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Abstract. On the basis of the Klingler–Levy classification of finitely

generated modules over commutative noetherian rings we approach the

old problem of classifying finite commutative rings R with decidable

theory of modules. We prove that if R is (finite length) wild, then the

theory of all R-modules is undecidable, and verify decidability of this

theory for some classes of tame finite commutative rings.

1. Introduction

Let A be a finite universal algebra in a language consisting of finitely many

functional symbols and let V (A) denote the variety generated by A. As a far

reaching consequence of the theory of decidable locally finite varieties the

following result has been proved (see [17, p. 195, Corollary 14.2]). There is

an algorithm that produces from A a finite (associative) ring R such that the

theory of V (A) is decidable iff the theory TR of all R-modules is decidable.

Thus it appears to be important to classify finite rings with decidable (first

order) theory of modules. This open problem was included in [17, p. 194,

Problem 2] and then discussed at the beginning of [19]. Also [21, Chapter 17,

p. 350, Problem 1] treated it within the wider question of classifying all the

sufficiently recursive rings with a decidable theory of modules.

Indeed both [21, Chapter 17] and [19] are good accounts on what had

been known on decidability of modules over finite (more generally sufficiently

recursive countable) rings; not so much has happened since then. We will

slightly update their account in the case of finite rings and clarify how recent

developments could affect certain points of view.

The main conjecture is still the same as in [21, p. 332]: the theory of

all modules over a finite ring R is decidable if and only if the category of

finitely generated (hence finite) R-modules is tame. Unfortunately there is

no generally accepted definition of tameness for finite rings, therefore one
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should stick with an informal one. We say that R is tame (or rather finitely

generated tame) if one could ‘classify’ finitely generated R-modules, and R

is wild otherwise. On the other hand there is a precise definition for R to

be of finite representation type and one can prove (see [21, p. 333]) that in

this case the theory of all R-modules is decidable.

If R is a finite dimensional algebra over a (finite) field then we can bor-

row a standard definition of tameness from representation theory (see [31,

p. 290]). However it is not completely clear whether this definition corre-

sponds to the intuitive one, its model theoretic meaning is obscure, and it is

still unknown whether every finite dimensional algebra over a finite field is

tame or wild (Drozd [7] proved a tame-wild dichotomy for finite dimensional

algebras over algebraically closed fields).

Despite these drawbacks there is at least one advantage of using a func-

torial definition of wildness. Recall that a prototypical example of a wild

algebra is given by the free algebra k〈X, Y 〉 (or even by some of its finite

dimensional quotients) over a field k, and it is known that the theory of

k〈X, Y 〉-modules (where k is an effectively given field) is undecidable. It is

quite often possible to convert the existing proof of wildness of an algebra

(or ring) R into an interpretation of the theory of k〈X,Y 〉-modules within

the theory of R-modules showing that the latter is undecidable. Although

this approach has been successfully utilized for many classes of wild alge-

bras, the arguments still carry on ad hoc features and no general proof of

‘wildness implies undecidability’ has appeared yet. The best ‘uniform’ re-

sult is due to Prest [22]: if R is a strictly wild finite dimensional algebra (in

fact the assumptions are apparently weaker) then the theory of R-modules

interprets the theory of k〈X, Y 〉-modules.

Concerning the second part of the conjecture — ‘tameness implies decid-

ability’ for modules over finite rings — recent advances are quite modest.

As follows from Baur [4] the theory of all quadruples of vector spaces over

a finite (or sufficiently recursive countable) field is decidable. This implies

that the theory of modules over the finite dimensional algebra kD̃4 (over an

effectively given field k) is decidable. This algebra represents a well under-

stood class of hereditary finite dimensional algebras over a field k. If k is

effectively given and A is the path algebra of a Euclidean or Dynkin quiver,

the proof of decidability of the theory of all A-modules (via Ziegler spec-

trum and pp-interpretations) was outlined by Prest [20] and was eventually

carried through by Geisler [10]. For instance, if k is algebraically closed,
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then every finite dimensional hereditary algebra A over k is a path algebra

of a quiver without relations, and (using known results on wild hereditary

finite dimensional algebras) one concludes (see [21, Theorem 17.22]) that

the theory of A-modules is decidable iff A is tame.

If k is not algebraically closed, then (see [6]) there are more cases to

consider, and Geisler’s long proof is difficult to generalize. For the Kronecker

algebra kÃ1 below we will give a different proof of decidability based on a

very clear description of the Ziegler topology in [23] and [30]. However some

unexpected complications will make it quite lengthy.

Switching from algebras to general (finite) rings could also add complexity

— the proof of the reduction from finite rings to finite dimensional algebras

in [21, p. 345–346] appears to be incomplete. Thus our variant of the proof

of decidability of modules over some classes of finite rings will also overcome

this difficulty.

The situation for more complex classes of tame finite dimensional algebras

is even less satisfactory. Indeed the progress on decidability of modules

was limited to very few cases (for some classes of domestic string algebras

described in [5], the decidability should follow from the description of the

Ziegler topology).

To sum up, the conjecture that the theory of all modules over a (finite)

ring R is decidable iff R is tame definitely still is consistent with what is

known, but needs to be tested on a wider range of examples.

In this paper we investigate decidability of the theory of modules over

finite commutative rings. One reduction is easy: every finite commutative

ring R is a finite direct sum of local rings, therefore we may assume that R

is local. A crucial ingredient for investigating in this case is the voluminous

Klingler–Levy (KL for short) investigation of finitely generated modules over

commutative noetherian rings ([15] and [16] will be enough for our purposes)

where the tame-wild dichotomy acquires a very precise meaning.

Suppose that R is a local commutative noetherian ring. Then [15, 16]

show that either R has an artinian triad or Drozd ring as a homomorphic

image, or R itself is a homomorphic image of a local Dedekind-like ring or

is isomorphic to a Klein ring (see Section 3 for unexplained terminology).

Furthermore in the former case R is wild (or rather finite length wild) where

the term has precise meaning similar to the one in representation theory. On

the other hand, with one small exception, in the latter case R is (informally)
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tame — [16] provides a complete list of indecomposable finitely generated R-

modules. When R is finite, even this small deficiency in the KL-classification

disappears, therefore we have a clear borderline between the wild and tame

cases.

Here is the plan of our paper. We will recall in Section 2 the main facts

about decidability of modules, and we will summarize in Section 3 the crucial

points of the KL-analysis of modules over commutative noetherian rings.

After that we will deal with our main results. They are two-fold. Firstly

we prove that wildness (as it is defined in [15]) implies undecidability for

modules over a finite commutative ring. As we have already mentioned there

are two cases to consider here. If R is an artinian triad the undecidability of

the theory of all R-modules has been known (at least in principle —see [14,

Proposition 8.69 and Example 8.37]). To prove undecidability for modules

over Drozd rings we employ a variant (see [15, Section 4]) of Ringel’s proof of

wildness of the category of finite dimensional modules over Drozd algebras.

With some effort we will extract from this proof an interpretation of the

theory of k〈X, Y 〉-modules (where k is the residue field of R) in the theory

of modules over any Drozd ring R showing that the latter is undecidable.

Secondly we tackle in Sections 5–9 one tame case in the KL-classification.

Namely we prove that the theory of all modules over a (finite commutative)

Klein ring is decidable. As it is customary nowadays we will exploit an ap-

proach to decidability through the Ziegler spectrum (see [20] for a detailed

description of this approach). Thus to investigate decidability we have to

classify the points of the Ziegler spectrum of a Klein ring (that is, indecom-

posable pure-injective modules) and also the topology of this space. The

description of points follows from the known classification of indecompos-

able pure-injective kÃ1-modules by applying reduction modulo the radical

(see [14, p. 211] for the latter). The basis of open sets for the Ziegler topology

can be similarly extracted from general results by Prest [23] and Ringel [30].

Unfortunately their description of the topology is not of the form that is

required to prove decidability. Thus we will spend a great amount of time

(and space) to overcome this difficulty. In detail, Section 5 will state the

main decidability result as Theorem 5.1 and give the main steps of this

proof. Section 6 illustrates the reduction from Klein rings to the Kronecker

algebra kÃ1, and Section 7 provides the aforementioned description of the

Ziegler spectrum of kÃ1. Section 8 transfers this analysis to an arbitrary

Klein ring R via a suitable homeomorphism from the Ziegler spectrum of
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R to a large clopen subset of the spectrum of kÃ1 (actually consisting of

all but one points). On this basis we will eventually show in Section 9 the

decidability result for modules over finite Klein rings.

Finally we will briefly discuss in Section 10 decidability for the only re-

maining case of the KL-classification; in our setting this concerns finite fac-

tors of (complete local) Dedekind-like rings. It can be derived from general

structure theory (see [16]) that the decidability question can be reduced

to the case when R is a pullback of a direct sum of (at most) two finite

valuation rings and a field (see Section 10 for precise description). A typ-

ical representative of this family is given by a Gelfand–Ponomarev algebra

G2,3(k) = k[X,Y : X2 = Y 3 = XY = 0] (k is a finite field). According

to the aforementioned conjecture, the theory of G2,3(k)-modules has to be

decidable, but we have very little to say (at least in this paper) to support

it even for this particular algebra.

Because the main targets of this paper are logicians and experts in gen-

eral (including commutative) ring and module theory and we can expect

that their knowledge of representation theory might be sparse, we will be

very scrupulous in explaining some instances of representations of hereditary

finite dimensional algebras, that are certainly well known to experts. On

the other hand those experts may find in this paper a new encouragement

in applying representation theory to decidability of modules.

Before concluding this section let us introduce some notation that will

be useful later. For any commutative ring R, mod-R denotes the class of

finitely generated R-modules; LR is the first order language of R-modules

(as described, for instance, in [21, p. 2]) and TR, as said, their first order

theory.

2. Decidability. General Discussion

Informally speaking, a theory T in an effectively given countable first

order language L is decidable iff there is an algorithm producing for each

sentence σ of L (as an input) the answer whether σ ∈ T or not (as an

output), and undecidable otherwise. One can express this in a rigorous

way via Church’s Thesis by saying that T is decidable iff the set of Gödel

numbers of its theorems is recursive, and undecidable otherwise (see [25] for

a discussion of this point and precise definitions).

When T is given by an effective (that is, recursively enumerable) set of

axioms, then by applying deductions we can effectively produce a list of
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theorems of T , and thus (see again [25], or directly [21, Section 17.3]) T is

decidable iff one can effectively produce a list of non-theorems of T , that

is if also the complement of T is recursively enumerable. Taking negations

this is the same as for every sentence σ in L to answer (uniformly) the

question whether σ is true in some model of T . Of course if T is complete

this difficulty disappears (hence every recursively axiomatizable complete

theory is decidable), but in this paper we will mostly deal with incomplete

theories.

In fact, we are going to consider the first order theory TR of modules over

a finite ring R. Of course, we can assume that R is given by a list of its

elements 0, 1, r2, . . . , rn such that the operations +,−,× can be executed

effectively, more generally that R is sufficiently recursive in the sense of

[21, Section 17.1] and consequently that the decision problem of TR makes

sense. Furthermore TR is recursively (indeed finitely) axiomatizable, and

so to prove that TR is decidable we have to list effectively the sentences in

LR which are true in some R-module. There is an elaborate way to do this

using the Ziegler spectrum. This method was introduced by Ziegler [33] and

developed by Prest (see [20]). But first we have to give some definitions.

A positive-primitive formula (pp-formula) ϕ(x̄) in the free variables x̄ =

(x1, . . . , xn) is an LR-formula of the form ∃ ȳ (ȳA = x̄B), where ȳ = (y1, . . . , yk)

is a tuple of bounded variables, A is a k × l and B is an n × l matrix

over R. If M is a module and m = (m1, . . . , mn) is a tuple of elements

of M , then we write M |= ϕ(m), and we say that M satisfies ϕ(m), if

there is a tuple n̄ = (n1, . . . , nk) in Mk such that n̄A = mB. The set

ϕ(M) = {m ∈ Mn | M |= ϕ(m)} is easily seen to be a subgroup of the

abelian group Mn (and is called the pp-subgroup defined by ϕ). Moreover

ϕ(M) is a submodule of M over the ring S = End(M) of R-endomorphisms

of M (via the diagonal action of S); for a commutative R, ϕ(M) is a sub-

module of M also over R. For instance if r ∈ R, then r | x .= ∃ y (yr = x) is

a pp-formula such that (r | x)(M) = Mr for any R-module M .

