
PILLAY'S CONJECTURE AND ITS SOLUTION-ASURVEYYA'ACOV PETERZIL1. Introdu
tionThese notes were originally written for a tutorial I gave in a ModnetSummer meeting whi
h took pla
e in Oxford 2006. I later gave a similartutorial in the Wro
law Logi
 
olloquium 2007. The goal was to surveyre
ent work in model theory of o-minimal stru
tures, 
entered aroundthe solution to beautiful 
onje
ture of Pillay on de�nable groups ino-minimal stru
tures. The 
onje
ture (whi
h is now a theorem in mostinteresting 
ases) suggested a 
onne
tion between arbitrary de�nablegroups in o-minimal stru
tures and 
ompa
t real Lie groups.All the results dis
ussed here have already appeared in print (mainly[28℄, [5℄, [24℄, [16℄). The goal of the notes is to put the results togetherand to provide a dire
t path through the proof of the 
onje
ture, avoid-ing side-tra
ks and generalizations whi
h are not needed for the proof.This is espe
ially true for the last paper in the list [16℄ whi
h was oftenwritten with an eye towards generalizations far beyond o-minimality.The last se
tion of the paper has gone through substantial 
hangesin the �nal stages of the writing. Originally, it 
ontained several openquestions and 
onje
tures whi
h arose during the work on Pillay's Con-je
ture. However, most of these questions were re
ently answered in apaper of Hrushovski and Pillay, [15℄, in whi
h the so-
alled Compa
tDomination Conje
ture has been solved. In another paper, [25℄, theassumptions for Pillay's Conje
ture were weakened from o-minimal ex-pansions of real 
losed �elds to o-minimal expansions of groups. Thesere
ent results are now brie
y dis
ussed here. I also list some relatedwork whi
h appeared sin
e the original 
onje
ture was formulated.The paper is aimed for readers who are familiar with the basi
model theoreti
 language and with the introdu
tory de�nitions of o-minimality (for more on o-minimality, see v.d. Dries' book, [6℄).A
knowledgements I thank M. Otero and A. Pillay for reading and
ommenting on an early version of this survey.Date: A preliminary version, O
tober 30, 2007.1



2 PILLAY'S CONJECTURE2. A motivating example and the 
onje
tureBefore stating Pillay's 
onje
ture, with all its te
hni
al terminology,let's 
onsider the main motivating example.Consider the group:G = SO(2;R) = �� a b�b a � 2 GL(2;R) : a2 + b2 = 1�G is isomorphi
, as a Lie group, to the 
ir
le group. Namely,G ' T1 = fz 2 C : jzj = 1g;with its 
omplex �eld-multipli
ation. Both groups, together with theirgroup operations and the isomorphism between them, are de�nable inthe real �eld R = hR; <;+; �; 0; 1i, so from a model theoreti
 view-pointthey are equivalent to ea
h other.Consider now a �-saturated real 
losed �eld R � R (� large). Wewrite G(R) for the realization of G in R. Namely, G(R) = SO(2;R).Be
ause SO(2;R) is a 
ompa
t group the standard-part mapping,whi
h sends every element of R of \�nite" size to its nearest real el-ement, indu
es a group-homomorphism st : SO(2;R) ! SO(2;R),de�ned by: st� a b�b a � = � st(a) st(b)st(�b) st(a) � :We have ker(st) = �(I) = \n2N fA : jA� Ij < 1=ng ;the interse
tion of 
ountably many de�nable sets in R.One says in this 
ase that ker(st) is type-de�nable, i.e., it 
an bewritten as the interse
tion of less than �-many de�nable sets.The map st(g) is a-priori just an abstra
t group homomorphism.The �rst observation of Pillay, [28℄, establishes a 
onne
tion betweende�nability in G(R) and the Eu
lidean topology on G:Two topologies on G(R)=�(I)We identify G(R)=�(I) with SO(2;R) and denote by the E-topologyits standard Eu
lidean topology. We de�ne another topology on thisquotient, 
alled the Logi
 topology (L-topology), by: F � SO(2;R)is L-
losed i� st�1(F ) � G(R) is type-de�nable in the ordered �eldstru
ture on R.



PILLAY'S CONJECTURE 3Logi
al 
ompa
tness, together with the saturation of R relative tothe size of SO(2;R)=�(I) imply (see [28℄ ) that the L-topology is 
om-pa
t and Hausdor�.Fa
t 2.1. A set F � SO(2;R) is E-
losed if and only if it is L-
losed.Proof. Assume F � SO(2;R) is L-
losed. It follows that st�1(F ) =p(R) for some type p(x) = f�i(x) : i 2 Ig, with jIj < �. We take g inthe Eu
lidean 
losure of F and show that it belongs to F .For all n 2 N , there exists g0 2 F su
h that jg0 � gj < 1=n (withj � j being the Eu
lidean distan
e). If we now take any h 2 st�1(g0)then, sin
e h is in�nitesimally 
lose to g0, we have jh � gj < 1=n andmoreover, h j= p(x).Be
ause we 
an do the above for every n, we 
an repla
e the orderof quanti�ers (with the help of saturation) and obtain an element h0 j=p(x) su
h that for all n 2 N , jh0�gj < 1=n. This implies that st(h0) = gand therefore p(R) \ st�1(g) = st�1(F ) \ st�1(g) 6= ;:Clearly, this implies that g 2 F .For the 
onverse, assume that F � SO(2;R) is 
losed in the Eu-
lidean topology. We will show that st�1(F ) is type-de�nable.Be
ause F � SO(2;R) is 
ompa
t, for every g 2 SO(2;R)rF thereis ng 2 N su
h that the distan
e between g and F is > 1=ng.Claim: st�1(F ) = p(R) for the type:p(x) =fx 2 SO(2;R)& jx� gj > 1=ng : g 2 SO(2;R) r Fg:Indeed, assume that st(h) = g0 2 F . Then, for every g 2 SO(2;R)rF , we have jg0 � gj > 1=ng. Be
ause h is in�nitesimally 
lose to g0 wehave jh� gj > 1=ng. Hen
e, h j= p(x).For the opposite in
lusion, assume that h =2 st�1(F ). It followsthat st(h) = g 2 SO(2;R) r F , and therefore jh � gj < 1=ng, andh =2 p(R). �Remarks1. The type p(x) de�ning st�1(F ) is parameterized by a subset ofSO(2;R) hen
e uses at most 2�0-many formulas. Moreover, the type isgiven uniformly, namely there is a �xed formula �(x; y) su
h that allformulas in p are of the form �(x; b) for varying b's. As we will latersee, this extra feature is still la
king in the general theory.



