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Report on Workpackage MI: Pure Model Theory

In the following, members of Network are identified by an asterisk
(*) when first mentioned; external experts and collaborators who were
identified as having a close involvement with the project in the original
proposal are identified by a double asterisk (**).

Task I.1: Theoretical stability and simplicity

Report on Task I.1.f: Study the hierarchy stable ⇒ ω-
simple ⇒ (n + 1)-simple ⇒ n-simple ⇒ simple

In early versions of his paper [6] Kolesnikov defined graded strength-
enings of simplicity, called n-simplicity (where simple = 1-simple), and
gave a series of examples to show that the hierarchy

stable ⇒ ω-simple ⇒ (n + 1)-simple ⇒ n-simple ⇒ · · · ⇒ simple

is strict. However, it was pointed out by Wagner∗ (Lyon I) that this def-
inition is not preserved under adding imaginaries. The search for a bet-
ter definition led Tristram de Piro∗ (Modnet ER, Camerino), Byunghan
Kim and Jessica Young in [3] to study the notion of n-amalgamation
already introduced by Hrushovski∗∗ (Jerusalem) in [4] under the name
of P(n)−-amalgamation. Namely, given sets AI for all I ⊂ n and el-
ementary maps πI

J : AI → AJ for I ⊆ J such that πI
I = idAI

and
πJ

K ◦ πI
J = πI

K for all I ⊆ J ⊆ K, satisfying

• {π{i}
I (A{i}) : i ∈ I} is independent over A∅, and

• AI = bdd(π
{i}
I (A{i}) : i ∈ I) for all I ⊂ n,

we can find An and elementary embeddings πI
n for I ⊂ n such that the

above conditions still hold. Then 3-amalgamation is equivalent to the
independence theorem, so holds in any simple theory. T has complete n-
amalgamation if it has m-amalgamation for all m ≤ n. They prove that
Kolesnikov’s examples show that the hierarchy is again strict, and that
n-amalgamation does not necessarily imply m-amalgamation for m <
n. They prove that the random graph has complete ω-amalgamation,
as do stable theories, provided the base set A∅ is a model. Addi-
tionally, Hrushovski [5] shows that every pseudo-algebraically closed
structure has complete ω-amalgamation, and Chatzidakis∗ (Paris 7)
and Hrushosvki [2] show complete ω-amalgamation for the theory of
existentially closed fields with an automorphism in characteristic zero.
Furthermore, Hrushovski gives an example of a stable theory which
does not have 4-amalgamation over algebraically closed sets, and proves
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that if a stable theory eliminates generalized finite imaginaries, then it
has 4-amalgamation.

De Piro, Kim and Young then prove a hyperimaginary group con-
figuration theorem for simple theories with complete 4-amalgamation
over models. Recall that Ben Yaacov, Tomašić (former Marie Curie
EIF, Lyon I) and Wagner had previously shown in [1] an almost hyper-
definable group configuration theorem: Given a hyperimaginary tuple
(f1, f2, f3, x1, x2, x3) over a hyperimaginary e such that

(1) fi ∈ bdd(fj, fk, e),
(2) xi ∈ bdd(fj, xk, e), and
(3) all other triples and all pairs are independent over e,

then there is an almost hyperdefinable group. So the added assump-
tion of complete 4-amalgamation yields a group with better definabil-
ity properties (hyperdefinable, i.e. the elements are classes modulo a
type-definable equivalence relation) rather than merely almost hyper-
definable.

Task I.3: Topological Methods in model theory

Intermediate Report on Task I.3.a: Develop the model the-
ory of the recent notion of a profinite structure, find examples

Profinite structures and groups were introduced by Ludomir Newel-
ski∗ (Wroc law) [10, 11] in analogy with stability; he conjectured that
a small (with only countably many orbits under the automorphism
group on n-tuples for all n) profinite group have an open abelian sub-
group. This was shown by Wagner [12] for a particular case (m-
stable, which corresponds to superstability). Conversely, Krupiński∗

(Wroc law) proves that infinite products of finite abelian groups of
bounded exponent, with the inverse system given by the subgroups
with trivial first n coordinates, are small and even m-stable and m-
normal (the analogue of one-based) [7]; he then generalizes this to
arbitrary profinite abelian groups of finite exponent with inverse sys-
tem indexed by ω. He also obtains similar results for such groups with
added structure (i.e. smaller automorphism group) [8].

In joint work [9] with Wagner, he then studies small profinite rings.
They prove that such rings have an open Jacobson radical, which is
nil of finite nilexponent; they conjecture in analogy to the group case
that it must be nilpotent, and even have an open null ideal. The
latter is proven in the m-stable case. They also give an example of
a small profinite ring with nowhere dense annihilator, and showe that
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any expansion of a small profinite additive (abelian) group to a small
profinite ring with open annihilator is still small.
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