For every integer n > 0, the pp-formulae ϕ(x̄) in n free variables x̄ (more

precisely their classes with respect to the equivalence relation identifying

two of them if and only if they define the same subgroup in each R-module

M) form a modular lattice. The underlying order relation is defined as

follows: for ϕ(x̄) and ψ(x̄) two (equivalence classes of ) pp-formulae, ψ(x̄) ≤
ϕ(x̄) if and only if ψ(M) ⊆ ϕ(M) for every R-module M , and hence if

and only if ψ(x̄) implies ϕ(x̄) in TR; accordingly ψ(x̄) < ϕ(x̄) means that
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ψ(M) ⊆ ϕ(M) for every R-module M but ψ(M) 6= ϕ(M) for some R-

module M . The meet of two pp-formulae ϕ(x̄) and ψ(x̄) is (the class of)

their conjunction ϕ(x̄)∧ψ(x̄), while their join is (the class of) a pp-formula

defining in every R-module M the sum ϕ(M) + ψ(M) (and is consequently

denoted by ϕ(x̄) + ψ(x̄)).

An inclusion M ⊆ N of R-modules is said to be pure if for every m ∈ M

and every pp-formula ϕ(x̄), from N |= ϕ(m) it follows that M |= ϕ(m). A

module M is pure-injective if it is injective with respect to pure embeddings.

For instance every injective module is pure-injective, and so is every finite

module over a finite ring.

The Ziegler spectrum ZgR of a ring R is a topological space whose points

are indecomposable pure-injective modules. The basis of open neighbor-

hoods for Ziegler topology is given by the following sets (ϕ/ψ) = {M ∈
ZgR | ϕ(M)/(ϕ ∧ ψ)(M) 6= 0}, where ϕ and ψ are pp-formulae in the same

number of free variables (actually pp-formulae with exactly one free vari-

able suffices, see [21, Chapter 4]). By [33, Theorem 4.9] with respect to this

topology ZgR is a compact space.

If ϕ and ψ are pp-formulae and M is an R-module then Inv(M, ϕ, ψ)

denotes the cardinality of the quotient group ϕ(M)/(ϕ ∧ ψ)(M) if it is

finite, and ∞ otherwise. Clearly for every positive integer n the condition

Inv(M, ϕ,ψ) ≥ n can be expressed by a ∀∃-sentence Inv(−, ϕ, ψ) ≥ n and

consequently is preserved under elementary equivalence. Furthermore it

is a consequence of the theorem of Baur and Monk (see [33, Cor. 1.5])

that every complete theory of modules can be axiomatized by sentences

Inv(−, ϕ, ψ) ≥ n or their negations. Accordingly these sentences and their

finite Boolean combinations are called invariant statements and, for every

R-module M , the corresponding values Inv(M, ϕ,ψ) are called elementary

invariants (as they characterize the elementary equivalence class of M).

Our main interest in the Ziegler spectrum is the following remarkable

result (see [33, Thm. 9.4] or [21, Thm. 17.12]) which we adapt to finite

rings.

Fact 2.1. Let R be a finite ring with a countable Ziegler spectrum. Suppose

further that there is an effective enumeration N1, N2, . . . of points of ZgR

and an effective enumeration of a basis (ϕ1/ψ1), (ϕ2/ψ2), . . . of open sets

for Ziegler topology. Assume also that Inv(Ni, ϕj , ψj) can be effectively

calculated for each i and j. Then the theory of R-modules is decidable.
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Note that over a finite ring R an effective list of a basis for Ziegler topol-

ogy is trivial to produce. Namely make a effective list of all pp-formulae

ϕ1, ϕ2, . . . (say in one variable, which suffices — see [21, Chapter 4]) and

then rearrange it into a list of pp-pairs (ϕi/ϕj) such that ϕi does not imply

ϕj (hence this pair is non-trivial), where the last condition can be decided

effectively. Unfortunately this brute force approach is not very effective —

the main difficulty of calculating elementary invariants will become enor-

mous; so the main point is to choose open basis for the Ziegler topology

with a great care.

It could happen that a finite ring R has an uncountable Ziegler spec-

trum so the above result is not applicable — this is the case for Gelfand–

Ponomarev algebras Gn,m(k) = k[X, Y : Xn = Y m = XY = 0] (n, m ≥ 2,

n + m ≥ 5) over a finite field k — see [24]. But to investigate decidability

in this paper Fact 2.1 is all what we need.

Having fixed a means to prove decidability we turn now to undecidability.

The main tool to prove undecidability of theories of modules is via inter-

pretations. For a general definition of interpretation of classes of algebraic

structures see [17, pp. 9–10], or also [25]. The main point for us will be the

following. If one elementary class of algebraic structures interprets another

elementary class with undecidable theory, then the the theory of the former

class is also undecidable. We will use two particular instances of this con-

struction (therefore two modeling examples of classes with an undecidable

theory).

Recall that for every field k, k〈X, Y 〉 denotes the free algebra in two

noncommuting variables over k. It is well known that, if k is sufficiently re-

cursive, in particular finite, the theory of all k〈X, Y 〉-modules is undecidable

(see [21, Thm. 17.13]). To interpret this theory in the theory of all modules

over a ring R it suffices to find pp-formulas ϕ(ū), ψ(ū) and ϕX(ū, v̄), ϕY (ū, v̄)

such that the following holds. For every k〈X, Y 〉-module M there exists an

R-module N such that the quotient group N ′ = ϕ(N)/(ϕ ∧ ψ)(N) inherits

a structure of k-vector space, ϕX and ϕY define an action (of X and Y ) on

N ′ and, equipped with these actions, N ′ is isomorphic to M as a k〈X, Y 〉-
module. Thus to prove undecidability of the theory of R-modules it suffices

to interpret the theory of k〈X,Y 〉-modules in the theory of R-modules in

the just described (that is, pp-definable) way.

Another modeling example for undecidability is given by (abelian) struc-

tures (V, W, f), where W ⊆ V are vector spaces over a field k, W is a
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subspace of V and f is a (k-linear) endomorphism of V . Again (see [21,

Corollary 17.7]) if k is sufficiently recursive, then the theory of the class of

these structures is undecidable. To interpret this class in the theory of R-

modules it suffices to find pp-formulae ϕV (ū), ϕW (v̄) and ϕf (ū, v̄) such that

the following holds. For every triple (V, W, f) there is an R-module N such

that ϕW (N) ⊆ ϕV (N) are k-vector spaces, ϕf defines a k-linear action f̄ on

ϕV (N) and with respect to this action the structure (ϕV (N), ϕW (N), f̄) is

isomorphic to (V, W, f). So the theory of triples (V, W, f) is interpreted in

TR, and even in a pp-definable way.

This is almost all we will need from logic (or recursion theory) to discuss

decidability. As we will see the remaining part is purely algebraic. Indeed

we are in a position to make the first (well known) reduction. If R is a finite

commutative ring, then it is a (finite) direct sum of indecomposable, hence

local rings. The following remark shows that decidability of the theory of

R-modules can be decided componentwise.

Remark 2.2. Let R = R1⊕· · ·⊕Rn be a decomposition of a (finite commu-

tative) ring R into a direct sum of local rings. Then the theory of R-modules

is decidable if and only if for each i the theory of all Ri-modules is decidable.

Proof. The direct product is a very particular case of a generalized product

as it is defined in Feferman and Vaught [8, Section 2]. The result follows

immediately from [8, Theorem 5.4]. ¤

3. Klingler–Levy classification

In this section we summarize what we need for this paper from the re-

markable KL-classification (see [15], [16]) of finitely generated modules over

commutative noetherian rings. By Remark 2.2 we may assume that R is

a finite local commutative ring. But let us momentarily refer to the wider

setting the KL-classification applies to, that is, to a local commutative noe-

therian ring R (for our purposes — see below — we may additionally assume

that R is complete). Let J denote the Jacobson radical (that is, the unique

maximal ideal) of R and let k = R/J be its residue field (again for our pur-

poses we may assume that k is finite). If M is a finitely generated R-module

then µR(M) will denote the minimal number of generators for M , hence (by

Nakayama lemma) the dimension of M/MJ as a k-vector space.

We say that R is an artinian triad if µR(J) = 3 and J2 = 0. Thus every

artinian triad is an artinian ring. A typical example of an artinian triad is
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given by a finite dimensional algebra k[X, Y, Z : X2 = Y 2 = Z2 = XY =

XZ = Y Z = 0].

Further R is said to be a Drozd ring if µR(J) = µR(J2) = 2, J3 = 0 and

x2 = 0 for some x ∈ J \ J2. Again any Drozd ring is artinian. A prototype

of Drozd rings is the Drozd algebra k[X,Y : X2 = Y 3 = XY 2 = 0]. A

constructive description of Drozd rings as special subrings of principal ideal

domains can be found in [15, Thm. 6.5].

As it will be explained in few lines artinian triads and Drozd rings are

‘minimal wild’. In this perspective their counterpart are the so-called ‘max-

imal tame’ rings, that is, Klein rings and Dedekind-like rings.

R is a Klein ring if µR(J) = 2, µR(J2) = 1, J3 = 0 and x2 = 0 for every

x ∈ J . A typical example of Klein ring is given by the group algebra kG,

where G is the Klein group and k is a field of characteristic 2.

Finally R is said to be a Dedekind-like ring if R is reduced (that is has no

nilpotent elements) and, if Γ is the normalization of R (that is its integral

closure in the ring of quotients), then Γ is a direct sum of (at most two)

principal ideal domains, µR(Γ) = 2 and J equals the Jacobson radical of Γ.

If R is complete then (see [15, p. 351] this implies that either

i) Γ/J ∼= k that is, R = Γ is a discrete valuation domain; or

ii) Γ/J is a 2-dimensional extension of k in which case R is called unsplit ;

or

iii) Γ/J ∼= k×k and Γ is a direct sum of two noetherian valuation domains

in which case R is said to be strictly split.

For various examples of Dedekind-like rings see [16, Section 12]. Let

us mention among them the algebras k[X, Y : XY = 0] (whose quotients

include Gelfand–Ponomarev algebras) — they are strictly split Dedekind-

like rings.

What will be essential for us is the following adaptation of Klingler–Levy

dichotomy theorem (see [15, Theorem 2.10]). Note that in our case k = R/J

is finite, hence Γ/J as in ii) is a separable extension of k. This allows us

to avoid the only unsettled case in KL-classification, the one just regarding

unsplit rings and inseparable extensions (see a discussion in [15, p. 357]).

Theorem 3.1. (Klingler–Levy dichotomy) Suppose that R is a finite local

commutative ring. Then exactly one of the following holds.

1) R projects itself onto an artinian triad or a Drozd ring, or
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2) R is either a Klein ring or a (proper) homomorphic image of some

strictly split or unsplit complete local Dedekind-like ring with finite residue

field.

Furthermore in case 1) the category of finite R-modules is wild, but in

case 2) it is possible to classify finite R-modules.

We do not need a precise definition of wildness (see [15, Definition 2.2]) in

this paper, but rather some intermediate steps in the proof of that. Neither

classification of finite R-modules in case 2) will play an essential role in this

paper. However all this may be needed for the concluding discussion in

Section 10.

Note that Theorem 3.1 explains why artinian triads and Drozd rings can

be meant as minimal wild, and Klein rings and Dedekind-like rings as max-

imal tame.

4. Undecidability

In this section we prove that the wild case in the KL analysis leads to

undecidability. Namely if R is a finite commutative local ring that projects

itself onto an artinian triad or a Drozd ring then the theory of all R-modules

is undecidable. This confirms the ‘wild implies undecidable’ conjecture for

finite commutative rings. Clearly it suffices to prove undecidability of the

theory of modules for artinian triads and Drozd rings.

The case of an artinian triad has been already tackled. Namely the theory

of R-modules interprets the theory of k〈X, Y 〉-modules in a pp-definable way.

This is implicitly shown in [14, Proposition 8.69 and Example 8.37], but see

also [11, Lemma 3] which in its turn refers to [32, Theorem 1].

Proposition 4.1. Let R be an artinian triad and let k = R/J be the residue

field of R. Then the theory of R-modules interprets in a pp-definable way

the theory of k〈X, Y 〉-modules. Consequently, if R is finite, then the theory

of R-modules is undecidable.

Now let us treat Drozd rings. Suppose that R is a Drozd ring with

Jacobson radical J and let k = R/J be its residue field. By the definition

of Drozd ring there is x ∈ J \J2 such that x2 = 0. It follows that J = 〈x, y〉
is generated by x and y for some y, therefore J2 = 〈xy, y2〉. Consequently

every element a ∈ J can be (nonuniquely) written as

(1) a = a(x)x + a(y)y + a(xy)xy + a(y2)y2 ,
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where a(x), a(y), a(xy) and a(y2) are units in R or zero.

