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Abstract. We consider an arbitrary o-minimal structure M and a definably

connected definable group G. The main theorem provides definable real closed

fields R1, . . . , Rk such that G/Z(G) is definably isomorphic to a direct product
of definable subgroups of GLn1 (R1), . . . ,GLnk (Rk), where Z(G) denotes the

center of G. It follows from this result a Levi decomposition for G, and that
[G,G]Z(G)/Z(G) is definable and definably isomorphic to a direct product of

semialgebraic linear groups over R1, . . . , Rk.

1. Introduction

By a result of Otero, Peterzil and Pillay [20], it is well-known that, if a group
G is definable in an o-minimal expansion R of a real closed field (R,<,+, · , · · · ),
and if G is definably connected, then G/Z(G) is definably isomorphic to a definable
subgroup of GLn(R) for an integer n (Fact 5.1).

For groups definable in arbitrary o-minimal structures, a similar result was
proven by Peterzil, Pillay and Starchenko [21] for centerless definably connected
definable groups: such a group is definably isomorphic to a direct product of defin-
able subgroups of GLn1

(R1), . . .GLnk
(Rk) for definable real closed fields R1, . . . , Rk

and integers n1, . . . , nk (Fact 2.12).
In this paper, we work inside a fixed arbitrary o-minimal structure M = (M,<

, · · · ), and definable means M-definable (with parameters). Our aim is to unify
the previous two theorems, which will be used extensively, and as a result, we prove
the following.

Main Theorem 5.17. – Let G be a definably connected definable group. Then
G/Z(G) is the direct product of definable groups H1, . . . ,Hk such that for every
i ∈ {1, . . . , k} there are a definable real closed field Ri, an integer ni and a definable
isomorphism between Hi and a definable subgroup of GLni(Ri).

Moreover, we show that G is the central product of H1, . . . ,Hk (Corollary 5.18).
The proof of Theorem 5.17 uses numerous results on groups definable in o-

minimal structures. The main new ingredients come from the theory of groups of
finite Morley rank, namely pseudo-tori, UR-groups for a definable real closed field
R, and U -groups (Definitions 3.1, 3.9 and 3.23). Thanks to these notions, we can
provide two results on the structure of definable groups, which are important for
the main result.
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Theorem 3.29. – Any nilpotent definably connected definable group G is the
central product of a pseudo-tori by a U -group.

We recall that a group is said to be definably simple if it has no proper non-trivial
normal definable subgroup.

Theorem 4.10. – Let G be a definably connected definable group. Then G has
a normal U -group U such that G/U is a central extension of a direct product of
definably simple definable groups.

We note that, in the Main Theorem, the subgroups Hi of GLni
(Ri) are not

necessarily semialgebraic. However, by using the analysis of linear groups in [22],
we may obtain a structure result, closer to the semialgebraicity.

Corollary 5.19. – Let G be a definably connected definable group. Then the group
G′Z(G)/Z(G) is a direct product of definably connected definable groups H1, . . . ,Hk

such that for every i ∈ {1, . . . , k} there is a definable real closed field Ri and a
definable isomorphism between Hi and a semialgebraic linear group over Ri.

We show that, thanks to our main result, we may generalize the Levi decompo-
sition, obtained by Conversano and Pillay [6] for groups definable in an o-minimal
expansion of a real closed field, to groups definable in an arbitrary o-minimal struc-
ture.

For this subject, there is a problem with semisimple groups. Indeed, a semisimple
group is defined to be a definably connected definable group with no infinite abelian
normal subgroup (Definition 6.1). However, Conversano exhibited a definably con-
nected definable group G with no semisimple subgroup S such that G = RS for a
normal solvable subgroup R. In order to remedy to this problem, Conversano and
Pillay introduced in [6] ind-definable semisimple subgroups, and they provide the
Levi decomposition with these subgroups (Fact 6.3).

In this paper, we introduce quasi-semisimple groups as definably connected defin-
able groups with no decomposition of the form RH for a normal definable solvable
subgroup R and a proper definable subgroup H (Definition 6.1). For such a group
S, the derived subgroup is perfect and S/Z(S) is semisimple. Then we provide
a Levi decomposition for any definably connected definable group (Theorem 6.6
below). Furthermore, we show that if G is any definably connected group definable
in an o-minimal expansion of a real closed field, its maximal ind-definable semisim-
ple subgroups are precisely the derived subgroups of its maximal quasi-semisimple
subgroups (Corollary 6.7).

Theorem 6.6. – Let G be a definably connected definable group. Then G has
a maximal quasi-semisimple subgroup S, unique up to conjugacy in G. Moreover,
there is a normal solvable definable subgroup R such that G = RS and G∩S ≤ S.

The organization of this paper is as follows. In §2, we recall known results and
give some useful corollaries. The purpose of §3 is the analysis of nilpotent groups
(Theorem 3.29). In particular, we introduce pseudo-tori, UR-groups and U -groups,
which are fundamental notions for this paper. In §4, we study the group actions
on a solvable group, and then we obtain a structure theorem for any definably
connected definable group (Theorem 4.10). In §5, we prove the main result of this
paper (Theorem 5.17). In §6, we apply the main result to Levi decomposition
(Theorem 6.6).
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2. Preliminaries

The basic reference for o-minimal structures is [27] (see [19] for a survey on
groups definable in an o-minimal structure).

By [12], in an arbitrary o-minimal structure, every interpretable group is defin-
ably isomorphic to a definable one. Actually, any group definable in an o-minimal
structure eliminates imaginaries. More precisely, the following result is due to M.
Edmundo.

Fact 2.1.. – [11, Theorem 7.2] Let G be a definable group, and let {T (x) : x ∈ X}
be a definable family of non-empty definable subsets of G. Then there is a definable
function t : X → G such that for all x, y ∈ X we have t(x) ∈ T (x) and if T (x) =
T (y) then t(x) = t(y).