4 PILLAY'S CONJECTURE2. The quotient group G(R)=�(I) (' SO(2;R)) is independent of R.I.e. every 
oset, even in elementary extensions, is already representedin R. In su
h a 
ase �(I) is said to have of bounded index in G. Anequivalent 
ondition is that the 
ardinality of G(R)=�(I) is smallerthan � (re
all that R is �-saturated). Note that if H is a de�nablesubgroup of G of bounded index then the quotient is ne
essarily �nite.An example of a type-de�nable subgroup whi
h is not of boundedindex is the in�nitesimal subgroup �(0) of hR; <;+i. The quotient inthis 
ase is not hR;+i be
ause as the elementary extension extends one
an realize more and more elements whi
h are not in�nitesimally 
loseto ea
h other.3. The Logi
 topology on G(R)=�(I) is not the quotient topology withrespe
t to the topology of the real 
losed �eld, be
ause �(I) is open inthis topology (so the quotient topology is dis
rete).4. One 
an 
arry out the above pro
ess starting with any 
ompa
tHausdor� topologi
al spa
e X, instead of SO(2;R), as long as a de�n-able basis for the topology is uniformly de�nable. In this 
ase, if we
onsider an elementary extension X� of X then � : X� ! X is de�nedby: �(x) = the unique y 2 X su
h that every X-de�nable open set
ontaining y also 
ontains x.Generalizing the exampleAssume now that we move in the opposite dire
tion. Namely, westart with an arbitrary group G de�nable in an arbitrary (suÆ
ientlysaturated) o-minimal stru
ture. The goal is to asso
iate to G a real Liegroup H and a surje
tive homomorphism � : G ! H whose kernel istype-de�nable, su
h that the logi
 topology agrees with the Eu
lideantopology on H. Ideally, H should 
apture 
ertain properties of G, su
has dimension, the stru
ture of torsion points, 
ohomologi
al stru
tureand elementary theory. This is the idea behind Pillay's Conje
ture.Before stating the 
onje
ture in full we need to review some topolog-i
al 
on
epts in the theory of de�nable groups in o-minimal stru
tures:Assume that M = hM;<; � � �i is an o-minimal stru
ture. M is anordered stru
ture and as su
h it is a topologi
al spa
e. The 
artesianprodu
ts of M admit the produ
t topology. Now, if G is a de�nablegroup in M whose universe is a subset of Mn then the set G inheritsthe subspa
e topology fromMn but this might not be 
ompatible withthe group operation on G. (Consider for example, the the interval [0; 1)in R, with addition mod 1. This is a de�nable group in the real �eld



PILLAY'S CONJECTURE 5but the group operation is 
ont 
ontinuous with respe
t to the realtopology).A fundamental theorem of Pillay, [29℄, says: Let hG; �i be de�nablegroup whose underlying set G is a subset of Mn. Then there exists atopology � on G with the properties:(1) For all g 2 G outside a de�nable set of small small dimension, iffUs : s 2 Sg is a basis for the open neighborhoods of g in Mn thenfh � Us : s 2 S; h 2 Gg is a basis for � .(2) G, together with � , is a topologi
al group. Namely, the groupoperation, and the group-inverse map are 
ontinuous with respe
t to� . A
tually, Pillay proves a mu
h stronger result, as he shows thatG 
anbe 
overed by �nitely many � -open sets, ea
h de�nably homeomorphi
to an open subset of Mk for some �xed k (the o-minimal dimensionof G). This implies for example, that just like de�nable sets in theo-minimal topology, every de�nable subset of G has �nitely many de-�nably � -
onne
ted 
omponents (a set is 
alled de�nably � -
onne
ted ifit not 
ontained the disjoint union of two non-empty de�nable � opensets).It turns out, [6℄, that if M expands a real 
losed �eld then everyde�nable group G is de�nably homeomorphi
 (with its � -topology) toa a de�nable group H � M r, for some r, su
h that the topology on His the subspa
e topology. We 
all su
h anH an aÆnely embedded group.De�nable 
ompa
tnessIf one works in a suÆ
iently saturated o-minimal stru
ture M thenthe underlying topology on Mn is very far from being lo
ally 
ompa
t.In fa
t, it is not diÆ
ult to see that no in�nite de�nable subset of Mis 
ompa
t. Also, sequen
es are quite useless in this setting sin
e theonly 
onverging sequen
es are those whi
h are eventually 
onstant.What should be then the 
orre
t analogue of 
ompa
tness? The �rstattempt is to restri
t oneself to de�nable 
overs of open sets. However,this fails as the following example shows:Consider the interval [0; 1℄ in a nonstandard real 
losed �eld R, andtake � 2 R to be a positive in�nitesimal. The familyU = f(x� �; x+ �) : x 2 [0; 1℄gis a de�nable open 
over but it has no �nite sub
over.So, instead of using either open 
overs or 
onverging sequen
es, weuse \
onverging" de�nable 
urves (see [27℄):



6 PILLAY'S CONJECTUREDe�nition 2.2. A de�nable group G is de�nably 
ompa
t if everyde�nable 
ontinuous f : (a; b)! G has a limit point in G (with respe
tto the � -topology), as t tends to either a or b in M.Examples of de�nably 
ompa
t groups1. If G � Mn is an aÆnely embedded group then G is de�nably
ompa
t if and only if it is 
losed and bounded. In parti
ular, if wework over R, the notions of de�nable 
ompa
tness and 
ompa
tnessare the same for de�nable groups.2. Compa
t real Lie groups are de�nably 
ompa
t in any o-minimalstru
ture in whi
h they are de�nable.3. If A is an abelian variety over a real 
losed �eld R then A(R) = theset R-points of A, is de�nably 
ompa
t.4. The interval [0; a), in any ordered divisible abelian, with additionmod a is de�nably 
ompa
t.As a result of the work on Pillay's 
onje
ture, and mainly as a re-sult of the work of Doli
h, [7℄, one obtains an equivalent de�nition forde�nable 
ompa
tness, in terms of open 
overs:Fa
t 2.3. [24℄ G is de�nably 
ompa
t if and only if every uniformlyde�nable open 
over of G whi
h is parameterized by a 
omplete type,has a �nite sub-
over.Pillay's Conje
tureWe are now ready to state Pillay's 
onje
ture in full:Pillay's Conje
ture PC [28℄Let G be a de�nable group in a �-saturatedo-minimal stru
ture M (large �). Then:(1) G has a minimal (minimum) type-de�nable normal subgroup ofbounded index, 
all it G00.(2) G=G00, equipped with the Logi
 topology, is isomorphi
, as atopologi
al group, to a 
ompa
t Real Lie group.(3) If G is de�nably 
ompa
t thendimLie(G=G00) = dimM(G):The beauty of this 
onje
ture is that it o�ers a surprising 
onne
-tion between the pure latti
e of de�nable sets in de�nable groups ino-minimal stru
tures and Real Lie groups. It implies that every de�n-ably 
ompa
t group in an o-minimal (large) stru
ture has a homomor-phism onto a 
anoni
al Real Lie group that is asso
iated to it. The



