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1. INTRODUCTION

These notes were originally written for a tutorial I gave in a Modnet
Summer meeting which took place in Oxford 2006. I later gave a similar
tutorial in the Wroclaw Logic colloquium 2007. The goal was to survey
recent work in model theory of o-minimal structures, centered around
the solution to beautiful conjecture of Pillay on definable groups in
o-minimal structures. The conjecture (which is now a theorem in most
interesting cases) suggested a connection between arbitrary definable
groups in o-minimal structures and compact real Lie groups.

All the results discussed here have already appeared in print (mainly
[28], [5], [24], [16]). The goal of the notes is to put the results together
and to provide a direct path through the proof of the conjecture, avoid-
ing side-tracks and generalizations which are not needed for the proof.
This is especially true for the last paper in the list [16] which was often
written with an eye towards generalizations far beyond o-minimality.

The last section of the paper has gone through substantial changes
in the final stages of the writing. Originally, it contained several open
questions and conjectures which arose during the work on Pillay’s Con-
jecture. However, most of these questions were recently answered in a
paper of Hrushovski and Pillay, [15], in which the so-called Compact
Domination Conjecture has been solved. In another paper, [25], the
assumptions for Pillay’s Conjecture were weakened from o-minimal ex-
pansions of real closed fields to o-minimal expansions of groups. These
recent results are now briefly discussed here. I also list some related
work which appeared since the original conjecture was formulated.

The paper is aimed for readers who are familiar with the basic
model theoretic language and with the introductory definitions of o-
minimality (for more on o-minimality, see v.d. Dries’ book, [6]).

Acknowledgements [ thank M. Otero and A. Pillay for reading and
commenting on an early version of this survey.

Date: A preliminary version, October 30, 2007.
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2 PILLAY’S CONJECTURE

2. A MOTIVATING EXAMPLE AND THE CONJECTURE

Before stating Pillay’s conjecture, with all its technical terminology,
let’s consider the main motivating example.

Consider the group:

G = SO(2,R) :{( 4 2) € GL(2,R) : a2+b2:1}

(G is isomorphic, as a Lie group, to the circle group. Namely,
G=T' ={2€C:|z| =1},

with its complex field-multiplication. Both groups, together with their
group operations and the isomorphism between them, are definable in
the real field R = (R, <, +, -, 0, 1), so from a model theoretic view-point
they are equivalent to each other.

Consider now a k-saturated real closed field R = R (x large). We
write G(R) for the realization of G in R. Namely, G(R) = SO(2,R).

Because SO(2,R) is a compact group the standard-part mapping,
which sends every element of R of “finite” size to its nearest real el-
ement, induces a group-homomorphism st : SO(2,R) — SO(2,R),

defined by:
(D)= ()

ker(st) = pu(l) = ﬂ {A:]A—-1I|<1/n},

neN

We have

the intersection of countably many definable sets in R.

One says in this case that ker(st) is type-definable, i.e., it can be
written as the intersection of less than x-many definable sets.

The map st(g) is a-priori just an abstract group homomorphism.
The first observation of Pillay, [28], establishes a connection between
definability in G(R) and the Euclidean topology on G-

Two topologies on G(R)/u(I)

We identify G(R)/u(I) with SO(2,R) and denote by the E-topology
its standard Euclidean topology. We define another topology on this
quotient, called the Logic topology (L-topology), by: F C SO(2,R)
is L-closed iff st™'(F) C G(R) is type-definable in the ordered field
structure on R.



PILLAY’S CONJECTURE 3

Logical compactness, together with the saturation of R relative to
the size of SO(2,R)/u(I) imply (see [28] ) that the L-topology is com-
pact and Hausdorff.

Fact 2.1. A set FF C SO(2,R) is E-closed if and only if it is L-closed.

Proof. Assume F C SO(2,R) is L-closed. It follows that st™!(F) =
p(R) for some type p(z) = {¢i(x) : i € I}, with |I| < k. We take ¢ in
the Euclidean closure of F' and show that it belongs to F'.

For all n € N, there exists ¢’ € F such that |¢' — ¢g| < 1/n (with
| - | being the Euclidean distance). If we now take any h € st~'(g’)
then, since h is infinitesimally close to ¢’, we have |h — g| < 1/n and
moreover, h = p(z).

Because we can do the above for every n, we can replace the order
of quantifiers (with the help of saturation) and obtain an element hy |=
p(z) such that for alln € N, |hg—g| < 1/n. This implies that st(hy) = ¢
and therefore

p(R)Nst™!(g) = st (F) N st (g) # 0.

Clearly, this implies that g € F'.
For the converse, assume that F' C SO(2,R) is closed in the Eu-
clidean topology. We will show that st~!(F) is type-definable.
Because F' C SO(2,R) is compact, for every g € SO(2,R)\ F there
is ngy € N such that the distance between g and F'is > 1/n,.

Claim: st™!'(F) = p(R) for the type:
plz) ={r € SO2,R)& |z —g| > 1/n, : g€ SO(2,R) \ F}.

Indeed, assume that st(h) = ¢’ € F. Then, for every g € SO(2,R) \
F, we have |¢' — g| > 1/n,. Because h is infinitesimally close to g' we
have |h — g| > 1/n,. Hence, h = p(z).

For the opposite inclusion, assume that h ¢ st='(F). Tt follows
that st(h) = g € SO(2,R) \ F, and therefore |h — g| < 1/n,, and
h ¢ p(R). N

Remarks

1. The type p(z) defining st~!(F) is parameterized by a subset of
SO(2,R) hence uses at most 2%°-many formulas. Moreover, the type is
given uniformly, namely there is a fixed formula ¢(x,y) such that all
formulas in p are of the form ¢(x,b) for varying b’s. As we will later
see, this extra feature is still lacking in the general theory.
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2. The quotient group G(R)/u(I) (~ SO(2,R)) is independent of R.
[.e. every coset, even in elementary extensions, is already represented
in R. In such a case u(I) is said to have of bounded index in G. An
equivalent condition is that the cardinality of G(R)/u(I) is smaller
than k (recall that R is k-saturated). Note that if H is a definable
subgroup of G of bounded index then the quotient is necessarily finite.