2.1. Nilpotent definable groups. We recall two general facts on nilpotent groups
definable in an o-minimal structure, and more generally. Any group definable in
an o-minimal structure N satisfies the descending chain condition on N -definable
subgroups [25, Remark 2.13 (ii)]. In particular, it is an Mc-group, that is a group
with descending chain condition on centralizers. Thus, the following two facts are
satisfied by nilpotent groups definable in an o-minimal structure.

For every group G, we denote by Z0(G) = 1 the trivial group, and we define
Zi(G) for each integer i by Zi+1(G)/Zi(G) = Z(G/Zi(G)).

Fact 2.2.. – [13, Lemma 3.7.10] Any infinite nilpotentMc-group has infinite center.
More generally, if a group G has a finite subset X such that Z(G) = CG(X),

and if H is a normal subgroup such that H ∩ Zk(G) is infinite for an integer k,
then Z(G) ∩H is infinite.

Proof – There is a smallest integer j such that B = Zj+1(G) ∩ H is infinite.
Then [g,B] is contained the finite subgroup Zj(G) ∩ H for each g ∈ G, and the
index of CB(g) in G is finite. Thus B/CB(X) is finite, and Z(G) ∩ B has finite
index in B, so Z(G) ∩H = Z(G) ∩B is infinite. �

Fact 2.3.. – (see [2, Lemma 6.3] for a special case) Let G be a nilpotent group. We
consider an expansion G = (G, · , · · · ) of the group G such that G has the descending
chain condition on its G -definable subgroups. If H is a G -definable subgroup of G
of infinite index, the index of H in NG(H) is infinite too.

Proof – We consider the normal subgroup K = ∩g∈GHg of G and, for each
g ∈ G, the subgroup Cg = {x ∈ G | [g, x] ∈ K}. By descending chain condition on
G -definable subgroups, K and Z = ∩g∈GCg are G -definable, and there is a finite
subset X of G such that Z = ∩g∈XCg. We note that Z/K = Z(G/K) is the center
of G/K, so by Fact 2.2, it is infinite. Since it normalizes H/K, the subgroup Z
normalizes H. Moreover, since Z ∩ H ≤ Z contains K, the subgroup Z ∩ H is
normal in G, and since it is contained in H, we have Z ∩H = K. Thus the index
of H in NG(H) ≥ Z is infinite. �

2.2. Connected component. For every definable group G, we denote by G◦ the
definably connected component (of the identity) in G. It is the smallest definable
subgroup of G of finite index in G [25, Proposition 2.12]. A group G is said to be
definably connected if G = G◦.

In this section, we show that for any definable group G, this subgroup G◦ is
definable in the pure group (G, · ), and has no proper subgroup of finite index:
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every subgroup of finite index is definable and G◦ is the smallest subgroup of finite
index (Proposition 2.9 below). In particular, the definably connected component
of a definable group is independant from the language.

The proof of Proposition 2.9 requires several facts.
It follows from [25] that any definable group G has largest definably connected

definable solvable normal subgroup R(G), called the solvable radical of G. However,
another definition of solvable radical is used in [1].

Fact 2.4.. – [1, Lemma 4.5] Let G be a definable group. The subgroup generated
by all normal solvable subgroups of G is definable and solvable.

Moreover, by [7], any definable group G has a largest nilpotent normal subgroup
F (G), and this subgroup is definable by [11, Lemma 6.7].

For each group G, we denote by G′ = [G,G] the derived subgroup. We recall
that, for a definable group G, this subgroup is not necessarily definable (Conversano
exhibits a counter-example [5, Example 3.1.7]). However, Baro, Jaligot and Otero
[1] show its definability for a large class of definable groups.

The derived subgroup of a solvable definably connected definable group has been
studied in [11, Theorem 6.9], and a precision is given in [1, Proposition 5.5].

Fact 2.5.. – Let G be a solvable definably connected definable group. Then the
following two conditions are satisfied:

• [11, Theorem 6.9] its derived subgroup G′ is contained in F (G);
• [1, Proposition 5.5] the group G/F (G)◦ is abelian and divisible.

Fact 2.6 describes the structure of nilpotent groups, where a group G is the
central product of two subgroups H and K if G = HK and [h, k] = 1 for each
(h, k) ∈ H ×K. We denote this by G = H ∗K.

Fact 2.6.. – Let G be a nilpotent definable group.

(1) [11, Theorem 6.10] and [1, Lemma 3.10 (c)] G◦ is divisible and G has a
finite characteristic subgroup F such that G = G◦ ∗ F .

(2) [28, Theorem 4.12 (Chernikov)] and [8, Corollary 1.5.12] The torsion sub-
group of G◦ is central in G.

Corollary 2.7.. – Let G be a nilpotent definably connected definable group. Then
any definable subgroup of G containing Z(G) is definably connected.

Proof – Since Z(G) contains the torsion part of G by Fact 2.6 (2), the group
G/Z(G) is torsion-free. In particular, each definable subgroup of G/Z(G) is defin-
ably connected. But G is divisible by Fact 2.6 (1), so the torsion part of Z(G) is
divisible, and Fact 2.6 (1) applied with Z(G) shows that Z(G) is definably con-
nected. Hence, for any definable subgroup H/Z(G) of G/Z(G), the subgroup Z(G)
is contained in H◦, and we have H = H◦Z(G) = H◦. �

The following result is a very important theorem for groups definable in an o-
minimal structure. It is used in the proof of Proposition 2.9 below.

Fact 2.8.. – [21, Theorem 4.1] Let G be an infinite (G, · )-definably connected
definable group. Assume G has no nontrivial abelian normal subgroup. Then G
is the direct product of (G, · )-definable subgroups H1, . . . ,Hk such that for every
i ∈ {1, . . . , k} there is a definable real closed field Ri and a definable isomorphism
between Hi and a semialgebraic subgroup of GLni

(Ri). Moreover, Hi is (Hi, · )-
definably simple and H◦i is definably simple.
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Proposition 2.9.. – Let G be definable group. Then G◦ is definable in the pure
group (G, · ). Moreover, G◦ has no proper subgroup of finite index.