Theorem 4.2. Let R be a Drozd ring with the Jacobson radical J and

residue field k = R/J . The theory of R-modules interprets in a pp-definable

way the class (V, W, f), where V is a k-vector space, W is a subspace of V ,

and f is an endomorphism of V . Consequently if R is finite then the theory

of all R-modules is undecidable.

Proof. The latter claim is a direct consequence of the former (see a discussion

in Section 2). So let us show how to interpret in R-modules the triples

(V, W, f). We rearrange here the approach pursued for R-modules of finite

length in [15, Section 4] (see also [26, p. 295]).

Let J = 〈x, y〉 as explained before. If r ∈ R then by ry we denote the class

r + Ry in the factor ring R/Ry; similarly rxy denotes the class r + Rxy in

the quotient R/Rxy. The following statement and diagram are taken from

[15, Lemma 4.3].

Fact 4.3. 1) All nonzero monomials x, xy, xxy, . . . in diagram below are

nonzero.

2) soc(R1y) = Rxy, soc(R1xy) = Rxxy⊕Ry2
xy and soc(R) = Rxy⊕Ry2 =

J2.

3) Rx ∩Ry = Rxy and Rxxy ∩Ryxy = 0.

4) Rx ∼= Ryxy as R-modules via the multiplication map cx → cyxy.

R1y

¥¥
¥¥

¥
R1xy

¡¡
¡¡

¡¡
>>

>>
>>

R

§§
§§

§§
88

88
8

Rxy Rxxy Ryxy

==
==

=
Rx

88
88

88

∼=
mult

oo Ry

¨̈
¨̈

¨
99

99
9

Ry2
xy Rxy Ry2 .

Let us choose a k-basis of W and extend it to a k-basis of V . Thus

W = k(β), V = k(α)

for some cardinals β ≤ α. Construct an R-module M as follows. First form

the direct sum

N =
R(β)

R(β)y
⊕ R(α)

R(α)xy
⊕R(α)
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R(β)1y

~~
~~

~~
R(α)1xy

{{
{{

{{
CC

CC
CC

R(α)

¡¡
¡¡

¡¡
>>

>>
>>

R(β)xy R(α)xxy R(α)yxy

CC
CC

CC
R(α)x

>>
>>

>>

∼=
mult

oo R(α)y

¡¡
¡¡

¡¡
==

==
==

R(α)y2
xy R(α)xy R(α)y2

ι
________________________________________

OO

f

_____________________________________________________

OO

Figure 1

and put for simplicity R0 = R(β), R1 = R(α). Note that R0 embeds into

R1 in the natural way; for every a ∈ R0 let a′ denote its image via this

embedding (so the juxtaposition of a and a suitably long zero sequence).

Also note that R1/R1J is isomorphic to k(α) so to V as an R-module, and

hence as a k-vector space. Under this point of view, for c ∈ R1, c∗ ∈ R1 is

determined by the condition

f(c + R1J) = c∗ + R1J .

Now we want to make some identifications in N hence factor N by some

submodule N(0). To see this factorization clearly let us reproduce one more

diagram from [15, p. 368] (see Figure 1).

Thus we make the identifications shown by the 3 arrows on the diagram.

So let N(0) be a submodule of N generated by {axy − a′y2
xy | a ∈ R0},

{byxy − bx | b ∈ R1} and {cxxy − c∗y2 | c ∈ R1}. Thus a generic element of

N(0) is of the form

(2) (ax + R0y,−a′y2 + by + cx + R1xy,−bx− c∗y2)

with a ∈ R0, b, c ∈ R1.

Set M = N/N(0). Looking at the representation of elements of J in the

form (1) we may assume the following.
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(∗)

Each component ai, i < β of a and ci, i < α of c in N(0) is either zero

or invertible, and each component bi, i < α of b is either invertible

or of the form bi(y)y, where bi(y) ∈ R in its turn is either zero or

invertible.

Now we show that V , W and f can be recovered in M by some suitable

pp-formulae. More precisely, V lives in M as R1/R1J ∼= k(α) at the place

R(α)y2
xy (see Figure 1) and W as R0/R0J ∼= k(β) at the place R(β)xy (hence

W is identified with a subspace of V via ι).

Thus we define V by the following formula

ϕV (v) .= ∃u (uxy = 0 ∧ v = uy2) ,

while W is given by

ϕW (v) .= ∃u (uy = 0 ∧ v = ux) .

The definition of f is more complex.

ϕf (v, v̄) .= ∃u ū t (uxy = 0 ∧ v = uy2∧
∧ūxy = 0 ∧ v̄ = ūy2 ∧ tx = ūy ∧ ty2 = ux) .

To understand the definition of ϕf we suggest to look at the following

diagram.

u,ū

££
££

££
<<

<<
< t

©©
©©

©
66

66
6

ux ūy

IIIIIII tx
multoo ty

::
::

:

v̄=ūy2, v=uy2 ty2

f
_______________________________________________

OO

Thus we use t to ‘twist’ v via f to get v̄.

Here are the details of this interpretation. First let us deal with ϕV (v).

Let us calculate the kernel of xy in M , so the image of this kernel in y2 will

give us ϕV (M). Take an element of M , so the N(0) class of the triple in N

(d + R0y, e + R1xy, g)
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with d ∈ R0, e, g ∈ R1. Its image via xy is

(R0y, R1xy, gxy) ,

and it is zero in M if and only if it equals in N an element (2) from N(0)

(ax + R0y,−a′y2 + by + cx + R1xy,−bx− c∗y2) ,

where a ∈ R0 and b, c ∈ R1 satisfy (∗). Let us compare the elements of these

triples componentwise. Equating the first coordinates we obtain ax ∈ R0y.

If ai is a unit for some i < β, then aix ∈ Ry implies x ∈ Ry, whence J = Ry

is principal which is impossible for Drozd ring. By (∗) it follows that ai = 0

for any i, whence a itself is 0, as well as a′.
Now comparing the second coordinates we obtain by + cx ∈ R1xy, hence

biy + cix ∈ Rxy for each i < α. If bi is a unit then y ∈ Rx, a contradiction.

So by (∗) bi is of the form bi(y)y where bi(y) is either 0 or invertible, therefore

bi(y)y2 + cix ∈ Rxy. But then ci has to be 0 otherwise by (∗) ci invertible,

hence x ∈ 〈y2, xy〉 = J2, a contradiction. Because the sum of Ry2 and Rxy

is direct (see Fact 4.3), also bi(y) is zero. In conclusion b = c = 0 and hence

we can assume c∗ = 0 as well.

Equating the third coordinates we obtain gxy = 0. It follows that gixy =

0, hence gi ∈ J for each i < α. To summarize, the generic element in the

kernel of xy in M is the N(0)-class of a triple

(d + R0y, e + R1xy, g) ,

where no component of g ∈ R1 is a unit. Hence its image via y2 is the class

in M of

(R0y, ey2 + R1xy, 0) .

Conversely, every element of this form can be seen as the y2-image of the

N(0)-class of the triple (R0y, e + R1xy, 0) taken by xy to (R0y,R1xy, 0),

that is to zero.

Now observe that, for every e as before, ey2 ∈ R1xy iff e ∈ R1〈x, y〉 = R1J

whence the map

ey2 + R1xy 7→ e + R1J
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yields an isomorphism between {ey2+R1xy | e ∈ R1} and (R/J)(α) ∼= k(α) ∼=
V . In conclusion ϕV (v) defines in M a k-vector space R1/R1J isomorphic

to V .

Now let us consider W and ϕW (v). First we calculate the kernel of y

in M , so the image of this kernel in x will give us ϕW (M). Take a generic

element of M , so the N(0)-class of a triple (d+R0y, e+R1xy, g) with d ∈ R0

and e, g ∈ R1. It image via y

(3) (R0y, ey + R1xy, gy) .

is equal to 0 in M . Thus this element coincides in N with some element of

the form (2)

(ax + R0y,−a′y2 + by + cx + R1xy,−bx− c∗y2) ,

where a ∈ R0 and b, c ∈ R1 satisfy (∗). Let us compare this element with

element (3) componentwise. As above equating the first coordinates one

sees that a and a′ must be 0. Comparing the two remaining coordinates we

obtain for each i < α,

(a) −eiy + biy + cix ∈ Rxy and

(b) giy = −bix− c∗i y
2.

If ci is a unit then (a) implies x ∈ Ry, which is impossible. Otherwise by

(∗) ci = 0 for every i < α, hence c = 0 and then we may assume that c∗ = 0.

In particular c∗i = 0 for every i, hence (b) becomes giy = −bix. If bi

is invertible, this implies x ∈ Ry, a contradiction. Otherwise by (∗) again

bi = bi(y)y, where bi(y) is either zero or invertible, hence (b) can be writ-

ten as giy = −bi(y)xy. Since y /∈ Rxy we conclude that gi is not invert-

ible. Decomposing gi ∈ J as in (1) we obtain giy = gi(x)xy + gi(y)y2.

Thus gi(x)xy + gi(y)y2 = −bi(y)xy yields gi(y) = 0 (since y2 /∈ Rxy by

Lemma 4.3). Because each gi, i < α, is not invertible and gi(y) = 0 we

conclude that gix = 0, hence gx = 0.

Now (a) can be written as

−eiy + bi(y)y2 ∈ Rxy .

It follows that ei is not a unit hence (see representation (1)) eix ∈ Rxy

for every i < α and then ex ∈ Rxy. Thus the image in x of our generic

triple is
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(d + R0y, e + R1xy, g) · x = (dx + R0y, R1xy, 0) ,

which is equivalent in M to

(R0y,−d′y2 + R1xy, 0) .

Conversely every such element is an image in x of some element in the

kernel of y. Thus the set of N(0)-classes of these triples yields the subspace

W inside V isomorphic to R0/R0J ∼= k(β).

Finally let us deal with ϕf (v, v̄). We claim that this formula defines f

when V ∼= R1/R1J is recovered in M in the way shown before.

First we prove that any two elements v, v̄ ∈ V such that f(v) = v̄ satisfy

ϕf (v, v̄). We can write v = (R0y, ey2 + R1xy, 0), v̄ = (R0y, e∗y2 + R1xy, 0),

where

f(e + R1J) = e∗ + R1J .

Choose u = (R0y, e + R1xy, 0), ū = (R0y, e∗ + R1xy, 0), and put t =

(R0y, R1xy,−e∗). Clearly uxy = 0, uy2 = v and ūxy = 0, ūy2 = v̄ held in

N and consequently in M . It remains to check that tx = ūy and ty2 = ux.

Indeed

tx = (R0y,R1xy,−e∗x) and ūy = (R0y, e∗y + R1xy, 0)

represent the same class in M . Furthermore

ty2 = (R0y,R1xy,−e∗y2) and ux = (R0y, ex + R1xy, 0)

are equal in M because f(e + R1J) = e∗ + R1J .

Conversely, take two elements v, v̄ ∈ N such that their classes in M satisfy

ϕf (v, v̄). In particular there are u, ū ∈ M such that uxy = 0, uy2 = v and

ūxy = 0, ūy2 = v̄. By the first part of the proof (the description of the

kernel of xy)

u = (d + R0y, e + R1xy, g) and ū = (d̄ + R0y, ē + R1xy, ḡ)

for some d, d̄ ∈ R0, e, ē ∈ R1 and g, ḡ ∈ R1 such that no component of g and

ḡ is a unit. It follows that

v = (R0y, ey2 + R1xy, 0) and v̄ = (R0y, ēy2 + R1xy, 0) .
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Furthermore there exists t ∈ M such that ty2 = ux and tx = ūy. Suppose

that t = (r + R0y, s + R1xy, h) for some r ∈ R0 and s, h ∈ R1. Thus

ty2 = (R0y, sy2 + R1xy, hy2)

is equal in M to ux = (dx+R0y, ex+R1xy, gx) which clearly coincides with

(dx + R0y,R1xy, gx− e∗y2) .

Comparing ty2 with ux we obtain that, for some a ∈ R0 and b, c ∈ R1

satisfying (∗), the following holds

(a) dx− ax ∈ R0y,

(b) sy2 + a′y2 − by − cx ∈ R1xy, and

(c) hy2 = gx− e∗y2 − bx− c∗y2.

If some component of c is a unit, then (b) implies x ∈ Ry, a contradiction.

Otherwise by (∗) c = 0, therefore we can assume c∗ = 0 as well.