An example of a type-definable subgroup which is not of bounded
index is the infinitesimal subgroup p(0) of (R, <,+). The quotient in
this case is not (R, +) because as the elementary extension extends one
can realize more and more elements which are not infinitesimally close
to each other.

3. The Logic topology on G(R)/u(I) is not the quotient topology with
respect to the topology of the real closed field, because p(I) is open in
this topology (so the quotient topology is discrete).

4. One can carry out the above process starting with any compact
Hausdorff topological space X, instead of SO(2,R), as long as a defin-
able basis for the topology is uniformly definable. In this case, if we
consider an elementary extension X* of X then 7 : X* — X is defined
by: m(z) = the unique y € X such that every X-definable open set
containing y also contains x.

Generalizing the example

Assume now that we move in the opposite direction. Namely, we
start with an arbitrary group G definable in an arbitrary (sufficiently
saturated) o-minimal structure. The goal is to associate to G a real Lie
group H and a surjective homomorphism 7 : G — H whose kernel is
type-definable, such that the logic topology agrees with the Euclidean
topology on H. Ideally, H should capture certain properties of G, such
as dimension, the structure of torsion points, cohomological structure
and elementary theory. This is the idea behind Pillay’s Conjecture.

Before stating the conjecture in full we need to review some topolog-
ical concepts in the theory of definable groups in o-minimal structures:

Assume that M = (M, <,---) is an o-minimal structure. M is an
ordered structure and as such it is a topological space. The cartesian
products of M admit the product topology. Now, if GG is a definable
group in M whose universe is a subset of M™ then the set GG inherits
the subspace topology from M™ but this might not be compatible with
the group operation on G. (Consider for example, the the interval [0, 1)
in R, with addition mod 1. This is a definable group in the real field
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but the group operation is cont continuous with respect to the real
topology).

A fundamental theorem of Pillay, [29], says: Let (G, -) be definable
group whose underlying set G' is a subset of M™. Then there exists a
topology 7 on G with the properties:

(1) For all g € G outside a definable set of small small dimension, if
{Us; : s € S} is a basis for the open neighborhoods of g in M™ then
{h-Us:s€eS heG}is abasis for 7.

(2) G, together with 7, is a topological group. Namely, the group
operation, and the group-inverse map are continuous with respect to
T.

Actually, Pillay proves a much stronger result, as he shows that G can
be covered by finitely many 7-open sets, each definably homeomorphic
to an open subset of M* for some fixed k (the o-minimal dimension
of G). This implies for example, that just like definable sets in the
o-minimal topology, every definable subset of G' has finitely many de-
finably 7-connected components (a set is called definably T-connected if
it not contained the disjoint union of two non-empty definable 7 open
sets).

It turns out, [6], that if M expands a real closed field then every
definable group G is definably homeomorphic (with its 7-topology) to
a a definable group H C M, for some r, such that the topology on H
is the subspace topology. We call such an H an affinely embedded group.

Definable compactness

If one works in a sufficiently saturated o-minimal structure M then
the underlying topology on M" is very far from being locally compact.
In fact, it is not difficult to see that no infinite definable subset of M
is compact. Also, sequences are quite useless in this setting since the
only converging sequences are those which are eventually constant.

What should be then the correct analogue of compactness? The first
attempt is to restrict oneself to definable covers of open sets. However,
this fails as the following example shows:

Consider the interval [0, 1] in a nonstandard real closed field R, and
take o € R to be a positive infinitesimal. The family

U={(r—a,v+a):x€][0,1]}

is a definable open cover but it has no finite subcover.
So, instead of using either open covers or converging sequences, we
use “converging” definable curves (see [27]):



6 PILLAY’S CONJECTURE

Definition 2.2. A definable group G is definably compact if every
definable continuous f : (a,b) — G has a limit point in G (with respect
to the T-topology), as t tends to either a or b in M.

Examples of definably compact groups

1. If G € M" is an affinely embedded group then G is definably
compact if and only if it is closed and bounded. In particular, if we
work over R, the notions of definable compactness and compactness
are the same for definable groups.
2. Compact real Lie groups are definably compact in any o-minimal
structure in which they are definable.
3. If A is an abelian variety over a real closed field R then A(R) = the
set R-points of A, is definably compact.
4. The interval [0,a), in any ordered divisible abelian, with addition
mod a is definably compact.

As a result of the work on Pillay’s conjecture, and mainly as a re-
sult of the work of Dolich, [7], one obtains an equivalent definition for
definable compactness, in terms of open covers:

Fact 2.3. [24] G is definably compact if and only if every uniformly
definable open cover of G which s parameterized by a complete type,
has a finite sub-cover.

Pillay’s Conjecture
We are now ready to state Pillay’s conjecture in full:

Pillay’s Conjecture PC [28|Let G be a definable group in a k-saturated
o-minimal structure M (large k). Then:

(1) G has a minimal (minimum) type-definable normal subgroup of
bounded indez, call it G°.

(2) G/G®, equipped with the Logic topology, is isomorphic, as a
topological group, to a compact Real Lie group.

(3) If G is definably compact then

dimLie(G/GOO) = dlmM (G)

The beauty of this conjecture is that it offers a surprising connec-
tion between the pure lattice of definable sets in definable groups in
o-minimal structures and Real Lie groups. It implies that every defin-
ably compact group in an o-minimal (large) structure has a homomor-
phism onto a canonical Real Lie group that is associated to it. The
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pull-back under this homomorphism of every Euclidean closed set is
type-definable and vice-versa. Such quotients are called in Model The-
ory “hyper-imaginaries” (in contrast to standard imaginaries, which
are quotients of definable sets by definable equivalence relations).

Some examples

(1) If G an elementary extension of a compact Lie group H then,
just as in the case of SO(2,R), the group G is just u(e) NG
and G/G" ~ H. If G is definably isomorphic to such a group
we say that G has very good reduction.

In these examples the choice of G is determined by the
infinitesimals of the associated saturated real closed field R, i.e
by the valuation ring of R. This is not the case in the next
example.