Proof – Every (G, · )-definable subgroup of G is definable, so G has a smallest
(G, · )-definable subgroup of finite index. In particular, this subgroup is definable,
contains G◦ as a subgroup of finite index, and it has no proper (G, · )-definable
subgroup of finite index. So we may assume that G is (G, · )-definably connected,
and we have just to prove that G has no proper subgroup of finite index.

Let N be a subgroup of G of finite index n. We show that N = G. We may
assume that N is contained in G◦. Moreover, since the index of N in G is finite, N
contains a G-normal subgroup of finite index, and we may assume that N is normal
in G. Let X = {xn | x ∈ G}. In particular, X is a definable subset of N .

We show that XX contains R(G). By Fact 2.6 (1), the definable subgroup F (G)◦

is divisible, so it is contained in X. By Fact 2.5, the quotient group R(G)/F (G)◦

is divisible, so XF (G)◦ ⊆ XX contains R(G).
Let Z be the subgroup of G◦ generated by all its normal solvable subgroups. It

is definable and solvable (Fact 2.4), so Z/R(G) is finite. In particular, G◦/Z has no
non-trivial abelian normal subgroup, and Fact 2.8 implies that G◦/Z is the direct
product of definable subgroups H1/Z, . . . ,Hk/Z such that for every i ∈ {1, . . . , k}
there is a definable real closed field Ri and a definable isomorphism fi between Hi/Z
and a semialgebraic subgroup Li of GLni(Ri), and such that H◦i Z/Z is definably
simple. Moreover, since G◦/Z is definably connected, Hi/Z is definably connected
for each i, so Li ' Hi/Z is definably simple.

We show that N contains a (G, · )-definable set containing Hi∩N for each i. Let
i ∈ {1, . . . , k}. Since Li is a definably simple semialgebraic subgroup of GLni

(Ri),
each element g ∈ Li is a product of a semisimple element s ∈ Li and a unipotent
element u ∈ Li. Then s is contained in a maximal torus Ti of Li and u is contained
in a unipotent subgroup Ui of Li. In particular, Ti and Ui are divisible, so f−1

i (s)

and f−1
i (u) are contained in XZ/Z, and f−1

i (g) belongs to XXZ/Z. Consequently
Hi is contained in XXZ. Since XX ⊆ N contains R(G), there is a finite subset W
of Z ∩N such that Z ∩N = WR(G). Therefore Hi ∩N is contained in

XXZ ∩N = XX(Z ∩N) = XXWR(G) ⊆ XXWXX

Thus M = (H1 ∩ N) · · · (Hk ∩ N) is a subgroup of finite index in N contained in
XXWXX. We consider a finite subset E of N such that N = EM , and we obtain
N = EXXWXX. So N is (G, · )-definable, and N = G. �

2.3. Definable fields. The following fundamental results are due to Pillay, and
Peterzil and Steinhorn respectively. They are crucial for us.

Fact 2.10.. – [25, Theorem 3.9 and Proposition 3.11] Let K be an infinite definable
field. Then K is real closed or algebraically closed. It is real closed if and only if
its dimension is 1.

Fact 2.11.. – [24, Theorem 4.1] Let K = (K,+, 0, · ) be an infinite definable ring
without zero divisors. Then K is a division ring and there is a one-dimensional
definable subring R of K which is a real closed field such that K is either R,
R(
√
−1), or the ring of quaternions over R.

Lemma 2.14 and Proposition 2.15 are very useful for this paper. The proof of
Proposition 2.15 is based on the following very important fact (Fact 2.12), and on
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the study of abelian definable subgroups of the general linear group over a definable
real closed field (Fact 2.13). Moreover, we note that the proof of Fact 2.12 is based
on the theory of nonorthogonality from [21].

Fact 2.12.. – [21, Theorems 3.1 and 3.2] Let G be a definably connected definable
centerless group. Then G is definably isomorphic to a direct product H1×· · ·×Hk,
where, for each i = 1, . . . , k, there is a definable real closed field Ri such that Hi is
a definable subgroup of GLni

(Ri) for each i = 1, . . . , k.

Fact 2.13.. – Let G be a commutative definably connected definable subgroup of
GLn(R) where R is a definable real closed field. Then the following three conditions
hold:

(1) [22, Fact 3.1] if G is semialgebraic, it is semialgebraically isomorphic to
a group of the form SO2(R)m × (R∗>0)l × (R+)k; [22, Lemma 3.9] every
definably connected definable subgroup H of G has a definable complement
in G;

(2) [22, Special case of Proposition 3.10] G is definably isomorphic to a linear
semialgebraic group over R.

Lemma 2.14.. – Let R and S be two definable real closed fields. If the groups R+

and S+ are definably isomorphic, then the fields R and S are definably isomorphic.

Proof – Let f : R+ → S+ be a definable isomorphism. In particular f(1) is
non-zero and we may consider the map g : R → S defined by g(x) = f(x)f(1)−1.
Then g is a definable isomorphism from R+ and S+ such that g(1) = 1.

Now, for each α ∈ R, the subset Aα = {x ∈ R | g(xα) = g(x)g(α)} of R is a
definable subgroup of R+ containing 1. So we obtain Aα = R for each α ∈ R and
g is a field isomorphism. �

Proposition 2.15.. – Let R = (R,+, · ) and S = (S,⊕, ∗) be two definable real
closed fields. If there is an infinite definable R-linear group H definably isomorphic
to an S -linear group, then the fields R and S are definably isomorphic.

