an o-minimal expansion of a real closed field. If m,n ∈ N+ and S1 ⊆ Mm,
S2 ⊆Mn are definable sets of equal dimensions and Euler characteristics, then there is a definable
bijection f : S1 −→ S2 (see [vdD, Chapter 8]). Moreover, the topological dimension and the Euler
characteristic for sets definable in M are invariant under definable bijections. As observed in [KS],
this means that the Grothendieck ring of M is isomorphic to Z.

By Theorem 2.13 from [We] we know that the topological dimension of a set definable in a
weakly o-minimal structure is invariant under injective definable maps. This does not apply to
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χ, even if the structure has the strong cell decomposition property. Consequently, our function
χ is not even a weak Euler characteristic in the sense of [KS, Definition 3.1]. Neverheless, as
Theorem 4.2 shows, it enjoys some properties of the o-minimal Euler characteristic. On the other
hand, equality of dimensions and Euler characteristics (in our sense) of sets definable in a weakly
o-minimal non-valuational expansion of a real closed field does not guarantee the existence of
definable bijection between them (see the following example). Consequently, there is no reason for
the Grothendieck ring of a weakly o-minimal non-valuational expansion of a real closed field to be
isomorphic to Z

[
1
2

]
.

Example. Let R = (Ralg,≤,+, ·) be the ordered field of all real algebraic numbers. Let M1 =
(M1,≤, . . .) and M2 = (M2,≤, . . .) be two isomorphic copies of R such that M1∩M2 = ∅. Extend
the linear orderings (M1,≤) and (M2,≤) to the linear ordering of M := M1 ∪M2 by setting x < y
whenever x ∈ M1 and y ∈ M2. Expand (M,≤) to a first order structure M so that the family of
sets definable in M is the smallest family containing all sets definable in M1 and in M2. Clearly,
M is weakly o-minimal and has strong the cell decomposition property. If a, b ∈ M1, a < b and
f : (a, b) −→M1 is a strictly increasing continuous function mapping (a, b) onto (0, supM1), then
χ((a, b)) 6= χ(f [(a, b)]).

For a real transcendental number α let Pα = {x ∈ Ralg : x > α}. Fix transcendental numbers
α, β such that Pβ is not definable in (R, Pα), and let M′ = (R, Pα, Pβ). Then χ(Pα) = χ(Pβ) =
− 1

2 , Th(M′) is weakly o-minimal (by [BP] or [Bz]), but there is no definable (in M′) bijection
between Pα and Pβ .

Problem 4.3 Investigate the Grothendieck ring for weakly o-minimal non-valuational expansions
of real closed fields.

Acknowledgements. The author expresses his gratitude towards the referee whose detailed
comments helped to improve the presentation of results.
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