(2) Consider a sufficiently saturated real closed field R, v a positive
infinitesimal element, and let G = ([0, ), + mod «). In this
case the whole of G is contained in the kernel of the standard
part map, so we need to use an “internal” notion of valuation:

1
GOO:{gE[O,a):VnENg<a/n\/1—ﬁ<g<1}

and G/G, as a Lie group is again SO(2, R).

(3) G = (R,+) (R a real closed field). In this case G = G, so
G /G is trivial.

(4) A non-elementary example: Take A(R) to be the R-points of an
abelian variety A defined over a real closed field R, dim A = n,
and let G = A(R)" be its semi-algebraic connected compo-
nent. By PC, there exists a homomorphism from G onto an
n-dimensional real torus T", whose kernel is type-definable in
R, and such that the logic toplogy agrees with the Euclidean
topology on T".

The current status of PC.

The existence of G, and the fact that G/G® is a Lie group was
proven in [5] without any restrictions. PC is now proven in full when
M expands a real closed field (the last step in the proof is in [16]). PC
was also proved in the case when M is an ordered vector space over an
ordered division ring, [19], [12].

It is still unknown whether PC holds in arbitrary o-minimal struc-
tures, or even in an o-minimal expansion of an ordered group. As we
will point out, the only obstacle here is the understanding of torsion
points in definably compact groups in such structures.
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3. THE EXISTENCE OF G” AND SOME COROLLARIES

The material in this section is contained in [5)].

In [28] Pillay shows, for a group G definable anywhere, that the
existence of G% and the fact that G/G% with the group topology is
a compact Lie group are together equivalent to the Descending Chain
Condition for type-definable subgroups of bounded index.

Throughout this section G s a definable group in an arbitrary o-
manimal structure.

Theorem 3.1. [5]

(1) G satisfies DCC for type-definable subgroups of bounded index.
Namely, there is no infinite descending chain of type-definable

subgroups of G' of bounded indez.
(2) If G is definably connected then G /G is connected.

About the proof By [22], every definable group in an o-minimal
structure has a definable normal solvable subgroup H such that G/H is
semisimple, namely has no infinite definable normal abelian subgroup.
DCC for a semisimple group follows from its decomposition into an
almost direct product of definably almost simple groups (see [22]) and
the fact that definably simple groups have very good reduction, [23].
By analyzing each abelian step which makes up the solvable group H,
we are reduced to the abelian case, so we assume that G is abelian.

An important ingredient the proof is the notion of a definably con-
nected type-definable set X. By that we mean that there are no
definable open sets U;,Us C G such that Uy N X and U; N X are
both nonempty and pairwise disjoint. As is proved in the paper, every
type-definable, definably connected subgroup of G has a type-definable
subgroup of bounded index which is definably connected. This latter
subgroup can be written as the directed intersection of definably con-
nected sets.

Assume now that DCC fails. Then there exists a descending chain of
type-definable subgroups of bounded index H; > --- H, > ---, which
we may assume are all definably connected. Using standard model the-
oretic arguments one may assume that all groups are definable over a
countable model M using a countable langauge. Let H be the minimal
type-definable subgroup of bounded index definable over M; (this does
exist!). Most of the work now is towards proving that G/H, equipped
with the Logic topology, is a compact Lie group. That is done us-
ing topological arguments, together with the fact that G' has a finite
number of elements of every given finite order (see [32]). Once it is
established that G/H is Lie group, the sequence H;/H is a descending
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chain of closed subgroups, which is impossible.

Remark
1. In [30], Shelah proves the existence of G (but not DCC!) for any
group with NIP and therefore in particular for o-minimal structures.

(The following discussion and example were suggested by Pillay):

2. There are two other related notions for a group G (in a sufficiently
saturated structure): Consider all definable subgroups of G of finite
index. If the intersection of these groups has bounded index (equiva-
lently, the intersection does not change when we move to an elementary
extension) then it is called G'. In o-minimal structures and in groups
of finite Morley rank, G itself is definable and has finite index in G.

Another notion is that of G°: For A C M a small subset, let G9°
be the smallest subgroup of G of bounded index which is invariant
under automorphisms fixing A point-wise. If G%° does not depend on
A then we call this group G,

The existence of G implies the existence of G and this in turn
implies the existence of G°. In stable theories all exists and are equal
to each other.

It was shown by Shelah, [31], that if G is abelian and has NIP (see
definition below) then G®° exists. Later on this was generalized by
Gismatulin, [14], to an arbitrary group with NIP. However, it is still
unknown in the NIP context (and even in the o-minimal case), whether
GOO — GOOO.

Example Consider the group G = (Z“,-) in the two-sorted structure
(G;N), with a predicate P C Z“ x N such that (x,n) € P if and only
if , = 0.

The theory of the structure says that for every 0 # g € G there exists
an n € N such that P(G,n) is a subgroup of index 2 which avoids g.
This is easily seen to imply that the group G° (and therefore also G*
and G%?) does not exist in elementary extensions.

We now return to the o-minimal context. Here are two important
corollaries of Theorem 3.1;

Corollary 3.2. Assume that G is abelian. Then:
(1) G s divisible.
(2) Let H be a type-definable subgroup of bounded index. If H is
torsion-free then H = G°.
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Proof. (1) We need to see that for every n, the map o,(x) = 2™ sends
G onto itself. It is easy to see that o,(G) has bounded index in
o.(G). However, o,, has finite kernel, [32], and therefore dim o, (G) =
dim(G), so 0,(G) has finite index in G. It now follows that o, (G")
has bounded index in G, and because it is contained in G it follows
from minimality that o, (G%) = G°.

(2) The group H/G® is a closed subgroup of the compact Lie group
G /G, therefore either H = G% or H/G" has torsion. If the lat-
ter holds then, because G is divisible H must have torsion as well.
Contradiction. O

Corollary 3.3. If G is torsion-free then G = G.

Notice that up until now we have not even established that in a de-
finably compact group we have G® # G. Indeed, the main remaining
difficulty in proving PC is the dimension equality:

Remaining Conjecture If G is definably compact then dimy,(G) =
dimLie(G/GOO) .