Proof – We may assume that H has no proper infinite definable subgroup.
Then H is definably isomorphic either to SO2(R) or to R∗>0 or to R+ (Fact 2.13
(1) and (3)). By the same way and by Lemma 2.14, we may assume that H is
definably isomorphic either to SO2(S) or to S∗>0.

If H is definably isomorphic to SO2(R), then it has torsion and it is definably
isomorphic to SO2(S). We consider the semi-direct product G = (R2

+ × S2
+) oH

where H ' SO2(R) acts R-linearly on R2
+ and such that H ' SO2(S) acts S -

linearly on S2
+. In particular, G is centerless and it has no decomposition H =

A × B as a direct product of two proper subgroups. By Fact 2.12, there is a
definable real closed field T = (T, · · · ) and a definably linear group K ≤ GLn(T )
definably isomorphic to G. But K ' G is definably connected and 2-solvable, so
its derived subgroup K ′ ' G′ is definably isomorphic to Tm+ for an integer m and
to G′ ' R2

+ × S2
+. This implies that the groups R+, S+ and T+ are definably

isomorphic, so the fields R and S are definably isomorphic by Lemma 2.14.
Hence we may assume that H is torsion-free, so it is definably isomorphic either

to R∗>0 or to R+, and to S∗>0. If it is definably isomorphic to R∗>0, we consider the
semi-direct product G = (R+×S+)oH where H ' R∗>0 acts R-linearly on R+ and
such that H ' S∗>0 acts S -linearly on S+. As in the previous paragraph, Fact 2.12
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provides a real closed field T = (T, · · · ) and a definably linear group K ≤ GLn(T )
definably isomorphic to G, and we conclude that the groups R+, S+ and T+ are
definably isomorphic, so the fields R and S are definably isomorphic by Lemma
2.14.

Thus we may assume that H, R+, and S∗>0 are definably isomorphic. The
group H × R∗>0 ' R+ × R∗>0 acts R-linearly on R+ × R+ where the action is
defined by (a, t) · (x, y) = (tx, atx + ty). We consider the semi-direct product
G = ((R+×R+)×S+)o (H×R∗>0) where H×R∗>0 acts as above on R+×R+, the
group R∗>0 acts trivially on S+, and H ' S∗>0 acts S -linearly on S+. Again G is
centerless and has no decomposition as a direct product of two proper subgroups,
so Fact 2.12 provides a real closed field T = (T, · · · ) and a definably linear group
K ≤ GLn(T ) definably isomorphic to G. As above we conclude that the groups
R+, S+ and T+ are definably isomorphic, so the fields R and S are definably
isomorphic by Lemma 2.14. �

2.4. The structure of solvable groups by Edmundo. Edmundo gives in [11] a
precise description of the structure of solvable groups. His main result, namely Fact
2.24, is very useful for a key result of the analysis of nilpotent groups (Proposition
3.22). Before stating it, we specify the terminology.

In [24], Peterzil and Steinhorn introduced the notion of definable compactness in
o-minimal structures.

Definition 2.16.. – Let G be a definable group. We say that G is definably compact
if for every definable continuous embedding σ : (a, b) ⊆ M → G, where −∞ ≤ a <
b ≤ +∞, there are c, d ∈ G such that limx→a+ σ(x) = c and limx→b− σ(x) = d,
where the limits are taken with respect to the topology on G.

We recall that a semisimple group is defined to be a definably connected definable
group with no infinite abelian normal subgroup (Definition 6.1).

Fact 2.17.. – [11, Corollary 4.8] (see also [23, Corollary 5.4]) Let G be a definably
connected definably compact definable group. Then G is either abelian or G/Z(G)
is definably semisimple definable group. In particular, if G is abelian then it is
abelian.

Fact 2.18.. – [11, Lemma 3.14] Let A be a normal definable subgroup of a definable
group U . Then U is definably compact if and only if A and U/A are definably
compact.

Fact 2.19.. – [24, Proof of Theorem 4.1] (see also Fact 2.11) Let K = (K,+, 0, · )
be an infinite definable ring without zero divisors. Then K is not definably compact.

Miller and Starchenko introduced linearly bounded groups in [18], and Edmundo
has investigated semi-bounded groups in [10] (see also the introduction of [11]), a
special case of linearly bounded groups. We do not give the definitions, just their
main properties.

First at all, we recall that any o-minimal ordered groups is abelian by [26, The-
orem 2.1].

Fact 2.20.. – [26, Theorem 2.1 and Lemma 2.2] Let (G,<, · ) be an o-minimal
ordered group. Then the group G is abelian and divisible, and it has no non-trivial
proper definable subgroup.
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Fact 2.21. . – [18, Theorem A (Growth Dichotomy)] Let R be an o-minimal
expansion of an ordered group (R,<,+). Then exactly one of the following holds:

• R is linearly bounded;
• R defines a binary operation · such that (R,<,+, · ) is an ordered real

closed field.

Corollary 2.22.. – If R = (R,<,+, · ) is a definable real closed field, then the
ordered group (R>0, <, · ) is either definably isomorphic to (R,<,+) or it is linearly
bounded.

Proof – If (R>0, <, · ) is not linearly bounded, then by Fact 2.21, there is a
binary operation ∗ such that S = (R>0, <, · , ∗) is an ordered real closed field.
But its additive group (R>0, <, · ) is an R-linear group, so the fields R and S
are definably isomorphic by Proposition 2.15, hence the groups (R>0, <, · ) and
(R,<,+) are definably isomorphic. �

Fact 2.23.. – [10, Special case of Fact 1.6] For an o-minimal expansion R =
(R, 0, 1,+, <, · · · ) of an ordered group the following are equivalent:

(1) R is semi-bounded.
(2) There is no R-definable real closed field with domain R.

Moreover, in the following result, two definable o-minimal structures I = (I,<
, · · · ) and J = (J,<, · · · ) are said to be globally orthogonal if there is no definable
bijection between I and J .