Recall that no component gi of g is a unit and then observe that in (c) gix

has the form gi(y)xy, where gi(y) is either 0 or invertible. Furthermore by

(c) again, no component of b is a unit, whence (∗) yields bi = bi(y)y where

bi(y) is either 0 or invertible. So in (c) for every i < α we have

hiy
2 = −e∗i y

2 + (gi(y)− bi(y))xy .

Since xy /∈ Ry2 we conclude that gi(y) − bi(y) is not a unit, therefore

(gi(y)− bi(y))xy = 0 for any i. In conclusion hy2 = −e∗y2.

Now let us examine the further equality tx = ūy in M . Note that

ūy = (R0y, ēy + R1xy, ḡy)

and tx = (rx+R0y, sx+R1xy, hx) which equals modulo N(0) (hence in M)

(rx + R0y, sx− hy + R1xy, 0) .

Comparing these triples, we get, for a suitable choice of a ∈ R0 and

b, c ∈ R1 satisfying (∗), the following.

(a′) rx− ax ∈ R0y,

(b′) sx− hy − ēy + a′y2 − by − cx ∈ R1xy,

(c′) ḡy = −bx− c∗y2.

As above, (c′) implies that no component bi of b can be a unit, hence

by (∗) bi = bi(y)y, where bi(y) is either 0 or a unit. Similarly by (b′) no

component of s− c in R is a unit, whence (s− c)x ∈ R1xy and (b′) becomes
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−hy − ēy + a′y2 − b(y)y2 ∈ R1xy ,

where b(y) = (bi(y))i<α. Multiply by y and get ēy2 = −hy2, hence

ēy2 = e∗y2 ,

in other words f(e + R1J) = ē + R1J , as claimed. ¤

At this point it is straightforward to deduce (from Proposition 4.1 and

Theorem 4.2) the following general result.

Corollary 4.4. Suppose R is a finite commutative ring that is wild in the

Klingler–Levy classification (that is, R projects itself onto an artinian triad

or a Drozd ring). Then the theory of all R-modules is undecidable.

5. Klein rings. The main result

The aim of the next five sections is to prove the following.

Theorem 5.1. Let R be a finite commutative Klein ring. Then the theory

of all R-modules is decidable.

Actually this result will be shown only in Section 9, but the intermediate

sections will prepare its proof and clarify several preliminaries.

First let us recall once again the definition of Klein ring (see Section 3):

A finite local commutative ring R with Jacobson radical J (and residue field

k = R/J) is said to be a Klein ring if J is 2-generated, J2 is a principal

ideal of R, J3 = 0 and x2 = 0 for every x ∈ J . In particular any Klein ring

is an artinian ring of length 4.

Furthermore, it is easily shown (see [15, Lemma 2.9]) that the residue

field of R has characteristic 2, and R itself has characteristic 2 or 4. As we

have already mentioned, a typical example of a Klein ring is given by the

group ring kG, where k is a field of characteristic 2 (finite in our case) and

G = C(2)2 is the Klein group. Another example, which is not an algebra

over a field, is the ring Z/4Z[x : x2 = 0].

It follows from [16, Theorem 1.13] that every Klein ring is quasi-Frobenius

with the socle J2, therefore [14, Proposition 8.69] yields that every R-module

is a direct sum of a free R-module and a module over the ring R′ = R/J2.

Note also that, because R is artinian, the class of free R-modules is axiom-

atizable (see [21, Theorem 14.28]). Thus by [8, Theorem 5.4] to prove that

the theory of all R-modules is decidable it suffices to show that the theory of
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free R-modules is decidable, and the theory of all R′-modules is decidable.

The first case is easy (in fact it works for any finite ring).

Lemma 5.2. The theory of free modules over a finite Klein ring is decidable.

Proof. Every free R-module is of the form R(I) for some set I. By [8, The-

orem 6.4] again the theory of this class is decidable if the theory of RR is

decidable. Because R is finite, all the elementary invariants Inv(RR, ϕ, ψ)

can be calculated effectively. Thus the theory T of RR can be recursively

axiomatized by invariant sentences. Since T is complete, it is decidable. ¤

Thus to verify Theorem 5.1 it suffices to prove the following.

Proposition 5.3. Suppose that R is a finite commutative ring whose Ja-

cobson radical is 2-generated and satisfies J2 = 0. Then the theory of all

R-modules is decidable.

Note that any further assumption on R, that is, R being a homomorphic

image of a Klein ring, or having characteristic 2 or 4, is not essential for this

proposition.

Incidentally it may be useful to observe that the characteristic 2 case is

easy to treat. In other words the following holds.

Remark 5.4. Let R be a finite (or even sufficiently recursive) Klein ring

of characteristic 2. Then the theory of R-modules is decidable.

In fact, by I. S. Cohen’s Theorem, R, as a local commutative noetherian com-

plete equicharacteristic ring, is an algebra over some field k of characteristic

2. Indeed R can be regarded as a quotient algebra of the algebra k[X, Y :

X2 = Y 2 = 0] through a finitely generated ideal, and even equals this algebra

itself or its quotient through the socle k[X, Y : X2 = Y 2 = XY = 0] [18],

where k is finite (or sufficiently recursive). Hence R-modules, as a finitely

axiomatizable subclass of the class of modules over k[X, Y : X2 = Y 2 = 0],

have a decidable theory.

Before approaching the proof of Proposition 5.3 we should first explain

quite a lot, as said. One technical tool we need is the so-called ‘reduction

modulo radical’ functor (see [14, p. 221]). This will be the matter of the

next section.

6. From Klein rings to kÃ1

For the definition and basic properties of path algebras of quivers the

reader can consult [2, Section III.1] or [1, Section II.1]. In this paper we
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need just one particular example of a path algebra. Let k be a field (with an

intention to use R/J for k) and let kÃ1 denote the Kronecker algebra over

k. Thus kÃ1 is the path algebra of the following quiver

◦1
α

$$

β

::◦ 2

In particular, kÃ1 is a hereditary 4-dimensional algebra with the following

basis: e1 (the idempotent corresponding to the vertex 1), e2 (the idempotent

corresponding to the vertex 2), and α, β such that e1 · α = α · e2 = α and

e1 · β = β · e2 = β (all undefined products are set to be zero). Every kÃ1-

module can be seen as the direct sum of two vector spaces V and W over k

with two linear maps α and β from V to W (see [1, Section III.1] for this

way of defining modules over path algebras). We will sometimes denote it

by (V,W ).

One of the main tools in the oncoming proof of decidability will be, as

already said, a functor F , called ‘reduction modulo radical’, from the cate-

gory of R-modules to the category of kÃ1-modules. In this section we gather

some well known properties of F , mostly when it is restricted to the category

of pure-injective modules.

First let us introduce F in detail. Choose generators x, y for J and recall

that k = R/J is a finite field.

Let M be a (right) R-module. Then M/MJ is an R/J-module, hence a

vector space over k. From J2 = 0 it follows that J annihilates MJ , hence

MJ is also an R/J-module, therefore a vector space over k. We assign to

M the following kÃ1-module F (M)

M/MJ

α=×x

''

β=×y

77MJ ,

where α : M/MJ → MJ is given by multiplication by x, and β is given

by multiplication by y. Because x, y ∈ J and J2 = 0, both maps are well

defined and, since R is commutative, k-linear. Thus we have defined F on

objects.

To complete the definition of F , let N be another R-module and let

f : M → N be a morphism (of R-modules). Thus, the kÃ1-module F (N) is

given by the following diagram
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N/NJ

α=×x

&&

β=×y

88NJ .

Then (see [1, Section III.1] again) F (f) has to be given by a pair of k-

linear mappings f1 : M/MJ → N/NJ and f2 : MJ → NJ such that the

two corresponding diagrams commute. One of them is

M/MJ
α=×x //

f1

²²

MJ

f2

²²
N/NJ

α=×x
// NJ ,

and the other is similar with α replaced by β.

Since f : M → N is a morphism, we have f(MJ) ⊆ NJ , hence define f2

to be the restriction of f to MJ , and let f1 : M/MJ → N/NJ denote the

map induced by f .

It is easily verified that F is an additive covariant functor from the cat-

egory of R-modules to the category of kÃ1-modules. The properties of F

we will list below are taken (or can be easily derived) from [14, Section at

p. 211] and [2, Section X.2].

Clearly F preserves direct limits (hence direct sums) and direct prod-

ucts. Furthermore F is full, but not faithful. Namely, if M and N are R-

modules, then the kernel of the mapping Hom(M, N) → Hom(F (M), F (N))

is Hom(M,NJ), that is, consists of morphisms f : M → N whose image is

contained in NJ . Since J2 = 0, it follows easily that, for every R-module M ,

the kernel of the surjection End(M) → End(F (M)) belongs to the Jacobson

radical of End(M). It follows that F reflects (and preserves) the property

of being isomorphic.

By [14, Proposition 8.61], F preserves and reflects pure-injectivity, that

is if M is an R-module, then M is pure-injective iff F (M) is a pure-injective

kÃ1-module. Furthermore if M is pure-injective, then M is indecompos-

able iff F (M) is indecomposable. Note that every finite R-module is pure-

injective so as every finite kÃ1-module, and F preserves and reflects the

property of being finitely generated (hence finite). Thus the above applies

to finite modules.
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Note that F is not a dense functor. Indeed, for every R-module M , its

image F (M) = (V, W ) clearly has the property V J = V α + V β = W . For

instance, the simple (projective) kÃ1-module S2 = (0, k) is not isomorphic

to F (N), for any R-module N . However using projective covers, it can be

shown that an kÃ1-module K = (V, W ) is isomorphic to F (M) for some

R-module M iff V J = W ; and every kÃ1-module L is of the form L =

F (N)⊕ L′, where N is an R-module and L′ is a direct sum of copies of S2.

Note that kÃ1 is isomorphic to the k-algebra
(

k k⊕k
0 k

)
, where k ⊕ k is

considered as a k-k-bimodule via the diagonal action of k. Thus we can

apply the results of [2, Chapter X]. For instance (by [2, Theorem X.2.4])

the category mod-R of finite R-modules is stably equivalent to the category

mod-kÃ1 of finite kÃ1-modules. Although it is beyond the scope of this

paper, note that by [9, Corollary 3.9] this fact implies that the Krull–Gabriel

dimension of R is 2.

Furthermore using a well known description of irreducible morphisms and

almost split sequences in the category of finite dimensional kÃ1-modules (see

some examples below), we can derive a similar description of irreducible mor-

phisms and almost split sequences in the category of finite R-modules (see

[2, Chapter V] for definitions). Namely by [2, Proposition 2.5] a short exact

sequence of finite R-modules 0 → A → B → C → 0, where A and C are in-

decomposable and A is not simple, is almost split in mod-R iff 0 → F (A) →
F (B) → F (C) → 0 is an almost split sequence in mod-kÃ1. Thus evaluating

by F we can find ‘almost all’ almost split sequences in mod-R. Furthermore

by [2, Lemma X.1.2] we have the following property of irreducible maps:

if M and N are indecomposable finite non-projective R-modules, then the

mapping Hom(M, N) → Hom(F (M), F (N)) induces an isomorphism of k-

vector spaces of irreducible maps Irr(M,N) → Irr(F (M), F (N)).

Suppose that S is a simple R-module, that is, S ∼= R/J . Then F (S) =

(R/J, 0) ∼= S1 = (k, 0) = e1kÃ1/ Jac(e1kÃ1) is a simple injective kÃ1-

module, in particular S1 is not a source of an almost split sequence in

mod-kÃ1. However, since S is not injective, by [2, Proposition V.3.5] it

is a source of an almost split sequence 0 → S → B → C → 0 in mod-R,

where B is a projective cover of C. It easily follows that, if fx : S → R

is given by multiplication by x, fy : S → R is defined similarly, and

f = (fx, fy) : S → R2, then 0 → S
f−→ R2 −→ R2/ im(f) → 0 is an al-

most split sequence in mod-R. Therefore fx : S → R is an irreducible

morphism whose image F (fx) : S1 → e1kÃ1 is zero, hence not irreducible
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(but left almost split). This is because we cannot apply the aforementioned

Auslander’s result on irreducible maps when one of modules is projective.

Note also that F (R) = (R/J, J) = (k, k⊕k) ∼= e1kÃ1 and every projective

R-module is free, hence (see also [2, Lemma X.2.2]) F preserves (and reflects)

projectives.

7. The Kronecker algebra kÃ1

7.1. Finite dimensional modules over kÃ1. In this section we recall the

classification of indecomposable finite dimensional (hence finite, in our case)

modules over the Kronecker algebra kÃ1. Since kÃ1 is a path algebra of

the quiver without relations, it is hereditary, therefore the structure of finite

dimensional kÃ1-modules is well understood (see [2, Chapter VIII] or [27]).