4. SOME THEORY OF GENERIC SETS I

Most of the material in this section is taken from [24].

Here G is definable in an o-minimal structure. However, some of the
results work in any model theoretic setting, or at least when there is a
reasonable notion of rank.

Definition 4.1. (1) A set X C G is called left k-generic if G =
Ule 9; X, for some k € N and g; € G. X 1is left generic if it
s left k-generic for some k € N. X is generic f it is both left
and right generic.
(2) If X C G is definable then X is called large if dim(G \ X) <
dim G.

Remark In w-stable connected groups the notions of “generic” and
“large” are the same and both are equivalent to RM (X) = RM(G). In
o-minimal structures generic sets are not necessarily large and dim(X') =
dim(G) does not imply that X is generic:

1. In (R,+) (R ar.c.f), a set is generic if and only if it is of the form
(—00,a) U (b, +00), for a,b € R.

2. In elementary extensions of T' a definable set is generic if and only
if it contains a segment of standard length.
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Fact 4.2. If X is large in G and dim(G) = n then X is (both left and
right) n-generic.

Proof. Without loss of generality, X is 0-definable.
We show: If ¢ is generic in G and h € G\ (X U ¢gX) then

dim(h/g) < dim(h/0) < n.
Indeed, if the left inequality fails then dim(h/g) = dim(h/0) and

hence (by the addition formula for dimension) we have dim(g/h) =
dim(g/0) = n. It follows that

dim(g 'h/h) = dim(g */h) = dim(g/h) = n.

In particular, g~'h is generic in G and because X was large we must
have ¢g7'h € X and hence h € gX, contradicting the assumption on h.
The inequality dim(h/0) < n follows from the fact that h € G\ X
and X is large.
It follows from the above dimension inequality that dim(G \ (X U
gX)) < dim(G \ X) < dim(G). We now replace X by X U gX and
proceed by induction. ([l

Our goal in this section is to discuss the following result:

Theorem 4.3. [24] Assume that G is a definably compact affinely em-
bedded group, M expands an ordered group and and X C G is not
left-generic. Then G\ X is right generic.

Fact 4.4. (i) If X C G is not left-generic then CI(X) is not left-
generic.

(i) If X C G is generic then Int(X) is also generic. (Here and below
we use the T-topology of G which was described above).

Proof. (i) We use the following basic fact about a definable set X in
o-minimal structures: For Fr(X) = Cl(X)\ X, dim Fr(X) < dim(X).
If CI(X) is left-generic then

k k k
G =Jgcux) =X u|JauFrX).
i=1 i=1 i=1

But dim(Fr(X)) < dim(G), hence dim({J"_, g;Fr(X)) < dim(G),
and therefore the set Ule 9;X is large in GG. By Fact 4.2, this last set
is generic and therefore X is generic.

(ii) Use the fact that for any X C G, we have dim(X \ Int(X)) <
dim(G), and proceed as in (i). O

The connection of generic sets to Pillay’s Conjecture comes through:
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Fact 4.5. If H C G is a type-definable subgroup then H has bounded
indez in G if and only if it is the intersection of left generic sets.

Proof. If H has bounded index and is contained in a definable set X
then G can be covered by boundedly many left translates of X (namely
the number of cosets of H). By compactness, finitely many left trans-
lates of X cover G.

If H=),.,X; is the intersection of left generic sets, let A = {g; :
Jj < A} be a set of elements such that for every X;, we have G = AX.
Let M, be a small model realizing all complete types over A. We claim
that every coset of H has a representative in Mj. Indeed, if ¢ € G then
for every X; there is g; € A such that g;'g € X;. By compactness we
can find h € My such that h'g € N, X; = H. O

Fact 4.6. If X C G is not left-generic then for any small My C M
(where “small” means |My| < k) there exists g € G such that Xg N
Mg — @

Proof. By assumption, for every hy,...,hy € G, k € N, there is g € G
such that

k
N ¢ hX,
i=1

or equivalently

k
Nhit ¢ Xg
i=1

Clearly then, for every hy,...,hy € G, k € N, there is ¢ € G such
that

k
i=1

It follows that if Mj is any small subset of M then, by the saturation
of M, there is g € G such that MyN Xg = 0. O
Digression: Dolich’s work In [7], Dolich examines the notion of
forking and dividing in o-minimal structures. The paper contains many
interesting and highly nontrivial results about types in o-minimal struc-
tures. In [24] we extract from his work the following:

Theorem 4.7. Let X(a) C M™ be a closed and bounded a-definable
set wn a sufficiently saturated o-minimal structure M expanding an
ordered group and let My C M be a small model. Assume that the
set {X(d') : d' =p, a} has the finite intersection property (namely, the
intersection of every finite sub-family is nonempty).

Then X (a) N My # 0.
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The proof of this result is too long to discuss here. We only make
few observations:
1. Consider the simplest example for 4.7, where X (a;az) is the closed
interval [ay, as] C M, and M, a small submodel of M. If [a, as]N My =
() then a; =), ao (otherwise, by o-minimality, there is an interval .J over
My, containing one of the a;’s but not the other. It follows that one
of the endpoints of this interval, which must be in M, also belongs
to [a1, as). Contradiction). Moreover, because a; ¢ My there exists
ay < ay with aly =y, a1 =p, a2. By homogeneity, there is @} < al, such
that a}a), =), a1az, and hence X (a}ay) N X (a1az) = 0, so the family

{X(allaaf‘z) : allaIQ =My ala?}
does not have the finite intersection property.

2. Theorem 4.7 is false when X (a) is not closed and bounded. Con-
sider for example the open interval (0, @) in a nonstandard real closed
field, for an infinitesimal o > 0, and take M, to be the real algebraic
numbers. The family

{(0,d) : &/ =py, 0}
is finitely satisfiable but (0, ) N My is empty.

3. In the stable case, the analogous theorem to 4.7 is true for any de-
finable set because the assumption is equivalent to the forking of X (a)
over M.

4. The description of a definably compact set using a type-definable
open covering (see Fact 2.3) easily follows from Fact 4.7.

