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Abstract. The Cherlin-Zil’ber Conjecture states that all simple groups of

finite Morley rank are algebraic. We prove that any minimal counterexample

to this conjecture has a unique conjugacy class of Carter subgroups, which are
defined as being the definable connected nilpotent subgroups of finite index in

their normalizers, and which are analogous to Cartan subgroups in algebraic

groups.

1. Introduction

This paper is a contribution to the study of the Cherlin-Zil’ber Conjecture, which
states that the infinite simple groups of finite Morley rank are algebraic. In the
view of this conjecture, the search for analogues in groups of finite Morley rank of
classical theorems in affine algebraic groups has been a continuing subject. In this
article, we consider the conjugacy of Cartan subgroups, which are defined in affine
algebraic groups as being the connected components of the centralizers of maximal
tori. These subgroups are the maximal tori in simple algebraic groups. In groups
of finite Morley rank, Cartan subgroups are approximated by Carter subgroups,
which are defined as being definable, connected, nilpotent, and of finite index in
their normalizers. These subgroups exist in any group of finite Morley rank.

Fact 1.1. – [14] Any group of finite Morley rank has a Carter subgroup.

Carter subgroups have turned out to be increasingly useful in the analysis of
groups of finite Morley rank. In particular since, contrary to other categories of
subgroups, they are nontrivial as soon as the ambient group is infinite. Furthermore,
the most difficult problem concerning the Cherlin-Zil’ber Conjecture is the search
for an analogue with the Feit-Thompson Theorem, and few tools allow to advance
in this direction. In this context, probably Carter subgroups have a role to play.

This article concerns the conjugacy of Carter subgroups in K∗-groups, in other
words in the groups of finite Morley rank all of whose proper, infinite, simple,
definable and connected sections are algebraic over an algebraically closed field.
Indeed, for the Cherlin-Zil’ber Conjecture, it is enough to analyze just simple K∗-
groups, which are the minimal potential counterexamples.

Theorem 1.2. – Carter subgroups are conjugate in each K∗-group.
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Actually, this theorem is the outcome of several studies concerning the conjugacy
of Carter subgroups in groups of finite Morley rank. Indeed, the conjugacy of Carter
subgroups has been proven in several important particular cases (see [10, 12, 15,
19]). Notably two of these ones will be very useful for us. First F. Wagner proved
the following result, which will be used all the long of this paper.

Fact 1.3. – [19] Let G be a solvable group of finite Morley rank. Then any two
Carter subgroups of G are conjugate.

Secondly E. Jaligot proved the conjugacy of generous Carter subgroups (Defini-
tion 2.10), which is certainly the more general conjugacy result of the subject. This
one will be very useful to us. Thanks to this, we have just to consider non generous
Carter subgroups, which is an important restriction (see Section 4).

Fact 1.4. – [15] In any group G of finite Morley rank, generous Carter subgroups
are conjugate and generically disjoint.

At the beginning, our first aim was to consider right minimal connected simple
groups, which is the most important case, but it turned out that the proof of
Theorem 1.2 and some remarks about [6] (Section 6) are enough to obtain the
complete result, and even more. Indeed the main part of this paper concerns the
proof of Theorem 1.5, then we prove Corollaries 1.6 and 1.9 (Section 5). Finally we
obtain Theorem 1.2 and Corollary 1.8 as particular cases of Corollary 1.6.

We use the concept of P -groups, which are the groups of finite Morley rank
all of whose definable connected simple sections have a nontrivial pseudo-torus
(Definitions 4.1 and 2.17). In particular, any solvable group of finite Morley rank
is a P -group.

Theorem 1.5. – Let G be a group of finite Morley rank. If the normalizer of each
nontrivial abelian divisible definable subgroup is a P -group, then the divisible Carter
subgroups of G are conjugate.

Moreover, if G has a non generous divisible Carter subgroup C, then there is
an interpretable field K of characteristic zero such that C is a homogeneous UK-
subgroup (Definition 3.8), and G has no generous Carter subgroup.

Our first corollary is our most general result about the conjugacy of all the Carter
subgroups in a group of finite Morley rank. Moreover it speak about the structure
of a group of finite Morley rank with a non generous Carter subgroup. Its proof
uses Fact 5.3.

Corollary 1.6. – Let G be a group of finite Morley rank. Suppose that the nor-
malizer of each nontrivial abelian definable subgroup is a P -group. Then its Carter
subgroups are conjugate.

Moreover, if G has a non generous Carter subgroup C, then G◦ is a Ṽ -group
(Definition 5.1), and C is a homogeneous UK-subgroup for an interpretable field K
of characteristic zero.

Now we obtain Corollary 1.8 by the following fact.

Fact 1.7. – [2, Theorem 3] Let G be an infinite simple group of finite Morley rank.
If any decent torus of G is trivial, then G contains no involutions.

Indeed, if we consider toward a contradiction such a group G, then Fact 1.4
provides a non generous Carter subgroup C, and G is a P -group by Fact 1.7.
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Moreover G◦ is a Ṽ -group by Theorem 1.6, in particular G has no nontrivial pseudo-
torus, so G◦ is solvable (Remark 4.3), contradicting Fact 2.12.

Corollary 1.8. – In any group of finite Morley rank all of whose definable simple
sections have involutions, Carter subgroups are conjugate and generous.

We note that, for any K∗-group G, either G is a minimal connected simple group,
or its definable simple sections have involutions. Consequently Corollaries 1.6 and
1.8 imply Theorem 1.2.

The following result, proved in Section 5, is another justification to provide a
general result as Corollary 1.6, rather than just Theorem 1.2.

Corollary 1.9. – Let G be a group of finite Morley rank. Suppose that G has a
normal minimal connected simple subgroup A, such that G/A is solvable. Then the
Carter subgroups of G are conjugate.

Our paper is organized as follows. In Section 2, some well-known results are
mentionned. In Section 3, we discuss the concepts of unipotence introduced by J.
Burdges into [4]. All our information on the structure of studied groups will be
based on these concepts.

In Section 4, we reduce our analysis to C∗-groups, that is a minimal configuration.
This section is our first very important step. However it is not very hard since the
most of this restriction work has been make elsewhere. Indeed E. Jaligot proved
that generous Carter subgroups are conjugate in any group of finite Morley rank
(Fact 1.4), consequently our study will only concern non generous Carter subgroups.
Moreover the analysis by G. Cherlin in [7] about decent tori (Definition 2.17) allows
us to content our study to Carter subgroups without a nontrivial decent torus, and
even without a nontrivial pseudo-torus by the generalisation of this work in [12].

In Section 5, we show that Corollaries 1.6 and 1.9 are well consequences from
Theorem 1.5. Henceforth, we have just to prove Theorem 1.5 for C∗-groups.

In Section 6, we yield the results of [6] needed here. This work by J. Burdges is
essential for us. Indeed, several times it will allow to destroy very bad configura-
tions, for example in the proof of Theorem 7.3. Actually, the facts of this section
are written in [6] for minimal connected simple groups. However, their proofs in [6]
allows the more general versions given here.

In Section 7, we consider the structure of a non generous divisible Carter sub-
group. The main result of this section is nontrivial and highly necessarily for all
the rest of this paper, and it starts our general strategy for the complete proof of
Theorem 1.5. Indeed, our main idea is, if the structure of Carter subgroup resemble
to the one of an algebraic torus, for example it is a pseudo-torus (Definition 2.17),
then it is generous (see Fact 2.21). Hence a non generous Carter subgroup C has to
be “unipotent-like”. This is essential since our final rank calculation will be feasible
just if we obtain a sufficiently clear, and homogeneous, configuration. Henceforth
our strategy is the following:

- we show that the structure of a non generous divisible Carter subgroup is
“unipotent” in a strong sense including the homogeneity (Theorem 7.3);

- we show that any subgroup with a nontrivial intersection with such a Carter
subgroup has this unipotent-like structure too (Proposition 8.2);

- we study the intersections between Carter subgroups in the terms of subgroups
VK( · ) (Sections 9 and 10). Note that the intersections of Carter subgroups will
be characterized, in a certain sense, as the subgroups H such that H = VK(H)
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(Corollary 9.6), and their analysis culmins with Theorem 10.5, which shows that,
under some conditions, these subgroups are generically “disjointed”. This work is
again very necessarily for the final argument.

- from now on, this structural analysis enables us to make the finale rank cal-
culation, and to obtain a genericity theorem (Theorem 10.6), then Theorem 1.5
(Section 11). At this stage, all the arguments are relatively formal.

2. Facts

The notations will be as in [3], which is also our basic reference. In this section
we recall definitions and known results.

2.1. General points. If X is a subset of a group G of finite Morley rank, then
the definable closure of X, denoted by d(X), is the intersection of all the definable
subgroups of G which contain X. By the descending chain condition on definable
subgroups, this intersection is definable.

If H is a subgroup of a group G of finite Morley rank, the connected component
of H, denoted by H◦, is H ∩ d(H)◦.

Fact 2.1. – [3, Proposition 6.18 and Theorem 6.19] Let P be a locally finite p-
subgroup of a group G of finite Morley rank, where p is a prime. Then P ◦ = B ∗ T
is the central product of a nilpotent subgroup B of bounded exponent and a p-torus
T . In particular P ◦ is nilpotent.

Fact 2.2. – [3, Theorem 9.29] Let G be a connected solvable group of finite Morley
rank. Then the Sylow p-subgroups of G are connected for any prime p.

Fact 2.3. – [3, Corollary 6.12] Let G be a nilpotent group of finite Morley rank.
Then G is a central product G = D ∗ C where D ∩ C is finite, and

• D is definable, connected, characteristic and divisible;
• C is definable, characteristic and of bounded exponent;
• the torsion part of D is divisible and central, and D′ is torsion-free.

The Fitting subgroup F (G) of a group G is the subgroup generated by all the nor-
mal nilpotent subgroups of G. Nesin proved that the Fitting subgroup is definable
and nilpotent in any group of finite Morley rank [3, Theorem 7.3].

Fact 2.4. – [3, Theorem 9.21] Let G be a connected and solvable group of finite
morley rank. Then G/F (G)◦ (so also G/F (G)) is a divisible abelian group.

A subgroup A of a group G of finite Morley rank is said to be S-minimal, where
S is a subset of G, if A is infinite, definable, normalized by S and minimal for these
conditions.

Fact 2.5. – [3, Proposition 7.7] Let A be a G-minimal subgroup of a connected
group G of finite Morley rank. Then either A is abelian, or Z(A) is finite and
A/Z(A) is simple.

2.2. Fields of finite Morley rank. The following result due to B. Zil’ber confers
on fields of finite Morley rank a central importance. Note that, by a theorem of
A. Macintyre [3, Theorem 8.1], an infinite field of finite Morley rank is always
algebraically closed.
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Fact 2.6. – [3, Theorem 9.1] Let G = A o H be a group of finite Morley rank
where A and H are two infinite definable abelian subgroups, A is H-minimal and
CH(A) = 1. Then G interprets an algebraically closed field K such that A ∼= K+

definably, H is definably isomorphic to a subgroup of K×.

Fact 2.7. – [17, Corollaire 3.3] Let K be a field of finite Morley rank of characteristic
0. Then K+ has no nontrivial proper definable subgroup.

The following fact due to F. Wagner will be very used to eliminate the torsion
in our restriction to C∗-groups (Section 4).

Fact 2.8. – [18] Let K be a field of finite Morley rank of positive characteristic p.
Then each definable subgroup of K× is the definable closure of its torsion.

Fact 2.9. – [11, Proposition 5.7] For any divisible nilpotent group G of finite Morley
rank, the following conditions are equivalent:

• There is a uniformly definable family F of proper sugroups of G such that
∪F is a generic subset of G;

• There is an interpretable algebraically closed field K and a normal definable
subgroup M of G such that G/M is definably isomorphic to a K-vector space
of dimension 2.

2.3. Generosity, Carter subgroups and generalized centralizers. In [15], E.
Jaligot introduced the following notion, which is very important for the analysis of
Carter subgroups. Indeed, for the conjugacy problem, by the main result of [15]
(Fact 1.4), we have just to study non generous Carter subgroups.

Definition 2.10. – A definable subset X of a group G of finite Morley rank is
generous if the union of its conjugates is a generic subset of G.

Fact 2.11. – [15, Lemma 3.9] Let G be a group of finite Morley rank with two
definable subgroups H and L. If L is a generous subgroup of H and if H is a
connected generous subgroup of G, then L is a generous subgroup of G.

In solvable groups, the behavior of Carter subgroups is well understood, notably
by Fact 1.3 and by the following results.

Fact 2.12. – [8, Lemma 3.5] Let G be a solvable group of finite Morley rank. Then
the Carter subgroups of G are generically disjoint, in particular any Carter subgroup
of G is generous.

Fact 2.13. – [13, Corollaire 5.20] Let G be a connected solvable group of finite
Morley rank and N a normal definable subgroup of G. Then Carter subgroups of
G/N are exactly of the form QN/N , with Q a Carter subgroup of G.

If G is a group and X a subset of G, the generalized centralizer EG(X) of X
in G is the set of elements g ∈ G such that, for each x ∈ X, [g,n x] = 1 for some
n ∈ N, where [g,0 x] = g and [g,n+1 x] = [[g,n x], x].

Fact 2.14. – [13, Corollaire 5.17] Let G be a connected solvable group of finite
Morley rank and H a nilpotent subgroup of G. Then EG(H) is a definable connected
subgroup of G and H ≤ F (EG(H)).

Fact 2.15. – [13, Théorème 1.1 and Section 7.2] Let G be a connected solvable
group of finite Morley rank and H a nilpotent subgroup of G.
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• EG/N (HN/N) = EG(H)N/N for every normal subgroup N of G.
• EG(H) contains a Carter subgroup of G.

Fact 2.16. – [13, Théorème 7.9] Let G be a connected solvable group of finite Morley
rank. Then there are at most 2rk(G) conjugacy classes of generalized centralizers of
nilpotent subgroups.

2.4. Decent tori and pseudo-tori. In [7], G. Cherlin defines decent tori as an
analogue to tori algebraic. In [12], we introduce pseudo-tori, as a more general
notion, independant of the torsion. Here we relate just the more general results
used in this paper, and concerning pseudo-tori, but their proof are very often similar
to their analogue in [7] concerning decent tori.

Note that the concept of decent torus is sufficient to prove Theorem 1.2, since
we did not use pseudo-tori in the first version of this paper. In fact, we prefer use
pseudo-tori rather than decent tori just because we obtain more precise structural
information about a possibly non generous Carter subgroup.

Definition 2.17. – Let T be a divisible abelian group of finite Morley rank. We
say that T is a decent torus if T is the definable closure of its torsion.

We say that T is a pseudo-torus if no definable quotient of T is definably iso-
morphic to K+ for an interpretable field K.

Fact 2.18. – [12, Proposition 2.7] Let G be a connected group of finite Morley rank
acting by conjugation on a pseudo-torus T . Then G centralizes T .

Fact 2.19. – [12, Corollary 2.8] Let G be a nilpotent group of finite Morley rank.
Then G has a unique maximal pseudo-torus.

Fact 2.20. – [12, Corollary 2.10] Let G be a group of finite Morley rank. Then any
pseudo-torus of G is contained in a Carter subgroup of G.

Fact 2.21. – [12, Corollary 2.12] Let T be a pseudo-torus of a connected group G
of finite Morley rank. Then CG(T ) is connected and generous in G.

Fact 2.22. – [12, Corollary 2.13] Let G be a group of finite Morley rank, N a
normal definable subgroup of G and T a maximal pseudo-torus of G. Then TN/N
is a maximal pseudo-torus of G/N and every maximal pseudo-torus of G/N has
this form.

3. Unipotence

In [4], J. Burdges introduced some analogues of algebraic unipotence for groups
of finite Morley rank. In [9], we continued the analysis of these concepts. Here are
just given the more general results used in the article, and we refer to [4], or [9],
for a more complete introduction concerning these unipotence notions.

3.1. U0,r-groups. For a notion analogous to unipotence in algebraic groups, Bur-
dges [4] introduced the notions of reduced rank and U0,r-groups.

An abelian connected group A of finite Morley rank is indecomposable if it is not
the sum of two proper definable subgroups. If A 6= 1, then A has a unique maximal
proper definable connected subgroup J(A), and if A = 1, let J(1) = 1.

Fact 3.1. – [12, Lemma 2.2] Let G be a group of finite Morley rank and H a
definable normal subgroup of G. If B is a divisible indecomposable subgroup of
G/H, then there is an indecomposable subgroup A of G such that B = AH/H.
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In particular, Fact 3.1 says that any divisible group of finite Morley rank is
generated by its indecomposable subgroups.