Fact 2.24.. – [11, Theorems 5.8 and 5.10] Suppose that U is a definably-connected
definable solvable group. Then U has a definable normal subgroup V such that U/V
is a definably compact definable solvable group and V = K ×W1 × · · · ×Ws × V1 ×
· · · × Vk. Here K is the definably-connected, definably compact normal subgroup of
U of maximal dimension. For each j ∈ {1, . . . , s} (resp. i ∈ {1, . . . , k}), there is
a semi-bounded definable o-minimal expansion Jj of a group (resp., a definable
o-minimal expansion Ii of a real closed field) all of which are pairwise globally
orthogonal such that Wj is a direct product of copies of the additive group of Jj

and Vi is definably isomorphic to an Ii-definable solvable group.
Moreover, for each i ∈ {1, . . . , k}, we have Vi = W ×V where W is the maximal

Ii-definable subgroup of Vi which is a direct product of copies of the linearly bounded
one-dimensional torsion-free Ii-definable group. The group V is an Ii-definable
group such that Z(V ) has an Ii-definable subgroup Z such that Z(V )/Z is a direct
product of copies of the linearly bounded one-dimensional torsion-free Ii-definable
group. There are I -definable subgroups 1 < Z1 < · · · < Zm = Z such that, for
each l ∈ {1, . . .m}, the group Zl/Zl−1 is the additive group of Ii, and there is an
Ii-definable embedding of V/Z(V ) into GLn(I).

3. Nilpotent groups

The structure of solvable groups by Edmundo [11] (see §2.4) provides valuable
information on nilpotent groups definable in an o-minimal structure. By using these
results together with methods from groups of finite Morley rank, we obtain a new
decomposition of nilpotent groups based on pseudo-tori and UR-groups (Definitions
3.1 and 3.9, Theorem 3.29).

The structure of nilpotent groups in this new language is very effective for the
study of group actions in §4.
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3.1. pseudo-tori. Cherlin defined in [4] a good torus and a decent torus as ana-
logues of an algebraic torus for groups of finite Morley rank. These groups are
defined from the torsion, and a more general notion of a torus was introduced in
[17]: the pseudo-tori whose definition for the finite Morley rank context is very close
to the following definition.

Definition 3.1.. – A pseudo-torus is a definably connected nilpotent definable
group T such that no definable quotient group T/N is definably isomorphic to the
additive group R+ of a definable real closed field R.

Remark 3.2.. – Any definable quotient T/N of a pseudo-torus T is a pseudo-torus.

The following result gives examples of pseudo-tori, which encompasse definably
compact groups, linearly bounded groups and semi-bounded groups (see §2.4). It
will be useful for the proof of Proposition 3.22.

Lemma 3.3.. – Let G be a solvable definably connected definable group. Suppose
that G satisfies one of the following three conditions:

• G is definably compact;
• there is a definable expansion R of the group G such that R is a linearly

bounded structure;
• there is a definable expansion R of the group G such that R is a semi-

bounded structure.

Then G is a pseudo-torus.

Proof – If G is definably compact, then it is abelian by Fact 2.17. Now, since
any definable quotient of G is definably compact (Fact 2.18), it follows from Fact
2.19 that G is a pseudo-torus.

If there is a definable expansion R = (G,<,+, · · · ) of the group G such that R
is a linearly bounded structure or a semi-bounded structure, then G is abelian and
has no non-trivial proper definable subgroup (Fact 2.20). Since it follows from Facts
2.21 and 2.23 that there is no definable binary operation · such that (G,<,+, · ) is
a real closed field, G is a pseudo-torus. �

We start our study of pseudo-tori. The following result is used in the proof of
Lemma 3.5.

Fact 3.4.. – [11, Corollary 7.3 (1)] (see also [23, Theorem 1.1] and Fact 2.11) Let
A and B be two definable abelian groups. If there is an infinite definable family of
definable homomorphisms from A into B, then there is a definable real closed field
whose additive group is definably isomorphic to a definable subgroup of B and a
quotient of definable subgroups of A.

Lemma 3.5.. – Let T be a pseudo-torus and B be a nilpotent definable group.
Then any definable family A of homomorphisms from T to B is finite.

Proof – We proceed by induction on the dimension of B. Since for each α ∈ A ,
the image Imα ' T/Kerα of α is definably connected, we have Imα ≤ B◦ and we
may assume that B is definably connected. We assume toward a contradiction that
A is infinite. In particular, B is infinite.

We assume toward a contradiction that B has a proper infinite normal definable
subgroup A. For each α ∈ A , we consider α : T → B/A defined by α(t) = α(t)A.
Then the definable family {α | α ∈ A } is finite by induction hypothesis, and there
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exists α ∈ A such that the definable family B = {β ∈ A | β = α} is infinite. For
each β ∈ B, the map uβ : T → A defined by uβ(t) = β(t)α(t)−1 is a definable
group homomorphism, and since B is infinite, the definable family {uβ | β ∈ B} is
infinite too, contradicting our induction hypothesis. Hence B has no proper infinite
normal definable subgroup. In particular B is abelian (Fact 2.2), so it has no proper
infinite definable subgroup.

Let K be the intersection of the subgroups Kerα for α ∈ A . Since T/Kerα '
Imα ≤ B is abelian for each non-zero element α ∈ A , the quotient group T/K is
abelian. For each α ∈ A , we consider α̃ : T/K → B defined by α̃(tK) = α(t). Since

A is infinite, A = {α̃ | α ∈ A } is infinite too. Then by Fact 3.4 there is a definable
subgroup B0 of B such that B0 is definably isomorphic to the additive group R+ of
a definable real closed field R. In particular, B0 is infinite and we obtain B = B0

by the previous paragraph. But A is infinite, so there is a non-zero element α̃ ∈ A ,
and its image Im α̃ = Imα ' T/Kerα is definably connected. Hence Imα is an
infinite definable subgroup of B and α is a surjective homomorphism by the previous
paragraph. Thus we have T/Kerα ' Imα = B ' R+, contradicting that T is a
pseudo-torus and that R is real closed, so A is finite. �

Corollary 3.6.. – Let T be a pseudo-torus and G be a definably connected definable
group acting definably on T . Then G centralizes T . In particular, T is abelian.