End of Digression

Proof. of Theorem 4.3
Because G is affinely embedded it is closed and bounded in MF¥.
Assume X C G is not left generic. By 4.4 we may assume that X

is closed. Fix M, such that X is definable over M. By 4.6, there
exists ¢ € G such that My N Xg = 0. By 4.7, there are gy, ..., g (each
realizing the same type as g over M) such that

k
ﬂ Xg; = 0.
i=1
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By taking complement we get
k
U(G \X)gi =G.
i=1

Hence, G'\ X is right-generic. O

Remarks

1. Theorem 4.3 fails without the definable compactness assumption:
The set (a,+o00) and its complement are both not generic in (R, +)
(here left and right-generic are the same).

2. The analogue of Theorem 4.3 in the stable setting is true for any
definable subset of the group G.

3. Recently, Eleftheriou has pointed out that the assumption that G is
affinely embedded can be omitted Theorem 4.7 by working in the man-
ifold charts of GG. Also, the assumption that M expands an ordered
group seems to be unnecessary.

Here are two easy consequences:

Fact 4.8. Assume that G is definably compact and abelian.

(1) The non-generic sets form an ideal.

(2) Every formula defining a generic set in G belongs to a complete
“generic” type p (over M). Namely, every formula in p defines
a generic set in G.

5. SOME THEORY OF GENERIC SETS II: MEASURE AND THE NIP

The content of Sections 4-8 is mostly taken from [16]. The connection
between the Non Independence Property and measure is due to Keisler
[17] and the proof of 5.4 below is modeled after a proof from Keisler’s
paper.

The next notion is due to Shelah. The definition we use is equivalent
to the original one.

Definition 5.1. A theory T is said to be dependent or to have the Non
Independence Property (NIP) if for every indiscernible sequence {(a; :
i < w) over A and ¢(z,y) a formula over A the type {¢d(x, baj) Ap(x, bgji1) -
J < w} is inconsistent. (We take p/\p to mean (¢ A —p) V (mp A1)

Stable theories, o-minimal theories, the theory of p-adically closed
fields all have the NIP, while the theory of pseudo-finite fields fails to
have it.
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Definition 5.2. We say that G admits a left invariant Keisler measure
if there exists a real valued finitely additive measure p : Def(G) — R on
the definable subsets of G, such that u(G) =1 and for every definable
X CG and g € G, we have pu(gX) = p(X).

In the rest of this section we make the following assumptions on
the group G (equipped with the definable sets induced by the ambient
structure):

e GG has NIP.
e The non left-generic sets form an ideal.
e GG admits a left-invariant Keisler measure.

As we will eventually show, every definably compact satisfies all of
the above. For now, notice that any abelian definably compact group
satisfies the above assumptions. Indeed, o-minimality implies NIP, and
by Fact 4.8 the non-generics form and ideal. Because every abelian
group is amenable, it admits a left-invariant real valued finitely additive
probability measure on all subsets.

Definition 5.3. For X,Y C G definable, we write X ~p,, Y if XAY
s not left-generic.

Notice that since the non left-generics form an ideal ~,,4 is an equiv-
alence relation. The NIp assumption is crucial for the following.

Lemma 5.4. The equivalence relation ~,, is bounded. I.e., there exists
a fized small model My such that every equivalence class of ~pq is
already represented by a definable set over Mj.

Proof. Let p denote the finitely additive left-invariant measure on Def(G),
the family of definable subsets of G. Note that if X C G is a definable
n-generic set then we have u(X) > 1/n.

Assume that ~,, is unbounded. Then there exists a formula ¢(z, y)
over the empty set, with the variable x for elements in G, and un-
boundedly many b;’s, such that ¢(G,b;) A¢(G, b;) is generic.

By standard Ramsey-type arguments, there exists a fixed n and an
indiscernible sequence (a; : ¢ < w) such that for every i # j, the set
?(G,a;) Ap(G, aj) is n-generic.

Consider the family F = {Y; = ¢(G, a2;)Ad(G,a941) : j < w}.
By indiscernibility, there exists a natural number %k such that every &
sets in F have empty intersection. However, for every j, u(Y;) > 1/n,
and because p(G) = 1 it is impossible that every & sets in F intersect
trivially. Contradiction. 0

Definition 5.5. For X C G definable, let
Stabng(X) ={g € G: gX =,y X}.
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Under our assumptions, the set Stab,,(X) is a subgroup of G. It is
type-definable because for every n, the set of all g such that n translates
of gXAX do not cover G, is definable. The map g — ¢X/ =, is an
injective map from G/Stab,,(X) into Def(G)/ ~n, and therefore we
proved

Theorem 5.6. For any definable X C G, the subgroup Stab,,(X) has
bounded indez in G.

6. THE PROOF OF PC IN THE ABELIAN CASE

We assume in this section that M expands a real closed field and
that G is definably compact and abelian.
Our goal here is to prove:

Theorem 6.1. IfG is definably compact and abelian then dimp;.(G/G*) =

Proof. Because GY has finite index in G we may assume that G is
definably connected.

The proofis based on two ingredients. The first one is a deep theorem
of Edmundo and Otero on the torsion points in definably connected,
definably compact abelian groups. (Presumably, this was one of the
most important justifications to the original conjecture of Pillay). Its
proof is based on Cohomological tools and uses extensively the trian-
gulation theorem which is true only in o-minimal expansions of real

closed fields:

Theorem 6.2. [11] Assume that M expands a real closed field and that
G is definably compact, definably connected abelian group of dimension
n. Then
Tor(G) ~ Tor(T").
(where T™ is the n-dimensional torus).
The second ingredient, which we will prove below is:

Lemma 6.3. G is torsion-free.

Let us see how the two results, taken together, imply PC in the
abelian case:
Lemma 6.3, together with the divisibility of G% (see 3.2 (1)) imply
that
Tor(G/G") ~ Tor(G).
If dim(G) = n, it follows from

Tor(G/G*) ~ Tor(T™).
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Because G/G™ is a connected (3.1) abelian compact Lie group,
it is Lie isomorphic to a direct sum of T'’s. The number of these
T'’s is determined by, say, the number of 2-torsion points, therefore
G /G ~ (T")" and so the real dimension of G/G® is n.