As in [4], the reduced rank of any abelian group A of finite Morley rank is
r(A) = rk(A/J(A)). Also, if G is any group of finite Morley rank and r a positive
integer, then we define

U0,r(G) = 〈A ≤ G | A is indecomposable, r(A) = r, A/J(A) is torsion-free〉
We say that G is a U0,r-group whenever G = U0,r(G).

Remark 3.2. – By Fact 2.3, any indecomposable subgroup is either of bounded
exponent, either a U0,r-group for r a positive integer, or a decent torus.

For every nonzero integer r, a Sylow U0,r-subgroup of a group G of finite Morley
rank is a maximal nilpotent U0,r-subgroup of G.

Fact 3.3. – [5, Lemma 6.2] Let G be a group of finite Morley rank. Then, for
each nonzero integer r, the Sylow U0,r-subgroups of G are exactly those nilpotent
U0,r-subgroups S such that U0,r(NG(S)) = S.

Fact 3.4. – [5, Theorem 6.5] Let G be a solvable group of finite Morley rank. Then
the Sylow U0,r-subgroups of G are conjugate for each nonzero integer r.

Fact 3.5 is not written in [14], but it is deduced of the proof of Fact 1.1.

Fact 3.5. – [14] Let G be a group of finite Morley rank. If r is an integer and if S
is a Sylow U0,r-subgroup of G such that NG(S) has no nontrivial decent torus and
such that U0,s(NG(S)) = 1 for each s < r, then S is contained in a Carter subgroup
of G as a normal subgroup.

Fact 3.6. – [14] Let G = NC be a group of finite Morley rank where N and C are
nilpotent definable connected subgroups and N is normal in G. Assume that there is
an integer n ≥ 1 such that N = 〈U0,s(N) | 1 ≤ s ≤ n〉 and C = 〈U0,s(C) | s ≥ n〉.
Then G is nilpotent.

3.2. Ũ-groups. We introduce the notion of Ũ -groups as a more precise unipotence
notion than U -groups defined in [9]. This concept depend on pseudo-tori [12].

Notation 3.7. – For any interpretable field K of characteristic zero and any group
G of finite Morley rank, we denote by UK(G) the (definable connected) subgroup
of G generated by its indecomposable subgroups A such that A/J(A) is definably
isomorphic to K+.

Definition 3.8. – A group G of finite Morley rank is said to be a UK-group,
where K is an interpretable field of characteristic zero, if G = UK(G). We say
that a UK-group G is homogeneous if each definable connected subgroup of G is a
UK-subgroup.

Moreover, for every group G of finite Morley rank, we denote by Ũ(G) the
subgroup of G generated by its normal homogeneous UK-subgroups, for the in-
terpretable fields K of characteristic zero, and by its normal definable connected
subgroups of bounded exponent.

A Ũ -group is a group G of finite Morley rank such that G = Ũ(G).

Remark 3.9. – By Fact 2.7, any divisible indecomposable subgroup is either a
pseudo-torus or a UK-group for an interpretable field K of characteristic 0.

By Fact 2.22, in any Ũ -group, each pseudo-torus is trivial.
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We do not write the proofs of the following results. Indeed, by using [12] instead
of [7], they are similar to the ones of [4, 5, 9].

Fact 3.10. – (Compare with [5, Theorem 3.4]) Let G be a divisible nilpotent group
of finite Morley rank, and let T be its maximal pseudo-torus. Then G interprets
some fields K1, · · · , Kn of characteristic zero such that

G = T ∗ UK1(G) ∗ UK2(G) ∗ · · · ∗ UKn
(G)

Fact 3.11. – (Compare with [9, Theorem 4.11]) Let G be a connected group of
finite Morley rank, and K an interpretable field of characteristic 0. Assume that
G acts definably by conjugation on H, a nilpotent UK-group. Then [G, H] is a
homogeneous UK-subgroup.

Fact 3.12. – (Particular case of [9, Proposition 5.3]) Any solvable Ũ -group is
nilpotent.

Fact 3.13. – (Compare with [9, Theorem 5.4]) Let G be a nilpotent Ũ -group. Then
G interprets some algebraically closed fields K1, · · · , Kn of characteristic zero such
that the following decomposition holds:

G = B × UK1(G)× UK2(G)× · · · × UKn(G)

where B is a definable connected characteristic subgroup of bounded exponent, and
UKs

(G) a homogeneous UKs
-subgroup (for s ∈ {1, 2, . . . , n}).

Fact 3.14. – (Compare with [9, Corollary 5.6]) Let G be a nilpotent group of finite
Morley rank. Then Ũ(G) is the largest Ũ -subgroup of G.

Fact 3.15. – (Compare with [9, Proposition 5.7]) Let G be a torsion-free group of
finite Morley rank without a nontrivial pseudo-torus. Then G is a Ũ -group if and
only if, for each interpretable field K of characteristic 0, UK(G) is a homogeneous
UK-subgroup.

Fact 3.16. – (Compare with [9, Corollary 5.8])

• Every definable quotient of a Ũ -group is a Ũ -group.
• Every definable connected subgroup of a Ũ -group is a Ũ -group.

Corollary 3.17. – Let G be a connected nilpotent group of finite Morley rank.
Then G is a Ũ -group if and only if its indecomposable subgroups are Ũ -groups.

Proof – By Fact 3.16, we may assume that each indecomposable subgroup of
G is a Ũ -group. Then Ũ(G) contains each indecomposable subgroup of G (Fact
3.14). As G/Ũ(G) is divisible (Fact 2.3), Facts 3.1 yields G = Ũ(G). �

Fact 3.18. – (Compare with [4, Lemma 2.11]) Let G be a group of finite Morley
rank, U and V two definable subgroups with V normal in G, and K an interpretable
field of characteristic 0. Then UK(UV/V ) = UK(U)V/V .

3.3. The kernel K̃(G). The notion of Ũ -groups induces the following kernel.

Notation 3.19. – For any group G of finite Morley rank, let K̃(G) denote the
intersection of its normal definable subgroups H such that G/H is a Ũ -group.

Lemma 3.20. – Let G be a torsion-free nilpotent group of finite Morley rank
without a nontrivial pseudo-torus. Then G/K̃(G) is a Ũ -group and, if A is a
normal definable subgroup of G, then K̃(G/A) = K̃(G)A/A.
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Proof – We prove that G/K̃(G) is a Ũ -group. By Fact 2.22, we may assume
that G has two normal definable subgroups H and K such that H∩K = 1, and such
that G/H and G/K are Ũ -groups. By Facts 3.15 and 3.16, we may assume that G
is a UK-group for an interpretable field K of characteristic 0. By Facts 3.15 and
3.18, G/H and G/K are homogeneous UK-groups. Therefore, if A is a definable
subgroup of G, then A/(A ∩ H) ∼= AH/H is a UK-group and Fact 3.18 gives
A = UK(A)(A∩H). In the same way, we have A∩H = UK(A∩H)((A∩H)∩K)),
so A = UK(A) is a UK-group and G is a Ũ -group.

Let A be a normal definable subgroup of G. By the preceding paragraph,
G/K̃(G) is a Ũ -group, and Fact 3.16 says that (G/A)/(K̃(G)A/A) is a Ũ -group.
Thus we have K̃(G/A) ≤ K̃(G)A/A. But, if KG/A = K̃(G/A), then G/KG is a
Ũ -group too, so K̃(G/A) = K̃(G)A/A. �

Corollary 3.21. – Let G be a torsion-free nilpotent group of finite Morley rank
without a nontrivial pseudo-torus, and H be a definable subgroup of G. Then K̃(G)
contains K̃(H).

Proof – By Lemma 3.20, G/K̃(G) is a Ũ -group, therefore HK̃(G)/K̃(G) is a
Ũ -group too (Fact 3.16). Hence K̃(H) is contained in K̃(G). �

Fact 3.22. – (Compare with [9, Results 5.8, 6.12 and 6.20]) Let G be a solvable
connected group of finite Morley rank. Then F (G)/Z(G) is a Ũ -group.

Corollary 3.23. – Let G be a solvable connected group of finite Morley rank. Then
K̃(F (G)) is contained in Z(G)

Lemma 3.24. – Let G be a torsion-free solvable group of finite Morley rank without
a nontrivial pseudo-torus, and C a Carter subgroup of G. Then K̃(C) contains
K̃(F (G)).

Proof – We proceed by induction on rk(G). We may assume K̃(F (G)) 6= 1.
Let A be a G-minimal subgroup of K̃(F (G)). By Fact 2.22, G/A has no nontrivial
pseudo-torus. By Corollary 3.21, by induction hypothesis and by Fact 2.13, we have
K̃(F (G)/A) ≤ K̃(F (G/A)) ≤ K̃(CA/A). Then Lemma 3.20 gives K̃(F (G)) ≤
K̃(CA) = K̃(C)A and K̃(F (G)) = A(K̃(F (G)) ∩ K̃(C)). Thus we may assume
that K̃(F (G)) ∩ K̃(C) contains no G-minimal subgroup. By Corollary 3.23, this
means K̃(F (G)) ∩ K̃(C) = 1 and A = K̃(F (G)) ≤ Z(G) ≤ C, in particular A has
no nontrivial proper definable subgroup.

By Corollary 3.17 there is an indecomposable subgroup B in F (G), such that B
is not a Ũ -group. Therefore we have 1 6= K̃(B) ≤ K̃(F (G)) = A (Lemma 3.20 and
Corollary 3.21) and A = K̃(B) ≤ B by the preceding paragraph. If [G, B] = 1, then
we have B ≤ Z(G) ≤ C, and Corollary 3.21 gives A = K̃(B) ≤ K̃(F (G))∩K̃(C) =
1, hence [G, B] is nontrivial.

Let H be a G-minimal subgroup in [G, B]. Then, by Lemma 3.20 and Corol-
lary 3.21, we have K̃(F (G))H/H = K̃(F (G)/H) ≤ K̃(F (G/H)). By induction
hypothesis and by Fact 2.13, we obtain K̃(F (G/H)) ≤ K̃(CH/H), and Lemma
3.20 gives A = K̃(F (G)) ≤ K̃(C)H. Since H is central in F (G) by G-minimality,
and since Facts 2.4 and 2.13 yields G = F (G)C, the subgroup C ∩ H is normal
in G and we have either C ∩ H = 1 or H ≤ C. In the first case, we obtain
A ≤ C ∩ K̃(C)H = K̃(C), so we may assume H ≤ C.
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We may assume A � K̃(C). By the first paragraph, we have A∩ K̃(C) = 1 and,
since A ≤ K̃(C)H, there is a definable isomorphism between A and K̃(C)A∩H ≤
H. Since G is torsion-free, B is divisible. Then, since G has no nontrivial pseudo-
torus and since B is indecomposable, there is an interpretable field K such that B
is a UK-subgroup. But, by Fact 3.11, [G, UK(F (G)] is a homogeneous UK-group,
so H is a homogeneous UK-group. This proves that A is a homogeneous UK-group.
By Lemma 3.20 and Fact 3.16, B/A ≤ F (G)/A is a Ũ -group and, by Fact 3.15,
B/A is a homogeneous UK-group. Now, by Fact 3.18, for each definable subgroup
L of B, we have L = UK(L)(A∩L) and, since A is a homogeneous UK-group, L is
a UK-group. Hence B is a homogeneous UK-group, contradicting our choice of B.
�

4. C∗-groups

In this section we show that it is enough to prove Theorem 1.5 for C∗-groups
(Definition 4.4, Theorem 4.14). We define P -groups, C-groups and C∗-groups.

Definition 4.1. – A P -group is a group of finite Morley rank all of whose definable
connected simple sections have a nontrivial pseudo-torus.

Example 4.2. – Any solvable group of finite Morley rank is a P -group.
Any K∗-group of finite Morley rank is either a minimal connected simple group,

or a P -group (Fact 2.22).

Remark 4.3. – Each definable section of a P -group is a P -group.
If a P -group has no nontrivial pseudo-torus, then its connected component is

solvable (Fact 2.22). In particular, by Facts 2.21 and 2.22, the subgroup CG(T )◦ is
solvable for any maximal pseudo-torus T of a P -group G.

Consequently, by Facts 2.11, 2.12, 2.18, 2.19, 2.20 and 2.21, any P -group G has
a generous Carter subgroup.

Definition 4.4. – We say that a connected P -group G is a C-group if, in each
definable section H/K of G, the Carter subgroups of H/K are conjugate.

A C∗-group is a connected group G of finite Morley rank such that,
• its proper connected definable P -sections are C-sections;
• G has a non generous torsion-free Carter subgroup, with no nontrivial

pseudo-torus;
• G has no nontrivial normal proper P -subgroup;
• for any infinite abelian divisible definable subgroup A, NG(A) is a P -group.

In particular, any connected solvable group is a C-group (Fact 1.3). Moreover,
if a minimal connected simple group of finite Morley rank has two non conjugate
Carter subgroups, then it is a C∗-group (Facts 1.3 and 1.4, and Proposition 4.7).
Theorem 4.14 justifies the introduction of these concepts.

Remark 4.5. – Each definable connected section of a C-group is a C-group.
By Remark 4.3, Carter subgroups are generous in each definable section of a

C-group, in particular C∗-groups are not C-groups.

Lemma 4.6. – Let B be a maximal p-unipotent subgroup of a group G of finite
Morley rank. Suppose that H = B ∩ B0 is an intersection between B and another
maximal p-unipotent subgroup B0 6= B of G. If we have rk(B1 ∩ B) ≤ rk(H) for
every maximal p-unipotent subgroup B1 6= B of G, then NG(H)◦ is not solvable.
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Proof – If NG(H)◦ is solvable, there is a unique maximal p-unipotent subgroup
B1 in NG(H)◦ (Fact 2.4). By maximality of rk(H), B is the unique maximal p-
unipotent subgroup of G containing NB(H)◦, so B contains B1. This proves that
B contains NB0(H)◦, therefore H is of finite index in B0, and the connectedness of
B0 yields B0 = H ≤ B, contradicting our hypothesis.. �

Proposition 4.7. – Let G be a group of finite Morley rank. Suppose that, for each
definable connected section H/K where H normalizes a nontrivial abelian definable
subgroup of G, either H/K is a C-group or rk(H/K) = rk(G). Then every non
generous Carter subgroup C of G is torsion-free, and has no nontrivial pseudo-
torus.

Proof – We may suppose that G is connected and has a non generous Carter
subgroup C. In particular, by Fact 2.12, the group G is not solvable.

Let T be the maximal pseudo-torus of C. If T 6= 1, then C is a Carter subgroup of
NG(T )◦ = CG(T )◦ (Fact 2.18). Let T0 be a maximal pseudo-torus of G containing
T . Then we have T0 ≤ CG(T )◦ and T0 is contained in a Carter subgroup D of
CG(T )◦ (Fact 2.20). But C/T and D/T are some Carter subgroups of the C-group
CG(T )◦/T , so they are conjugate. By the maximality of T in C, we obtain T = T0

and, by the maximality of T0 in G and by Fact 2.22, the group CG(T )◦/T does
not have a nontrivial pseudo-torus. Thus CG(T )◦/T , so CG(T )◦, is solvable. By
Fact 2.12, C is generous in CG(T )◦. By Facts 2.21 and 2.11, C is generous in G,
contradicting our hypothesis, hence T = 1.

If H/K is a connected definable section of G with C ≤ H and K an infinite
solvable subgroup, then H/K is a C-group. If CK = H, then H/K is nilpotent
and Fact 2.22 shows that H/K has no nontrivial pseudo-torus. If CK < H, then
CK◦ is a C-group and a Frattini Argument applied to CK proves that CK/K
is a Carter subgroup of H/K, in particular H/K has a Carter subgroup with no
nontrivial pseudo-torus (Fact 2.22). By the conjugacy of Carter subgroups, H/K
has no nontrivial pseudo-torus (Fact 2.20), and H/K is solvable :

If H/K is a connected definable section of G with C ≤ H and
K an infinite solvable subgroup, then H/K is solvable and has (∗)
no nontrivial pseudo-torus.

In particular, by using Fact 2.12 and by applying (∗) with H = G, there is no
normal infinite definable solvable subgroup in G.

From now on, we suppose that C has torsion. By Fact 2.3, C has a nontrivial
p-unipotent subgroup for a prime p. Let B be the maximal p-unipotent subgroup
of C (Fact 2.3). Then NG(B)◦/B is solvable by (∗), so NG(B)◦ is solvable. Let
B0 be the maximal p-unipotent subgroup of NG(B)◦ (Fact 2.4). If B 6= B0, there
is a NG(B)◦-minimal subgroup A0/B in B0/B and NG(B)◦/CNG(B)◦(A0/B) is a
decent torus (Facts 2.6 and 2.8). Hence (∗) says that NG(B)◦ centralizes A0/B,
in particular A0 normalizes C, contradicting that C is a Carter subgroup. Thus
B = B0 is the maximal p-unipotent subgroup of NG(B)◦, so B is a maximal p-
unipotent subgroup of G.