Proof – By Lemma 3.5, the quotient group G/CG(T ) is finite, and since G is
definably connected, G centralizes T . In particular, the case where G = T acts by
conjugation on T shows that T is abelian. �

Proposition 3.7.. – Any nilpotent definable group G has a unique maximal pseudo-
torus T (G). In particular, any pseudo-torus of G is central in G.

Proof – We proceed by induction on the dimension of G. We may assume that
G is definably connected. Let S and T be two maximal pseudo-tori of G.

We show that S and T are central in G. If NG(T ) < G, we have T = T (NG(T ))
by induction hypothesis, therefore T is a definably characteristic subgroup of NG(T )
and we obtainNG(NG(T )) = NG(T ). ButG is nilpotent, hence we haveNG(T ) = G
contradicting NG(T ) < G. This proves that T is normal in G, and T is central in
G by Corollary 3.6. In the same way, S is central in G.

We assume toward a contradiction that ST is not a pseudo-torus. Then ST has
a definable subgroup N such that ST/N is definably isomorphic to the additive
group R+ of a definable real closed field R. In particular, the quotient group TS/N
is torsion-free and it has dimension one by Fact 2.10. If T is not contained in
N , we have TS = TN and T/(T ∩ N) is definably isomorphic to TS/N ' R+,
contradicting that T is a pseudo-torus. Thus T is contained in N , and in the
same way, S is contained in N , contradicting N < ST . This proves that ST is a
pseudo-torus, and that T (G) = S = T is well defined. �

Proposition 3.8.. – Let G be a nilpotent definable group, and N be a normal
definable subgroup of G. Then T (G/N) = T (G)N/N .

Proof – We proceed by induction on the dimension of G. Since a definable
quotient of a pseudo-torus is a pseudo-torus, T (G/N) contains T (G)N/N and we
may assume that G/N = T (G/N) is a pseudo-torus.
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Let T be a minimal definable subgroup of G among the ones satisfying G = TN .
Since G/N is a pseudo-torus, G/N is definably connected and we have G = T ◦N .
Thus T is definably connected by the minimality of T .

We assume toward a contradiction that T is not a pseudo-torus. Then T has
a definable quotient T/M definably isomorphic to R+ for a real closed field R.
In particular, T/M is torsion-free and has dimension 1 by Fact 2.10. Since (T ∩
MN)/M is a definable subgroup of T/M , it is either equal to T/M or trivial, so
we have either T ∩MN = M or T ≤MN . In the first case we have

(G/N)/(MN/N) ' G/MN = TN/MN ' T/M ' R+

contradicting that G/N is a pseudo-torus. In the second case we have G = TN =
MN , contradicting the minimality of T . Hence T is a pseudo-torus, and we obtain
T ≤ T (G) and G = T (G)N . �

3.2. UR-groups. Burdges introduced U0,r-groups in [3] as a concept of unipotence
for groups of finite Morley rank. This notion is very effective for the study of groups
of finite Morley rank. Another analogue of unipotent algebraic groups, namely the
homogeneous U0,r-groups, was proposed in [14] in order to remedy to a weakness
of U0,r-groups, since they are not necessarily preserved by passage to definable
subgroups. Later, a more precise unipotence notion was introduced in [15, §3.2],
very close to Definitions 3.9 and 3.15. This last notion, together with pseudo-tori
and the homogeneity of [14], is a crucial tool for some analysis as [15].

We note that N is a normal subgroup of G in the following definition (Fact 2.3).

Definition 3.9.. – Let R be a definable real closed field. A UR-group is a nilpotent
definable group G such that, for every maximal proper definably connected definable
subgroup N , the quotient group G/N is definably isomorphic to R+.

Remark 3.10.. – Any UR-group is definably connected.

Proposition 3.11.. – Let R be a definable real closed field, and G be a nilpotent
definable group. Then any family of UR-subgroups of G generates a UR-subgroup.

In particular, G has a unique maximal UR-subgroup.

Proof – We note that we do not know if any subgroup of G generated by UR-
subgroups is definable. We have just to show that any non-necessarily definable
subgroupH ofG contains a unique maximal UR-subgroup. We proceed by induction
on the dimension of G. Since any UR-group is definably connected, we may assume
that G is definably connected. Let U and V be two maximal UR-subgroups of H.

We show that U is normal in H. We may assume that U is not normal in G. By
induction hypothesis, U is the unique maximal UR-subgroup of NH(U) ≤ NG(U) <
G, therefore U is normal in NH(NH(U)) and we obtain NH(NH(U)) = NH(U). But
H is nilpotent, hence NH(U) = H and U is normal in H. In particular, UV is a
definably connected definable subgroup of H.

We may assume that UV is infinite, therefore UV has a maximal proper definably
connected definable subgroup N . If UN = UV , we have U/(U ∩ N) ' UV/N
and by the maximality of N in UV , the group (U ∩ N)◦ is a maximal proper
definably connected definable subgroup of U . Since U is a UR-group, the group
U/(U ∩ N)◦ ' R+ is torsion-free and U ∩ N is definably connected, so we obtain
UV/N ' U/(U ∩N) ' R+. In the same way, if V N = UV the groups UV/N and
R+ are definably isomorphic. But N is proper in UV , so we have either U � N
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or V � N , and by the maximality of N we have either UN = UV or V N = UV .
Hence UV/N is definably isomorphic to R+, and UV is a UR-group. Now by the
maximality of U and V , we obtain UV = U = V = UR(H), as desired. �

Thus we may define a radical UR( · ) for each definable real closed field R.