PILLAY'S CONJECTURE 7pull-ba
k under this homomorphism of every Eu
lidean 
losed set istype-de�nable and vi
e-versa. Su
h quotients are 
alled in Model The-ory \hyper-imaginaries" (in 
ontrast to standard imaginaries, whi
hare quotients of de�nable sets by de�nable equivalen
e relations).Some examples(1) If G an elementary extension of a 
ompa
t Lie group H then,just as in the 
ase of SO(2;R), the group G00 is just �(e) \ Gand G=G00 ' H. If G is de�nably isomorphi
 to su
h a groupwe say that G has very good redu
tion.In these examples the 
hoi
e of G00 is determined by thein�nitesimals of the asso
iated saturated real 
losed �eld R, i.eby the valuation ring of R. This is not the 
ase in the nextexample.(2) Consider a suÆ
iently saturated real 
losed �eldR, � a positivein�nitesimal element, and let G = h[0; �);+ mod �i. In this
ase the whole of G is 
ontained in the kernel of the standardpart map, so we need to use an \internal" notion of valuation:G00 = fg 2 [0; �) : 8n 2 N g < �=n _ 1� 1n < g < 1gand G=G00, as a Lie group is again SO(2;R).(3) G = hR;+i (R a real 
losed �eld). In this 
ase G00 = G, soG=G00 is trivial.(4) A non-elementary example: Take A(R) to be the R-points of anabelian variety A de�ned over a real 
losed �eld R, dimA = n,and let G = A(R)0 be its semi-algebrai
 
onne
ted 
ompo-nent. By PC, there exists a homomorphism from G onto ann-dimensional real torus Tn, whose kernel is type-de�nable inR, and su
h that the logi
 toplogy agrees with the Eu
lideantopology on Tn.The 
urrent status of PC.The existen
e of G00, and the fa
t that G=G00 is a Lie group wasproven in [5℄ without any restri
tions. PC is now proven in full whenM expands a real 
losed �eld (the last step in the proof is in [16℄). PCwas also proved in the 
ase whenM is an ordered ve
tor spa
e over anordered division ring, [19℄, [12℄.It is still unknown whether PC holds in arbitrary o-minimal stru
-tures, or even in an o-minimal expansion of an ordered group. As wewill point out, the only obsta
le here is the understanding of torsionpoints in de�nably 
ompa
t groups in su
h stru
tures.



8 PILLAY'S CONJECTURE3. The existen
e of G00 and some 
orollariesThe material in this se
tion is 
ontained in [5℄.In [28℄ Pillay shows, for a group G de�nable anywhere, that theexisten
e of G00 and the fa
t that G=G00 with the group topology isa 
ompa
t Lie group are together equivalent to the Des
ending ChainCondition for type-de�nable subgroups of bounded index.Throughout this se
tion G is a de�nable group in an arbitrary o-minimal stru
ture.Theorem 3.1. [5℄(1) G satis�es DCC for type-de�nable subgroups of bounded index.Namely, there is no in�nite des
ending 
hain of type-de�nablesubgroups of G of bounded index.(2) If G is de�nably 
onne
ted then G=G00 is 
onne
ted.About the proof By [22℄, every de�nable group in an o-minimalstru
ture has a de�nable normal solvable subgroup H su
h that G=H issemisimple, namely has no in�nite de�nable normal abelian subgroup.DCC for a semisimple group follows from its de
omposition into analmost dire
t produ
t of de�nably almost simple groups (see [22℄) andthe fa
t that de�nably simple groups have very good redu
tion, [23℄.By analyzing ea
h abelian step whi
h makes up the solvable group H,we are redu
ed to the abelian 
ase, so we assume that G is abelian.An important ingredient the proof is the notion of a de�nably 
on-ne
ted type-de�nable set X. By that we mean that there are node�nable open sets U1; U2 � G su
h that U1 \ X and U2 \ X areboth nonempty and pairwise disjoint. As is proved in the paper, everytype-de�nable, de�nably 
onne
ted subgroup of G has a type-de�nablesubgroup of bounded index whi
h is de�nably 
onne
ted. This lattersubgroup 
an be written as the dire
ted interse
tion of de�nably 
on-ne
ted sets.Assume now that DCC fails. Then there exists a des
ending 
hain oftype-de�nable subgroups of bounded index H1 > � � �Hn > � � � , whi
hwe may assume are all de�nably 
onne
ted. Using standard model the-oreti
 arguments one may assume that all groups are de�nable over a
ountable modelM0 using a 
ountable langauge. Let H be the minimaltype-de�nable subgroup of bounded index de�nable over M0 (this doesexist!). Most of the work now is towards proving that G=H, equippedwith the Logi
 topology, is a 
ompa
t Lie group. That is done us-ing topologi
al arguments, together with the fa
t that G has a �nitenumber of elements of every given �nite order (see [32℄). On
e it isestablished that G=H is Lie group, the sequen
e Hi=H is a des
ending



PILLAY'S CONJECTURE 9
hain of 
losed subgroups, whi
h is impossible.Remark1. In [30℄, Shelah proves the existen
e of G00 (but not DCC!) for anygroup with NIP and therefore in parti
ular for o-minimal stru
tures.(The following dis
ussion and example were suggested by Pillay):2. There are two other related notions for a group G (in a suÆ
ientlysaturated stru
ture): Consider all de�nable subgroups of G of �niteindex. If the interse
tion of these groups has bounded index (equiva-lently, the interse
tion does not 
hange when we move to an elementaryextension) then it is 
alled G0. In o-minimal stru
tures and in groupsof �nite Morley rank, G0 itself is de�nable and has �nite index in G.Another notion is that of G000: For A � M a small subset, let G000Abe the smallest subgroup of G of bounded index whi
h is invariantunder automorphisms �xing A point-wise. If G000A does not depend onA then we 
all this group G000.The existen
e of G000 implies the existen
e of G00 and this in turnimplies the existen
e of G0. In stable theories all exists and are equalto ea
h other.It was shown by Shelah, [31℄, that if G is abelian and has NIP (seede�nition below) then G000 exists. Later on this was generalized byGismatulin, [14℄, to an arbitrary group with NIP. However, it is stillunknown in the NIP 
ontext (and even in the o-minimal 
ase), whetherG00 = G000.Example Consider the group G = hZ!; �i in the two-sorted stru
turehG;Ni, with a predi
ate P � Z! � N su
h that (x; n) 2 P if and onlyif xn = 0.The theory of the stru
ture says that for every 0 6= g 2 G there existsan n 2 N su
h that P (G; n) is a subgroup of index 2 whi
h avoids g.This is easily seen to imply that the group G0 (and therefore also G00and G000) does not exist in elementary extensions.We now return to the o-minimal 
ontext. Here are two important
orollaries of Theorem 3.1;Corollary 3.2. Assume that G is abelian. Then:(1) G00 is divisible.(2) Let H be a type-de�nable subgroup of bounded index. If H istorsion-free then H = G00.