Let A be the largest normal (definable) subgroup of G contained in NG(C).
Since A◦ ≤ NG(C)◦ = C is nilpotent, A is necessarily finite.

By Fact 2.3, there is a characteristic p-divisible connected definable subgroup
U of C such that C = U ∗ B. Since U is p-divisible and centralizes its p-torsion
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(Fact 2.3), and since C has no nontrivial pseudo-torus, U contains no p-element
and C = U ×B. Moreover, by Fact 2.3, we have H = (H ∩U)× (H ∩B) for every
definable subgroup H of C. Since C is not generous, C ∩ (∪g 6∈NG(C)C

g) is generic
in C and there exists g ∈ G \NG(C) such that Cg ∩C is not contained in UA. But
we have Cg ∩ C = (Cg ∩ U)× (Bg ∩B), so B ∩Bg � A.

Since A is finite, there exists H = B ∩ B0 an intersection between B and a
maximal p-unipotent subgroup B0 6= B of G, such that H � A and such that, for
every maximal p-unipotent subgroup B1 6= B of G, we have rk(B1 ∩ B) ≤ rk(H).
By Lemma 4.6, NG(H)◦ is not solvable and it is a C-group since H � A is not
normal in G. Hence NG(H)◦ contains a nontrivial pseudo-torus.

Let B2 be a definable subgroup of B, not contained in A, such that NG(B2)◦

contains a nontrivial pseudo-torus and such that, for every definable subgroup B3

of B with rk(B3) > rk(B2), the subgroup NG(B3)◦ contains no nontrivial pseudo-
torus. By the preceding paragraph, we have

rk(B ∩Bg) ≤ rk(B2) for every g 6∈ NG(B). (∗∗)
Since NG(B)◦ has no nontrivial pseudo-torus by (∗) and Fact 2.22, we have B2 <
B. Let B3 = NB(B2)◦ and C2 = NC(B2)◦. Then we have rk(B3) > rk(B2)
and B3 = (B ∩ C2)◦. Moreover, since B2 � A, NG(B2)◦ 6= G is a C-group
and each Carter subgroup of NG(B2)◦ contains a nontrivial pseudo-torus by Fact
2.20. Suppose NNG(B2)◦(C2)◦ = C2. Then C2 is a Carter subgroup of NG(B2)◦

and C2 ≤ C contains a nontrivial pseudo-torus. This contradiction implies C2 <
NNG(B2)◦(C2)◦, in particular NNG(B2)◦(C2)◦ is not contained in C, and this proves
that NNG(B2)◦(C2)◦ does not normalize C.

Let h ∈ NNG(B2)◦(C2) \NG(C). Since U ≤ CC(B)◦, we have C2 = U × (B ∩C2)
and B ∩ C2 is connected. Hence B ∩ C2 = B3 and U is definably characteristic in
C2 = U ×B3, in particular h normalizes U . Since h 6∈ NG(C), we have h 6∈ NG(B)
and B ∩ Bh < B. But h normalizes C2 = U × B3, therefore h normalizes B3 and
we obtain B2 < B3 ≤ B ∩Bh < B, contradicting (∗∗).

Consequently C is torsion-free. �

Lemma 4.9 yields a link between Carter subgroups and U0,r-subgroups.

Notation 4.8. – For every G of finite Morley rank with a nontrivial torsion-free
definable subgroup, let rmin(G) be the smallest integer such that G has a nontrivial
indecomposable subgroup A of reduced rank rmin(G).

Lemma 4.9. – Let G be a C-group of finite Morley rank. If G has a torsion-
free Carter subgroup C without a nontrivial pseudo-torus, then G is a torsion-free
solvable group, and G has no nontrivial pseudo-torus.

Moreover, if G 6= 1, then C contains a Sylow U0,rmin(G)-subgroup of G, In par-
ticular rmin(G) = rmin(C).

Proof – Let T be a maximal pseudo-torus of G. Then T is contained in a Carter
subgroup D of G (Fact 2.20) and, since G is a C-group, C contains a conjugate of
T . Hence T = 1 and G is solvable. Moreover, if G 6= 1, then Facts 1.3 and 3.5 show
that C contains a Sylow U0,rmin(G)-subgroup of G.

We assume toward a contradiction that G has torsion. By Facts 2.1–2.4, there is
a G-minimal p-unipotent subgroup A in G for a prime p. By Facts 2.6 and 2.8, the
quotient G/CG(A) is a decent torus, and G centralizes A (Fact 2.22). In particular
C contains A, contradicting our hypothesis.
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Moreover, if G 6= 1, then Facts 1.3 and 3.5 show that C contains a Sylow
U0,rmin(G)-subgroup of G. �

Proposition 4.10. – Let G be a connected group of finite Morley rank, and H a
normal definable subgroup. If H◦ and G/H are C-groups, then G is a C-group.

Proof – We may suppose toward a contradiction that G is a minimal counterex-
ample. As H and G/H are P -groups, G is a P -group, so G has two non conjugate
Carter subgroups, and G has a non generous Carter subgroup C (Fact 1.4).

Let A be a normal subgroup of G such that G/A is a C-group. If G 6= CA,
then (CA)◦ is a C-group by minimality of G, and the Carter subgroups of CA
are conjugate, therefore NG/A(CA/A) = NG(C)A/A by a Frattini Argument. So
CA/A is a Carter subgroup of G/A, and CA/A is generous in G/A (Remark 4.5).
Then, since G centralizes the finite section A/A◦, the sugbroup CA◦ is generous in
G. But C is generous in the C-group CA◦, and this contradicts the nongenericity
of C in G (Fact 2.11), hence we have G = CA = CA◦, in particular G = CH◦.
Moreover this proves that G has no infinite normal definable solvable subgroup A,
otherwise G/A would be a C-group by minimality of G and G = CA would be
solvable, contradicting Fact 2.12.

Since G is not a C-group and since H◦ is a C-group, there exists a maximal
proper connected definable subgroup M of G containing H◦. Since G/H = CH/H
is nilpotent, MH/H is normal in G/H, and M = (MH)◦ is normal in G. Moreover,
by Proposition 4.7 and by minimality of G, C is torsion-free and has no nontrivial
pseudo-torus. We assume toward a contradiction that C ∩M 6= 1. Then there
exists an integer r0 such that U0,r0(C ∩M) is not trivial. Let r be the smallest
integer such that C normalizes a nontrivial nilpotent U0,r-subgroup of M and let
U be a maximal nilpotent U0,r-subgroup of M such that C normalizes U . Let
N = NG(U)◦. Since U is infinite and nilpotent, and since G has no infinite normal
definable solvable subgroup, we have N 6= G, and N is a C-group by minimality of
G. But C is a torsion-free Carter subgroup of N and C has no nontrivial pseudo-
torus, so N is a torsion-free solvable subgroup without a nontrivial pseudo-torus
(Lemma 4.9).

Let s = rmin(N ∩M) and let S be a nontrivial U0,s-subgroup of N ∩M . We
show that s = r. We have s ≤ r and EN (S) contains a Carter subgroup of
N (Fact 2.15). By Fact 1.3, there exists x ∈ N such that C ≤ EN (Sx). Let
R = U0,s(M∩F (EN (Sx))). Since Fact 2.14 gives Sx ≤ R, the minimality of r yields
r = s. Now UR is a nilpotent U0,r-subgroup of M (Fact 3.6), and UR is normalized
by C, so R ≤ U by the maximality of U . This proves that U contains a N -conjugate
of each U0,s-subgroup of N ∩M and, by the normality of U in N , U is the unique
Sylow U0,r-subgroup of N ∩M . We obtain U0,r(NM (U)) = U0,r(N ∩M) = U , so
U is a Sylow U0,r-subgroup of M (Fact 3.3). Moreover, N is torsion-free, without
a nontrivial pseudo-torus, and r = s = rmin(N ∩M), therefore Fact 3.5 says that
U is contained in a Carter subgroup C0 of M as a normal subgroup. In particular
we have C0 ≤ N and, as N is torsion-free and without a nontrivial pseudo-torus,
C0 is a torsion-free Carter subgroup of the C-group M , and C0 has no nontrivial
pseudo-torus. Then Lemma 4.9 says que M is solvable contradicting that G has no
infinite normal definable solvable subgroup. This proves that C ∩M = 1 and, since
G = CH◦, we obtain H◦ = M .
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Consequently C is a minimal nontrivial definable subgroup of G, in particular
we have C ∩ Cg = 1 for each g ∈ G \NG(C). Since C is a Carter subgroup of G,
this proves that C is generous in G, contradicting our hypothesis over C. �

Corollary 4.11. – Let G be a connected P -group. Suppose that, for each definable
connected section H/K of G, either H/K is a C-group, or rk(H/K) = rk(G). If
G is not a C-group, then Z(G) is finite and G/Z(G) is a simple C∗-group.

Proof – By Proposition 4.10, G has no proper infinite normal definable sub-
group. So its proper normal definable subgroups are finite and central, in particu-
lar Z(G) is finite and G/Z(G) is a simple group (Fact 2.5). This proves that the
proper connected definable sections of G/Z(G) are C-sections, that G/Z(G) has
no nontrivial proper normal subgroup, and that, for any infinite abelian divisible
definable subgroup A of G/Z(G), NG/Z(G)(A)◦ is a C-group. Now it is enough
to prove that G/Z(G) has a non generous torsion-free Carter subgroup, with no
nontrivial pseudo-torus.

By Proposition 4.10, G/Z(G) is not a C-group. As G/Z(G) is a P -group and as
each proper connected definable section of G/Z(G) are C-sections, G/Z(G) has a
non generous Carter subgroup (Fact 1.4). We conclude by Proposition 4.7. �

Corollary 4.12. – Let G be a group of finite Morley rank, H a normal definable
subgroup, and C a Carter subgroup of G. If H◦ is a C-group, then CH/H is a
Carter subgroup of G/H and all the Carter subgroups of G/H have this form.

Proof – By Proposition 4.10, CH◦ is a C-group, so a Frattini argument applied
with CH gives NG(CH) = NG(C)H and CH/H is a Carter subgroup of G/H.

Now, if D/H is a Carter subgroup of G/H, then D◦ is a C-group (Proposition
4.10). Let E be a Carter subgroup of D. The preceding paragraph yields D = EH,
so NG(E)◦ ≤ NG(D)◦ = D, and E is a Carter subgroup of G. �

Lemma 4.13. – Let G be a group of finite Morley rank. Suppose that NG(A)◦ is a
C-group for each nontrivial abelian divisible definable subgroup A. Then each non
generous divisible Carter subgroup C of G is torsion-free, and has no nontrivial
pseudo-torus.

Proof – Let T be the maximal pseudo-torus of C (Fact 2.19). Suppose toward
a contradiction that T is nontrivial. Then NG(T )◦ is a C-subgroup containing C,
so C is generous in NG(T )◦. By Facts 2.11 and 2.21, we obtain a contradiction
with the nongenerosity of C in G. �

Theorem 4.14. – Theorem 1.5 holds if and only if it holds for any C∗-group.

Proof – If Theorem 1.5 holds, then it holds for any C∗-group, so we may assume
that Theorem 1.5 holds for any C∗-group. We consider toward a contradiction a
minimal counterexample G to Theorem 1.5, with a center Z = Z(G) of minimal
degree. Then, by Fact 1.4, G has a non generous divisible Carter subgroup C and,
by minimality, G is connected.

We show that each connected definable P -section of G is a C-section. Otherwise
there is a minimal counterexample H/K and, by Fact 1.3, H/K is not solvable.
Thus H/K has a nontrivial pseudo-torus TH/K, and TH/K is contained in a Carter
subgroup CT /K of H/K (Fact 2.20). By Proposition 4.7, CT /K is generous in
H/K. Let ZH/K = Z(H/K). By Corollary 4.11, ZH/K is finite and H/ZH is
a simple C∗-group. Now, since Theorem 1.5 holds for any C∗-group, H/ZH has
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no generous Carter subgroup. But Corollary 4.12 says that CTZH/ZH is a Carter
subgroup of H/ZH , contradicting the generosity of CT /K. This proves that each
connected definable P -section of G is a C-section.

By the preceding paragraph and by Lemma 4.13, C is torsion-free, and has no
nontrivial pseudo-torus. Now, since G is not a C∗-group by the choice of G, G has
a nontrivial normal proper P -subgroup N of maximal rank, in particular N◦ is a
C-group.

We assume toward a contradiction that N is infinite. Since CN◦ is a C-group
by Proposition 4.10, CN◦ is a torsion-free solvable group (Lemma 4.9), and N◦

contains an abelian divisible G-minimal subgroup A1. Then G = NG(A1) is a
connected P -group, so G is a C-group by the second paragraph. This contradicts
the existence of C, hence N is finite, in particular N is a nontrivial central subgroup
of G. Moreover, by the maximality of the rank of N , the center Z of G is a nontrivial
finite subgroup.

Since the preimage Z2(G) of Z(G/Z(G)) is a normal definable nilpotent subgroup
of G, it is a normal P -subgroup of G, and Z2(G) is finite by the maximality of the
rank of N , therefore Z2(G) is central in G, and Z(G/Z) is trivial. Let A/Z be
a nontrivial abelian divisible definable subgroup of G/Z. Since Z is finite, the
subgroup A◦ is abelian, and divisible (Fact 2.3). Moreover, we have A = A◦Z,
therefore NG/Z(A/Z) = NG(A)/Z = NG(A◦)Z/Z is a P -group. By the minimality
of the degree of Z, Theorem 1.5 holds for G/Z, in particular its divisible Carter
subgroups are conjugate.

Moreover, CZ/Z is a divisible subgroup since C is torsion-free, and CZ/Z is non
generous in G/Z since Z is finite. Therefore, since Corollary 4.12 says that CZ/Z
is a Carter subgroup of G/Z, Theorem 1.5 yields an interpretable field K of char-
acteristic zero such that CZ/Z is a homogeneous UK-subgroup, and it shows that
G/Z has no generous Carter subgroup. But, by Corollary 4.12, for any generous
Carter subgroup C1 of G, the subgroup C1Z/Z is a Carter subgroup of G/Z, and
C1Z/Z is generous by generosity of C1, hence G has no generous Carter subgroup.
Since C is torsion-free and since Z is finite, we have C ∩ Z = 1, so C ∼= CZ/Z
is a homogeneous UK-subgroup. Consequently, by the choice of G, there is a non
generous divisible Carter subgroup D of G non conjugate with C. But Corollary
4.12 says that DZ/Z is a (divisible) Carter subgroup of G/Z, hence the preceding
paragraph shows that DZ/Z and CZ/Z are conjugate. Now, since Z is finite, we
have D = (DZ)◦ and C = (CZ)◦, and C and D are conjugate. This is our final
contradiction. �

5. About Corollaries 1.6 and 1.9

In this section, we verify that Corollaries 1.6 and 1.9 are well consequences from
Theorem 1.5.

The following definition is motivated by Corollary 3.17.

Definition 5.1. – A torsion-free group G of finite Morley rank is a Ṽ -group if each
indecomposable subgroup of G is a Ũ -group.

Remark 5.2. – Any definable subgroup of a Ṽ -group is a Ṽ -group and, by Facts
3.1 and 3.16, any definable quotient of a Ṽ -group is a Ṽ -group.

Any Ṽ -group has no nontrivial pseudo-torus.
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Moreover, by Corollary 3.17, a nilpotent group G of finite Morley rank is a
Ṽ -group if and only if it is a torsion-free Ũ -group.

Our first proof uses the following result.

Fact 5.3. – [1, Theorem 3] Let G be a connected group of finite Morley rank whose
Sylow p-subgroups are finite. Then G contains no elements of order p.

Proof – (Corollary 1.6 follows from Theorem 1.5). Suppose toward
a contradiction that G is a minimal counterexample to Corollary 1.6, in particular
G is connected. By the minimality of G, for each connected definable P -section
H/K of G, either H/K is a C-group or rk(H/K) = rk(G). Then Proposition 4.7
says that any non generous Carter subgroup of G is torsion-free, and its Carter
subgroups are conjugate by Theorem 1.5 and Fact 1.4.

We assume that G has a non generous Carter subgroup C and we show that G is
a Ṽ -group. By Proposition 4.7, C is torsion-free, and there is an interpretable field
K of characteristic zero such that C is a homogeneous UK-subgroup by Theorem
1.5, in particular C is a Ũ -subgroup.

First we prove that G has no nontrivial pseudo-torus. Let T be a maximal
pseudo-torus of G. By Fact 2.20, there exists a Carter subgroup of G containing
T , and we may assume T ≤ C by the conjugacy of the Carter subgroups in G, so
T = 1 (Remark 3.9). Hence each connected P -subgroup of G is solvable (Remark
4.3).