Proof. of Lemma 6.3. For every n € N, consider the map o, : g — ¢"
from G onto GG. By definable choice, there exists a definable set X C G
such that 0,|X is a bijection of X and G (we assume that G is definably
connected).

By [11] (or actually by [32]), T,, = ker(oy,) is finite. It clearly contains
all n-torsion points and, as easily checked, G equals a finite disjoint
union of the ¢gX'’s, for ¢ € T,,. Thus X and all the gX’s are generic
and pair-wise disjoint, and therefore T, N Stab,,(X) = {0}. Because
this is true for every n, the group Stab,,(X) is torsion-free.

By 5.6, the type-definable subgroup Stab,,(X) above has bounded
index in G, and therefore G* C Stab,,(X). It follows that G is
torsion-free, ending the proof of Lemma 6.3 and thus PC in the abelian
case.

7. PROOF OF PC FOR ARBITRARY DEFINABLY COMPACT (G

We assume in this section that G is a definably compact group in an
o-minimal expansion of a real closed field.

Here are some preliminary facts about noncommutative definably
compact groups:

As shown in [26], G/Z(G) is “semisimple”, namely has no infinite
definable abelian normal subgroup. We let N = Z(G)°. By [22], G/N
can be written as an almost direct product of definably almost simple
groups. Namely, each component is a noncommutative definable group
which, modulo its finite center, has no definable normal subgroup. The
word “almost” implies that up to a finite central subgroup the product
of the groups is direct.

Finally, as is shown in [23], every definably simple group has “very
good reduction”, namely it is definably isomorphic to a semialgebraic
linear group defined over the real algebraic numbers. The proof of
PC for groups with very good reduction is partly contained in the
Introduction (see [24] for more details). It easily follows that PC holds
for definably almost simple groups and therefore also for an almost
direct product of such groups. Therefore, PC holds for both Z(G)
(Theorem 6.1) and for G/N.

We thus have:

dimp (G) = dim(G/N) + dimy(N) =
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dimz;.((G/N)/(G/N)*) 4 dimp (N/N?).
We also have
dimz (G/G*) = dimp,(G/G®N) + dimp;, (G N/G™).
It is easy to verify that G°N/N = (G/N)%. Hence,
(G/N)/(G/N)® =« G/G™N.

In order to show that dima(G) = dimp;.(G/G) it is therefore suffi-
cient to prove:

GN/G" ~ N/N.
The group on the left is isomorphic to N/(G® N N), hence in order to
prove PC we are left to prove:

Lemma 7.1. If G is definably compact then N = G N N.

The fact that N C (G N N) follows from the fact that the group
on the right has bounded index in N. However, in order to prove the
opposite inclusion (which fails for arbitrary groups, even with NIP) we
need to take one more de‘tour, through the general theory of generic
sets.

8. SOME THEORY OF GENERIC SETS III

In this section we make no assumption on the group G unless otherwise
stated.

Definition 8.1. The theory of G is said to have finitely satisfiable
generics' (in short f.s.g) if there exists a complete type p over M such
that if ¢(x) € p then:

(i) ¢(G) is left generic.

(ii) There exists a small model My C M such that every left translate
of o(G) intersects M.

Our goal is to show that every definably compact group in an o-
minimal structure has f.s.g. This is useful because of the following
properties:

Fact 8.2. Assume that T = Th(G) has f.s.g . Then

(i) There ezists a small My C M such that every left generic set and
every right generic set intersect M.

(i1) Given X C G definable, X is left-generic if and only if it is right
generic.

(iii) The definable non generic sets in G form an ideal.
(iv) G® exists and G* = ({Stab,y,(X) : X € Def(G)}.

IFor simplicity, we slightly modified the definition from [16]
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Proof. Assume that p and M, witness f.s.g.

(i) If X is a left generic set then there are g,..., gx € G such that the
formula x = x is equivalent to the finite disjunction of the formulas
x € g;X. Hence, there is g; such that “z € ¢; X” is in p. By assumption
on p, X N My # (. Consider the type p(z~'). Because r — z7'is a
0-definable bijection of G it easily follows that every definable set Y in
p(z~") is right generic and every right translate of Y intersects M. As
above, it follows that every right generic set intersects Mj.

(ii) Assume X is not a left generic set. By 4.6, there exists a right
translate of X which does not intersect My, hence by (i), X is not
right generic as well.

(iii) Since p is a complete generic type it must contain the complement
of every nongeneric set.

(iv) For the existence of G, see [16], Corollary 4.3.

Now fix a small model M, witnessing (i). Given X C G definable,
let M; be a small model containing M over which X is definable. If
g =m, hthen gX N M; = hX N M; and hence (¢ XAhX)N M, = . By
(i), gXAhX is nongeneric. Thus, every coset of Stab,,(X) contains
all the realizations of some complete type over M. In particular, in
a (still small) model where every complete type over M; is realized,
there is a representative for every coset of Stab,,(X), so Stab,,(X) has
bounded index, and therefore it is contained in G°.

For the opposite inclusion, since G has bounded index it can be
obtained as the intersection of definable generic sets (Fact 4.5). If ¢
belongs to Stab,,(X) for every such X then it must belong to G*
(otherwise, by compactness, there is X containing G* such that g X N
X = 0, which implies that g ¢ Stab,,(X). O

Lemma 8.3. Assume that N is a definable normal subgroup of G. If
N and G/N have fsg then G has fsg.

Proof. See Proposition 4.5 in [16]. O
We return to the o-minimal setting.

Lemma 8.4. If G is definably compact and abelian then G has fsg.

Proof. Since we do have complete generic types in abelian groups, it is
sufficient to show that there is a small M such that every generic set
intersects M.

Let M; be a small model such that every ~, -class in Def(G) has
a representative definable over M, (recall, 5.4, that this equivalence
relation is bounded).