In particular indecomposable finite dimensional kÃ1-modules can be divided

in 3 subclasses

• the preprojectives,

• the regulars,

• the preinjectives.

One way to distinguish among modules in these classes is to look at the

so called dimension vectors. If M = (V, W ) is a finite dimensional kÃ1-

module, then the dimension of M , dim(M), is defined as the ordered pair

(dim(V ), dim(W )).

Then every indecomposable preprojective kÃ1-module has dimension (n,

n + 1) for some integer n ≥ 0, and there is one isomorphism type for each

dimension. Here is the shape of an indecomposable preprojective module of

dimension (2, 3)

◦
α

¢¢¥¥
¥¥

¥¥

β ÀÀ:
::

::
: ◦α

¢¢¥¥
¥¥

¥¥ β

ÀÀ:
::

::
:

◦ ◦ ◦
which is a typical string module. The morphisms between preprojective

modules are also well understood (so as, more generally, the morphisms

between string modules). The following diagram of the category of prepro-

jective kÃ1-modules is taken from [28, p. 124].

(1, 2)
P2

______

ºº
%%

(3, 4)
P4

τoo_ _ _ _ _ _ . . .

(0, 1)
P1

99
GG

(2, 3)
P3

τoo_ _ _ _ _ _

99
GG

. . .
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where solid arrows denote irreducible morphisms (so the space Irr(P1, P2)

has dimension 2) and the dashed arrows show Auslander–Reiten (AR-)

translates. For instance all nonzero morphisms between indecomposable

preprojectives go from the left to the right, and each such morphism is

mono.

Dually, every indecomposable preinjective kÃ1-module has dimension (m+

1,m), m ≥ 0, one isomorphism type for each dimension, and they are also

string modules. Here is a diagram for an indecomposable preinjective mod-

ule of dimension (3, 2)

◦
α ÀÀ:

::
::

: ◦
β

¢¢¥¥
¥¥

¥¥ α

ÀÀ:
::

::
: ◦

β¢¢¥¥
¥¥

¥¥

◦ ◦
Furthermore the following diagram represents the category of preinjective

kÃ1-modules.

. . . (4, 3)
I4

oo τ ______

¹¹
$$

(2, 1)
I2

»»
$$

. . . (3, 2)
I3

oo
τ

______

::
HH

(1, 0) ,

I1

where solid arrows stand for irreducible morphisms and dashed arrows show

AR-translates. For instance two linearly independent irreducible epimor-

phisms from I3 to I2 are given by either factoring I3 by utmost left part

shown by bullets, or by utmost right part shown by diamonds.

•
α ÀÀ:

::
::

: ◦
β

¢¢¥¥
¥¥

¥¥ α

ÀÀ:
::

::
: ¦

β¢¢¥¥
¥¥

¥¥

• ¦

Note that the kernels of these two epimorphisms are nonisomorphic (sim-

ple regular) kÃ1-modules.

Again, nonzero morphisms between indecomposable preinjective modules

go from the left to the right in the above diagram, and each such morphism

is epi. If k is finite, then indecomposable preprojective and preinjective kÃ1-

modules can be effectively given by generators and relations, so as irreducible

maps between them.

The remaining indecomposable finite dimensional kÃ1-modules are called

regular. Each regular module has dimension (n, n), n > 0, but with many
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non-isomorphic modules of the same dimension. The easiest way to com-

prehend regular modules is to use a special functor G from the category of

k[X]-modules to the category of kÃ1-modules. Namely every k[X]-module

M can be considered as a k-vector space V , where X acts as an endomor-

phism. Define G(M) to be the following kÃ1-module:

V

α=1
%%

β= X

99
V ,

where α acts as identity, and β acts as multiplication by X. The definition

of G(f), where f is a morphism of k[X]-modules, is obvious. Then G is a full

and faithful additive covariant functor commuting with direct limits and (ar-

bitrary) products. In particular (by [14, Proposition 8.61]) G preserves and

reflects pure-injectivity and the property of being indecomposable (within

the class of pure-injective modules). However G is not dense — its image

consists of kÃ1-modules (V, W ) such that α : V → W is an isomorphism.

Suppose that H is an indecomposable finitely generated torsion k[X]-

module, therefore H ∼= k[X]/pn(X)k[X], where p(X) is an irreducible poly-

nomial over k and n ≥ 0. Then G(H), the image of H, will be a regular

indecomposable finite dimensional kÃ1-module. For instance, if p = X and

n = 1, then G(H) is the following string module

◦
α

¢¢¥¥
¥¥

¥¥

◦
and, if p = X − 1 and n = 1, we obtain the following band module (see [3]

for more on string and band terminology)

◦
α=1

½½
β=1

¥¥◦
where α and β act as identity maps.

The functor G covers ‘almost all’ regular kÃ1-modules, except a few. In

fact the only regular kÃ1-modules that are not covered are string modules

like

◦β

¡¡££
££

£ α
ÁÁ<

<<
<< ◦

β¡¡££
££

£

◦ ◦
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on which α does not act as an isomorphism (from V to W ). One possibility

to cure this situation is to consider the second functor G1 similar to G, but

where β acts as identity, and α acts as multiplication by X.

If k is finite, then we can produce a list of irreducible polynomials over k,

hence (applying G or G1) an effective list of regular kÃ1-modules given by

generators and relations. When drawing a diagram for the category of finite

dimensional kÃ1-modules, one should put regular modules on the right of

preprojectives and on the left of preinjectives — then any nonzero morphism

goes from the left to the right. For instance (see [28, p. 331]) there is no

nonzero morphism from regular to preprojective modules.

Recall (see [2, Chapter VII]) that using irreducible maps we can arrange fi-

nite dimensional kÃ1-modules into an Auslander–Reiten (AR-) quiver. We

have already seen the connected components of this quiver consisting of

preinjectives and preprojectives modules. The remaining components con-

sist of regular modules and are homogeneous tubes.

◦ M3

££

..

.

◦ M2

BB

££◦M1 = M

BB

The regular kÃ1-module M on the mouth of the tube is called a quasi-

simple, or simple regular module. Note (see [27]) that regular kÃ1-modules

form an abelian category, and simple regular modules are exactly simple ob-

jects in this category. Furthermore each quasi-simple module is isomorphic

to the module G(H) or G1(H), where H is a simple k[X]-module, therefore

H ∼= k[X]/p(X)k[X] for an irreducible polynomial p(X) of degree n. It fol-

lows that End(H) ∼= End(G(H)) is a field K which is a simple extension of k

of degree n, hence |K| = |k|n. Clearly (since k is finite) this endomorphism

ring, and hence the cardinality of |K| can be calculated effectively.

The irreducible mappings in each tube are the images of irreducible mor-

phisms between finitely generated torsion k[X]-modules, so they also can be

calculated effectively. For example the multiplication by X defines an irre-

ducible monomorphism f : k[X]/Xk[X] → k[X]/X2k[X], hence its image

G(f) will be an irreducible monomorphisms M1 → M2 in the corresponding

tube of the AR-quiver.
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Another important tool in the representation theory of kÃ1 (more gener-

ally, any hereditary finite dimensional algebra) is a (non-symmetric) bilin-

ear form 〈−,−〉 : K0(kÃ1) → Z defined by 〈M, N〉 = dimHom(M,N) −
dimExt(M, N) with the corresponding quadratic form q(M) = 〈M, M〉
(see [2, Section VIII.3]). The value of this bilinear form depends only

on dimensions of M and N . Namely if dim(M) = x̄ = (x1, x2) and

dim(N) = ȳ = (y1, y2), then 〈M, N〉 = 〈x̄, ȳ〉 = x1y1 − 2x1y2 + x2y2, there-

fore q(M) = x2
1 − 2x1x2 + x2

2. For instance q(M) = 1 for any preprojective

or preinjective module M , and q(N) = 0 if N is a regular module.

Using this bilinear form it is not difficult to calculate Hom’s and Ext’s

between finite dimensional kÃ1-modules. Another possibility to do that is to

use the AR-translate τ . Because kÃ1 is hereditary, by [2, p. 258], τ provides

an equivalence from the full subcategory of mod-kÃ1 consisting of modules

without projective direct summands onto the full subcategory of mod-kÃ1

consisting of modules without injective direct summands. For instance, if M

and N are indecomposable non-projective and non-injective kÃ1-modules,

then Hom(M, N) ∼= Hom(τM, τN) and Ext(M,N) ∼= Ext(τM, τN) (k-

vector spaces isomorphisms), and the same is true with τ replaced by τ−1.

Remark 7.1. (cp. [30, p. 114]) If M is an indecomposable regular kÃ1-

module, then Hom(M, I) 6= 0 for every preinjective kÃ1-module I.

Proof. Since I is preinjective, I = τkI ′ for some injective module I ′ and

some k ≥ 0. Because every tube over kÃ1 is homogeneous, we conclude

M = τkM . Then Ext(M, I) = Ext(τkM, τkI ′) ∼= Ext(M, I ′) = 0, since

I ′ is an injective module. It follows that 〈M, I〉 = dim Hom(M, I). From

dim(M) = (n, n) and dim(I) = (m,m + 1) for some n > 0, m ≥ 0 we

obtain 〈M, I〉 = 〈(n, n), (m + 1,m)〉 = n(m + 1) − 2nm + nm = n > 0, as

desired. ¤

7.2. Pure-injective modules over kÃ1. Recall (from Section 2) that the

Ziegler spectrum of a ring R, ZgR, is a topological space whose points are

indecomposable pure-injective R-modules, and whose topology is given by

the basic open sets (ϕ/ψ) = {N ∈ ZgR | ϕ(N)/(ϕ ∧ ψ)(N) 6= 0}, where

ϕ and ψ are pp-formulae (and restricting to formulae with only one free

variable is sufficient). In this section we recall a description of the Ziegler

spectrum of kÃ1. All the results are taken from Ringel [30] and Prest [23],

we only add some explanations.
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First of all each indecomposable finite dimensional kÃ1-module is pure

injective, therefore such modules are points of ZgkÃ1
. It follows from [23,

Theorem 2.5] that every infinite dimensional point of ZgkÃ1
is the image

under G or G1 of a non-finitely generated point of Zgk[X]. On the other

hand recall (see [20]) that infinitely generated indecomposable pure-injective

modules over k[X] are classified as follows.

For every irreducible polynomial p(X) there is a unique p-Prüfer module

Pp and a unique p-adic module Ap. Furthermore there exists a unique generic

module Q = k(X). We will call the images of these points under G or G1 the

Prüfer, adic and generic points of ZgkÃ1
(note that G(Q) ∼= G1(Q), hence

we have just one generic point Q). Let us say more precisely what those

images are.

Let p(X) be an irreducible polynomial over k. Then we have the follow-

ing ray of irreducible monomorphisms in the category mod-k[X] of finitely

generated k[X]-modules:

k[X]/p(X)k[X]
×p−−→ k[X]/p2(X)k[X]

×p−−→ . . . .

The direct limit along this ray is the p-Prüfer module Pp. Applying G or

G1 to this ray we obtain a ray of irreducible monomorphisms M1 → M2 →
. . . , where M = M1 is the simple regular kÃ1-module corresponding to

k[X]/p(X)k[X]. The direct limit of this directed system will give us an

indecomposable pure-injective (M -Prüfer) kÃ1-module PM . To grasp the

shape of this module let us consider one example. Suppose that M is the

following simple regular string module

•
α

¢¢¥¥
¥¥

¥¥

•
Then M2 has the following diagram

◦
α

¢¢¥¥
¥¥

¥¥ β

ÀÀ:
::

::
: •

α¢¢¥¥
¥¥

¥¥

◦ •
where the irreducible monomorphism M1 → M2 is shown by identifying the

bullets. Taking the direct limit along this ray, we obtain that PM has the

following diagram

◦
α

££¥¥
¥¥

¥¥ β

¿¿:
::

::
: ◦

α££¥¥
¥¥

¥¥ β

¿¿:
::

::
: •

α££¥¥
¥¥

¥¥

. . . ◦ ◦ •
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Then (see [29, Section 4]) PM is the so-called direct sum module — the

underlying vector space for M is a direct sum of 1-dimensional spaces corre-

sponding to vertices. Furthermore (see [29] again) this module is contracting

— the shift by 1 to the right is a morphism of PM which is epi but not mono

(its kernel consists of the two utmost right vertices, therefore isomorphic to

M). The construction of the M -adic module AM is just dual. Namely we

should start with a coray of irreducible epimorphisms

k[X]/p(X)k[X] ←− k[X]/p2(X)k[X] ←− . . .

given by factoring out the socle, and apply G (or G1) to get a coray of

irreducible epimorphisms M = M1 ←− M2 ←− . . . in mod-kÃ1. The inverse

limit along this coray will give us the M -adic module AM ∈ ZgkÃ1
. For

instance, if M is the simple regular string kÃ1-module as above, then AM

has the following diagram:

•
α

££¥¥
¥¥

¥¥ β

¿¿:
::

::
: ◦

α££¥¥
¥¥

¥¥ β

¿¿:
::

::
:

• ◦ ◦ . . .