We assume toward a contradiction that G has torsion. By the preceding para-
graph and by Facts 2.1 and 5.3, there is a prime p such that G has a nontrivial
maximal p-unipotent subgroup B. Let D be a Carter subgroup of NG(B). Since G
has no nontrivial pseudo-torus, Facts 2.6, 2.8 and 2.22 show that D centralizes each
D-minimal section of B. Hence we have B ≤ EBD(D), so BD is nilpotent (Fact
2.14). This proves that D = NNG(B)(D)◦ contains B, therefore B is the unique
maximal p-unipotent subgroup of D (Fact 2.3), and NG(D) normalizes B. Thus D
is a Carter subgroup of G, in particular D is conjugate with C, contradicting that
C is torsion-free. This proves that G is torsion-free.

Suppose toward a contradiction that G is not a Ṽ -group. Then G has a definable
nilpotent subgroup C0 which is not a Ũ -group. We may assume that r = rmin(C0)
is minimal for such a subgroup. Let N be a definable nilpotent subgroup which is
not a Ũ -group, and such that r = rmin(N). Then NG(U0,r(N)) is a P -group and,
by preceding paragraphs, it is a torsion-free solvable subgroup without a nontrivial
pseudo-torus. In particular E = ENG(U0,r(N))(N) is a definable subgroup contain-
ing a Carter subgroup M of NG(U0,r(N)) (Facts 2.14 and 2.15). By Fact 2.14, we
have N ≤ F (E) and, by Lemma 3.20, we have K̃(N) 6= 1. Then Corollary 3.21
and Lemma 3.24 say that M is not a Ũ -subgroup. By minimality of r, we have
r ≤ rmin(M), and Fact 3.6 shows that U0,r(N)M is nilpotent, therefore M contains
U0,r(N) and r = rmin(M). Hence we can define a sequence (Ci)i of definable nilpo-
tent subgroups of G, which are not Ũ -subgroups, such that r = rmin(Ci) for each
integer i, and where, for each i, Ci+1 is a Carter subgroup ofNG(U0,r(Ci)) contained
in ENG(U0,r(Ci))(Ci). Then the sequence (U0,r(Ci))i is increasing, and there exists
an integer k such that U0,r(Ci) = U0,r(Ck) for any i ≥ k. Now NG(Ck+1) normal-
izes U0,r(Ck+1) = U0,r(Ck) and, since Ck+1 is a Carter subgroup of NG(U0,r(Ck)),
Ck+1 is a Carter subgroup of G. In particular Ck+1 is conjugate with C (Theorem
1.5), contradicting that C is a Ũ -subgroup. �
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Proof – (Corollary 1.9 follows from Theorem 1.5). Since A is simple,
we have CA(A) = 1 and CG(A) is isomorphic to a subgroup of G/A, which is
solvable. Moreover, if L/CG(A) is an abelian definable subgroup of G/CG(A), then
either A normalizes L, or NG(L) is solvable.

In the first case, we have L ∩ A = 1 since A is simple, so [A, L] = 1 and L
centralizes A, that is L/CG(A) = 1. Hence, by Corollary 1.6, the Carter subgroups
of G/CG(A) are conjugate.

Let C and D be two Carter subgroups of G. We show that C and D are
conjugate. Since CG(A) is solvable, its connected component is a C-group (Fact
1.3), and Corollary 4.12 allows to suppose CCG(A) = DCG(A). Consequently
C and D are two Carter subgroups of the solvable group CCG(A), so they are
conjugate (Fact 1.3). �

6. The Bender method revisited

In a group of finite Morley rank, a Borel subgroup is a maximal solvable connected
definable subgroup. In [6], J. Burdges studied the intersections between two Borel
subgroups in minimal connected simple groups of finite Morley rank. In our context,
we need to study the intersections between two Borel subgroups in a more general
context.

From now on, we fix a C∗-group G, a non generous torsion-free Carter subgroup
C of G, with no nontrivial pseudo-torus, and let r = rmin(C). Moreover, by Fact
3.10, we can fix an interpretable field K of characteristic zero such that rk(K) = r
and UK(C) 6= 1.

The following result is proven as in [6, Results 3.10, 3.18 and 3.23]. Also, by Fact
2.3, we removed the word connected from the sentence “every nilpotent connected
subgroup of H is abelian” [6, Proposition 4.1 (2)].

Fact 6.1. – (Compare with [6, Proposition 4.1]) Suppose that G has a connected
definable subgroup F such that each C-subgroup of G containing F is solvable. If F
is contained in H = (B1 ∩ B2)◦ for two distinct Borel subgroups B1 and B2, then
the following conditions hold:

• H ′ is a homogeneous UL-subgroup for an interpretable field L of character-
istic 0.
• Every nilpotent subgroup of H is abelian.
• If H is nonabelian, then UL(CG(H)) 6= 1.

By using Lemma 4.9, we obtain the following corollary.

Corollary 6.2. – If C is contained in two distinct Borel subgroups B1 and B2,
then H = B1 ∩B2 is torsion-free and without a nontrivial pseudo-torus, and:

• H ′ is a homogeneous UL-subgroup for an interpretable field L of character-
istic 0.
• Every nilpotent subgroup of H is abelian, in particular C is abelian.

Concerning Fact 6.8 and [6, Proposition 5.9], we have a problem with the last
paragraph of the proof of [6]. Indeed, in our context, it is not clear that C◦G(K) is
solvable.

We will use, in this section, the following facts, which are similar to Fact 3.3, [6,
Lemma 5.7] and Fact 3.4 respectively.

For every interpretable field L of characteristic zero, a Sylow UL-subgroup of a
group H of finite Morley rank is a maximal nilpotent UL-subgroup of H.
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Fact 6.3. – (Compare with Fact 3.3) Let H be a group of finite Morley rank, and
L an interpretable field of characteristic zero. Then the Sylow UL-subgroups of H
are exactly those nilpotent UL-subgroups S such that UL(NH(S)) = S.

Fact 6.4. – (Compare with [6, Lemma 5.7]) Let Q be a nilpotent group of finite
Morley rank, without a nontrivial decent torus, and suppose UL(Q) 6= 1 for an
interpretable field L of characteristic zero. Then there is a generic subset Q∗L of Q
such that UL(d(k)) 6= 1 for all k ∈ Q∗L.

Fact 6.5. – (Compare with Fact 3.4) Let H be a solvable group of finite Morley
rank. Then the Sylow UL-subgroups of H are conjugate for each interpretable field
L of characteristic zero.

Lemma 6.6. – UK(C) is a Sylow UK-subgroup of G.

Proof – By Lemma 4.9, N = NG(UK(C))◦ is solvable and C contains a Sylow
U0,r-subgroup of N . But Fact 3.4 shows that each Sylow U0,r-subgroup of N
contains a Sylow UK-subgroup of N , hence UK(C) is a Sylow UK-subgroup of N ,
and Fact 6.5 gives UK(N) = UK(C). We conclude by Fact 6.3. �

Corollary 6.7. – Each C-subgroup H of G containing UK(C) is solvable.

Proof – Let D be a Carter subgroup of NH(UK(C)). Since NG(UK(C)) con-
tains C, Lemma 4.9 says that NG(UK(C)) is a solvable torsion-free subgroup,
without a nontrivial pseudo-torus, and that rmin(NG(UK(C)) = r. Consequently
rmin(NH(UK(C)) = r and D = 〈U0,s(D) | s ≥ r〉, and Fact 3.6 proves that DUK(C)
is nilpotent, so D contains UK(C). But Lemma 6.6 says that UK(C) is a Sylow
UK-subgroup of G, therefore UK(C) is the unique Sylow UK-subgroup of D and
NH(D) normalizes UK(C). This proves that D is a Carter subgroup of H, and H
is solvable (Lemma 4.9). �

Then we obtain the following fact, with a slightly different proof from the one of
[6, Proposition 5.9].

Fact 6.8. – (Compare with [6, Proposition 5.9]) Either C is abelian or C is a
homogeneous UK-subgroup.

Proof – Suppose toward a contradiction that C is not abelian and that C is
not a homogeneous UK-subgroup. By Fact 3.10, there exists another interpretable
field L 6= K of characteristic zero such that UL(C) 6= 1. Since C is non generous
in G, its subset X = C ∩ ∪g∈G\NG(C)C

g is generic in C. Moreover, by Corollary
6.2, there is a unique Borel subgroup B of G containing C. Therefore, by Facts
2.12 and 6.4, there is a generic subset C∗ of X such that Cb ∩ C∗ = ∅ for each
b ∈ B \NB(C) and, for i = K,L, Ui(d(c)) 6= 1 for all c ∈ C∗.

If UK(C) is abelian, let v ∈ C∗ and let V = UK(d(v)). Then there exists
g ∈ G \NG(C) such that Cg contains v, and CG(V )◦ is a C-subgroup containing C
and Cg (Fact 3.10). By Corollary 6.7, CG(V )◦ is solvable, so it is contained in B,
in particular B contains Cg and there exists b ∈ B such that Cg = Cb (Fact 1.3).
This contradicts our choice of v ∈ C∗, and UK(C) is not abelian.

Now Fact 6.1 and Corollary 6.7 say that each C-subgroup of G containing
UK(C) is contained in B. Let w ∈ C∗ and let W = UL(d(w)). Then there exists
h ∈ G \ NG(C) such that Ch contains w, and CG(W )◦ is a C-subgroup contain-
ing UK(C) and UK(Ch) (Fact 3.10). Hence we have UK(C) ≤ (CG(W )◦)h

−1
, so



CONJUGACY OF CARTER SUBGROUPS IN GROUPS OF FINITE MORLEY RANK 19

(CG(W )◦)h
−1 ≤ B and UK(C) is contained in CG(W )◦ ≤ Bh. This proves that

Bh = B and there exists b ∈ B such that Ch = Cb (Fact 1.3). This contradicts our
choice of w ∈ C∗. �

Also, the following fact will be very important for us. Its proof is similar to the
one of [6, Theorem 5.1].

Fact 6.9. – (Compare with [6, Theorem 5.1]) If G has a C-subgroup H containing
strictly C, then H is contained in a unique Borel subgroup of G.

7. Structure of non generous Carter subgroups

In this section we prove that C is a Ṽ -group (Definition 5.1, Theorem 7.3), that
is a weak form of the second part of Theorem 1.5. This result is fundamental for
us, and its proof, which uses Fact 2.9 and Proposition 7.2, is the least trivial proof
of this paper.

Note that, by Lemma 7.1, we will have another important structural result: any
proper definable connected subgroup of G containing C is a solvable Ṽ -group.

Lemma 7.1. – Let H be a C-group and D a Carter subgroup of H. If D is a
Ṽ -group, then H is a solvable Ṽ -group.

Proof – By Lemma 4.9, H is a torsion-free solvable group, and H has no
nontrivial pseudo-torus. Let A be an indecomposable subgroup of H. By Facts 2.15
and 1.3, there exists x ∈ H such that Dx ≤ EH(A). By Fact 2.14 and Corollary
3.21, we have K̃(A) ≤ K̃(F (EH(A))), and Lemma 3.24 gives K̃(A) ≤ K̃(Dx).
Since D is a Ũ -group, we have K̃(Dx) = 1, therefore K̃(A) = 1 and Lemma 3.20
proves that A is a Ũ -group. �

Proposition 7.2. – Let H be a torsion-free solvable group of finite Morley rank
without a nontrivial pseudo-torus, and D be a Carter subgroup of H. Let V be a
definable subgroup of D, X a nonempty definable subset of H and F = {V ∩Dx | x ∈
X}. If ∪F is generic in V , then there exists x ∈ X such that Dx contains K̃(V ).

Proof – We proceed by induction on rk(H). If F (H) contains V , then Corollary
3.21 and Lemma 3.24 yield K̃(V ) ≤ K̃(F (H)) ≤ K̃(Dx) for each x ∈ X. Hence we
may assume V � F (H).

Let U be a normal definable subgroup of H, maximal among the ones such that
V U/U � F (H/U). Let F be the preimage of F (H/U) in H. By Fact 2.14 we have
EH(V U/U) 6= H/U , and Fact 2.15 gives H 6= UEH(V ). Let A/U be a H-minimal
subgroup of H/U . By maximality of U we obtain V A/A ≤ F (H/A) and Fact 2.15
yields H = AEH(V ), in particular we have F = A(F ∩ EH(V )).

Thus, if F 6= A, then (F ∩ EH(V ))U/U is nontrivial and contains an EH(V )-
minimal subgroup B/U . Since B ≤ F centralizes A/U , B is normal in H =
AEH(V ). By maximality of U , we obtain V B/B ≤ F (H/B), and Facts 2.14 and
2.15 yield H = BEH(V ). But B is contained in UEH(V ), hence H = UEH(V ),
contradicting the preceding paragraph. Consequently we have F = A.

By Facts 2.4 and 2.13, we have H = AD, in particular H normalizes (A∩D)U/U
and, by H-minimality of A/U , either H = UD or H/U = A/U oDU/U . But we
have H 6= UEH(V ), and D ≤ EH(V ) since D is nilpotent and contains V , therefore
H 6= UD and H/U = A/U oDU/U .
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As V � U , there exists g ∈ X such that W = V ∩ Dg is not contained in
U . Then W is not contained in A = F and we have W ≤ EH(W ), in particular
H = AEH(W ). By Facts 2.14 and 2.15, we have H 6= UEH(W ) and, by H-
minimality of A/U , we obtain A ∩ EH(W ) ≤ U . Consequently EH(W )U/U is a
complement of A/U in H/U , and EH(W )U/U contains DU/U , so EH(W )U = DU .
Since EH(W ) contains Dg, we obtain Dg ≤ DU and Fact 2.13 gives g ∈ DU .

Let X∗ = {x ∈ X | V ∩Dx � U} and F ∗ = {V ∩Dx | x ∈ X∗}. By the preceding
paragraph, we have X∗ ⊆ DU . Since ∪(F \F ∗) ⊆ U and V � U , the subset ∪F ∗

is generic in V . But we have H/U = A/U o DU/U , hence DU < H, and the
induction hypothesis applied to DU yields x ∈ X∗ ⊆ X such that K̃(V ) ≤ Dx.
This proves the result. �

Theorem 7.3. – C is a Ṽ -subgroup.

Proof – We assume toward a contradiction that C is not a Ṽ -group. By
Corollary 3.17, C is not a Ũ -subgroup and, by Fact 6.8, C is abelian. Let CX =
C ∩ (∪g 6∈NG(C)C

g). As C is non generous, we have

rk(C \ CX)− rk(C) + rk(G) = rk(C \ CX) + rk(G/NG(C))
≤ rk(∪g∈GCg)
< rk(G)

therefore CX is generic in C. We consider XC = {x ∈ G | K̃(C) � Cx}, X ′C =
G \ (NG(C)∪XC), FC = {C ∩Cx | x ∈ XC} and F ′C = {C ∩Cx | x ∈ X ′C}. Then
we have CX = (∪FC) ∪ (∪F ′C), so either ∪FC is generic in C or ∪F ′C is generic
in C.

We prove that ∪F ′C is not generic in C. Since C is not a Ũ -group, we have
K̃(C) 6= 1 (Lemma 3.20) and C0 = CG(K̃(C))◦ is a C-group. As C is abelian,
C0 contains C and Lemma 4.9 says that C0 is solvable. By Fact 2.12, there is a
definable non generic subset J of C such that, for each g ∈ C0 \NG(C), C ∩ Cg is
contained in J . For every x ∈ X ′C , we have Cx ≤ C0 since C is abelian, so Fact 1.3
gives y ∈ C0 such that Cx = Cy. Thus we have F ′C = {C ∩ Cx | x ∈ X ′C ∩ C0}
and ∪F ′C ⊆ J , in particular ∪F ′C is not generic in C. By the preceding paragraph,
∪FC is generic in C.

We consider a definable subgroup V of C, minimal among the ones such that
∪FV is generic in V , where FV = {V ∩Cx | x ∈ XV } and XV = {x ∈ G | K̃(V ) �
Cx}. In particular V is not a Ũ -group. By Fact 2.9, there is an algebraically
closed field L and a normal definable subgroup N of V such that V/N is definably
isomorphic to a L-vector space of dimension 2, and we may consider V/N as a
L-vector space.