10 PILLAY'S CONJECTUREProof. (1) We need to see that for every n, the map �n(x) = xn sendsG00 onto itself. It is easy to see that �n(G00) has bounded index in�n(G). However, �n has �nite kernel, [32℄, and therefore dim�n(G) =dim(G), so �n(G) has �nite index in G. It now follows that �n(G00)has bounded index in G, and be
ause it is 
ontained in G00 it followsfrom minimality that �n(G00) = G00.(2) The group H=G00 is a 
losed subgroup of the 
ompa
t Lie groupG=G00, therefore either H = G00 or H=G00 has torsion. If the lat-ter holds then, be
ause G00 is divisible H must have torsion as well.Contradi
tion. �Corollary 3.3. If G is torsion-free then G00 = G.Noti
e that up until now we have not even established that in a de-�nably 
ompa
t group we have G00 6= G. Indeed, the main remainingdiÆ
ulty in proving PC is the dimension equality:Remaining Conje
ture If G is de�nably 
ompa
t then dimM(G) =dimLie(G=G00).4. Some theory of generi
 sets IMost of the material in this se
tion is taken from [24℄.Here G is de�nable in an o-minimal stru
ture. However, some of theresults work in any model theoreti
 setting, or at least when there is areasonable notion of rank.De�nition 4.1. (1) A set X � G is 
alled left k-generi
 if G =Ski=1 giX, for some k 2 N and gi 2 G. X is left generi
 if itis left k-generi
 for some k 2 N. X is generi
 if it is both leftand right generi
.(2) If X � G is de�nable then X is 
alled large if dim(G n X) <dimG.Remark In !-stable 
onne
ted groups the notions of \generi
" and\large" are the same and both are equivalent to RM(X) = RM(G). Ino-minimal stru
tures generi
 sets are not ne
essarily large and dim(X) =dim(G) does not imply that X is generi
:1. In hR;+i (R a r.
.f), a set is generi
 if and only if it is of the form(�1; a) [ (b;+1), for a; b 2 R.2. In elementary extensions of T1 a de�nable set is generi
 if and onlyif it 
ontains a segment of standard length.



PILLAY'S CONJECTURE 11Fa
t 4.2. If X is large in G and dim(G) = n then X is (both left andright) n-generi
.Proof. Without loss of generality, X is 0-de�nable.We show: If g is generi
 in G and h 2 G n (X [ gX) thendim(h=g) < dim(h=;) < n:Indeed, if the left inequality fails then dim(h=g) = dim(h=;) andhen
e (by the addition formula for dimension) we have dim(g=h) =dim(g=;) = n. It follows thatdim(g�1h=h) = dim(g�1=h) = dim(g=h) = n:In parti
ular, g�1h is generi
 in G and be
ause X was large we musthave g�1h 2 X and hen
e h 2 gX, 
ontradi
ting the assumption on h.The inequality dim(h=;) < n follows from the fa
t that h 2 G n Xand X is large.It follows from the above dimension inequality that dim(G n (X [gX)) < dim(G n X) < dim(G). We now repla
e X by X [ gX andpro
eed by indu
tion. �Our goal in this se
tion is to dis
uss the following result:Theorem 4.3. [24℄ Assume that G is a de�nably 
ompa
t aÆnely em-bedded group, M expands an ordered group and and X � G is notleft-generi
. Then G nX is right generi
.Fa
t 4.4. (i) If X � G is not left-generi
 then Cl(X) is not left-generi
.(ii) If X � G is generi
 then Int(X) is also generi
. (Here and belowwe use the � -topology of G whi
h was des
ribed above).Proof. (i) We use the following basi
 fa
t about a de�nable set X ino-minimal stru
tures: For Fr(X) = Cl(X)rX, dimFr(X) < dim(X).If Cl(X) is left-generi
 thenG = k[i=1 giCl(X) = k[i=1 giX [ k[i=1 giFr(X):But dim(Fr(X)) < dim(G), hen
e dim(Ski=1 giFr(X)) < dim(G),and therefore the set Ski=1 giX is large in G. By Fa
t 4.2, this last setis generi
 and therefore X is generi
.(ii) Use the fa
t that for any X � G, we have dim(X n Int(X)) <dim(G), and pro
eed as in (i). �The 
onne
tion of generi
 sets to Pillay's Conje
ture 
omes through:



12 PILLAY'S CONJECTUREFa
t 4.5. If H � G is a type-de�nable subgroup then H has boundedindex in G if and only if it is the interse
tion of left generi
 sets.Proof. If H has bounded index and is 
ontained in a de�nable set Xthen G 
an be 
overed by boundedly many left translates of X (namelythe number of 
osets of H). By 
ompa
tness, �nitely many left trans-lates of X 
over G.If H = Ti<�Xi is the interse
tion of left generi
 sets, let A = fgj :j < �g be a set of elements su
h that for every Xi, we have G = AXi.LetM0 be a small model realizing all 
omplete types over A. We 
laimthat every 
oset of H has a representative inM0. Indeed, if g 2 G thenfor every Xi there is gi 2 A su
h that g�1i g 2 Xi. By 
ompa
tness we
an �nd h 2M0 su
h that h�1g 2 TiXi = H. �Fa
t 4.6. If X � G is not left-generi
 then for any small M0 � M(where \small" means jM0j < �) there exists g 2 G su
h that Xg \M0 = ;.Proof. By assumption, for every h1; : : : ; hk 2 G, k 2 N , there is g 2 Gsu
h that k̂i=1 g =2 hiX;or equivalently k̂i=1 h�1i =2 Xg�1:Clearly then, for every h1; : : : ; hk 2 G, k 2 N , there is g 2 G su
hthat k̂i=1 hi =2 Xg:It follows that ifM0 is any small subset ofM then, by the saturationof M, there is g 2 G su
h that M0 \Xg = ;. �Digression: Doli
h's work In [7℄, Doli
h examines the notion offorking and dividing in o-minimal stru
tures. The paper 
ontains manyinteresting and highly nontrivial results about types in o-minimal stru
-tures. In [24℄ we extra
t from his work the following:Theorem 4.7. Let X(a) � Mn be a 
losed and bounded a-de�nableset in a suÆ
iently saturated o-minimal stru
ture M expanding anordered group and let M0 � M be a small model. Assume that theset fX(a0) : a0 �M0 ag has the �nite interse
tion property (namely, theinterse
tion of every �nite sub-family is nonempty).Then X(a) \M0 6= ;.



PILLAY'S CONJECTURE 13The proof of this result is too long to dis
uss here. We only makefew observations:1. Consider the simplest example for 4.7, where X(a1a2) is the 
losedinterval [a1; a2℄ �M , andM0 a small submodel ofM . If [a1; a2℄\M0 =; then a1 �M0 a2 (otherwise, by o-minimality, there is an interval J overM0, 
ontaining one of the ai's but not the other. It follows that oneof the endpoints of this interval, whi
h must be in M0, also belongsto [a1; a2℄. Contradi
tion). Moreover, be
ause a1 =2 M0 there existsa02 < a1 with a02 �M0 a1 �M0 a2. By homogeneity, there is a01 < a02 su
hthat a01a02 �M0 a1a2, and hen
e X(a01a02) \X(a1a2) = ;, so the familyfX(a01; a02) : a01a02 �M0 a1a2gdoes not have the �nite interse
tion property.2. Theorem 4.7 is false when X(a) is not 
losed and bounded. Con-sider for example the open interval (0; �) in a nonstandard real 
losed�eld, for an in�nitesimal � > 0, and take M0 to be the real algebrai
numbers. The family f(0; �0) : �0 �M0 �gis �nitely satis�able but (0; �) \M0 is empty.3. In the stable 
ase, the analogous theorem to 4.7 is true for any de-�nable set be
ause the assumption is equivalent to the forking of X(a)over M0.4. The des
ription of a de�nably 
ompa
t set using a type-de�nableopen 
overing (see Fa
t 2.3) easily follows from Fa
t 4.7.End of DigressionProof. of Theorem 4.3Be
ause G is aÆnely embedded it is 
losed and bounded in Mk.Assume X � G is not left generi
. By 4.4 we may assume that Xis 
losed. Fix M0 su
h that X is de�nable over M0. By 4.6, thereexists g 2 G su
h that M0 \Xg = ;. By 4.7, there are g1; : : : ; gk (ea
hrealizing the same type as g over M0) su
h thatk\i=1Xgi = ;:



14 PILLAY'S CONJECTUREBy taking 
omplement we getk[i=1(G nX)gi = G:Hen
e, G nX is right-generi
. �Remarks1. Theorem 4.3 fails without the de�nable 
ompa
tness assumption:The set (a;+1) and its 
omplement are both not generi
 in hR;+i(here left and right-generi
 are the same).2. The analogue of Theorem 4.3 in the stable setting is true for anyde�nable subset of the group G.3. Re
ently, Eleftheriou has pointed out that the assumption that G isaÆnely embedded 
an be omitted Theorem 4.7 by working in the man-ifold 
harts of G. Also, the assumption that M expands an orderedgroup seems to be unne
essary.Here are two easy 
onsequen
es:Fa
t 4.8. Assume that G is de�nably 
ompa
t and abelian.(1) The non-generi
 sets form an ideal.(2) Every formula de�ning a generi
 set in G belongs to a 
omplete\generi
" type p (over M). Namely, every formula in p de�nesa generi
 set in G.5. Some Theory of generi
 sets II: Measure and the NIPThe 
ontent of Se
tions 4-8 is mostly taken from [16℄. The 
onne
tionbetween the Non Independen
e Property and measure is due to Keisler[17℄ and the proof of 5.4 below is modeled after a proof from Keisler'spaper.The next notion is due to Shelah. The de�nition we use is equivalentto the original one.De�nition 5.1. A theory T is said to be dependent or to have the NonIndependen
e Property (NIP) if for every indis
ernible sequen
e hai :i < !i over A and �(x; y) a formula over A the type f�(x; b2j)4�(x; b2j+1) :j < !g is in
onsistent. (We take �4 to mean (� ^ : ) _ (:� ^  ))Stable theories, o-minimal theories, the theory of p-adi
ally 
losed�elds all have the NIP, while the theory of pseudo-�nite �elds fails tohave it.



PILLAY'S CONJECTURE 15De�nition 5.2. We say that G admits a left invariant Keisler measureif there exists a real valued �nitely additive measure � : Def(G)! R onthe de�nable subsets of G, su
h that �(G) = 1 and for every de�nableX � G and g 2 G, we have �(gX) = �(X).In the rest of this se
tion we make the following assumptions onthe group G (equipped with the de�nable sets indu
ed by the ambientstru
ture):� G has NIP.� The non left-generi
 sets form an ideal.� G admits a left-invariant Keisler measure.As we will eventually show, every de�nably 
ompa
t satis�es all ofthe above. For now, noti
e that any abelian de�nably 
ompa
t groupsatis�es the above assumptions. Indeed, o-minimality implies NIP, andby Fa
t 4.8 the non-generi
s form and ideal. Be
ause every abeliangroup is amenable, it admits a left-invariant real valued �nitely additiveprobability measure on all subsets.De�nition 5.3. For X; Y � G de�nable, we write X �ng Y if X4Yis not left-generi
.Noti
e that sin
e the non left-generi
s form an ideal �ng is an equiv-alen
e relation. The NIp assumption is 
ru
ial for the following.Lemma 5.4. The equivalen
e relation �ng is bounded. I.e., there existsa �xed small model M0 su
h that every equivalen
e 
lass of �ng isalready represented by a de�nable set over M0.Proof. Let � denote the �nitely additive left-invariant measure onDef(G),the family of de�nable subsets of G. Note that if X � G is a de�nablen-generi
 set then we have �(X) > 1=n.Assume that �ng is unbounded. Then there exists a formula �(x; y)over the empty set, with the variable x for elements in G, and un-boundedly many bi's, su
h that �(G; bi)4�(G; bj) is generi
.By standard Ramsey-type arguments, there exists a �xed n and anindis
ernible sequen
e hai : i < !i su
h that for every i 6= j, the set�(G; ai)4�(G; aj) is n-generi
.Consider the family F = fYj = �(G; a2j)4�(G; a2j+1) : j < !g.By indis
ernibility, there exists a natural number k su
h that every ksets in F have empty interse
tion. However, for every j, �(Yj) > 1=n,and be
ause �(G) = 1 it is impossible that every k sets in F interse
ttrivially. Contradi
tion. �De�nition 5.5. For X � G de�nable, letStabng(X) = fg 2 G : gX �ng Xg:



16 PILLAY'S CONJECTUREUnder our assumptions, the set Stabng(X) is a subgroup of G. It istype-de�nable be
ause for every n, the set of all g su
h that n translatesof gX4X do not 
over G, is de�nable. The map g 7! gX= �ng is aninje
tive map from G=Stabng(X) into Def(G)= �ng and therefore weprovedTheorem 5.6. For any de�nable X � G, the subgroup Stabng(X) hasbounded index in G.6. The proof of PC in the abelian 
aseWe assume in this se
tion that M expands a real 
losed �eld andthat G is de�nably 
ompa
t and abelian.Our goal here is to prove:Theorem 6.1. If G is de�nably 
ompa
t and abelian then dimLie(G=G00) =dimMG.Proof. Be
ause G0 has �nite index in G we may assume that G isde�nably 
onne
ted.The proof is based on two ingredients. The �rst one is a deep theoremof Edmundo and Otero on the torsion points in de�nably 
onne
ted,de�nably 
ompa
t abelian groups. (Presumably, this was one of themost important justi�
ations to the original 
onje
ture of Pillay). Itsproof is based on Cohomologi
al tools and uses extensively the trian-gulation theorem whi
h is true only in o-minimal expansions of real
losed �elds:Theorem 6.2. [11℄ Assume thatM expands a real 
losed �eld and thatG is de�nably 
ompa
t, de�nably 
onne
ted abelian group of dimensionn. Then Tor(G) ' Tor(Tn):(where Tn is the n-dimensional torus).The se
ond ingredient, whi
h we will prove below is:Lemma 6.3. G00 is torsion-free.Let us see how the two results, taken together, imply PC in theabelian 
ase:Lemma 6.3, together with the divisibility of G00 (see 3.2 (1)) implythat Tor(G=G00) ' Tor(G):If dim(G) = n, it follows fromTor(G=G00) ' Tor(Tn):