Definition 3.12.. – Let R be a definable real closed field. For each definable group
G, we denote by UR(G) the unique maximal UR-subgroup of F (G).

Lemma 3.13.. – Let G be a definable group with a normal definable subgroup N
such that G/N is definably isomorphic to R+ for a real closed field R. Then N ∩G◦
is definably connected and G = UN for an abelian UR-subgroup U .

Proof – Since G/N ' R+ is torsion-free, it is definably connected and G/N
is definably isomorphic to G◦/(N ∩ G◦). Therefore the torsion part of G◦/N◦ is
(N ∩G◦)/N◦, so it is finite, and Fact 2.6 (1) gives N ∩G◦ = N◦.

Let U be a minimal definable subgroup of G among the ones satisfying U � N .
For any u ∈ U \ N the subgroup Z(CU (u)) is definable, abelian and contains u,
so Z(CU (u)) = U by minimality of U , and U is abelian. Since G/N ' R+ is
torsion-free, and since its dimension is 1 (Fact 2.10), we have G = UN .

We show that U is a UR-group. Since G/N ' R+ is definably connected, we
have G = U◦N , and U is definably connected by minimality of U . Now the first
paragraph applied with U and U/(U ∩ N) ' R+ shows that U ∩ N is definably
connected. But, again by the minimality of U , each proper definable subgroup of
U is contained N . Hence U ∩N is the unique maximal proper definably connected
definable subgroup of U . Thus U is a UR-group. �

Proposition 3.14.. – Let R be a definable real closed field, G be a nilpotent
definable group, and N be a normal definable subgroup of G. Then

UR(G/N) = UR(G)N/N

Proof – We show that UR(G/N) contains UR(G)N/N . Let M/N be a maximal
proper definably connected definable subgroup of UR(G)N/N . Then UR(G)N/M '
UR(G)/(UR(G) ∩M) has no non-trivial proper definably connected definable sub-
group, and (UR(G) ∩M)◦ is a maximal proper definably connected definable sub-
group of UR(G). Thus UR(G)/(UR(G) ∩M)◦ is definably isomorphic to R+ and,
by Lemma 3.13, the subgroup UR(G) ∩ M is definably connected. Therefore
UR(G)N/M ' UR(G)/(UR(G)∩M) is definably isomorphic to R+, so UR(G)N/N
is a UR-group and it is contained in UR(G/N).

We show that UR(G/N) = UR(G)N/N . We denote by U the preimage in G
of UR(G/N). For each maximal proper definably connected definable subgroup
M/N of UR(G/N), the group U/M is definably isomorphic to R+, so Lemma
3.13 gives U = UR(G)M . Consequently UR(G)N/N is contained in no proper
definably connected definable subgroup of UR(G/N). Since UR(G)N/N is definably
connected, we obtain UR(G/N) = UR(G)N/N , as desired. �

3.3. Homogeneous UR-groups. Similarly to the groups of finite Morley rank, we
define an homogeneous UR-group [14]. The purpose of this section is to show that
any UR-group is homogeneous (Proposition 3.22).

Definition 3.15.. – Let R be a definable real closed field. A UR-group is said to
be homogeneous if its definable subgroups are UR-groups.
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Remark 3.16.. – Let R be a definable real closed field.

• Any homogeneous UR-group is definably connected and torsion-free.
• Every definable subgroup of a homogeneous UR-group is a homogeneous
UR-group.
• By Proposition 3.14, every definable quotient group of a homogeneous UR-

group is a homogeneous UR-group.

Lemma 3.17.. – Let R be a definable real closed field. If a nilpotent definable group
G has a normal homogeneous UR-subgroup U such that G/U is a homogeneous UR-
group, then G is a homogeneous UR-group.

Proof – Let H be a definable subgroup of G. Since G/U is a homogeneous UR-
group, HU/U is a UR-group, and by Proposition 3.14, we have H = UR(H)(H∩U).
But U is a homogeneous UR-group, hence H ∩ U and H are UR-groups. �

For the proof of Lemma 3.20, we need G-minimal subgroups.

Definition 3.18.. – Let G be a definable group. A subgroup of G is said to be
G-minimal if it is definable, infinite, normal, and minimal for these conditions.

Remark 3.19.. –

• By the descending chain condition on definable subgroups of G [25, Remark
2.13 (ii)], any infinite normal definable subgroup H of a definable group G
contains a G-minimal subgroup.
• In a definable group G, every G-minimal subgroup is definably connected.

Lemma 3.20. . – Let R and S be two definable real closed fields, and let G
be a nilpotent definable group. If R and S are not definably isomorphic, then
[UR(G), US(G)] = 1.

Proof – We proceed by induction on the dimension of G. We may assume
that G is infinite. In particular, Z(G) is infinite (Fact 2.2) and contains a G-
minimal subgroup A. Since A is G-minimal and central in G, it has no proper
infinite definable subgroup. By induction hypothesis and by Proposition 3.14, the
commutator [UR(G), US(G)] is contained in A. We assume toward a contradiction
that there exist u ∈ UR(G) and v ∈ US(G) such that [u, v] is not trivial. We
consider the maps f : US(G)→ A and g : UR(G)→ A defined by f(x) = [u, x] and
g(x) = [x, v]. Since [u, v] 6= 1, they are two non-zero definable homomorphisms.
Consequently, by the minimality of A and since UR(G) and US(G) are definably
connected, the maps f and g are surjective. Now A is both a UR-group and a US-
group by Proposition 3.14, and since A has no proper infinite definable subgroup, it
is definably isomorphic to R+ and S+, contradicting Lemma 2.14. Thus we obtain
[UR(G), US(G)] = 1. �

Lemma 3.21.. – Let R be a definable real closed field. If G is a UR-group, then
G′ is a homogeneous UR-group.