We assume toward a contradiction that N is not a Ũ -group, that is K̃(N) 6= 1
(Lemma 3.20). Let FKN = {F ∈ FV | K̃(N) � F}. Suppose that ∪FKN is
generic in V . Then there is a vector subspace W/N of dimension 1 of V/N such
that (∪FKN ) ∩W is generic in W . If XKN = {x ∈ G | V ∩ Cx ∈ FKN}, then
∪{W ∩ Cx | x ∈ XKN} = (∪FKN ) ∩W is generic in W and, by the minimality of
V , there is x ∈ XKN such that Cx contains K̃(W ). By Corollary 3.21 we obtain
K̃(N) ≤ K̃(W ) ≤ Cx ∩W ≤ Cx ∩ V ∈ FKN and this contradiction proves that
∪FKN is not generic in V . Thus, if FN = {F ∈ FV | K̃(N) ≤ F}, then ∪FN

is generic in V . As C is abelian, the subgroup CG(K̃(N))◦ contains C and, by
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Lemma 4.9, it is solvable. Moreover, for each x ∈ XV such that V ∩ Cx ∈ FN ,
we have K̃(N) ≤ Cx, so Cx ≤ CG(K̃(N))◦ and there is y ∈ CG(K̃(N))◦ such that
Cx = Cy (Fact 1.3). This proves that ∪{V ∩ Cy | y ∈ XV ∩ CG(K̃(N))◦} is a
generic subset of V and Proposition 7.2 shows that there is y ∈ XV ∩ CG(K̃(N))◦

such that K̃(V ) ≤ Cy, contradicting the choice of XV . This proves that N is a
Ũ -group.

By Corollary 3.17, V has an indecomposable subgroup A which is not a Ũ -group.
We show that

(∪{E ∈ FV | EA 6= V })A is not generic in V for such any subgroup A. (∗)

Indeed, if A is an indecomposable subgroup of V which is not a Ũ -group, if FA =
{E ∈ FV | EA 6= V } and if (∪FA)A is generic in V , then Fact 2.9 yields an
algebraically closed field K1 and a normal definable subgroup M/A of V/A such that
V/M is definably isomorphic to aK1-vector space of dimension 2. But the preceding
paragraph with N = M proves that M is a Ũ -group, contradicting A ≤ M (Fact
3.16).

By Fact 2.7, for each definable subgroup F of V , the subgroup FN/N is a vector
subspace of V/N . Let FV 1 = {F ∈ FV | dim(FN/N) = 1}. We show that
∪FV 1 is generic in V . For each F ∈ FV , if dim(FN/N) = 2, then V = FN and
V/K̃(F ) = (F/K̃(F ))(NK̃(F )/K̃(F )) is a Ũ -group (Lemma 3.20 and Facts 3.14
and 3.16). Hence we have K̃(V ) ≤ K̃(F ) ≤ F , contradicting F ∈ FV . As the
union ∪{F ∈ FV | dim(FN/N) = 0} is contained in N and is not generic in V ,
and as ∪FV is generic in V , we obtain the genericity of ∪FV 1 in V .

We consider a definable subset X∗V of XV 1 = {x ∈ G | V ∩Cx ∈ FV 1} ⊆ XV of
degree 1 and of minimal Morley rank among the ones such that ∪{V ∩Cx | x ∈ X∗V }
is generic in V . Let F ∗V = {V ∩ Cx | x ∈ X∗V }. For each F ∈ F ∗V , there exists
F0 ∈ F ∗V such that FN 6= F0N since dim(FN/N) = 1 and since ∪F ∗V is generic in
V . So we have dim(FF0N/N) = 2 and V = FF0N , and we obtain V/K̃(F )K̃(F0) =
FF0N/K̃(F )K̃(F0), in particular V/K̃(F )K̃(F0) is a Ũ -group (Lemma 3.20 and
Facts 3.14 and 3.16). Thus, by Corollary 3.21, we have K̃(V ) = K̃(F )K̃(F0). As
F0 ∈ F ∗V ⊆ FV , we have K̃(V ) � F0 and K̃(V ) 6= K̃(F0), in particular K̃(F ) is
nontrivial.

Let F be a fixed F ∗V -subgroup, and x ∈ G satisfying F = V ∩ Cx. By Lemma
4.9 and since F ∈ F ∗V implies Cx 6= C, the subgroup U = 〈C, Cx〉 of CG(K̃(F ))◦ is
solvable and nonnilpotent. By Corollary 3.17, F has an indecomposable subgroup
A which is not a Ũ -group. By (∗), if F ∗F = {E ∈ F ∗V | EA = V }, the subset ∪F ∗F
is generic in V .

Let F ∗0 = {E ∈ F ∗F | E ∩F 6= 1}. We assume toward a contradiction that ∪F ∗0
is a generic subset of V . By Fact 6.9, the subgroup U is contained in a unique Borel
subgroup BU of G. For each E ∈ F ∗0 and each xE ∈ G such that E = V ∩CxE , as
E∩F is nontrivial, the subgroup CG(E∩F )◦ is solvable (Lemma 4.9) and contains
U and CxE . So we have CxE ≤ CG(E ∩ F )◦ ≤ BU for each such an element xE .
By Fact 1.3, for each E ∈ F ∗0 , there exists yE ∈ BU such that E = V ∩CyE . If we
consider X∗0 = {x ∈ BU | V ∩Cx ∈ F ∗0 }, then Proposition 7.2 yields a contradiction
and this proves that ∪F ∗0 is not generic in V .

Let FF = ∪F ∗F \ ∪F ∗0 . By the preceding paragraph, the union ∪FF is generic
in V . In the same way, if we consider E ∈ FF , then E has an indecomposable
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subgroup B which is not a Ũ -group, and the union ∪FE is generic in V where
FE = {E0 ∈ ∪F ∗V | E0B = V and E0 ∩E = 1}. By the choice of X∗V and F ∗V , the
union ∪(FE ∩FF ) is generic in V . In particular there exists M ∈ FE ∩FF and,
thus, we have M∩E = M∩F = 1, V = MB ≤ME ≤ V and V = MA ≤MF ≤ V ,
consequently

E ∼= EM/M = V/M = FM/M ∼= F

Moreover, we have E = E ∩ MB = (E ∩ M)B = B and F = A, so E and F
are indecomposable subgroups of V . Since dim(FN/N) = dim(EN/N) = 1, the
subgroup F ∩ N (resp. E ∩ N) is maximal in F (resp. E) by Fact 2.7, and we
obtain J(F ) = F ∩N and J(E) = E ∩N , in particular J(E)J(F ) ≤ N .

Since E ∈ FF , we have EF = EA = V and, as dim(EN/N) = 1 = dim(FN/N)
and dim(V/N) = 2, we have EN ∩ FN = N , in particular E ∩ FN ≤ N . Also
we have J(E)F ≤ NF < V and, by the maximality of J(E) in E, the subgroup
J(E)F is maximal in EF = V , hence J(E)F = NF and

N = N ∩NF = N ∩ J(E)F = J(E)(N ∩ F ) = J(E)J(F ).

Let Y/N be a vector subspace of dimension 1 of V/N such that ∪(FE ∩FF )∩Y
is generic in Y . Then the union of the subgroups P ∩ Y where P ∈ FE ∩ FF

and P ∩ (Y \ N) 6= ∅ is generic in Y . But, for such any subgroup P , we have
PN/N ∩ Y/N 6= 1 and, as dim(PN/N) = 1 = dim(Y/N), we obtain Y = PN and
P ≤ Y . Hence, if FY = {P ∈ FE ∩FF | P ≤ Y }, the union ∪FY is generic in Y .
Moreover, in the same way than for E, every P ∈ FY is definably isomorphic to F ,
in particular P is indecomposable. Moreover, since F/J(F ) ∼= FN/N is definably
isomorphic to a vector subspace of dimension 1 of V/N , we have F = UL(F ) and
every P ∈ FY is a UL-subgroup, so Y is a UL-subgroup. Let P be a fixed FY -
subgroup. Then we have V = PF and Y = Y ∩PF = (Y ∩F )P and, as P ∩F = 1,
the subgroup Y ∩F is a UL-subgroup (Fact 3.18). Since F/(Y ∩F ) ∼= FY/Y = V/Y
is definably isomorphic to a quotient space of dimension 1 of V/N , the subgroup
Y ∩F is maximal in F (Fact 2.7) and J(F ) = Y ∩F , so J(F ) is a UL-subgroup. In
the same way, J(E) is a UL-subgroup, therefore N = J(E)J(F ) is a UL-subgroup.
But N is a Ũ -group, so N is a homogeneous UL-subgroup (Fact 3.13). Now F is
a UL-subgroup and each proper subgroup of F is contained in J(F ) ≤ N , which
is a homogeneous UL-subgroup, so F is a homogeneous UL-subgroup and F is a
Ũ -group. In the same way E is a Ũ -group and V = EF is a Ũ -group too (Fact
3.14). �

8. Intersections of Carter subgroups

In this section we study the conjugacy of Carter subgroups with a nontrivial
intersection between them.

We recall that C is a Ṽ -group, and a Ũ -group by Theorem 7.3 and Corollary
3.17. Moreover, by Fact 3.13, UK(C) is a homogeneous UK-subgroup.

Lemma 8.1. – For each nontrivial definable subgroup U of C, the following con-
ditions hold:

1. NG(U)◦ is a solvable Ṽ -group;
2. rmin(NG(U)) = r;
3. any Sylow UK-subgroup of NG(U) is conjugate to a subgroup of UK(C).
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Proof – If U is normal in C, then Lemmas 7.1 and 4.9 and Fact 3.4 give the
result, so we may assume that U is not normal in C, in particular C is nonabelian
and U 6= C. Also, by Fact 6.8, C is a homogeneous UK-subgroup. We may assume
that, for every definable subgroup U0 of C, rk(U) < rk(U0) implies: 1. NG(U0)◦ is
a solvable Ṽ -group; 2. rmin(NG(U0)) = r; 3. any Sylow UK-subgroup of NG(U0)
is conjugate to a subgroup of UK(C).

Let N = NG(U)◦. We may assume that, for each g ∈ G, we have either U � Cg

or rk(N ∩ Cg) ≤ rk(N ∩ C). Let V = NC(U) = N ∩ C. Then we have rk(U) <
rk(V ), consequently 1. NG(V )◦ is a solvable Ṽ -group; 2. rmin(NG(V )) = r; 3. any
Sylow UK-subgroup of NG(V ) is conjugate to a subgroup of C.

Now, if L is a Carter subgroup of NN (V ), then L is a nilpotent Ṽ -subgroup,
rmin(L) ≥ r and there exists g ∈ G such that UK(L) ≤ Cg. By Fact 3.6, the
subgroup LV is nilpotent, therefore L contains V , and we have U < V ≤ UK(L) ≤
N ∩Cg. Since V = N ∩C and since U ≤ Cg, we have rk(N ∩Cg) ≤ rk(N ∩C), and
we obtain V = N ∩C = UK(L) = N ∩Cg. Since NG(V )◦ is a solvable Ṽ -group, it is
a C-group with no nontrivial pseudo-torus and, since rmin(NG(V )) = r, Lemma 4.9
says that U0,r(L) is a Sylow U0,r-subgroup of NN (V ). Moreover, since rk(K) = r,
Fact 3.4 shows that each Sylow UK-subgroup of NN (V ) is conjugate to UK(U0,r(L))
hence, since rk(K) = r implies UK(U0,r(L)) = UK(L) = V , the subgroup V is the
unique Sylow UK-subgroup of NN (V ). Thus we obtain V = UK(NN (V )) and Fact
6.3 says that V is a Sylow UK-subgroup of N .

Since V = UK(L), the subgroup NN (L) normalizes V and we have NN (L)◦ =
NNN (V )(L)◦ = L, so L is a Carter subgroup of N . Consequently, by Lemma 7.1,
N is a solvable Ṽ -group and, by Lemma 4.9, rmin(N) = rmin(L) = r. Moreover, if
S is a Sylow UK-subgroup of NG(U), then Fact 6.5 yields x ∈ G such that V ≤ C
contains Sx. �

From now on, we obtain the following improvement of Corollary 6.7.

Proposition 8.2. – Let B be a C-subgroup of G. If B ∩ UK(C) 6= 1, then B is a
solvable Ṽ -group and rmin(B) = r.

Proof – We assume toward a contradiction that G has a C-subgroup B such
that B ∩U 6= 1, where U = UK(C), and that either B is not a solvable Ṽ -group or
rmin(B) < r. We may assume that, for every C-subgroup B0 of G, if rk(B ∩ U) <
rk(B0 ∩ U), then B0 is a solvable Ṽ -group and rmin(B0) = r. Let H = B ∩ U
and N = NB(H)◦. By Lemma 8.1 1., N is a solvable Ṽ -group and, by Lemmas
4.9 and 8.1 2., U0,r(D) is a Sylow U0,r-subgroup of N for each Carter subgroup
D of N , and rmin(D) = r. Moreover, Fact 3.6 shows that DH is nilpotent, so D
contains H, hence H ≤ UK(D). Now, since Lemma 8.1 3. provides g ∈ G such
that UK(D)g ≤ U , we obtain

rk(B ∩ U) = rk(H) ≤ rk(UK(D)) = rk(UK(D)g) ≤ rk(Bg ∩ U).

Consequently we have rk(B ∩ U) = rk(Bg ∩ U) and H = UK(D), in particular H
is normal in NB(D) and NB(D)◦ ≤ NB(H)◦ = N . Thus NB(D)◦ = NN (D)◦ = D
and D is a Carter subgroup of B.

Since N is a solvable Ṽ -group, D is a Ṽ -group and B is a solvable Ṽ -group
(Lemma 7.1). Now Lemma 4.9 yields rmin(B) = r and a contradiction. �
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Corollary 8.3. – Let U be a nonabelian subgroup of C. Then U is contained in a
unique maximal C-subgroup B of G. Moreover, B is a solvable Ṽ -group.

Proof – By Fact 6.8, C is a homogeneous UK-subgroup of G. By Proposition
8.2, every C-subgroup of G containing U is a solvable Ṽ -subgroup, and Fact 6.1
yields the uniqueness of B. �

Proposition 8.4. – Each Sylow UK-subgroup S of G such that S ∩ C 6= 1 is
conjugate with UK(C).

Proof – By Lemma 6.6, U = UK(C) is a Sylow UK-subgroup of G. We assume
toward a contradiction that G has a Sylow UK-subgroup S non conjugate to U and
such that S ∩ C 6= 1. We may assume:

for every Sylow UK-subgroup S0 of G, if rk(S ∩ C) < rk(S0 ∩ C),
then S0 and U are conjugate. (∗)

We show that S ∩C is a homogeneous UK-subgroup. Otherwise Fact 3.13 yields
an interpretable field K0 6= K of characteristic 0 such that UK0(S ∩ C) 6= 1.
Consequently, since UK0(S) ≥ UK0(S ∩ C) centralizes S = UK(S) (Fact 3.11), the
subgroup S is a Sylow UK-subgroup of NG(UK0(S ∩ C)), contradicting the choice
of S (Lemma 8.1 3.). Thus S ∩C is a homogeneous UK-subgroup, in particular we
have S ∩ C = S ∩ U .

We consider NS = UK(NS(S ∩ U)). By Fact 6.3, we have S ∩ U < NS ≤
NG(S ∩ C), and Lemma 8.1 3. gives g ∈ G such that Ng

S ≤ U . Then we have
rk(S ∩ C) < rk(NS) = rk(Ng

S) ≤ rk(Sg ∩ C) and (∗) provides the result. �

Theorem 8.5. – Suppose that G has a Carter subgroup D non conjugate to C such
that C ∩D 6= 1. Then C is abelian and UK(C) ∩D = 1.

Proof – By Lemma 6.6, U = UK(C) is a Sylow UK-subgroup of G. By Fact
3.13, U is a homogeneous UK-subgroup. We show that U ∩ D = 1. We assume
toward a contradiction that U ∩ D 6= 1. Let V = UK(D). By Proposition 8.4,
there exists x ∈ G such that V x ≤ U . By Lemma 8.1 1. and 2., N = NG(V x)◦ is a
solvable Ṽ -subgroup and r = rmin(N). By Lemma 4.9, and sinceDx normalizes V x,
Dx contains a Sylow U0,r-subgroup R of N and we obtain V x = UK(Dx) = UK(R).
Consequently, by Fact 6.5, V x is the unique Sylow UK-subgroup of N , in particular
UK(N) = V x and V x is a Sylow UK-subgroup of G (Fact 6.3). Hence U = V x,
and C and D are two non conjugate Carter subgroups of N , contradicting Fact 1.3.
This proves that U ∩D = 1 and, by Fact 6.8, we obtain the result. �

9. The subgroups VK( · ) and XK( · )

We introduce and we analyse the last ingredients for our proof. Subgroups VK( · )
and XK( · ) are to the heart of our proof and of our final rank calculation. The
main result of this section is Theorem 9.10.

Notation 9.1. – If H is a definable subgroup of G, we let:

• VK(H) = UK(F (NG(H)));
• XK(H) = 〈UL(NG(H)) | L 6= K interpretable field of characteristic 0〉.
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Remark 9.2. – If H is a definable subgroup of G, then VK(H) is a nilpotent
UK-subgroup and, if H = VK(H), then NG(NG(H)◦) = NG(H).