PILLAY'S CONJECTURE 17Be
ause G=G00 is a 
onne
ted (3.1) abelian 
ompa
t Lie group,it is Lie isomorphi
 to a dire
t sum of T1's. The number of theseT1's is determined by, say, the number of 2-torsion points, thereforeG=G00 ' (T1)n and so the real dimension of G=G00 is n.Proof. of Lemma 6.3. For every n 2 N , 
onsider the map �n : g 7! gnfrom G onto G. By de�nable 
hoi
e, there exists a de�nable set X � Gsu
h that �njX is a bije
tion ofX and G (we assume thatG is de�nably
onne
ted).By [11℄ (or a
tually by [32℄), Tn = ker(�n) is �nite. It 
learly 
ontainsall n-torsion points and, as easily 
he
ked, G equals a �nite disjointunion of the gX's, for g 2 Tn. Thus X and all the gX's are generi
and pair-wise disjoint, and therefore Tn \ Stabng(X) = f0g: Be
ausethis is true for every n, the group Stabng(X) is torsion-free.By 5.6, the type-de�nable subgroup Stabng(X) above has boundedindex in G, and therefore G00 � Stabng(X). It follows that G00 istorsion-free, ending the proof of Lemma 6.3 and thus PC in the abelian
ase.7. Proof of PC for arbitrary definably 
ompa
t GWe assume in this se
tion that G is a de�nably 
ompa
t group in ano-minimal expansion of a real 
losed �eld.Here are some preliminary fa
ts about non
ommutative de�nably
ompa
t groups:As shown in [26℄, G=Z(G) is \semisimple", namely has no in�nitede�nable abelian normal subgroup. We let N = Z(G)0. By [22℄, G=N
an be written as an almost dire
t produ
t of de�nably almost simplegroups. Namely, ea
h 
omponent is a non
ommutative de�nable groupwhi
h, modulo its �nite 
enter, has no de�nable normal subgroup. Theword \almost" implies that up to a �nite 
entral subgroup the produ
tof the groups is dire
t.Finally, as is shown in [23℄, every de�nably simple group has \verygood redu
tion", namely it is de�nably isomorphi
 to a semialgebrai
linear group de�ned over the real algebrai
 numbers. The proof ofPC for groups with very good redu
tion is partly 
ontained in theIntrodu
tion (see [24℄ for more details). It easily follows that PC holdsfor de�nably almost simple groups and therefore also for an almostdire
t produ
t of su
h groups. Therefore, PC holds for both Z(G)(Theorem 6.1) and for G=N .We thus have:dimM(G) = dimM(G=N) + dimM(N) =



18 PILLAY'S CONJECTUREdimLie((G=N)=(G=N)00) + dimLie(N=N00):We also havedimLie(G=G00) = dimLie(G=G00N) + dimLie(G00N=G00):It is easy to verify that G00N=N = (G=N)00. Hen
e,(G=N)=(G=N)00 w G=G00N:In order to show that dimM(G) = dimLie(G=G00) it is therefore suÆ-
ient to prove: G00N=G00 w N=N00:The group on the left is isomorphi
 to N=(G00 \N), hen
e in order toprove PC we are left to prove:Lemma 7.1. If G is de�nably 
ompa
t then N00 = G00 \N .The fa
t that N00 � (G00 \N) follows from the fa
t that the groupon the right has bounded index in N . However, in order to prove theopposite in
lusion (whi
h fails for arbitrary groups, even with NIP) weneed to take one more de`tour, through the general theory of generi
sets. 8. Some theory of generi
 sets IIIIn this se
tion we make no assumption on the group G unless otherwisestated.De�nition 8.1. The theory of G is said to have �nitely satis�ablegeneri
s1 (in short f.s.g) if there exists a 
omplete type p over M su
hthat if �(x) 2 p then:(i) �(G) is left generi
.(ii) There exists a small model M0 � M su
h that every left translateof �(G) interse
ts M0.Our goal is to show that every de�nably 
ompa
t group in an o-minimal stru
ture has f.s.g. This is useful be
ause of the followingproperties:Fa
t 8.2. Assume that T = Th(G) has f.s.g . Then(i) There exists a small M0 � M su
h that every left generi
 set andevery right generi
 set interse
t M0.(ii) Given X � G de�nable, X is left-generi
 if and only if it is rightgeneri
.(iii) The de�nable non generi
 sets in G form an ideal.(iv) G00 exists and G00 = TfStabng(X) : X 2 Def(G)g:1For simpli
ity, we slightly modi�ed the de�nition from [16℄



PILLAY'S CONJECTURE 19Proof. Assume that p and M0 witness f.s.g.(i) If X is a left generi
 set then there are g1; : : : ; gk 2 G su
h that theformula x = x is equivalent to the �nite disjun
tion of the formulasx 2 giX: Hen
e, there is gi su
h that \x 2 giX" is in p. By assumptionon p, X \M0 6= ;. Consider the type p(x�1). Be
ause x 7! x�1 is a0-de�nable bije
tion of G it easily follows that every de�nable set Y inp(x�1) is right generi
 and every right translate of Y interse
ts M0. Asabove, it follows that every right generi
 set interse
ts M0.(ii) Assume X is not a left generi
 set. By 4.6, there exists a righttranslate of X whi
h does not interse
t M0, hen
e by (i), X is notright generi
 as well.(iii) Sin
e p is a 
omplete generi
 type it must 
ontain the 
omplementof every nongeneri
 set.(iv) For the existen
e of G00, see [16℄, Corollary 4.3.Now �x a small model M0 witnessing (i). Given X � G de�nable,let M1 be a small model 
ontaining M0 over whi
h X is de�nable. Ifg �M1 h then gX\M1 = hX\M1 and hen
e (gX4hX)\M0 = ;. By(i), gX4hX is nongeneri
. Thus, every 
oset of Stabng(X) 
ontainsall the realizations of some 
omplete type over M1. In parti
ular, ina (still small) model where every 
omplete type over M1 is realized,there is a representative for every 
oset of Stabng(X), so Stabng(X) hasbounded index, and therefore it is 
ontained in G00.For the opposite in
lusion, sin
e G00 has bounded index it 
an beobtained as the interse
tion of de�nable generi
 sets (Fa
t 4.5). If gbelongs to Stabng(X) for every su
h X then it must belong to G00(otherwise, by 
ompa
tness, there is X 
ontaining G00 su
h that gX \X = ;, whi
h implies that g =2 Stabng(X). �Lemma 8.3. Assume that N is a de�nable normal subgroup of G. IfN and G=N have fsg then G has fsg.Proof. See Proposition 4.5 in [16℄. �We return to the o-minimal setting.Lemma 8.4. If G is de�nably 
ompa
t and abelian then G has fsg.Proof. Sin
e we do have 
omplete generi
 types in abelian groups, it issuÆ
ient to show that there is a small M0 su
h that every generi
 setinterse
ts M0.Let M0 be a small model su
h that every �ng-
lass in Def(G) hasa representative de�nable over M0 (re
all, 5.4, that this equivalen
erelation is bounded).Given X � G generi
, there exists X1 � X su
h that X1 is stillgeneri
 and Cl(X1) � X. Indeed, the following argument for that fa
t



