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ABSTRACT. A version of Michael’s theorem for multivalued mappings definable in
o-minimal structures with M-Lipschitz cell values (M a constant) is proven.

1. Introduction. Assume that R is any real closed field and an expansion of R to
some o-minimal structure is given. Throughout the paper we will be talking about
definable sets and mappings referring to this o-minimal structure. (For fundamental
definitions and results on o-minimal structures the reader is referred to [vdD] or
[C].) In this article we adopt the following definition of a closed cell.

A subset S of R™ (m € Z, m > 0) will be called a closed (respectively, closed
M -Lipschitz) cell in R™, where M € R, M > 0, if

(i) S is a closed interval [, 3] (o, € R, o < f3), or S = [, +00), or § =
(—o0,a] (@€ R), or S =R, when m =1 and

(i) § = [, o] = {Wrwm) o/ € 8 [i(t) < ym < Soly')}, where y =
(Y1, > Ym—1),S" is a closed (respectively, closed M-Lipschitz) cell in R™™ !,
fi: 8" — R (i =1,2) are continuous (respectively, M-Lipschitz)definable func-
tions such that fi(y") < fa(y'), for each y' € S’, or S = [f,+00) = {(V,ym) :
y € S ym = f(Y)}, or S = (=00, f] = {(¥sym) : ¥ € & ym < f(¥)}, or
S = 5" x R, where S’ is as before and f : S’ — R is continuous (respectively,
M-Lipschitz), when m > 1.

Let FF: A = R™ be a multivalued mapping defined on a subset A of R™; i.e. a
mapping which assigns to each point z € A a nonempty subset F(x) of R™. F can
be identified with its graph; i.e. a subset of R"™ x R". If this subset is definable we
will call F' definable. F is called lower semicontinuous if for each a € A and each
u € F(a) and any neighborhood U of u, there exists a neighborhood V' of a such
that U N F(x) # 0, for each x € V.

The aim of the present article is the following theorem.
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Theorem 1. Let F': A = R™ be a definable multivalued, lower semicontinuous
mapping defined on a definable subset A of R™ such that every value F(x) is a
closed M -Lipschitz cell in R™, where a constant M > 0 is independent of x € A.
Then F admits a continuous definable selection ¢ : A — R™.

The following generalization of Theorem 1 is immediate.

Corollary 1. Let F: A = R™ be a definable multivalued, lower semicontinuous
mapping defined on a definable subset A of R™. If there is a continuous definable
mapping & : A — Aut(R™) with values in the space of linear automorphisms?

of R™ such that &(x)(F(z)) is a closed M-Lipschitz cell in R™, then F admits a
continuous definable selection ¢ : A — R™.

Applying Theorem 1 to semilinear sets (see Remark 3 below) and taking into
account that every closed semilinear cell is Lipschitz and for every semilinear family
of semilinear cells they are M-Lipschitz with common M [vdD, Chapter 1, (7.4)],
we obtain the following application generalizing [AT, Theorem 4.10]

Corollary 2. Let F': A = R™ be a semilinear multivalued, lower semicontinuous
mapping defined on a semilinear bounded subset A of R™ such that every value F(z)
1s a closed semilinear cell in R™. Then F' admits a continuous semilinear selection
p:A— R™.

For other results on multivalued mappings in connection with o-minimal geome-
try we refer the reader to [AT1], [AT2] and [DP].

2. Proof of Theorem 1.

The proof will be by induction on m. Consider first the case m = 1. Then
Fx)={te R: f(z) <t < gx)}, for each z € A, where f : A — RU{—o0}
and g : A — R U {+00} are definable functions.? It is easy to check that F
is lower semicontinuous if and only if ¢ is lower semicontinuous and f is upper
semicontinuous. Therefore, the problem reduces to the following.

Proposition 1. Let f: A — RU{—o0} and g : A — RU{+o0} be two definable
functions such that f(z) < g(x), for each x € A, and f is upper semicontinuous
while g is lower semicontinuous. Then there exists a definable continuous function
p: A— R such that f < p <g.

To prove Proposition 1, which is a definable version of the Katétov-Tong Insertion
Theorem, we need the following definable version of the Tietze Theorem.

Theorem 2 (Definable Tietze’s Theorem). Let X and Y be two definable sub-
sets of R™ such that Y is closed in X. Then every definable continuous function
Y :Y — R has a continuous definable extension ¥ : X — R.

For a proof of Theorem 2 see [vdD, Chapter 8, (3.10)] (compare also [AF, Lemma
6.6)).

Remark 1. According to [AT2, Theorem 3.3] Theorem 2 holds true in the semi-
linear o-minimal structure, provided that' Y is bounded.

!The space Aut(R™) is naturally identified with a subset of R
2This means that f|f~1(R) and g|g~!(R) are definable.
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Proof of Proposition 1. We use induction on d := dim A. The case d = 0 is trivial.
Assume that d > 0. Let

B :={a € A: fandgare both continuous in a neighborhood of ain A}.