Moreover, if H is a definable subgroup of UK(C), then VK(H) is a homogeneous
UK-subgroup (Proposition 8.4).

Lemma 9.3. – Let H be a nontrivial definable subgroup of UK(C) and suppose
H = VK(H). Then UK(XK(H)) = 1, in particular H ∩ XK(H) = 1 and H
centralizes XK(H).

Furthermore, if D is a Carter subgroup of NG(H) and if E = 〈UL(D) | L 6=
K interpretable field of characteristic 0〉, then HXK(H) = F (NG(H))◦E.

Proof – By Lemma 8.1 1., NG(H)◦ is a solvable Ṽ -group, in particular its
definable nilpotent subgroups are torsion-free Ũ -subgroups (Corollary 3.17). By
Lemma 8.1 2. and by Fact 3.6, DH is nilpotent, so D contains H. We consider

U = 〈UL(F (NG(H))) | L 6= K interpretable field of characteristic 0〉.

Then Fact 3.13 gives F (NG(H))◦ = H × U ≤ DU , and Facts 2.4 and 2.13 yield
NG(H)◦ = DU . Now Fact 3.18 implies UL(NG(H)) ≤ UE for any interpretable
field L 6= K of characteristic zero, so XK(H) = UE.

But Fact 3.13 gives UK(U) = UK(E) = 1, therefore Fact 3.18 yields

UK(UE)U/U = UK(UE/U) = UK(E)U/U = 1

and UK(XK(H)) = UK(UE) = UK(U) = 1. Since H ≤ UK(C) is a homogeneous
UK-subgroup, we obtain H ∩XK(H) = 1 and H centralizes XK(H). Furthermore
the preceding paragraph and Fact 3.13 provide HXK(H) = H(UE) = (HU)E =
F (NG(H))◦E. �

Lemma 9.4. – Let H be a nontrivial definable subgroup of UK(C) and suppose
H = VK(H). Then H is a Sylow UK-subgroup of CG(XK(H)).

Proof – By Lemma 9.3, we have H ≤ CG(XK(H)), so there is a Sylow UK-
subgroup V of CG(XK(H)) containing H. We consider W = UK(NV (H)). Then
W is a nilpotent normal subgroup of XK(H)W and W ≤ F (XK(H)W ).

By Fact 2.4 and Lemma 8.1 1., F (NG(H)◦) is a maximal nilpotent normal
subgroup of NG(H)◦. But Lemma 8.1 1. gives Ũ(NG(H)◦) = F (NG(H)◦) and
Fact 3.13 yields Ũ(NG(H)◦) ≤ XK(H)H ≤ XK(H)W , hence F (NG(H)◦) =
F (XK(H)W ) and we obtain W ≤ F (NG(H)◦) ≤ F (NG(H)). This proves that
W is contained in VK(H) = H, and Fact 6.3 says that H = W is a Sylow UK-
subgroup of V , so H = V . �

The following proposition is our first important result concerning the subgroups
of Notation 9.1.

Proposition 9.5. – Let H be a definable subgroup of UK(C) and suppose H =
VK(H). Then, for any definable subgroup M of H, we have VK(M) ≤ H.

Proof – We assume toward a contradiction that H is a counterexample of
minimal Morley rank and that VK(M) � H. We may assume VK(M0) ≤ H for each
definable subgroup M0 of H such that M < M0. If M = 1, then F (NG(M)) = 1
since G is a C∗-group, so VK(M) = 1. This contradiction gives M 6= 1 and, by
Proposition 8.4, VK(M) is a nilpotent homogeneous UK-subgroup.
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We show that XK(H) centralizes VK(M). By Lemma 9.4, H is a Sylow UK-
subgroup of CG(XK(H)), in particular XK(H) ≤ NG(M). On the other hand,
by Lemma 8.1 1. and 2., NG(M)◦ is a solvable Ṽ -group and r = rmin(NG(M)).
Hence, for each nontrivial indecomposable UL-subgroup A of NG(M) with L 6= K
an interpretable field of characteristic zero, we have rk(L) ≥ r and Fact 3.6 says
that AVK(M) is nilpotent, so A centralizes VK(M) (Fact 3.10). This proves that
XK(H) centralizes VK(M).

Let P = NH(M) > M . Then P normalizes VK(M) and PVK(M) is nilpotent
(Fact 3.6). Since VK(M) � H, we have P < PVK(M) and NVK(M)(P ) � P . Since
NVK(M)(P ) ≤ VK(M) normalizes M , we obtain NVK(M)(P ) � H.

By the preceding paragraph, there exists a definable subgroup N of H, such
that M < N and NVK(M)(N) � H. We consider such a subgroup N of max-
imal rank. Then the choice of M implies VK(N) ≤ H. Let U0 = N and, for
each i ∈ N such that Ui ≤ H, Ui+1 = VK(Ui). By Proposition 8.4, Ui is a
homogeneous UK-subgroup for each i, so this sequence is increasing and our hy-
pothesis over H and M implies Ui ≤ H for each i. In particular there exists
j ∈ N such that Uj = Uj+1 = VK(Uj), and we have Uj = H by the minimality of
rk(H). Since XK(N) normalizes N = U0, we have XK(N) ≤ NG(Uj) = NG(H),
so XK(N) ≤ XK(H). Moreover, since N ≤ H centralizes XK(H) (Lemma 9.4), we
have XK(H) ≤ NG(N) and XK(H) = XK(N). Consequently, by the second para-
graph, VK(M) centralizes XK(N) and, if NV = NVK(M)(N), then ENG(N)◦(NV )
contains XK(N). But NG(N)◦ is a solvable Ṽ -group (Lemma 8.1 1.), so Fact 3.18
shows that NG(N)◦/XK(N) is a solvable homogeneous UK-group, and it is nilpo-
tent by Fact 3.12. Now Fact 2.15 gives NG(N)◦ = ENG(N)◦(NV )XK(N), hence
ENG(N)◦(NV ) = NG(N)◦, and we have NV ≤ F (NG(N)◦) ≤ F (NG(N)) (Fact
2.14). Since VK(M) is a homogeneous UK-subgroup, we obtain NV ≤ VK(N) ≤ H,
contradicting NV � H. �

Corollary 9.6. – Let D be a conjugate of C. Let H (resp. L) be a definable
subgroup of UK(C) (resp. UK(D)) such that H = VK(H) (resp. L = VK(L)).
Then we have H ∩ L = VK(H ∩ L).

Proof – Since H = VK(H) ≤ UK(C) is a homogeneous UK-subgroup, then
H ∩ L is a UK-subgroup too and H ∩ L is contained in VK(H ∩ L). Moreover, by
Proposition 9.5, we have VK(H ∩ L) ≤ H ∩ L. �

Fact 9.7. – [16, Remark B.2 (iii)] If H is a group of finite Morley rank, there is a
bound on the Morley degrees of any uniformly definable family of subgroups of H.

Fact 9.8. – [20, Theorem 1.4.3] Let L a subgroup of a group H of finite Morley
rank. Then F (L) = {x ∈ L | ∃n ∈ N, ∀y ∈ L, [y,n x] = 1}.

Lemma 9.9. – If F = {Li | i ∈ I} is a uniformly definable family of subgroups
of a group H of finite Morley rank, then {F (Li) | i ∈ I} is a uniformly definable
family of subgroups of H.

Proof – By Fact 9.7, there exists an integer d such that deg(Li) ≤ d for
each i ∈ I. Let n = rk(H) + d + 1. We have only to prove that, for every
L ∈ F , F (L) = {x ∈ L | ∀y ∈ L, [y,n x] = 1}. Let L ∈ F and x ∈ F (L).
We have [L, x] ≤ F (L) and, since F (L)L◦/L◦ ≤ L/L◦ has a nilpotence class at
most d − 1, [y,d x] ∈ F (L) ∩ L◦ for all y ∈ L. But [L◦, x] ≤ F (L)◦ and we have
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F (L)◦ ≤ Zrk(L)(F (L)) ≤ Zrk(H)(F (L)), so [y,n x] = 1 for all y ∈ L. This proves
that F (L) is contained in {x ∈ L | ∀y ∈ L, [y,n x] = 1}. Now Fact 9.8 finishes the
proof. �

Theorem 9.10. – Let F = {Fi | i ∈ I} be a uniformly definable family of subgroups
of UK(C) such that F = VK(F ) for each F ∈ F . Then E = {FiXK(Fi) | i ∈ I} is
a uniformly definable family of subgroups of G.

Proof – We may assume F 6= 1 for each F ∈ F . Since {NG(F ) | F ∈ F}
is a uniformly definable family of subgroups of G, Fact 9.7 says that there is a
bound b on the Morley degrees of NG(F ) for F ∈ F . If c = b!, then the order of
NG(F )/NG(F )◦ divides c for each F ∈ F . By Lemma 8.1 1., NG(F )◦ is torsion-free
for each F ∈ F , in particular NG(F )◦ is divisible and NG(F )◦ = {gc | g ∈ NG(F )}.
This proves that {NG(Fi)◦ | i ∈ I} is a uniformly definable family of subgroups
of G. Now Lemma 9.9 proves that {F (NG(Fi)◦) | i ∈ I} is a uniformly definable
family of subgroups of G. But, by Lemma 8.1 1. and by Fact 3.17, F (NG(Fi))◦ is a
Ũ -subgroup for each i ∈ I, hence Fact 3.13 yields F (NG(Fi))◦ ≤ FiXK(Fi) for each
i ∈ I. Moreover, since NG(Fi)◦ is torsion-free, we have F (NG(Fi)◦) = F (NG(Fi))◦

for each i ∈ I, and {F (NG(Fi))◦ | i ∈ I} is a uniformly definable family of subgroups
of G.

Case 1: C is abelian.
Let E = 〈UK0(C) | K0 6= K interpretable field of characteristic 0〉. For each

F ∈ F , we have C ≤ CG(F ) ≤ NG(F ) and C is a Carter subgroup of NG(F ).
Consequently, by Lemma 9.3, we have FXK(F ) = F (NG(F ))◦E for each F ∈ F .
This proves that E = {F (NG(Fi))◦E | i ∈ I} is a uniformly definable family of
subgroups of G.

Case 2: C is non abelian.
By Fact 6.8, C is a homogeneous UK-subgroup. By Corollary 8.3, C is contained

in a unique maximal C-subgroup B of G, and B is a solvable Ṽ -group. Let H =
〈UK0(F (B)) | K0 6= K interpretable field of characteristic 0〉. By Facts 3.13 and
3.17, we have F (B) = H × UK(F (B)), in particular UK(H) = 1 and

NH(F ) ≤ XK(F ) for each F ∈ F (1).

By Facts 2.4 and 2.13, we have B = F (B)C, and Fact 3.6 gives UK(F (B)) ≤ C,
so B = HC. Since UK(H) = 1 and since C is a homogeneous UK-subgroup, we
obtain B = H o C.

We show that NC(NC(F )) is nonabelian for each F ∈ F . Indeed, we may
assume that NC(F ) is abelian for F ∈ F . Then F is abelian and NC(F ) is a
maximal abelian subgroup of C containing F . Since C is non abelian, we obtain
NC(F ) < C and NC(F ) < NC(NC(F )), so NC(NC(F )) is non abelian.

We show that NG(NC(F ))◦ is contained in B for each F ∈ F . Let F ∈ F .
By the preceding paragraph, NC(NC(F )) is nonabelian and, by Corollary 8.3, B is
the unique maximal C-subgroup of G containing NC(NC(F )). But NG(NC(F ))◦

is a C-group since there is a NG(NC(F ))◦-minimal subgroup A in NC(F ), and
A is abelian and divisible as C is a nilpotent and torsion-free, so NG(NC(F ))◦ is
contained in B.

Let F ∈ F . We show that FXK(F ) = F (NG(F ))◦NH(F ). By (∗), this
is sufficient to conclude. Since NG(F )◦ is a solvable Ṽ -group (Lemma 8.1 1.),
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Fact 2.14 shows that D = EXK(F )NC(F )(NC(F )) is a connected definable sub-
group of NG(F )◦ and that NC(F ) is contained in F (D), so NC(F ) ≤ UK(F (D)).
Since UK(F (D)) ∩ C contains F 6= 1, Proposition 8.4 says that UK(F (D)) is
a homogeneous UK-subgroup, in particular UK(F (D)) ∩ XK(F ) is contained in
UK(XK(F )) = 1 (Lemma 9.3). Thus we have

UK(F (D)) = (UK(F (D)) ∩XK(F ))NC(F ) = NC(F ),

in particular D normalizes NC(F ), and D is contained in B by the preceding
paragraph. Since UK(XK(F )) = 1 (Lemma 9.3) and since B = H o C with C a
homogeneous UK-subgroup, Fact 3.18 gives

(B ∩XK(F ))H/H = UK((B ∩XK(F ))H/H) = UK(B ∩XK(F ))H/H = 1,

so B ∩XK(F ) is contained in H, in particular D ∩XK(F ) ≤ H. Thus we obtain

FXK(F ) ∩D = (XK(F ) ∩D)F ≤ (H ∩D)F ≤ NH(NC(F ))F.

Since [NH(NC(F )), F ] ≤ H ∩NC(F ) = 1, we have

FXK(F ) ∩D ≤ NH(F )F (2).

Also, since NG(F )◦ is a solvable Ṽ -group, F (NG(F ))◦ is a Ũ -subgroup and Fact
3.13 yields

F (NG(F ))◦ ≤ VK(F )XK(F ) = FXK(F ) (3).

By Fact 2.15, we have XK(F )NC(F ) = (XK(F )NC(F ))′D, and Facts 2.4 and 2.13
imply

XK(F )NC(F ) = (XK(F )NC(F ))′D ≤ F (NG(F ))◦D (4).

Now, since F = VK(F ) is contained in F (NG(F ))◦ (5), we obtain

FXK(F ) = F (NG(F ))◦D ∩ FXK(F ) by (4)
= F (NG(F ))◦(D ∩ FXK(F )) by (3)
≤ F (NG(F ))◦(NH(F )F ) by (2)
= F (NG(F ))◦NH(F ) by (5)
≤ F (NG(F ))◦XK(F ) by (1)
≤ FXK(F ) by (3)

This proves that FXK(F ) = F (NG(F ))◦NH(F ) and finishes our proof. �

10. A generosity theorem

In this section, we describe the structure of G (Theorem 10.6). The main ingre-
dient for the proof is Theorem 10.5.

Lemma 10.1. – Let B be a maximal C-subgroup of G containing C. If C =
UK(C), then B = H o C for a definably characteristic nilpotent Ṽ -subgroup H of
B. Moreover, C is a Sylow U0,r-subgroup of G and U0,r(H) = 1.

Proof – By Proposition 8.2, B is a solvable Ṽ -subgroup, in particular F (B)
is a torsion-free Ũ -subgroup (Corollary 3.17). Then Fact 3.13 yields F (B) = H ×
UK(F (B)) where

H = 〈UL(F (B)) | L 6= K is an interpretable field of characteristic 0〉,

so H is a definably characteristic nilpotent Ṽ -subgroup of B.
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But Fact 3.6 provides the nilpotence of U0,r(F (B))C, hence we have C ≥
U0,r(F (B)) ≥ UK(F (B)). Now, as Facts 2.4 and 2.13 give B = F (B)C, we obtain
B = HC and, as C = UK(C) is a homogeneous UK-subgroup, we have

H ∩ C ≤ H ∩ (F (B) ∩ C) ≤ H ∩ UK(F (B)) = 1.

Moreover, since C is a UK-subgroup, it is a U0,r-subgroup and U0,r(NG(C)) =
U0,r(C) = C, consequently Fact 3.3 shows that C is a Sylow U0,r-subgroup of G.
Finally, we have U0,r(H) ≤ H ∩ U0,r(F (B)) ≤ H ∩ C = 1. �

Proposition 10.2 corresponds to the well-known notion of Control of Fusion [3,
Section 10.6.1 p.187].

Proposition 10.2. – If A is a definable subgroup of C, then for every g ∈ G such
that Ag ≤ C, there exists x ∈ NG(C) such that Ax = Ag.

Proof – We may assume A 6= 1. Let g ∈ G suh that Ag ≤ C. If C is abelian,
then C and Cg

−1
are two Carter subgroups of the C-group CG(A)◦, and there

exists y ∈ CG(A) such that Cy = Cg
−1

. In particular we have yg ∈ NG(C) and
Ayg = Ag, proving the existence of x = yg ∈ NG(C) such that Ax = Ag. Hence we
may assume C non abelian.

By Fact 6.8, C is a homogeneous UK-subgroup. By Corollary 8.3, there is a
unique maximal C-subgroup B of G containing C, and B is a solvable Ṽ -subgroup.
Consequently, by Lemma 10.1, we have B = HoC for H a definably characteristic
nilpotent Ṽ -subgroup of B such that U0,r(H) = 1.