20 PILLAY'S CONJECTUREwas suggested by the UIUC seminar:G = k[i=1 giX:By 4.4, Int(X) is also generi
. For every � > 0 letX� = fg 2 X : d(g; Fr(X)) > �g:We have, X =[�>0X�:It is now suÆ
ient to take � in a 
omplete type p(x) right of zero. So,G =[��p k[i=1 giX�:We obtained a de�nable open 
overing of G parameterized by a 
om-plete type. By the equivalent de�nition to de�nable 
ompa
tness, 2.3,there is a �nite sub
over, whi
h easily implies that some X� is generi
.Let X1 = X�. Be
ause Cl(X1) � X we may assume that X is 
losed.Let Y � G be a de�nable set de�nable over M0 su
h that Y4X isnongeneri
. Again, by 4.4, we may assume that Y is 
losed, so both Xand Y are de�nably 
ompa
t. We will show that (Y \ X) \M0 6= ;.Noti
e that both X and Y are de�nably 
ompa
t.By 4.7, ifX\Y \M0 = ; then there are �nitely manyM0-
onjugatesof X\Y whose interse
tion is empty. Be
ause Y isM0-de�nable thereare X1; : : : ; Xk all M0-
onjugates of X su
h thatk\i=1Xi \ Y = ;:Sin
e Y is generi
 this implies that for some Xi we must have Y nXigeneri
. Contradi
tion to Y4X being non-generi
. �Lemma 8.5. If H is de�nably 
ompa
t and semisimple then H hasfsg.The proof of this lemma is based on the almost-de
omposition intode�nably almost simple groups. The de�nably simple 
ase is handledin [24℄ using measure theoreti
 arguments based on [4℄ and [1℄.Using 8.4, 8.5, and 8.3, we 
an 
on
lude:Theorem 8.6. Every de�nably 
ompa
t group has fsg.



PILLAY'S CONJECTURE 21The above theorem, together with 8.2, implies that the set of left(hen
e also right) generi
s inG form an ideal, and that for any de�nableset X, Stabng(X) is a type-de�nable group of bounded index. Finally(and this is the main fa
t whi
h for
ed us to take this de`tour throughthe notion of \f.s.g"), the group G00 is the interse
tion of all stabilizersof de�nable subsets of G.9. Completing the proof of PCWe 
an now return to the missing ingredient in the proof of PC,namely the proof of 7.1. We need to show that G00 \N = N00, whereN is a de�nably 
onne
ted normal 
entral subgroup. By 3.2, it issuÆ
ient to prove that G00 \N is torsion-free.Given n 2 N , let Tn = Torn(N) and X � N be a de�nable set su
hthat g 7! gn gives a bije
tion of X and N . By de�nable 
hoi
e, thereis D � G whi
h interse
ts every 
oset of G=N exa
tly on
e. It is noweasy to verify that G is the �nite disjoint union of the translates of DXby the elements of Tn. In parti
ular, DX is generi
 andTn \ Stabng(DX) = feg:Be
ause this is true for every n, we have Stabng(DX) \ Tor(G) 6= ;:By the f.s.g property, G00 � Stabng(DX), therefore G00 \Tor(N) =feg:We thus proved that G00 \ N = N00; 
ompleting the proof of PC(see the argument pre
eding Lemma 7.1). �9.1. De�ning measure on G. As a result of the work on Pillay'sConje
ture, the following theorem was established in [16℄.Theorem 9.1. If G is de�nably 
ompa
t in an o-minimal stru
turethen it admits a left-invariant Keisler measure on the de�nable subsetsof G. For a de�nable X � G, we have �(X) = 0 if and only if X isnon-generi
.Proof. As we already pointed out, the existen
e of su
h measure isimmediate when G is abelian. In the general 
ase, we �rst note thatG=G00, as a 
ompa
t Lie group, admits a left-invariant �nitely additiveprobability measure on a boolean algebra of sets 
ontaining all Borelmeasurable sets- the Haar measure m.We �rst �x a 
omplete generi
 type p(x) over G. Given a de�nableset X, we 
onsider the setX̂ = fgG00 2 G=G00 : p j= \x 2 gX 00g:(note that X is well de�ned. Namely, if gh�1 2 G00 then in parti
ular,gX4hX is non-generi
 and therefore not in p. It follows that gX 2 p



22 PILLAY'S CONJECTUREif and only if hX 2 p). The main part of the proof is to show that X̂is a Borel set in G=G00 (see Proposition 6.2 in [16℄). We then de�ne�p(X) =m(X̂):Clearly, �p is left invariant, and it is easy to verify that it is also�nitely additive (if X1 \X2 = ; then X̂1 \ X̂2 = ;).Finally, if X is generi
 then �nite additivity implies that �p(X) > 0and if X is non-generi
 then X̂ = ; and therefore �p(X) = 0. �10. Related work and some open questionsThis se
tion has gone through substantial 
hanges in the last stagesof writing. As will be explained below, most of the open questions listedhere were solved in a re
ent paper by Hrushovski and Pillay, [15℄.10.1. Omitting the real 
losed �eld assumption. As was pointedout early on, the only remaining obsta
le for proving PC without theassumption that M expands a real 
losed �eld is the la
k of an ana-logue to Theorem 6.2 on the number of torsion points, without the �eldassumption. Su
h a theorem was proved by Eleftheriou and Star
henko[13℄ when M was assumed to be an ordered division ring over an or-dered ve
tor spa
e and hen
e PC holds in this 
ase as well. A
tually,a very 
lear des
ription of de�nable groups in this setting is given inthe paper, out of whi
h the number of torsion points is easily read.In order to prove the torsion points result under weaker assumptionsit seems important to develop similar topologi
al tools to the ones orig-inally used, but this time without the triangulation theorem. Indeed,Sheaf Cohomology in expansions of ordered groups has been the subje
tof several papers of Edmundo, Jones and Peat�eld (see [8℄ and [9℄) andof Beradu

i and Fornasiero (see [3℄). A �rst appli
ation to 
ountingtorsion points is given in [8℄ where the 
orre
t upper bound is obtained.In a very re
ent result, [25℄, the author was able to prove the questionabout the torsion point and hen
e Pillay's Conje
ture, in o-minimalexpansions of ordered groupsThe questions formulated below were written prior to the publi
ationof the re
ent pre-print by Hrushovski and Pillay [15℄. As I will even-tually point out, most of these questions are now solved by that paper,either expli
itly or impli
itly. I leave them here be
ause I �nd that theirdis
ussion 
ould still be of some interest