Then B is definable, open and dense subset of A. Hence A\ B is definable closed in
A and dim(A\ B) < d. By induction hypothesis there exists a definable continuous
function ¢ : A\ B — R such that for each z € A\ B, f(z) < ¢(z) < g(z). By the
Definable Tietze Theorem there exists a definable continuous extension ¥ : A — R
of ¢. Now put ¢(x) := min(max(¥(z), f(x)), g(x)), for each = € A. Tt is clear that
f < ¢ < g. Continuity of ¢ on B is obvious, since ¥, f and g are continuous on
B. We are checking continuity at any a € A\ B. Then ¢(a) = ¢ (a) € [f(a),g(a)].
Fix any € > 0. There exists a neighborhood V of a in A such that ¥(a) + & >
f(x),¥(a) —e < g(x), ¥(a)+e > ¥(x) and ¢Y(a) — e < ¥(x) for each x € V.
Then p(z) —e = YP(a) —e < ¥(z) < max(¥(x), f(x)) < ¥(a) + e = p(a) + € and
p(a) —e < g(x). Hence ¢(a) — e < p(z) = min(max(¥(z), f(x)),9(z)) < ¢(a) + €.
Remark 2. Since Theorem 2 holds true for the o-minimal structure of semilinear
sets under the assumption that X semilinear is bounded (see Remark 1), Proposition
1 holds true in this case too.

Assume now that m > 1 and our theorem is true for m — 1. To make the
induction hypothesis work we prove the following.

Proposition 2. Under the assumptions of Theorem 1, let

T:R"Sy= 1, Ym) — ¥ = Y1, Ym_1) € R™?
be the natural projection. Let mo F : A= R™~! denote the composition defined by
the formula (7o F)(x) = w(F(x)).
Then F treated as a multi-valued mapping F' : mo F' = R s lower semi-
cONtINUOUS.

Proof of Proposition 2. Put for each z € A

F(z) ={ s ym) : ¢ € 7(F(2)), Ym € R, f2(y') Sym < 92(y)}-
Fix any (a,b’) € woF, u € F(a,b') = {ym € R: fo(V') < ym < ¢g4(b')} and any open
interval U, := (u —¢e,u+¢). Let W be the open ball {y/ € R™™ : |y = V| < 1571}
where | .| is defined by | v'| = |(y1, - .., Ym—1)| = max; | y;|. By lower semi-continuity
of F' there exists a neighborhood V' of a in A such that F'(x) N (W x Uz) # 0,
whenever x € V.

Let now (z,y’) € (moF)N(V xW). There exists (z',v) € F(z)N(W x U%). Then
y e m(F(x)), 2/ € m(F(x)); hence |y’ — 2’| < 557 and f,(2') <v < gm( ). Thus, if
fw?é_oo7 |fw(yl)_fw(zl)’ gM’y/_Z/’ < %8' Hencefa:(y) fm( )+ E<U+ €<
u+e, also in the case when f, = —oo. Similarly, if g, Z +00, |g(v') — g(2)| < €
and consequently g, (y') > g.(2') — 3¢ = v > u—e. Finally, [f,(y), 9. (y )] NU. # @
which ends the proof.

To finish the proof of Theorem 1, observe that the mapping 7o F' is lower semi-
continuous as a composition of a lower semicontinuous mapping with a continuous
one, so by the induction hypothesis there exists a continuous definable selection ¢’
for m o F. By Proposition 2, F|¢’ : ¢ = R is lower semi-continuous; hence, by
Proposition 1, it admits a continuous definable selection o : ¢/ — R, which gives
a required selection ¢ = (¢’, 0 0 (ida, ¢")).
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Remark 3. Proof of Proposition 2 holds true for the o-minimal structure of semi-

linear sets, so in view of Remark 2, the Theorem 1 holds true for the semilinear

structure under the assumption that X semilinear is bounded.

3. A counterexample.

We are going to present an example of a semialgebraic mapping G : A = R?,
with A C R?, which is not only lower semicontinuous, but even continuous with

respect to the Hausdorftf distance in the space of definable, closed, bounded and

nonempty subsets, and which does not admit a continuous selection, although its

values G(x1,x2) are M-Lipschitz cells but not with a constant M independent of

(1'1,1'2). Let A = T1 U T2, where

T1 = {(5171,5132) X € [07 1]7 —X1 < T2 < 371}

and

T2 = {(331,1'2) 1T € [_1,0],11,‘1 < X9 <

We define G' by the following

G(Il, Ig) =

The graph of G is imagined by the following picture.

R2

—561}.

(1‘1, 1‘2) - (07 0)7

x1 > 0,29 = 0,

x1 > 0,22 <0,

{(yal_%) 3$1+IL’2<?J<—$1}7 z1 < 0,22 2 0,
Z1

{(971—%) 1$1<y<—9€1+$2}, r1 < 0,22 < 0.
\ I1
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Suppose that the mapping G admits a continuous semialgebraic selection
¢ = (0,p) : A — RZ% Then, for x; > 0, o(x1,71) > 0 and o(z1, —r1) < 0; hence,
there exists £ € [—x1,x1] such that o(z1,£) = 0, so p(z1,§) = lo@iOl — g and

|1 |
o(z1,€) = (0,0). Consequently, by continuity, ¢(0,0) = (0,0). Similarly, for any
x1 < 0, there exists € € [z1, —21], such that ¢(x1,&) = (0, 1); hence ¢(0,0) = (0, 1),
a contradiction.
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