Now AM is a direct product module — its underlying vector space is

the direct product of 1-dimensional spaces corresponding to the vertices.

Furthermore this module is expanding — the shift by 1 to the right is a

monomorphism f of AM that is not epi, and whose cokernel (shown by

bullets) is isomorphic to M .

Note that most Prüfer and adic modules will be counted twice (when

applying G or G1), but this does not disturb our proof of decidability.

Finally the generic kÃ1-module Q has the following presentation

k(X)
α=1

,,

β=×X

22 k(X) ,

where k(X) is the field of quotients of k[X]. By [30, Proposition 4] if f :

AM → AM is the aforementioned monomorphism, then the direct limit of

the chain AM
f−→ AM

f−→ . . . is isomorphic to a direct sum of copies of the

generic module Q.

As we have already noticed in Remark 7.1, Hom(M, I) 6= 0 for any regular

kÃ1-module M and any preinjective module I. Therefore by [30, Proposi-

tion 1] the Prüfer module PM is a direct summand of a direct product of

any infinite set of non-isomorphic preinjective modules.
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Now we proceed describing the topology on ZgkÃ1
. It follows from [21,

Proposition 13.4] that the isolated points of this space are exactly the fi-

nite dimensional ones. Furthermore because every finite dimensional kÃ1-

module has finite endolength, every such point is closed.

The next level of isolation is represented by Prüfer and adic points: those

are exactly the points of Cantor–Bendixson (CB for short) rank 1. In fact

Ringel [30] gives a nice basis of open neighborhoods of Prüfer and adic

points.

Let M be a simple regular kÃ1-modules and let OM consist of PM , all

preinjective points, and all regular points on the tube with M on the mouth

(often called M -regular points). Then OM is a Ziegler open set containing

PM . In fact OM consists of the points N ∈ ZgkÃ1
such that Hom(M,N) 6= 0.

Furthermore every open subset of OM containing PM is cofinite, that is, of

the form OM \ {N1, . . . , Nk}, where the Ni are finite dimensional points.

Moreover, because every finite dimensional point is closed, every such set is

open.

Similarly, let JM consist of AM , all preprojective points, and all M -regular

points. Then JM is a Ziegler open set containing AM . Moreover, every open

subset of JM containing AM is of the form JM \{N1, . . . , Nk}, where the Ni

are finite dimensional points. Note also that JM consists of the N ∈ ZgkÃ1

such that Ext(M,N) 6= 0.

Finally the only remaining point of ZgkÃ1
is the generic point Q. It

has CB-rank 2, and the basis of open neighborhoods of Q is given by the

collection of open sets ZgkÃ1
\{N1, . . . , Nk}, where Ni are finite dimensional

points. What follows is that ZgkÃ1
has CB-rank 2, in particular it is a

T0-space. Then the elementary duality (see [12]) can be defined pointwise,

hence provides a homeomorphism between the left and the right Ziegler

spectra of kÃ1. For instance the image of the right Prüfer point PM is the

left adic point AM ′ , where M ′ is a left quasi-simple kÃ1-module such that

both M and M ′ are the images of the same simple k[X]-module. Note also

(see [20]) that the functors G and G1 induce homeomorphisms onto closed

subsets of ZgkÃ1
.

7.3. kÃ1. More on the Ziegler spectrum. In this section by refining

the information on ZgkÃ1
we prove the following.

Theorem 7.2. The theory of all kÃ1-modules (over a finite field k) is de-

cidable.
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The result is definitely not new and our proof is hardly shorter. Indeed it

is not difficult (see [18] for similar arguments) to interpret the theory of kÃ1-

modules in the theory of quadruples of k-vector spaces, hence decidability

(over an effectively given field) follows from Baur’s Theorem in [4]. But our

main goal is to make a pattern which will be used in the next section to

prove decidability in an essentially less friendly environment.

In the previous section we described the topology of ZgkÃ1
. However this

description is not of the form that is required to prove decidability. For

this purpose (see Fact 2.1), for each point N ∈ ZgkÃ1
, we should effectively

produce a basis of open neighborhoods of N of the form (ϕ/ψ), where ϕ and

ψ are pp-formulae, and calculate elementary invariants Inv(N, ϕ, ψ). Clearly

this is the same as to produce a recursive set of axioms for the theory of N

proving that this theory is decidable. The aim of this section is to obtain

such a basis for every point of ZgkÃ1
.

Note that the basis for the Ziegler topology for N that can be extracted

from Prest and Ringel (see previous section) is consisting of open sets of

the form ∩n
i=1(ϕi/ψi), where ϕi and ψi are pp-formulae. Indeed, if PM is

a Prüfer point, then we can take (Hom(M,−)/x = 0) as (ϕ1/ψ1), and use

the remaining (ϕi/ψi) to isolate, hence throw away any finite number of

finite dimensional points. By [33, Theorem 4.9] there are pp-formulae ϕ

and ψ such that N ∈ (ϕ/ψ) and (ϕ/ψ) ⊆ (ϕi/ψi) for every i. However

it is not clear how to find such a pp-pair effectively and how to calculate

the corresponding elementary invariant. Thus our proof will overcome this

difficulty.

First we introduce some general notation. Suppose that M = 〈x̄ | x̄A =

0〉 is a finitely presented module over a ring R given by generators and

relations (here x̄ = (x1, . . . , xn) is a finite tuple of generators of M and A

is a rectangular R-matrix). We will assign to this representation the pp-

formula ϕ
.= x̄A = 0 (depending on the choice of representation). If N is

an arbitrary R-module, then ϕ(N) = {n̄ ∈ Nn | n̄A = 0} can be identified

with Hom(M,N) (both viewed as abelian groups, or even as modules over

S = End(N)). Although this identification depends on the representation

of M , the condition Hom(M,N) 6= 0 does not, and this is true exactly when

ϕ(N) 6= 0. A more rigorous explanation is that the functors Hom(M,−)

and ϕ from the category of R-modules to the category of abelian groups are

isomorphic. Thus (ϕ/x = 0) is an open set in the Ziegler spectrum of R
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consisting of all N ∈ ZgR such that Hom(M,N) 6= 0. In fact this is a part

of a more general construction.

Suppose that N = 〈ȳ | ȳB = 0〉 is another finitely presented R-module

and let f : M → N be a morphism such that f(x̄) = ȳC (hence CA =

BD for some matrix D with entries in R). Let ψ denote the pp-formula

∃ ȳ (ȳB = 0 ∧ ȳC = x̄), thus ψ generates the pp-type of f(x̄) in N (see

[21] for unexplained terminology). Then for any R-module L, we have that

ϕ(L)/(ϕ∧ψ)(L) 6= 0 (that is, L ∈ (ϕ/ψ)) if and only if there is a morphism

g : M → L that cannot be factored through f . Again, both the pp-formulae

ϕ and ψ depend on the choice of representations, but the condition L ∈
(ϕ/ψ) does not, because (ϕ/ψ) is isomorphic to the functor Hom(M,−)/I,

where I consists of the morphisms from M that can be factored through

f . Considering the zero morphism M → 0, we see that this construction

includes the previous one.

If f : M → N is a left almost split morphism in the category of finitely pre-

sented R-modules, then (ϕ/ψ) is a minimal pair in the theory of R-modules

(again see [21, Section 9.2] for a definition and properties of minimal pairs).

If M has a local endomorphism ring, then (see [13, Proposition 5.3]) the

pure-injective envelope of M is an indecomposable pure-injective module,

hence a point of ZgR, and this point is isolated by (ϕ/ψ).

That being said, let us come back to the points M in ZgkÃ1
. Our aim is

to equip each of them with a basis as described before.

First suppose that M is a finite dimensional, hence an isolated point

of ZgkÃ1
. As we have already mentioned, M can be effectively given by

generators and relations. Assume first that M is regular, hence M =

Mn is the image under G (or G1) of the k[X]-module k[X]/pn(X)k[X],

where p(X) is an irreducible polynomial. This module is the source of the

left almost split monomorphism k[X]/pn(X)k[X] → k[X]/pn+1(X)k[X] ⊕
k[X]/pn−1(X)k[X], where the first coordinate mapping is given by multi-

plication by p, and the second coordinate one is factoring by the socle. The

image of this morphism (under G or G1) is an almost split monomorphism

f : Mn → Mn+1⊕Mn−1 that can be calculated effectively. Then the minimal

pair (ϕ/ψ) corresponding to f can be calculated effectively, and this pair

isolates Mn. What remains to do is to calculate Inv(Mn, ϕ, ψ) effectively.

Since (ϕ/ψ) is a minimal pair in the theory of kÃ1-modules and Mn ∈
(ϕ/ψ), it is a minimal pair in the theory of Mn. By [21, Proposition 9.6],

Inv(Mn, ϕ, ψ) is the cardinality of End(Mn)/ JacEnd(Mn). Since Mn has
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regular length n and is uniserial in the category of regular modules, it is eas-

ily seen that End(Mn)/ JacEnd(Mn) is isomorphic to the field End(M1) =

K (see Section 7.1), and (since k is finite) the cardinality of K can be cal-

culated effectively.

Similarly if M is a finite dimensional indecomposable preprojective or

preinjective kÃ1-module, then from the description of morphisms between

such modules (see Section 7.1) we can effectively construct a left almost split

morphisms f : M → N in mod-kÃ1, and this mapping defines a minimal

pp-pair (ϕ/ψ) that isolates M . It is easily seen that End(M)/ JacEnd(M)

is isomorphic to k, hence Inv(M, ϕ, ψ) is the cardinality of k.

Now consider the case of an M -Prüfer point PM ∈ ZgkÃ1
, where M is a

simple regular kÃ1-module. Recall that OM is a subset of ZgkÃ1
consisting

of PM , all M -regular points, and all preinjective points. As we have already

mentioned, Hom(M, N) 6= 0 for N ∈ ZgkÃ1
iff N ∈ OM , hence OM is an

open subset of ZgkÃ1
defined by an effectively given pair (ϕ/x = 0). We

will refine this pair to obtain a basis of open neighborhoods for PM . The

problem is to throw away any finite number of M -regular and preinjective

points.

But first we address the problem of elementary invariants.

Proposition 7.3. (Hom(M,−)/x = 0) is a minimal pair in the theory of

PM . If k is finite, then the corresponding elementary invariant of PM is

equal to |K|.

Proof. Choose a representation M = 〈x̄ | x̄A = 0〉, therefore a pp-formula

ϕ
.= x̄A = 0 that represents Hom(M,−). Thus ϕ(PM ) can be identified

with {n̄ ∈ PM | n̄A = 0}.
Note (see [27]) that PM is uniserial in the category of regular modules,

and its regular socle is isomorphic to M . It follows that for every morphism

f : M → PM , the image f(x̄) is in the regular socle of PM . Since End(M) =

K is a (finite) field, every two such nonzero images, say f(x̄) and f ′(x̄), can

be identified by an automorphism of the socle. Thus ϕ(PM ) has cardinality

|K|.
It remains to prove that (ϕ/x = 0) is a minimal pair in the theory of PM .

By [21, Proposition 9.6], it suffices to show that End(PM )/ JacEnd(PM ) ∼=
K. Since M is a regular socle of PM , there is a natural mapping (given

by restriction) π : End(PM ) → End(M) = K. By [27, Proposition 4.7],

PM is injective in the category of kÃ1-modules without preinjective direct
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summands. It follows that π is onto. Since End(PM ) is a local ring and K

is a field, π is an isomorphism. ¤

Now for any n, r ≥ 1 we define a refinement (ϕn/ψr) of (ϕ/x = 0) (in

this case refinement means just that each ϕn implies ϕ). Let gn be the

composition of irreducible monomorphisms M
f1−→ M2

f2−→ . . .
fn−1−−−→ Mn,

and let ϕn generate the pp-type of the image gn(x̄) in Mn. Clearly ϕn

implies ϕ for every n. In fact, the ‘top’ of the interval (ϕ/x = 0) in the

lattice of pp-formulae over kÃ1 is a chain ϕ > ϕ1 > ϕ2 > . . . , that is, if

any pp-formula ψ satisfies ψ < ϕ, then either ψ is equivalent to ϕs for some

s, or ψ ≤ ϕt for every t. Indeed, if we consider the image of gn(x̄) under

the almost split monomorphism h : Mn → Mn+1 ⊕ Mn−1, only the first

coordinate of h(gn(x̄)) is nonzero.