We show that,

for every u ∈ NG(B) such that Au ≤ C, there exists x ∈ NG(C) such that
Ax = Au (∗).

Indeed, for every u ∈ NG(B) such that Au ≤ C, there exists b an element of
the C-subgroup B such that Cub = C, and we have Aub ≤ C. Since B = H o C,
we may assume b ∈ H, in particular we obtain H o Au = H o Aub and Au =
C ∩ (H oAu) = C ∩ (H oAub) = Aub. Since ub ∈ NG(C), this proves (∗).

By (∗) we may assume g 6∈ NG(B). In particular we have B 6= Bg
−1

and, since
Ag ≤ C ≤ B, we have A ≤ Bg−1 ∩B and A is abelian (Corollary 8.3).

Let U = NC(Ag) and b ∈ NB(Ag). Then there exist h ∈ H and c ∈ C such that
b = hc and, for each a ∈ A, we have [h, ag]c[c, ag] = [hc, ag] = [b, ag] ∈ Ag ≤ C.
Since [h, ag]c ∈ H and [c, ag] ∈ C, we obtain [h, ag]c ∈ H ∩C = 1 and h ∈ CH(ag).
Thus c = h−1b belongs to NC(Ag) = U , and we obtain NB(Ag) = CH(Ag)oU . In
the same way, if we let V = NC(A)g, then NB(A)g = CH(A)g o V .

We show that U and V are abelian. We suppose toward a contradiction that
U is non abelian. Then B is the unique maximal C-subgroup of G containing U
(Corollary 8.3). Moreover A is abelian and divisible, so NG(A)◦ is a C-group. Since
U is contained in NB(Ag) ≤ NG(Ag)◦ = (NG(A)◦)g, we obtain (NG(A)◦)g ≤ B,
and V ≤ B ∩ Bg. Henceforth V is abelian (Corollary 8.3) and V is the unique
maximal abelian subgroup of Cg containing Ag. Since Cg is non abelian, we have
V < Cg, therefore V < NCg (V ) and NCg (V ) is non abelian. In particular Bg is the
unique maximal C-subgroup of G containing NG(V )◦ (Corollary 8.3). Let W be a
Sylow U0,r-subgroup of B containing V . By Fact 3.4 and Lemma 10.1, C = UK(C)
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is conjugate to W . In particular W is non abelian and, since V is abelian, we have
V < W and V < NW (V ). But we have

NW (V ) ≤ NG(V )◦ ∩B ≤ Bg ∩B,
so NW (V ) is abelian (Corollary 8.3), and we obtain

NW (V ) ≤ Bg ∩NG(Ag) = NB(A)g = CH(A)g o V.
Since V < NW (V ), this contradicts NW (V ) ∩ CH(A)g ≤ W ∩Hg ≤ UK(H)g = 1.
Hence U is abelian. In the same way, V is abelian.

Since U is abelian, U is the unique maximal abelian subgroup of C containing
Ag. Since C is non abelian, we have U < C and U < NC(U), therefore NC(U) is
non abelian. In particular, by Corollary 8.3, B is the unique maximal C-subgroup
of G containing NC(U). Since U is abelian and divisible, NG(U)◦ is a C-group, so
B is the unique maximal C-subgroup of G containing NG(U)◦. In the same way,
Bg is the unique maximal C-subgroup of G containing NG(V )◦.

We show that U and V are conjugate in (NG(A)g)◦. Let U1 be a Sylow U0,r-
subgroup of NG(A)g containing U . Then U2 = U0,r(NU1(U)) is contained in
NG(U)◦ ≤ B. Now Lemma 10.1 and Fact 3.4 say that U2 is B-conjugate with
a subgroup of C, so U2 ∩H = 1. But U2 contains U and is contained in NB(Ag) =
CH(Ag) o U , hence U2 = U . Then Fact 3.3 give U = U1 and U is a Sylow U0,r-
subgroup of NG(A)g. In the same way, V is a Sylow U0,r-subgroup of NG(A)g.
Since NG(A)g is a C-subgroup of G, it is solvable (Proposition 8.2), and Fact 3.4
yields y ∈ (NG(A)g)◦ such that V y = U .

Consequently we obtain NG(U)◦ = (NG(V )◦)y ≤ Bgy ∩ B and, since B is the
unique maximal C-subgroup of G containing NG(U)◦, we find B = Bgy. Moreover
we have y ∈ (NG(A)g)◦ = NG(Ag)◦, so Agy = Ag ≤ C. Now we apply (∗) with
u = gy, and we obtain x ∈ NG(C) such that Ax = Ag. �

Proposition 10.3. – Let R be a solvable Ṽ -group, and U a Sylow UK-subgroup of
R. Then {U ∩ Ug | g ∈ R} is a finite set.

Proof – We proceed by induction on rk(R). By Fact 6.5, we may assume
R = R′U . By Corollary 3.17 and by Fact 3.13, U is a homogeneous UK-subgroup.
Suppose that R′ ∩ U is nontrivial. Since U is a homogeneous UK-subgroup, U0 =
UK(R′) is nontrivial too. By Fact 2.4, R′ is nilpotent, therefore Fact 3.6 gives
U0 ≤ U . Then Fact 3.18 yields UK(NR(U)) = UK(NR′(U)U) = UK(NR′(U))U = U
and

UK(NR/U0(U/U0)) = UK(NR(U)/U0)) = UK(NR(U))/U0 = U/U0,

so U/U0 is a Sylow UK-subgroup of R/U0 (Fact 6.3). Moreover, R/U0 is a Ṽ -
group by Facts 3.1 and 3.16. Hence, by the induction hypothesis, we may assume
R = R′ o U . Note that the equality R = R′ o U implies, in particular, that U is
abelian and that NR(U) centralizes U .

We show that, for every g ∈ R we have U ∩ Ug = UK(F (ER(U ∩ Ug))). By
Fact 2.14, for every g ∈ R, we have U ∩ Ug ≤ UK(F (ER(U ∩ Ug))). Also Fact 3.6
says that, for every g ∈ R, UgUK(F (ER(U ∩ Ug))) is a nilpotent UK-subgroup, so
UK(F (ER(U ∩ Ug))) ≤ Ug. Hence we obtain U ∩ Ug = UK(F (ER(U ∩ Ug))) for
every g ∈ R.

We show that, if there exists x ∈ R such that (U ∩ Ug)x = U ∩ Uh for g and h

two elements of R, then U ∩ Ug = U ∩ Uh. Indeed, we have U ∩ Ug ≤ U ∩ Ux−1
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and, by Fact 6.5, there exists y ∈ CR(U ∩ Ug) such that Uy = Ux
−1

. In particular
we have Uyx = U and yx ∈ NR(U) = CR(U), so

U ∩ Ug = (U ∩ Ug)yx = (U ∩ Ug)x = U ∩ Uh.

Let g and h be two elements of R such that U ∩Ug 6= U ∩Uh. By the preceding
paragraph, U∩Ug and U∩Uh are not conjugate and, since U∩Uα = UK(F (ER(U∩
Uα))) for α ∈ {g, h}, the subgroups ER(U∩Ug) and ER(U∩Uh) are not conjugate.
Now Fact 2.16 yields the result. �

Lemma 10.4. – Let F be a nontrivial definable subgroup of UK(C) and suppose
F = VK(F ). Then NG(F )◦ = XK(F )oNUK(C)(F ). Moreover, either NUK(C)(F ) is
abelian and NG(F )◦ centralizes F , or NUK(C)(F ) is nonabelian and NUK(C)(F ) =
C.

Proof – Let U = UK(C). By Fact 3.13, it is a homogeneous UK-subgroup. As F
is nilpotent, F contains a NG(F )◦-minimal subgroup, which is abelian (Fact 2.5), so
NG(F )◦ is a C-subgroup. By Proposition 8.2, NG(F )◦ is a solvable Ṽ -subgroup and
rmin(NG(F )◦) = r, so its nilpotent definable subgroups are Ũ -subgroups (Corollary
3.17), in particular its UK-subgroups are homogeneous (Fact 3.13).

Since NU (F ) is a UK-subgroup, Fact 3.4 and Lemma 4.9 provide a Carter
subgroup D of NG(F ) containing NU (F ). Since D is a Ũ -subgroup, we have
D = E×UK(D) where E = 〈UL(D) | L 6= K interpretable field of characteristic 0〉
(Fact 3.13), and Facts 2.4 and 2.13 yield NG(F )◦ = (F (NG(F ))◦E)UK(D). Now
Lemma 9.3 gives F (NG(F ))◦E = XK(F )F and UK(XK(F )) = 1, so we have
UK(D) ∩XK(F ) = 1 and

NG(F )◦ = (XK(F )F )UK(D) = XK(F )o UK(D).

By Proposition 8.4, there exists g ∈ G such that U contains UK(D)g, in particular
C contains F g. Now Proposition 10.2 provides x ∈ NG(C) such that F x = F g, that
is gx−1 ∈ NG(F ). Consequently, we obtain UK(D)gx

−1 ≤ NG(F )gx
−1

= NG(F ).
Moreover, since U contains UK(D)g and since x ∈ NG(C) ≤ NG(U), we have
UK(D)gx

−1 ≤ Ux
−1

= U and UK(D)gx
−1 ≤ NU (F ). This implies rk(UK(D)) ≤

rk(NU (F )). But D contains the UK-subgroup NU (F ), hence NU (F ) ≤ UK(D), and
the equality UK(D) = NU (F ) holds. This proves that NG(F )◦ = XK(F )oNU (F ).

Suppose that NU (F ) is abelian. Then F centralizes NU (F ) and, as lemma 9.3
says that F centralizes XK(F ), the subgroup NG(F )◦ centralizes F .

Suppose that NU (F ) is nonabelian. Then Corollary 8.3 yields a unique maximal
C-subgroup B containing NU (F ), in particular B contains NG(F )◦ and C. Fur-
thermore Corollary 8.3 says that B is solvable. By Fact 2.14, EB(F ) is a connected
definable subgroup of B containing NG(F )◦ and C, and we have F ≤ F (EB(F )).
Since F is a UK-subgroup, we obtain F ≤ UK(F (EB(F ))). We consider the nilpo-
tent UK-subgroup S = UK(NF (EB(F ))(F )), which contains F . Then S is contained
in NG(F )◦, and it is normalized by NG(F )◦ ≤ EB(F ). Thus we have

S ≤ UK(F (NG(F )◦)) = UK(F (NG(F ))◦) = VK(F ) = F,

and Fact 6.3 shows that F is a Sylow UK-subgroup of F (EB(F )), that is F =
UK(F (EB(F ))). Hence F is normalized by EB(F ), in particular C normalizes F
and NU (F ) = U . But C ≥ NU (F ) is nonabelian, so Fact 6.8 provides C = U , and
this equality finishes our proof. �
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Theorem 10.5. – Let H be a proper definable subgroup of UK(C) and suppose
H = VK(H). Let F = {Fi | i ∈ I} be a uniformly definable family of proper
subgroups of H, with I a definable set, and such that Fi = VK(Fi) for each i ∈ I. If
∪F is generic in H, then C is a nonabelian UK-subgroup, and there are a solvable
connected definable subgroup B containing C and g ∈ B\NB(C) such that H ≤ Cg.

Proof – We may assume Fi 6= 1 for each i ∈ I, in particular NG(Fi)◦ is a
C-subgroup. For each i ∈ I, we consider Bi a maximal C-subgroup of G containing
NG(Fi)◦. By Proposition 8.2, it is a solvable Ṽ -subgroup, in particular its UK-
subgroups are homogeneous (Fact 3.13 and Corollary 3.17).

Suppose that B = {Bi | i ∈ I} is a finite set. Then there exists i0 ∈ I such that,
if we let F0 = {F ∈ F | NG(F )◦ ≤ Bi0}, the union ∪F0 is a generic subset of
H, in particular Bi0 contains H. Let V be a Sylow UK-subgroup of Bi0 containing
H. For each F ∈ F0, let VF be the intersection of the Sylow UK-subgroups of Bi0
containing F . Then, for each F ∈ F0, VF is normalized by NG(F )◦ and we obtain
NVF

(F ) ≤ F (NG(F )◦) ≤ F (NG(F )). As each UK-subgroup of Bi0 is homogeneous,
this implies NVF

(F ) ≤ VK(F ) = F , and the nilpotence of VF gives VF = F < H.
In particular, for each F ∈ F0, there exists a Sylow UK-subgroup SF of Bi0 such
that F ≤ SF and SF ∩H < H. By Fact 6.5, for each F ∈ F0, there exists xF ∈ Bi0
such that SF = V xF and Proposition 10.3 shows that the family {H∩SF | F ∈ F0}
is finite. Since, for each F ∈ F0, we have F ≤ H ∩ SF < H, this contradicts the
genericity of ∪F0 in H. Hence the set B = {Bi | i ∈ I} is infinite.

Suppose that C is abelian. By Lemma 10.4, NG(H)◦ centralizes H and, for each
i ∈ I, we have C ≤ NG(H)◦ = CG(H)◦ ≤ NG(Fi)◦ ≤ Bi. Since B is infinite, Fact
6.9 gives C = NG(H)◦ and H = VK(H) = UK(F (NG(H))) = UK(C), contradicting
H < UK(C). Hence C is nonabelian and C = UK(C) (Fact 6.8). Moreover, by
Corollary 8.3, there is a unique maximal C-subgroup B of G containing C, and
B is a solvable Ṽ -subgroup. In particular its nilpotent definable subgroups are
Ũ -subgroups (Corollary 3.17).

We suppose NG(H)◦ ≤ B. Then Fact 2.14 says that EB(H) is a connected
definable subgroup such that H ≤ F (EB(H)), so H ≤ UK(F (EB(H))). But
UK(F (EB(H))) is a homogeneous UK-subgroup (Fact 3.13) and EB(H) contains C
and NG(H)◦, so NUK(F (EB(H)))(H) is contained in UK(F (NG(H)◦)) = VK(H) =
H. Now Fact 6.3 shows that H is a Sylow UK-subgroup of UK(F (EB(H))), conse-
quently H = UK(F (EB(H))). Thus H is normal in EB(H) and EB(H) = NG(H)◦,
in particular NG(H)◦ contains C. If NG(H)◦ ≤ NG(C), then we have NG(H)◦ = C
and H = VK(H) = UK(F (C)) = UK(C) = C, contradicting H < C, so there exists
g ∈ NG(H)◦ \ NG(C). Consequently we have g ∈ B \ NB(C) and H ≤ Cg, so we
may assume NG(H)◦ � B.

Since H is nilpotent, NG(H)◦ is a C-subgroup, and Corollary 8.3 shows that
NC(H) is abelian, so UK((NG(H)◦)′) ≤ UK(XK(H)) is trivial (Lemmas 9.3 and
10.4). Moreover NG(H)◦ centralizes H (Lemma 10.4) and, for each i ∈ I, we
obtain NG(H)◦ = CG(H)◦ ≤ NG(Fi)◦ ≤ Bi. If NG(H)◦ is abelian then, since
NG(NG(H)◦)◦ ≤ NG(VK(H))◦ = NG(H)◦, it is an Carter subgroup of G, and
Theorem 8.5 says that it is conjugate to C. This contradicts that C is not abelian,
so NG(H)◦ is not abelian. Consequently, since each C-subgroup of G containing
H is solvable (Proposition 8.2), Fact 6.1 provides an interpretable field L of char-
acteristic zero such that (NG(H)◦)′ is a nontrivial homogeneous UL-subgroup and
UL(CG(NG(H)◦)) 6= 1. In particular, since UK((NG(H)◦)′) = 1, we have K 6= L.



CONJUGACY OF CARTER SUBGROUPS IN GROUPS OF FINITE MORLEY RANK 33

Let UL = UL(CG(NG(H)◦)). If NC(NC(H)) is abelian, then NC(NC(H)) is
contained in NC(H), and NC(H) = C since C is nilpotent, contradicting that C is
nonabelian, so NC(NC(H)) is nonabelian. Since NC(H) is abelian, NG(NC(H))◦ is
a C-subgroup containing NC(NC(H)), and Corollary 8.3 gives NG(NC(H))◦ ≤ B.
But we have CG(NG(H)◦) ≤ NG(NC(H)), so B contains the UL-subgroup UL
and, since C is a homogeneous UK-subgroup such that C = NG(C)◦, there exists
g ∈ UL \ NG(C) ⊆ B \ NB(C). But g ∈ UL centralizes NC(H) ≤ NG(H)◦, hence
we have H ≤ NC(H) = NC(H)g ≤ Cg, and this finishes the proof. �

Theorem 10.6. – There is a uniformly definable family F = {Fi | i ∈ I} of proper
subgroups of UK(C) such that I is an interpretable set and:

• F = VK(F ) for each F ∈ F ;
• there exist three integer f, u and v such that, for each F ∈ F , rk(F ) = f ,
rk(NUK(C)(F )) = u and rk(NG(F )) = v, rk(FXK(F )) = f − u + v and
rk(I) = rk(UK(C))− f ;

• for any generic subset J of I, ∪j∈JFj is generic in UK(C);
• for each F ∈ F , the following set is non generic in FXK(F ):

FXK(F ) ∩ (
⋃

E∈F , g∈G, Eg 6=F

(EXK(E))g)

• for any generic subset J of I,
⋃

j∈J, g∈G
(FjXK(Fj))g is generic in G;

• for each definable generic subset G∗ of G, there exist x ∈ G∗ and g ∈ G
such that UK(d(x)) is nontrivial and contained in UK(Cg).