PILLAY'S CONJECTURE 2310.2. Uniform de�nability of G00. An important feature of the basi
example of Pillay's 
onje
ture (where we start with a 
ompa
t real Liegroup and view it in an elementary extension) is the fa
t that the typede�ning G00 is given by a single formula, with varying parameters.Namely, G00 = fg 2 G : jgj < a : a 2 Rg:Consider the stru
ture Gind whose universe is G=G00, with a fun
-tion symbol for the group operation and a predi
ate for every set ofthe form �(X), for X � Gn de�nable in the o-minimal stru
ture M.In [16℄ we showed, using a theorem of Baysalov and Poizat, that ifG = h[0; 1)n;+mod1i then stru
ture Gind is de�nable in an o-minimalstru
ture over the reals. Later, in [18℄, Marikova re-proved this resultwithout referring to [1℄, and provided a mu
h �ner analysis of the de-�nable sets in this stru
ture. The uniformity in parameters plays animportant role in both works.Conje
ture If G is de�nably 
ompa
t then there is a formula �(x; y),where x varies over element of G, and a set of parameters A, su
h thatG00 = fg 2 G : â2A�(g; a)g:Conje
ture The stru
ture on the 
ompa
t Lie group Gind is de�nablein some o-minimal stru
ture over the real numbers.Related to the above 
onje
ture is the following:Question What is the stru
ture whi
h G indu
es Tor(G)? In parti
u-lar, what subsets of Tor(G) are of the form X \Tor(G) for a de�nablesubset of G?Note that when G is abelian its torsion group 
an be realized asa de�nable set in the o-minimal stru
ture hQ ;+; <i, namely it is iso-morphi
 as a group to h[0; 1)n;+mod1i, viewed inside of Q . It wasshown by Wilkie, [33℄, that there are nontrivial o-minimal expansionsof this stru
ture. Moreover, if G itself equals to the real points ofh[0; 1)n;+mod1i, in the stru
ture of the real �eld, then the torsionpoints of G inherit the ring operations and therefore the indu
ed stru
-ture is unstable and unde
idable. However, even in this 
ase it isinteresting to ask whi
h de�nable subsets of Qn 
an be obtained as thetra
e of a de�nable set in G.



24 PILLAY'S CONJECTURE10.3. The distribution of torsion points. Somewhat surprisinglyfor those of us who have worked on this problem, the solution of Pil-lay's Conje
ture did not yield a mu
h better understanding of the dis-tribution of torsion points in a de�nably 
ompa
t abelian G. Here aresome 
onje
tures on this matter:Conje
ture A If X � G is generi
 then it 
ontains a torsion point.Conje
ture B If GnX is non-generi
 then X 
ontains a torsion point.Clearly, (A) implies (B) and both imply the following result, re
entlyproved in [21℄:Theorem If dim(G nX) < dimG then X 
ontains a torsion point.10.4. Other related work. In other work generated by Pillay's 
on-je
ture the pre
ise relationship between G and G=G00 was investigated.In [2℄, Berardu

i dis
usses the o-minimal spe
trum ~G of a de�nably
ompa
t G and proves that G=G00 is a topologi
al quotient of ~G. In[10℄, Edmundo, Jones and Peat�eld examine the 
onne
tions betweenthe 
ohomology groups of G and of G=G00.In [20℄, Onshuus and Pillay study the analogous 
onje
ture in thep-adi
 setting and show 
ases where it fails and other 
ases where the
onje
ture holds.In an unpublished result, Hrushovski, Pillay and the present author,prove that every de�nably 
ompa
t group G is elementarily equiva-lent, as a pure group, to G=G00. A better understanding of the grouptheoreti
 stru
ture of G 
an then be dedu
ed, and in parti
ular, one
on
ludes that the 
ommutator subgroup of G is de�nable and that Gis the almost dire
t produ
t of Z(G) and [G;G℄.Finally, the re
ent paper of Hrushovski and Pillay [15℄ puts some ofthe notions whi
h were examined in [16℄ in a very general 
ontext, andexamines forking, stability and measure in several di�erent abstra
tsettings, mainly in groups under the assumptions of NIP and the exis-ten
e of some measure. The ma
hinery and results obtained there arevery powerful and, as I now explain, yielded answers to most of thequestions raised above.10.5. The Compa
t Domination Conje
ture and its re
ent so-lution. At �rst, it seems as if the most natural way to de�ne mea-sure on de�nable subsets of G would be dire
tly through the map



PILLAY'S CONJECTURE 25� : G ! G=G00. Namely, to let �(X) equal m(�(X)) (the Haar mea-sure of �(X)) for any de�nable set X � G. However, a diÆ
ulty ariseswhen one tries to prove �nite additivity:Take X1; X2 � G two disjoint de�nable sets. Finite additivity shouldimply that the Haar measure of �(X1) \ �(X2) is zero (note that�(X1); �(X2) need not be disjoint anymore). However, until very re-
ently this remained an open question and, as we will soon see, it isequivalent to the Compa
t Domination Conje
ture below.We �rst introdu
e some notation: Given X � G, we letB(X) = fy 2 G=G00 : ��1(g) \X 6= ;& ��1(g) \G nX 6= ;g:We say that G is 
ompa
tly dominated by G=G00, via �, in a measuretheoreti
 sense if for every de�nable X � G, the Haar measure of B(X)is zero. We say that G is 
ompa
tly dominated by G=G00, via �, in atopologi
al sense if every su
h B(X) is nowhere dense in G. (The term\
ompa
t domination" is modeled after the notion \stably dominated"referring to a situation where an unstable set is \
ontrolled" by a stableone).The Compa
t Domination Conje
ture, formulated in [16℄ stated thatevery de�nably 
ompa
t group is 
ompa
tly dominated (in both senses).In an earlier version of these notes several equivalen
es to the above
onje
tures were proved, implying for example that the measure theo-reti
 
onje
ture implies the topologi
al one. Both are known to implyConje
ture (A) above about the density of torsion points. However,the re
ent preprint of Hrushovski and Pillay [15℄ proves the Compa
tDomination Conje
ture, and at the same time the torsion point andthe uniform de�nability 
onje
tures formulated above.Theorem 10.1. [15℄ Every de�nably 
ompa
t group is 
ompa
tly dom-inated, in the measure theoreti
 (and hen
e topologi
al) sense.Sin
e the paper is very new I will only try to roughly sket
h the ideasbehind this solution:As in [16℄, the authors make use of the theorem of Baysalov andPoizat mentioned above. Namely, they 
onsider an elementary exten-sionM� ofM, and for every M�-de�nable set X they add a predi
ateto M for the the tra
e of X, on Mn. The main theorem in [1℄ (latergeneralized by Shelah to any theory with NIP), implies that this newstru
ture eliminates quanti�ers and in parti
ular it is weakly o-minimal.We denote it by �M.



26 PILLAY'S CONJECTUREThe main diÆ
ulty is to prove thatG00 is de�nable in �M. Hrushovskiand Pillay do it after showing �rst that it 
an be written as the set the-oreti
 stabilizer of any global generi
 type in G. It is here that theyalso show prove the uniform de�nability of G00, whi
h was 
onje
turedabove.G=G00 is now a 
ompa
t Lie group, given as a quotient of two de�n-able sets in the weakly o-minimal stru
ture �M. After a �ne analysisof the topologi
al situation (and using the knowledge of the funda-mental group of G), they prove that G=G00 is semi o-minimal in thisweakly o-minimal stru
ture. Namely it is in the de�nable 
losure of�nitely many o-minimal stru
tures, all de�nable in �M. In parti
ular,this settles the 
onje
ture on Gind mentioned above.On
e this ma
hinery is established, de�nable subsets of G=G00 ofHaar measure zero are just sets of smaller dimension (in the o-minimalsense). It is now not diÆ
ult to prove 
ompa
t domination similarlyto the simple 
ases handled in [16℄.Referen
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