Now we define ψr. It is easily calculated that if dim(M) = (l, l), then

dimHom(M, Ir) = l. Let h1, . . . , hl be a basis of Hom(M, Ir), and for every

i = 1, . . . , l let θi generate the pp-type of hi(x̄) in Ir. Then we set ψr =∑l
i=1 θi. Clearly all this can be calculated effectively.

We claim that (ϕn/ψr) is an open subset of OM containing PM but neither

M1, . . . , Mn−1 nor Ir−1, . . . , I1. It would clearly follow that the (ϕn/ψr) form

a basis of open neighborhoods for PM .

First we show that ψr ≤ ϕn for every n and r, therefore every neighbor-

hood (ϕn/ψr) is nontrivial. Because ψr =
∑l

i=1 θi, it suffices to show that

θi implies ϕn for every n (and i). By the definition of ϕn, it is enough to

prove that the following diagram can be completed

0 // M

hi

²²

gn // Mn

hÄÄ~
~

~
~

Ir

The cokernel of gn is a regular module isomorphic to Mn−1 and Ext(Mn−1,

Ir) = 0 by Lemma 7.1, hence h exists.

Now we check that M1, . . . ,Mn−1 do not belong to (ϕn/ψr). Indeed,

otherwise a nonzero m ∈ Ms, s < n satisfies ϕn. In particular there exists

a morphism f : M1 → Ms such that f(x̄) = m. Since ϕn generates the

pp-type of gn(x̄) in Mn, there is a morphism h : Mn → Ms such that the

following diagram commutes
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Since Mn has regular length n > s and is uniserial in the category of

regular modules, h kills its regular socle M , hence f(x̄) = 0, a contradiction.

Now we claim that Ms ∈ (ϕn/ψr) for any s ≥ n. Indeed by the construc-

tion, gs factors through gn, hence gs(x̄) satisfies ϕn in Ms. Suppose that this

tuple satisfies ψr, hence gs(x̄) = m1 + · · ·+ ml for some mj ∈ Ml such that

Ms |= θj(mj) (j = 1, . . . , l). Since hj(x̄) is a free realization of θj(x̄) in Ir,

there is a morphism g : Ir → Ms sending hj(x̄) to mj . But (see Section 7.1)

every morphism from a preinjective to a regular module is zero, therefore

mj = 0, and then gs(x̄) = 0, a contradiction.

Since PM is a union of the Ms, s ≥ n, it follows easily that gn(x̄) ∈ Mn ⊆
PM satisfies ϕn but not ψr in PM , hence PM ∈ (ϕn/ψr).

It remains to prove that Is /∈ (ϕn/ψr) for every s < r. Suppose that

0 6= n̄ ∈ Is satisfies ϕn. In particular, there exists a map f : M → Is such

that f(x̄) = n̄. Since s < r, there is an epimorphism g : Ir → Is which is a

composition of irreducible epimorphisms whose kernels are not isomorphic

to M . This is possible because (see Section 7.1) at each step there are two

irreducible morphisms with non-isomorphic regular kernels. We claim that

the following diagram can be completed

M
h

¡¡¡
¡

¡
¡

f
²²

Ir g
// Is

// 0

Arguing by induction we may assume that r = s + 1. Then the kernel

of g is a simple regular string module S of dimension (1, 1). Since M is

not isomorphic to S, therefore Ext(M, S) = 0, which yields an extension as

desired.

If m = h(x) ∈ Ir, then Ir |= ψr(m) by the definition of that. Applying g

we obtain Is |= ψr(n), hence Is /∈ (ϕn/ψr).

Note that there is no problem in calculating the elementary invariants

Inv(PM , ϕn, ψr). Indeed, by Proposition 7.3, (ϕ/x = 0) is a minimal pair in

the theory of PM , therefore all these invariants are equal to |K|.
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A similar construction is possible for adic points. But to avoid technicali-

ties we will use the following trick. Construct a basis of open neighborhoods

for a left Prüfer point PM as above, and then apply the elementary duality.

Since AM is dual to PM , we obtain an effective basis of open neighborhoods

for AM . Moreover, by construction (or by the general theory — see [12])

the elementary invariants will be the same.

What remains is to construct an effective basis of open neighborhoods for

the generic point Q of ZgkÃ1
and calculate elementary invariants. Recall

that Q has the following diagram

k(X)
α=1

,,

β=×X

22 k(X) ,

Since Q is the image (via G) of the k[X]-module k(X), it follows that

End(Q) ∼= k(X) is an infinite field. Hence every elementary invariant in Q is

either 0 or∞. Clearly Q = Qe1⊕Qe2 is a decomposition of Q as an End(Q)-

module, and both Qe1 and Qe2 are 1-dimensional vector spaces over End(Q)

(recall the e1 and e2 denote the idempotents in the basis of kÃ1 introduced

at the beginning of Section 6). In particular (by [21, Proposition 9.6]) (e1 |
x/x = 0) is a minimal pair in the theory of Q. Thus for every pp-formula

ϕ implying e1 | x we have either ϕ(Q) = 0 or ϕ(Q) = Qe1. It follows from

[33, Theorem 4.9] that a basis of open neighborhoods for Q can be chosen

among the pairs (ϕ/ψ) such that ψ < ϕ ≤ e1 | x. Thus the collection

{(ϕ/ψ) | ψ < ϕ ≤ e1 | x and ψ(Q) = 0, ϕ(Q) 6= 0} forms a basis of open

neighborhoods for Q.

As TkÃ1
is recursively axiomatizable, we can effectively list the pairs (ϕ/ψ)

such that ψ < ϕ ≤ e1 | x. So the only thing to check is whether ϕ(Q) = 0 or

not (and the same for ψ). We will reduce this question to a similar question

about an adic module AM . As we have already proved that the theory of

AM is decidable, this question can be answered effectively.

Choose any regular simple module M . Let AM be the corresponding adic

module, and let f be a monomorphism of AM which is not epi, and whose

cokernel is isomorphic to M (see an example in Section 7.2). Then, by [30,

Proposition 4], the direct limit AM
f−→ AM

f−→ . . . is isomorphic to a direct

sum of copies of Q. Now it is easily seen that ϕ(Q) = 0 iff ϕ(AM ) = 0.

Thus we have constructed an effective basis of open neighborhoods for

each point of ZgkÃ1
and calculated the corresponding elementary invariants.

By Fact 2.1 it follows that the theory of all kÃ1-modules is decidable.
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8. Klein rings again. The Ziegler spectrum

We deal here again with Klein rings. More precisely, we consider a finite

(or countable effectively given noetherian) local commutative ring R whose

Jacobson radical J is 2-generated and J2 = 0. For instance every quotient

of a Klein ring modulo its socle is such (see the beginning of Section 5). In

this section we describe the Ziegler spectrum of R. Recall that in Section 6

we introduced a functor F , the reduction modulo radical, from the category

of R-modules to the category of kÃ1-modules, where kÃ1 is the Kronecker

algebra over the residue field k = R/J . In particular, this functor pre-

serves and reflects pure-injectivity and the property of being isomorphic.

Furthermore when restricted to the category of pure-injective modules F

preserves and reflects the property of being indecomposable. Also F sends

finite R-modules to finite kÃ1-modules and vice-versa.

Recall (see Section 7.2) that every indecomposable pure-injective kÃ1-

module is preprojective, regular, preinjective, or Prüfer, adic, or generic.

We say that an indecomposable pure-injective R-module is preprojective

(regular, . . . ) if its image F (M) is such. Of course, there are some drawbacks

in this terminology. For instance if S = R/J is the unique simple R-module,

then F (S) = I1 is a simple injective kÃ1-module, although S is not injective.

One more caution should be taken. Recall that the image of F consists

of kÃ1-modules (V, W ) such that V J = W , and every kÃ1-module is of

the form F (M) ⊕ P
(α)
2 , where P2 is a simple projective kÃ1-module. Thus

every indecomposable pure-injective kÃ1-module but P2 is the image via

F of the unique indecomposable pure-injective R-module. Since {P2} is

clopen in ZgkÃ1
, therefore F induces a bijection from ZgR onto the clopen

set ZgkÃ1
\{P2}. In fact this map respects topology.

Proposition 8.1. F induces a homeomorphism from ZgR onto ZgkÃ1
\{P2}.

Proof. Because R is an Artin algebra, by [2, Theorem V.1.15], the category

of finite R-modules has almost split sequences. From [21, Proposition 13.1]

it follows that every finite point of ZgR (that is, every indecomposable finite

R-module) is isolated, and those are the only isolated points of ZgR. Thus

F behaves well on isolated points.

Let PM be an M -Prüfer point of ZgR associated with a simple regular

module M — this rather means that F (PM ) is an F (M)-Prüfer point of

ZgkÃ1
associated with the simple regular module F (M). Let OM be a subset

of ZgR consisting of PM , all M -regular points, and all preinjective points.
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Recall (see Section 7.2) that F (OM ) is open in ZgkÃ1
and every open subset

of F (OM ) containing F (PM ) is of the form F (OM ) \ {N1, . . . , Nk}, where

the Ni are finite points. Furthermore F (OM ) is defined by a pair (ϕ/x = 0),

where ϕ corresponds to Hom(F (M),−) (see Section 7.3).

We will show that OM is an open set in ZgR, and every its open subset con-

taining PM is of the form OM \{M1, . . . , Mk}, where the Mi are finite points.

Consider the functor Hom(M,−)/Hom(M,−)J whose value at an R-module

N is (the abelian group) Hom(M, N)/Hom(M, NJ) ∼= Hom(F (M), F (N)).

With respect to a given representation M = 〈x̄ | x̄A = 0〉 of M this functor

is isomorphic to the pp-pair (ϕ/ψ), where ϕ
.= x̄A = 0 and ψ

.= J | x̄,

viewed as a functor. Therefore OM = (ϕ/ψ) is an open set which contains

PM .

Since every finite point in ZgR is closed (being of finite endolength), each

set OM \ {M1, . . . , Mk} is open. Thus a restriction of F to OM is con-

tinuous. To prove that this restriction is a homeomorphism it remains to

check the following. If T = {M1,M2, . . . } is an infinitely set of (pairwise

non-isomorphic) finite points in OM , then PM belongs to T , the closure of

T . Clearly we may assume that either each Mi is M -regular, or each Mi is

preinjective.

Suppose that each Mi is M -regular. Then lifting irreducible mappings

from kÃ1-modules, we can arrange the Mi into a ray Mn1 → Mn2 → . . . by

compositions of irreducible morphisms. Because F preserves direct limits,

the direct limit along this ray is isomorphic to PM , hence PM is in the closure

of T .

Assume now that every Mi is preinjective. By Ringel [30, Proposition 1],

F (PM ) is a direct summand of a direct product of the F (Mi). Then PM is

a direct summand of a direct product of the Mi, hence PM ∈ T .

Thus F is a homeomorphism when restricted to the open neighborhood

OM of PM . By dual arguments (or elementary duality) F preserves and

reflects the basis of open neighborhoods of any adic point AM .

It remains to look at the generic point Q. Recall that a basis of open

neighborhoods for F (Q) is given by the sets ZgkÃ1
\{N1, . . . , Nk}, where Ni

are finite points. Since every finite point in ZgR is closed, the preimage of

this set in ZgR is open.

Thus it suffices to prove that for every set T = {M1,M2, . . . } of (different)

points of ZgR \{Q} which either is infinite or contains an infinite point, Q

is in the closure of T .
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First we prove that T contains an infinite point. Indeed if T contains

infinitely many preinjective points, then, as we have already seen, T contains

(any) Prüfer point. By (elementary) duality, if T contains infinitely many

preprojective points, its closure will contain all adic points.

If T contains infinitely many M -regular points for a given simple regular

module M , then (as above, by using direct limits) it is easily shown that

PM ∈ T . Thus it remains to consider the case when T contains infinitely

many regular points M1, M2, . . . with non-isomorphic regular socles. But

in this case by [30, Proposition 5], Q is a direct summand of the module∏
i Mi/⊕i Mi, hence Q ∈ T .

Thus we may assume that either PM ∈ T or AM ∈ T . Again by ele-

mentary duality it suffices to consider the latter case. As we have already

mentioned, Q is a direct summand of a direct limit of copies of AM , hence

Q ∈ T . ¤

Note that the functor F clearly defines a pp-interpretation (see [10, Defini-

ton 1.1]) of the theory of kÃ1-modules without P2 as a direct summand in

the theory of R-modules.