Proof – Let U = UK(C),

V = 〈UL(C) | L 6= K is an interpretable field of characteristic 0〉
and FU = {U ∩ Ug | 1 < U ∩ Ug < U}. For each g ∈ G \NG(U), Fact 3.13 gives

C ∩ Cg = (U ∩ Ug)× (V ∩ V g) ⊆ ((∪FU ) ∪ {1})× V
Also, for each g ∈ NG(U)\NG(C), Cg is contained in the solvable subgroup NG(U)◦

(Lemma 7.1) and, by Facts 1.3 and 2.12, C ∩ Cg is contained in the following non
generic subset JC = C ∩ (∪g∈NG(U)◦\NG(C)C

g). Thus, if ∪FU is non generic in U ,
then we have C ∩ (∪g 6∈NG(C)C

g) ⊆ JC ∪ (((∪FU ) ∪ {1})× V ) and C is generically
disjoint of its conjugates, contradicting its non generosity. This proves that ∪FU

is a generic subset of U , in particular we have FU 6= ∅ and 1 ∈ ∪FU .
If we let Xi = {g ∈ G | rk(U ∩ Ug) = i} for each integer i, then Xi is definable

for each i and we have FU = ∪rk(U)−1
i=1 {U ∩ Ug | g ∈ Xi}. Therefore there is an

integer f ∈ {1, · · · , rk(U) − 1} such that ∪{U ∩ Ug | g ∈ Xf} is a generic subset
of U . In the same way, we find some integers u and v such that, if Y = {g ∈
Xf | rk(NU (U ∩ Ug)) = u, rk(NG(U ∩ Ug)) = v}, then ∪{U ∩ Ug | g ∈ Y } is
generic in U .

• If C is abelian, we consider the definable subset X = Y of G and the
uniformly definable family F = {U ∩ Ug | g ∈ X} of subgroups of U . In
particular, for each x ∈ NG(U) and each F ∈ F , we have Xx = X and
F x ∈ F .

• If C is not abelian, then C is contained in a unique maximal C-subgroup B
of G (Corollary 8.3), moreover B is a solvable Ṽ -group such that rmin(B) =
r (Proposition 8.2) and C = U is a homogeneous UK-subgroup (Fact 6.8).



34 CONJUGACY OF CARTER SUBGROUPS IN GROUPS OF FINITE MORLEY RANK

Hence, by Proposition 10.3, C ∩ (∪b∈B\NB(C)C
b) is a definable non generic

subset of C. Thus, if we consider X = {y ∈ Y | U ∩ Uy 6⊆ ∪b∈B\NB(C)C
b}

and the uniformly definable family F = {U ∩ Ug | g ∈ X} of subgroups of
U , the subset ∪F is generic in U . Moreover, for each x ∈ NG(U) and each
F ∈ F , we have x ∈ NG(B) by the unicity of B, so (∪b∈B\NB(C)C

b)x =
∪b∈B\NB(C)C

b and, consequently, Xx = X and F x ∈ F .
Now, F is a uniformly definable family of nontrivial proper subgroups of U such
that ∪F is generic in U and the set F = {U ∩ Ug | g ∈ X} can be indexed by an
interpretable set I such that each i ∈ I defines just one element of F = {Fi | i ∈
I}. Moreover, since U is a homogeneous Sylow UK-subgroup of G (Fact 3.13 and
Corollary 3.17), we have U = VK(U), so F = VK(F ) for each F ∈ F (Corollary
9.6). Also Lemma 10.4 shows that, for each F ∈ F , rk(FXK(F )) = f − u+ v and
rk(XK(F )) = v − u.

By Lemma 8.1 1. and 2., for each F ∈ F , NG(F )◦ is a solvable Ṽ -group and
rmin(NG(F )) = r, so Lemma 9.3 gives FXK(F ) = F ×XK(F ) and UK(XK(F )) =
1, in particular F is the unique Sylow UK-subgroup of FXK(F ).

(1) For each F ∈ F , the following set is non generic in F :

AF = F ∩ (
⋃

E∈F , g∈G, Eg 6=F

Eg).

We suppose toward a contradiction that F ∈ F is a counterexample to (1). Since
Corollary 9.6 gives F ∩Eg = VK(F ∩Eg) for each E ∈ F and each g ∈ G, Theorem
10.5 says that C is a nonabelian UK-subgroup, and there are a solvable connected
definable subgroup B0 containing C and b ∈ B0 \ NB0(C) such that F ≤ Cb. By
the unicity of B, we have B0 ≤ B and b ∈ B, and the choice of F in the nonabelian
case yields a contradiction.

(2) rk(I) = rk(U) − f and, for each generic subset J of I, ∪j∈JFj is generic
in U .

We consider UF = F \ AF for each F ∈ F . For each F ∈ F , (1) provides
rk(UF ) = f . Since, for each (E, F ) ∈ F ×F , we have UE ∩ UF = ∅ if E 6= F ,
we obtain rk(∪j∈JUFj

) = rk(J) + f = rk(I) + f and rk(∪i∈I\JUFi
) = rk(I \ J) +

f . On the other hand, (1) gives rk(AF ) < f for each F ∈ F , and we obtain
rk(∪F∈FAF ) ≤ rk(I) + (f − 1), so we find

rk(U) = max{rk(∪j∈JUFj
), rk(∪i∈I\JUFi

), rk(∪F∈FAF )}
= rk(∪j∈JUFj )
= rk(I) + f.

Since rk(∪j∈JUFj
) ≤ rk(∪j∈JFj) ≤ rk(U), the preceding equality provides (2).

(3) For each F ∈ F , the following set is non generic in FXF (F ):

FXK(F ) ∩ (
⋃

E∈F , g∈G, Eg 6=F

(EXK(E))g).

Suppose toward a contradiction that F ∈ F is a counterexample to (3). Since, for
each E ∈ F , E is the unique Sylow UK-subgroup of EXK(E), for each g ∈ G and
each E ∈ F , we have FXK(F ) ∩ (EXK(E))g = (F ∩ Eg) × (XK(F ) ∩XK(E)g),
in particular AF is generic in F , contradicting (1).
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(4) For any generic subset J of I,
⋃

j∈J, g∈G
(FjXK(Fj))g is generic in G, and

there is a generic subset J0 of J such that
⋃

j∈J0, g∈G
XK(Fj)g is not generic in G.

Let H = {F gj | j ∈ J, g ∈ G} and
α : J ×G −→ H

(j, g) 7−→ F gj
. For each E ∈ H ,

there exists g ∈ G and j ∈ J such that F gj = E and we have rk{h ∈ G | Fhj =
E} = rk(NG(Fj)) = v. Moreover there exists an integer w such that H0 = {E ∈
H | rk(α−1(E)) = w} is a definable generic subset of H . Thus, if for a fixed
j0 ∈ J there exists h ∈ G such that Fhj0 ∈H0, then for each g ∈ G we have

rk(α−1(F gj0)) = rk({j ∈ J | ∃k ∈ G, F kj = Fj0}) + v.

Since this equality holds for every g ∈ G, we obtain rk(α−1(F gj0)) = rk(α−1(Fhj0)) =
w, and F gj0 ∈ H0 for every g ∈ G. In other words, there exists a generic subset J0

of J such that, for every (j0, g) ∈ J0 ×G, F gj0) is an element of H0, and, without
loss of generality, we may assume J = J0 and H = H0.

Consequently we have rk(J) + rk(G) − w = rk(H ) and, by (2), rk(H ) =
rk(U)− f + rk(G)− w. On the other hand, by Proposition 10.2, for each E ∈H
there is (j0, g) ∈ J ×G such that E = F gj0 and we have

rk{j ∈ J | ∃h ∈ G, Fhj = E} = rk{j ∈ J | ∃h ∈ NG(C), Fhj = Fj0}
≤ rk(NG(C))− rk(NNG(C)(Fj0))
= rk(C)− rk(NC(Fj0)).

So we obtain w ≤ (rk(C)− rk(NC(Fj0))) + v. Also, by Fact 3.13, we find rk(C)−
rk(NC(Fj0)) = rk(U) − rk(NU (Fj0)) = rk(U) − u, therefore w ≤ v + rk(U) − u.
Henceforth, by (3) and since rk(FXK(F )) = f − u+ v and rk(XK(F )) = v− u for
each F ∈ F , we obtain

rk(
⋃

j∈J, g∈G
(FjXK(Fj))g) ≥ rk(H ) + (f − u+ v)

= rk(H )− rk(U) + f + (v + rk(U)− u)
≥ rk(H )− rk(U) + f + w
= rk(G).

This proves the genericity of (4), and it shows that w = v + rk(U)− u, so

rk(
⋃

j∈J, g∈G
XK(Fj)g) ≤ rk(H ) + (v − u)

= (rk(U)− f + rk(G)− w) + (v − u)
= (rk(U)− f + rk(G)− (v + rk(U)− u)) + (v − u)
= rk(G)− f.

(5) For each definable generic subset G∗ of G, there exist x ∈ G∗ and g ∈ G such
that UK(d(x)) is nontrivial and contained in UK(Cg).

We consider J0 as in (4). Then the subset W0 =
⋃

j∈J0, g∈G
XK(Fj)g is not

generic in G, and W1 = ∪j∈J0, g∈G(FjXK(Fj))g is generic in G, so there exists
x ∈ G∗ ∩ (W1 \ W0). Then UL(d(x)) is contained in W0 for each interpretable
field L 6= K of characteristic zero. Since there exist F ∈ F and g ∈ G such that
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x ∈ (FXK(F ))g, Fact 3.13 shows that UK(d(x)) is nontrivial. But F g is the unique
Sylow UK-subgroup of (FXK(F ))g, hence we have UK(d(x)) ≤ F g ≤ UK(Cg). �

11. Conclusion

In this section, we show that Theorem 1.5 holds for any C∗-group (Theorems
11.1 and 11.3). Consequently, by Theorem 4.14, we obtain Theorem 1.5.

Theorem 11.1. – C is a homogeneous UK-subgroup.

Proof – We assume toward a contradiction that C is not a homogeneous UK-
subgroup. By Fact 6.8, C is abelian. We consider a uniformly definable family F
of subgroups of UK(C) as in Theorem 10.6, and the subgroup

E = 〈UL(C) | L 6= K is an interpretable field of characteristic 0〉.
By Fact 3.13, we have C = UK(C)×E, in particular E is nontrivial and NG(E)◦ is a
C-subgroup. Moreover, by Lemma 8.1 1. and 3., NG(E)◦ is a solvable Ṽ -subgroup
and UK(C) is a Sylow UK-subgroup of NG(E)◦. Let J = {j ∈ I | ∀ g ∈ NG(E)◦ \
NG(UK(C)), Fj � UK(C)g}. Since ∪i∈IFi is generic in UK(C), Proposition 10.3
shows that ∪j∈JFj is generic in UK(C) too, so we have rk(UK(C)) ≤ rk(J) + f ≤
rk(I) + f = rk(UK(C)). Thus rk(J) = rk(I) and J is generic in I, therefore⋃
j∈J, g∈G

(FjXK(Fj))g is generic in G (Theorem 10.6).

We show that, for each j ∈ J , FjE is a Carter subgroup of FjXK(Fj). Let
j ∈ J . For each g ∈ NNG(E)◦(Fj), Fj is contained in UK(C)g, consequently
NNG(E)◦(Fj) normalizes UK(C) by the choice of J . Thus, since NG(FjE)◦ ≤
NG(Fj) ∩ NG(E)◦ = NNG(E)◦(Fj), the subgroup NFjXK(Fj)(FjE)◦ normalizes
UK(C)E = C, and NFjXK(Fj)(FjE)◦ is contained in C ∩ FjXK(Fj) = Fj(C ∩
XK(Fj)). By Lemma 9.3, we have UK(XK(Fj)) = 1, so UK(C ∩XK(Fj)) = 1 and
C ∩ XK(Fj) is contained in E (Fact 3.13). This proves that NFjXK(Fj)(FjE)◦ is
contained in FjE and, since E ≤ XK(Fj), FjE is a Carter subgroup of FjXK(Fj).

We consider X = ∪g∈GCg. Then the subset Y = (
⋃

j∈J, g∈G
(FjXK(Fj))g) \X is

generic G. On the other hand, the preceding paragraph and Fact 2.12 show that,
for each j ∈ J , we have rk(FjXK(Fj) \X) < rk(FjXK(Fj)) = f − u + v. Hence,
since NG(FjXK(Fj)) = NG(Fj) for each j ∈ J , we have

rk(Y ) < (f − u+ v) + rk(J) + (rk(G)− v)
= (f − u+ v) + rk(I) + (rk(G)− v)
= (f − u+ v) + (rk(UK(C))− f) + (rk(G)− v)
= (f − u+ v) + (u− f) + (rk(G)− v)
= rk(G),

which contradicts the genericity of Y . �

Lemma 11.2. – Let H be a nontrivial definable subgroup of UK(C) and suppose
H = VK(H). Then NUK(C)(H) is a Sylow U0,r-subgroup of NG(H).

Proof – Let N = NC(H). By Theorem 11.1, C is a homogeneous UK-subgroup,
in particular C = UK(C) and N is a UK-subgroup of NG(H). Moreover, since
rk(K) = r, N is a U0,r-subgroup and there is a Sylow U0,r-subgroup S of NG(H)
containing N . By Proposition 8.4, UK(S) is a homogeneous UK-subgroup, and
Lemma 9.3 yields UK(S)∩XK(H) = 1. Then Lemma 10.4 shows that N = UK(S).
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Let Z = Z(C). Since C is a nontrivial homogeneous UK-subgroup, Z is a
nontrivial UK-subgroup. Since Z is contained in N = NC(H), N centralizes Z,
and S centralizes Z too (Fact 3.10). Hence CG(Z)◦ is a C-subgroup containing S
and C. By Lemma 4.9 and Fact 3.4, there exist c ∈ CG(Z)◦ such that Sc ≤ C, in
particular S is a UK-subgroup and S = UK(S) = N . Consequently N is a Sylow
U0,r-subgroup of NG(H). �

Theorem 11.3. – G has no generous Carter subgroup, and the divisible Carter
subgroups of G are conjugate.

Proof – We assume toward a contradiction that G has a generous Carter sub-
group E. We consider a uniformly definable family F of subgroups of UK(C) as in
Theorem 10.6. Then there exist x ∈ E and g ∈ G such that UK(d(x)) is nontrivial
and contained in UK(Cg), and Theorem 8.5 provides a contradiction.

Let D be a divisible Carter subgroup of G. We show that C and D are conjugate.
By the preceding paragraph, D is non generous, and Proposition 4.7 shows that
D is torsion-free, and has no nontrivial pseudo-torus. By Theorem 11.1, there is
an interpretable field L of characteristic zero such that D is a homogeneous UL-
subgroup.

We consider a uniformly definable family F = {Fi | i ∈ I} of nontrivial sub-
groups of UK(C) as in Theorem 10.6. Then ∪i∈I, g∈G(FiXK(Fi))g is generic in
G, and Theorem 10.6 applied to D yields (i, g) ∈ I × G and x ∈ (FiXK(Fi))g

such that UL(d(x)) is a nontrivial subgroup of D. We may assume g = 1. Now
Y = FiXK(Fi) is a C-subgroup of G such that Y ∩UK(C) 6= 1 and Y ∩UL(D) 6= 1,
therefore Proposition 8.2 says that Y is solvable, and gives rmin(Y ) = r and
rmin(Y ) = rmin(D). This proves that rk(L) = rmin(D) = r, in particular UL(d(x))
is a nontrivial U0,r-subgroup of Y ≤ NG(Fi). Since NG(Fi)◦ is a C-group, it is solv-
able (Proposition 8.2), and Lemma 11.2 and Fact 3.4 yield h ∈ NG(Fi)◦ such that
UL(d(x))h ≤ NC(Fi) ≤ C, hence we have Dh ∩ C 6= 1. Now Theorem 8.5 shows
that C and D are conjugate. �
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