Given X C @ generic, there exists X; C X such that X is still
generic and C1(X;) C X. Indeed, the following argument for that fact
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was suggested by the UIUC seminar:
k
i=1

By 4.4, Int(X) is also generic. For every € > 0 let
X ={g€e X :d(g,Fr(X)) > €}.
We have,

X:UK.

e>0

It is now sufficient to take € in a complete type p(x) right of zero. So,

We obtained a definable open covering of G' parameterized by a com-
plete type. By the equivalent definition to definable compactness, 2.3,
there is a finite subcover, which easily implies that some X€ is generic.
Let X7 = X¢. Because Cl(X;) C X we may assume that X is closed.

Let Y C G be a definable set definable over M such that YAX is
nongeneric. Again, by 4.4, we may assume that Y is closed, so both X
and Y are definably compact. We will show that (Y N X) N M, # 0.
Notice that both X and Y are definably compact.

By 4.7, if XNY NM, = ) then there are finitely many M-conjugates
of X NY whose intersection is empty. Because Y is M-definable there
are Xi,..., Xy all My-conjugates of X such that

k
(Xiny =0.
i=1
Since Y is generic this implies that for some X; we must have Y\ X;
generic. Contradiction to YA X being non-generic. (l

Lemma 8.5. If H is definably compact and semisimple then H has
fsg.

The proof of this lemma is based on the almost-decomposition into
definably almost simple groups. The definably simple case is handled

in [24] using measure theoretic arguments based on [4] and [1].
Using 8.4, 8.5, and 8.3, we can conclude:

Theorem 8.6. Every definably compact group has fsg.
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The above theorem, together with 8.2, implies that the set of left
(hence also right) generics in G form an ideal, and that for any definable
set X, Stab,,(X) is a type-definable group of bounded index. Finally
(and this is the main fact which forced us to take this de‘tour through

the notion of “f.s.g”), the group G is the intersection of all stabilizers
of definable subsets of G.

9. COMPLETING THE PROOF OF PC

We can now return to the missing ingredient in the proof of PC,
namely the proof of 7.1. We need to show that G N N = N% where
N is a definably connected normal central subgroup. By 3.2, it is
sufficient to prove that G N IV is torsion-free.

Given n € N, let T}, = Tor,(N) and X C N be a definable set such
that g — ¢" gives a bijection of X and N. By definable choice, there
is D C G which intersects every coset of G/N exactly once. It is now
easy to verify that GG is the finite disjoint union of the translates of DX
by the elements of T},. In particular, DX is generic and

T, N Staby,(DX) = {e}.

Because this is true for every n, we have Stab,,(DX) N Tor(G) # 0.
By the f.s.g property, G C Stab,,(DX), therefore G NTor(N) =
{e}.
We thus proved that G N N = N, completing the proof of PC
(see the argument preceding Lemma 7.1). O

9.1. Defining measure on G. As a result of the work on Pillay’s
Conjecture, the following theorem was established in [16].

Theorem 9.1. If G s definably compact in an o-minimal structure
then it admits a left-invariant Keisler measure on the definable subsets
of G. For a definable X C G, we have u(X) = 0 if and only if X is
non-generic.

Proof. As we already pointed out, the existence of such measure is
immediate when G is abelian. In the general case, we first note that
G /G as a compact Lie group, admits a left-invariant finitely additive
probability measure on a boolean algebra of sets containing all Borel
measurable sets- the Haar measure m.

We first fix a complete generic type p(z) over G. Given a definable
set X, we consider the set

X ={gG® € G/G™ : p |= “x € gX"}.

(note that X is well defined. Namely, if gh~" € G then in particular,
gXAhX is non-generic and therefore not in p. It follows that ¢ X € p
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if and only if hX € p). The main part of the proof is to show that X
is a Borel set in G/G (see Proposition 6.2 in [16]). We then define

(X)) = m(X).

Clearly, p, is left invariant, and it is easy to verify that it is also
finitely additive (if X; N X, = 0 then X; N X, = ().

Finally, if X is generic then finite additivity implies that p,(X) > 0
and if X is non-generic then X = ) and therefore 1,(X) = 0. O

10. RELATED WORK AND SOME OPEN QUESTIONS

This section has gone through substantial changes in the last stages
of writing. As will be explained below, most of the open questions listed
here were solved in a recent paper by Hrushovski and Pillay, [15].

10.1. Omitting the real closed field assumption. As was pointed
out early on, the only remaining obstacle for proving PC without the
assumption that M expands a real closed field is the lack of an ana-
logue to Theorem 6.2 on the number of torsion points, without the field
assumption. Such a theorem was proved by Eleftheriou and Starchenko
[13] when M was assumed to be an ordered division ring over an or-
dered vector space and hence PC holds in this case as well. Actually,
a very clear description of definable groups in this setting is given in
the paper, out of which the number of torsion points is easily read.

In order to prove the torsion points result under weaker assumptions
it seems important to develop similar topological tools to the ones orig-
inally used, but this time without the triangulation theorem. Indeed,
Sheaf Cohomology in expansions of ordered groups has been the subject
of several papers of Edmundo, Jones and Peatfield (see [8] and [9]) and
of Beraducci and Fornasiero (see [3]). A first application to counting
torsion points is given in [8] where the correct upper bound is obtained.

In a very recent result, [25], the author was able to prove the question
about the torsion point and hence Pillay’s Conjecture, in o-minimal
expansions of ordered groups

The questions formulated below were written prior to the publication
of the recent pre-print by Hrushovski and Pillay [15]. As I will even-
tually point out, most of these questions are now solved by that paper,
either explicitly or implicitly. I leave them here because I find that their
discussion could still be of some interest
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10.2. Uniform definability of G®. An important feature of the basic
example of Pillay’s conjecture (where we start with a compact real Lie
group and view it in an elementary extension) is the fact that the type
defining G is given by a single formula, with varying parameters.
Namely,

G"={geG:|g|<a:acR}

Consider the structure Gy,q whose universe is G/G*, with a func-
tion symbol for the group operation and a predicate for every set of
the form m(X), for X C G™ definable in the o-minimal structure M.
In [16] we showed, using a theorem of Baysalov and Poizat, that if
G = ([0,1)", 4 mod1) then structure Gj,q is definable in an o-minimal
structure over the reals. Later, in [18], Marikova re-proved this result
without referring to [1], and provided a much finer analysis of the de-
finable sets in this structure. The uniformity in parameters plays an
important role in both works.