Question 8.2. Is the theory of R-modules interpretable in the theory of

kÃ1-modules?

If this were the case then most results of this section (on ZgR) and of

the next section (on decidability) would become trivial (modulo the corre-

sponding results for kÃ1-modules). However we believe that this not true,

because too much ‘individuality’ of R is lost when applying F .

9. Klein rings. Decidability

In this section we prove Proposition 5.3, therefore Theorem 5.1. Recall

that R is a finite commutative ring with Jacobson radical J such J2 = 0

and J is 2-generated. By Fact 2.1 to prove decidability of the theory of all

R-modules it suffices to equip each point of ZgR with an effective basis of

open neighborhoods and calculate the corresponding elementary invariants.

Recall (from the previous section) that each point of ZgR is preprojective,

regular, preinjective, or Prüfer, adic, or generic.

Suppose first that M is a finite, hence isolated point of ZgR. If M is

not injective, then it is a source of an almost split sequence that can be

calculated effectively (say, using [2, Proposition V.2.2]). Let M → N be

the corresponding left almost split morphism, and let (ϕ/ψ) be a pp-pair
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associated to this morphism as in Section 7.3. Clearly this pair can be found

effectively and isolates M (see [21, Proposition 13.1]).

Similarly if M is an injective finite R-module, then the pp-pair (ϕ/ψ)

corresponding to the (left almost split) mapping M → M/ soc(M) isolates

M . Since M is finite, the elementary invariant Inv(M,ϕ, ψ) can be also

calculated effectively.

Now we should do the same for an M -Prüfer point PM (again this rather

means that F (PM ) is an F (M)-Prüfer point of ZgkÃ1
). As in Section 8 we

can choose a representation 〈x̄ | x̄A = 0〉 of M , and put ϕ
.= x̄A = 0 and

ψ
.= J | x̄. Then for every R-module N we obtain

(∗∗) ϕ(N)/(ϕ ∧ ψ)(N) = Hom(M, N)/Hom(M, NJ) ∼= Hom(F (M), F (N)) .

Since F (M) is a simple regular kÃ1-module it follows (taking into account

the description of ZgkÃ1
in Section 7.2) that (ϕ/ψ) = OM is an open set

of ZgR consisting of PM , all M -regular points, and all preinjective points.

Using (∗∗) again we obtain ϕ(PM )/(ϕ ∧ ψ)(PM ) ∼= Hom(F (M), F (PM )),

therefore, by Proposition 7.3, Inv(PM , ϕ, ψ) = |K| which can be calculated

effectively. Furthermore End(PM )/ JacEnd(PM ) is clearly isomorphic to the

ring End(F (PM ))/ JacEnd(F (PM )) ∼= K (see the proof of Proposition 7.3).

It follows from [21, Proposition 9.6] that (ϕ/ψ) is a minimal pair in the

theory of PM .

Thus (arguing as in Section 7.3) it suffices to refine this pp-pair to a pp-

pair (ϕn/ψr) throwing away any finite number of M -regular points M1, . . . ,

Mn−1 and any finite number of preinjective points Ir−1, . . . , I1.

We employ the same idea as in Section 7.3. Recall (see Section 6) that

F restricted to the category of regular R-modules preserves and reflects

irreducible morphisms. Let gn : M → Mn be a composition of irreducible

morphisms corresponding (via F ) to irreducible monomorphisms in mod-

kÃ1, and let ϕn generate the pp-type of gn(x̄) in Mn. Clearly ϕn implies ϕ

for every n. Before even defining ψr let us notice that already (ϕn/ψ) does

not contain M1, . . . ,Mn−1. Indeed, otherwise there exists a tuple m ∈ Ms,

s < n such that Ms |= ϕn(m) ∧ ¬ψ(m), in particular m /∈ MsJ . It readily

follows that there are morphisms f : M → Ms and h : Mn → Ms such that

f(x̄) = m and the following diagram commutes
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Applying F to M
gn−→ Mn

h−→ Ms, as in Section 7.3 we conclude that

F (f) = F (hgn) = 0, hence f(M) = hgn(M) ⊆ MsJ , a contradiction.

Note also that each Ms, s ≥ n satisfies ϕ on gs(x̄), therefore PM satisfies

ϕ on the direct image of this element (as we will see below gs(x̄) 6= 0 in PM ).

Now we are ready to define ψr. Let Hom(M, Ir) = {h1, . . . , hl} and for

every i = 1, . . . , l let θi generate the pp-type of hi(x̄) in Ir. Set ψr =
∑l

i=1 θi.

We claim that the interval (ϕn/ψr +J | x) contains PM but not Ir−1, . . . , I1

(neither M1, . . . , Mn−1 as we have already proved).

First let us check that each Ms, s ≥ n opens this pair on gs(x̄). We have

already seen that gs(x̄) satisfies ϕn in Ms. Suppose that it satisfies ψk+J | x.

Then gs(x̄) = m1 + · · ·+ ml + m where Ms |= θj(mj) for every j = 1, . . . , l

and m ∈ MsJ . Since hj(x̄) is a free realization of θj , there is a morphism

g : Ir → Ms such that g(hj(x̄)) = mj . Since F (Ir) is a preinjective and

F (Ms) is a regular kÃ1-module, it follows that Hom(F (Ir), F (Ms)) = 0,

in particular F (g) = 0. We conclude that mj ∈ MsJ for each j, hence

gs(x̄) ∈ MsJ . Since x̄ generates M , it follows that gs(M) ⊆ MsJ . Applying

F we obtain F (gs)(F (M)) = 0, a contradiction. As in Section 7.3 it follows

that PM ∈ (ϕn/ψr + J | x̄) for all n and r.

Before proving that Is /∈ (ϕn/ψr + J | x̄) for each s < r, let us make

a short remark. Suppose that M and N are regular R-modules. It follows

from [2, Proposition IV.4.5 and Lemma X.2.3] that the modules Ext(N, τM)

and Hom(M, NJ) have the same length. If M and N are simple regular R-

modules from different tubes then using F we conclude that f(M) ⊆ NJ for

every morphism f : M → N . However it is quite possible that f 6= 0, hence

Ext(N,M) 6= 0 (because τ(M) = M). Thus at this stage we cannot directly

repeat the arguments from Section 7.3, but we can proceed as follows.

To check that Is /∈ (ϕn/ψr +J | x̄), it suffices to prove that if n̄ ∈ Is, with

s < r, satisfies ϕn, then n̄ satisfies ψr + J | x̄. Indeed, clearly there exists

f : M → Is such that f(x̄) = n̄; choose g : Ir → Is as in Section 7.3. Thus

we have the following diagram.
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Ir g
// Is

Applying F we can complete the image of this diagram in mod-kÃ1 by a

map from F (M) to F (Ir) (see Section 7.3 again). It follows that there exists

a morphism h : M → Ir such that n̄− gh(x̄) ∈ IsJ . But by the definition of

that, gh(x̄) satisfies ψr =
∑l

i=1 θi, hence n̄ satisfies ψr + J | x̄.

Thus we have constructed an effective basis of open neighborhoods for

PM . Since each (ϕn/ψr + J | x) is a refinement of the minimal pair (ϕ/ψ),

it follows that Inv(PM , ϕn, ψr + J | x) = |K|. A similar basis of open

neighborhoods for any adic point of ZgR can be constructed using elementary

duality (note that elementary duality preserves elementary invariants).

It remains to consider the generic point Q of ZgR. First we will find a

minimal pair in the theory of Q.

Lemma 9.1. Let ϕ
.= x = x and let ψ

.= J | x. Then (ϕ/ψ) is a minimal

pair in the theory of Q and Inv(Q, ϕ, ψ) = ∞.

Proof. The functor (ϕ/ψ) is isomorphic to the functor Hom(R,−) /Hom(R,−)J .

Since R goes to P1 via F , for every R-module N we have ϕ(N)/ψ(N) ∼=
HomR(R,N)/Hom(R, NJ) ∼= HomkÃ1

(F (R), F (N)) = Hom(e1kÃ1, F (N)) ∼=
F (N)e1.

For instance, ϕ(Q)/ψ(Q) ∼= F (Q)e1
∼= k(x) is 1-dimensional over End(F (Q))

= k(X). Because End(Q)/ JacEnd(Q) is isomorphic to EndF (Q), it follows

that ϕ(Q)/ψ(Q) is 1-dimensional over End(Q)/ JacEnd(Q). By [21, Propo-

sition 9.6], (ϕ/ψ) is a minimal pair in the theory of Q. ¤

By Ziegler [33, Theorem 4.9] the pp-pair (ϕ/ψ) can be refined to a basis

of open neighborhoods of Q. Arguing as in Section 7.3 it suffices to decide

effectively, for every pp-formula θ such that J | x implies θ, whether θ(Q) =

QJ or not. Applying F and [30, Proposition 4] we see that the direct limit

AM
f−→ AM

f−→ . . . of M -adic R-modules is isomorphic to a direct sum Q(I)

of copies of Q. We claim that QJ ⊂ θ(Q) if and only if AM ∈ (θ/J | x), and

the last question can be answered effectively (as we have already proved the

theory of AM is recursively axiomatized, hence decidable).

Indeed, suppose that AM |= θ(m) for some m /∈ AMJ . Then the image of

m in the above direct limit satisfies θ. If m /∈ Q(I)J , we are done. Otherwise
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m ∈ AMJ for some copy of AM with a large enough index l. Using F we

obtain the following diagram.

AM/AMJ

F (f l)
²²

,,
22 AMJ

F (f l)
²²

AM/AMJ
,,
22 AMJ

But then m 6= 0 in the top copy of AM/AMJ while F (f l)(m) = 0 in the

bottom copy of AM/AMJ , a contradiction, since F (f l) is mono.

Conversely, if Q |= θ(m) for some m ∈ Q \ QJ , then we obtain m ∈
AM \AMJ and AM |= θ(m) for some copy of AM with a large enough index.

10. Conclusions

Recall that our ultimate goal is to classify finite commutative rings with

decidable theories of modules. Thus let R be a finite commutative ring, we

would like to know whether the theory TR of all R-modules is decidable (or

undecidable). We decompose R into a direct sum of local rings (this clearly

can be done effectively) and then (see Remark 2.2) reduce the decidability

problem to the local case. Thus we may assume that R is a finite local

commutative ring with Jacobson radical J and residue field k = R/J .

First we control whether R has an artinian triad or a Drozd ring as a

factor (clearly this can be checked effectively). If this is the case then by

Corollary 4.4 the theory of all R-modules is undecidable.

Otherwise by the KL-dichotomy (see Theorem 3.1) R is a Klein ring or a

homomorphic image of a complete local Dedekind-like ring. If R is a (finite)

Klein ring then (by Theorem 5.1)the theory of all R-modules is decidable.

Otherwise R is a homomorphic image of a complete local (infinite) Dedekind-

like ring with a finite residue field (the same as R). Since R is finite, R is

a proper quotient of such a ring. Then it follows from [16, Section 11] that

one of the following holds.

1) R is a finite valuation ring (hence R is of finite representation type and

the theory of all R-modules is decidable);

2) there is a finite commutative valuation ring V whose residue field K =

V/ Jac(V ) is a 2-dimensional extension of k, and R is isomorphic to the

pullback
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R //____

²²Â
Â
Â V

π
²²

k ⊂ K

3) there are two finite commutative valuation rings V1 and V2 with com-

mon residue field k such that R is isomorphic to the pullback

R //____

²²Â
Â
Â
Â V1 ⊕ V2

(π1, π2)
²²

k // k ⊕ k ,

where k → k ⊕ k is the diagonal embedding.

4) R has a simple socle (hence is quasi-Frobenius) and R/ soc(R) is as in

1), 2) or 3).

Since all the properties of finite rings 1)–4) can be recognized effectively,

we will eventually find a representation of R of the form 1)–3), or such a

representation for R/ soc(R). As we have already noticed in case 4) R is

quasi-Frobenius, hence every R-module is a direct sum of a free module and

R/ soc(R)-module. Thus arguing as after Theorem 5.1 (and case 1) being

trivial) we may assume that R is of the form 2) or 3).

For instance a Gelfand–Ponomarev algebras G2,3(k) is in the class 3) with

V1 = k[X : X2 = 0] and V2 = k[Y : Y 3 = 0]. Note that G2,3(k) is a non-

domestic string algebra. Although some information on the Ziegler spectrum

of this algebra has been obtained in [24], it is still far from being complete.

Therefore the decidability of modules over this particular algebra is still a

very much open problem.

References
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