Conjecture If G is definably compact then there is a formula ¢(z,y),
where x varies over element of G, and a set of parameters A, such that

G*={geG: N\ ¢(g,0)}.

acA

Conjecture The structure on the compact Lie group Gi,q ts definable
i some o-minimal structure over the real numbers.

Related to the above conjecture is the following:

Question What is the structure which G induces Tor(G)? In particu-
lar, what subsets of Tor(G) are of the form X NTor(G) for a definable
subset of G?

Note that when G is abelian its torsion group can be realized as
a definable set in the o-minimal structure (Q, +, <), namely it is iso-
morphic as a group to ([0, 1)", +modl), viewed inside of Q. It was
shown by Wilkie, [33], that there are nontrivial o-minimal expansions
of this structure. Moreover, if G itself equals to the real points of
([0,1)",+modl), in the structure of the real field, then the torsion
points of G inherit the ring operations and therefore the induced struc-
ture is unstable and undecidable. However, even in this case it is
interesting to ask which definable subsets of ' can be obtained as the
trace of a definable set in G.
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10.3. The distribution of torsion points. Somewhat surprisingly
for those of us who have worked on this problem, the solution of Pil-
lay’s Conjecture did not yield a much better understanding of the dis-
tribution of torsion points in a definably compact abelian GG. Here are
some conjectures on this matter:

Conjecture A If X C G is generic then it contains a torsion point.
Conjecture B If G\ X is non-generic then X contains a torsion point.

Clearly, (A) implies (B) and both imply the following result, recently
proved in [21]:

Theorem [If dim(G \ X) < dim G then X contains a torsion point.

10.4. Other related work. In other work generated by Pillay’s con-
jecture the precise relationship between G and G/G was investigated.
In [2], Berarducci discusses the o-minimal spectrum G of a definably
compact G and proves that G/G is a topological quotient of G. In
[10], Edmundo, Jones and Peatfield examine the connections between
the cohomology groups of G and of G/G.

In [20], Onshuus and Pillay study the analogous conjecture in the
p-adic setting and show cases where it fails and other cases where the
conjecture holds.

In an unpublished result, Hrushovski, Pillay and the present author,
prove that every definably compact group G is elementarily equiva-
lent, as a pure group, to G/G". A better understanding of the group
theoretic structure of G' can then be deduced, and in particular, one
concludes that the commutator subgroup of GG is definable and that G
is the almost direct product of Z(G) and [G, G].

Finally, the recent paper of Hrushovski and Pillay [15] puts some of
the notions which were examined in [16] in a very general context, and
examines forking, stability and measure in several different abstract
settings, mainly in groups under the assumptions of NIP and the exis-
tence of some measure. The machinery and results obtained there are
very powerful and, as I now explain, yielded answers to most of the
questions raised above.

10.5. The Compact Domination Conjecture and its recent so-
lution. At first, it seems as if the most natural way to define mea-
sure on definable subsets of G would be directly through the map
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7m: G — G/G™. Namely, to let u(X) equal m(m(X)) (the Haar mea-
sure of (X)) for any definable set X C G. However, a difficulty arises
when one tries to prove finite additivity:

Take X7, Xy C G two disjoint definable sets. Finite additivity should
imply that the Haar measure of 7(X;) N w(X5) is zero (note that
7m(X1),7(X32) need not be disjoint anymore). However, until very re-
cently this remained an open question and, as we will soon see, it is
equivalent to the Compact Domination Conjecture below.

We first introduce some notation: Given X C G, we let

BX)={yeG/GY : 7Y (g)N X #D&7 (9)NG\ X # 0}.

We say that G is compactly dominated by G /G, via 7, in a measure
theoretic sense if for every definable X C G, the Haar measure of B(X)
is zero. We say that G is compactly dominated by G/G, via 7, in a
topological sense if every such B(X) is nowhere dense in G. (The term
“compact domination” is modeled after the notion “stably dominated”
referring to a situation where an unstable set is “controlled” by a stable
one).

The Compact Domination Conjecture, formulated in [16] stated that
every definably compact group is compactly dominated (in both senses).
In an earlier version of these notes several equivalences to the above
conjectures were proved, implying for example that the measure theo-
retic conjecture implies the topological one. Both are known to imply
Conjecture (A) above about the density of torsion points. However,
the recent preprint of Hrushovski and Pillay [15] proves the Compact
Domination Conjecture, and at the same time the torsion point and
the uniform definability conjectures formulated above.

Theorem 10.1. [15] Every definably compact group is compactly dom-
inated, in the measure theoretic (and hence topological) sense.

Since the paper is very new I will only try to roughly sketch the ideas
behind this solution:

As in [16], the authors make use of the theorem of Baysalov and
Poizat mentioned above. Namely, they consider an elementary exten-
sion M* of M, and for every M*-definable set X they add a predicate
to M for the the trace of X, on M™. The main theorem in [1] (later
generalized by Shelah to any theory with NIP), implies that this new
structure eliminates quantifiers and in particular it is weakly o-minimal.

We denote it by M.
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The main difficulty is to prove that G is definable in M. Hrushovski
and Pillay do it after showing first that it can be written as the set the-
oretic stabilizer of any global generic type in G. It is here that they
also show prove the uniform definability of G°°, which was conjectured
above.

G /G is now a compact Lie group, given as a quotient of two defin-
able sets in the weakly o-minimal structure M. After a fine analysis
of the topological situation (and using the knowledge of the funda-
mental group of G), they prove that G/G% is semi o-minimal in this
weakly o-minimal structure. Namely it is in the definable closure of
finitely many o-minimal structures, all definable in M. In particular,
this settles the conjecture on G;,; mentioned above.

Once this machinery is established, definable subsets of G/G% of
Haar measure zero are just sets of smaller dimension (in the o-minimal
sense). It is now not difficult to prove compact domination similarly
to the simple cases handled in [16].
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