Proof – First we show that G/Z(G) is a homogeneous UR-group. Let H/Z(G)
be a definable subgroup of G/Z(G). We show that H/Z(G) is a UR-group. We may
assume that H/Z(G) is non-trivial. Let M/Z(G) be a maximal proper definably
connected definable subgroup of H/Z(G). Then H and M are definably connected
(Corollary 2.7). By Proposition 3.7, the group T (H) ≤ T (G) is contained in Z(G),
and H/M is not a pseudo-torus (Proposition 3.8). Then there is a normal definable
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subgroup N/M of H/M such that H/N is definably isomorphic to S+ for a definable
real closed field S. By Lemma 3.13 and the maximality of M , we obtain M = N
and H = US(H)M . In particular, US(G) ≥ US(H) is not central in G, and Lemma
3.20 says that the fields R and S are definably isomorphic. Thus H/M is definably
isomorphic to R+ and G/Z(G) is a homogeneous UR-group.

We show by induction on the dimension of G that G′ is a homogeneous UR-group.
We may assume that G is not abelian, and we consider g ∈ Z2(G)\Z(G). Then the
map f : G → Z(G) defined by f(x) = [g, x] is a definable group homomorphism,
and Ker f contains Z(G). Hence, by the previous paragraph, its image Im f '
(G/Z(G))/(Ker f/Z(G)) is a non-trivial homogeneous UR-subgroup of G′. Now
G′/Im f is a homogeneous UR-group by induction hypothesis, and the result follows
from Lemma 3.17. �

Proposition 3.22.. – For any definable real closed field R, every UR-group is
homogeneous. In particular, such a group is torsion-free.

Proof – Let G be a UR-group. We may assume that G is infinite. By Lemmas
3.17 and 3.21, we may assume that G is abelian. By Lemma 3.3, Proposition
3.8 and Fact 2.24, there is a definable o-minimal expansion of a real closed field
S = (S,<, · · · ) such that G is definably isomorphic to an S -definable group,
and there are S -definable subgroups 1 < Z1 < . . . < Zm = G where for each
l ∈ {1, . . . ,m}, the group Zl/Zl−1 is the additive group of S .

Thus G is a US-group (Proposition 3.14). Since G is a UR-group too, the fields
R and S are definably isomorphic by Lemma 2.14. Let H be a definable subgroup
of G. For each i ∈ {1, . . . ,m}, the group (H ∩ Zi)/(H ∩ Zi−1) is either trivial or
definably isomorphic to Zi/Zi−1 ' S+ ' R+, so H is a UR-group by Proposition
3.14. This proves that G is a homogeneous UR-group. �

3.4. Decomposition of nilpotent groups. In this section, se state our main
result on nilpotent groups (Theorem 3.29). From UR-groups, we introduced U -
groups as an analogue of unipotent subgroups of algebraic groups.

Definition 3.23.. – A U -group is a nilpotent definable group G generated by
UR1(G), . . . , URk

(G) for definable real closed fields R1, . . . , Rk.

Remark 3.24.. –

• A U -group is generated by definably connected definable subgroup, so any
U -group is definably connected.

• Since, for any definable real closed field R, every definable quotient group
of a UR-group is a UR-group, every definable quotient of a U -group is a
U -group.

Lemma 3.25.. – Every definable group G has a unique maximal normal U -subgroup
U(G).

Proof – Let U be a maximal normal U -subgroup of G. If V is another normal
U -subgroup of G, then UV is a normal nilpotent definably connected definable
subgroup of G. Since U and V are U -groups, UV is a U -group too. �

Lemma 3.26.. – In a nilpotent definable group G, the subgroup U(G) contains all
the U -subgroups of G.
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Proof – For each definable real closed field R, the subgroup UR(G) is definable,
definably connected and normal in G, so U(G) contains UR(G) for each definable
real closed field R, and the result follows. �

Proposition 3.27.. – For every U -group G, there are finitely many definable real
closed fields R1, . . . , Rk such that

G = UR1(G)× · · · × URk
(G)

In particular, G is torsion-free. Moreover, for each definable real closed R, if R is
not definably isomorphic to Ri for i ∈ {1, . . . , k}, then UR(G) is trivial.

Proof – We proceed by induction on the smallest integer k such that G is
generated by UR1

(G), . . . , URk
(G) for definable real closed fields R1, . . . , Rk. In

particular, the fields R1, . . . , Rk are not definably isomorphic. We consider H =
UR1(G) · · ·URk−1

(G). By induction hypothesis, UR(G) is trivial for each real closed
field R not definably isomorphic to Ri for i ∈ {1, . . . , k − 1}, and

H = UR1
(G)× · · · × URk−1

(G)

In particular, URk
(H) is trivial, so we have H ∩ URk

(G) = 1 and G is the direct
product of UR1

(G), . . . , URk
(G).

Let R be a definable real closed field. We show that if R is not definably iso-
morphic to Ri for i ∈ {1, . . . , k}, then UR(G) is trivial. By the previous paragraph
and Proposition 3.22, the group UR(G)H/H ≤ G/H ' URk

(G) is a URk
-group.

But by Proposition 3.14, it is a UR-group, hence it is trivial by Lemma 2.14, and
UR(G) = UR(H) is trivial, as desired. �

Corollary 3.28.. – For any U -group G, we have T (G) = 1.

Proof – By Proposition 3.27, there are finitely many definable real closed fields
R1, . . . , Rk such that G is the direct product of UR1

(G), . . . , URk
(G). We proceed

by induction of k. By induction hypothesis, the group T (G/UR1
(G)) ' T (UR2

(G)×
. . . × URk

(G)) is trivial, and Proposition 3.8 gives T (G) ≤ UR1(G). Then T (G) is
a UR1 -group (Proposition 3.22), so T (G) is trivial. �

Theorem 3.29.. – Any nilpotent definably connected definable group G is the
central product of T (G) by U(G). More precisely, the following decomposition holds

G = T (G) ∗ (UR1
(G)× · · · × URk

(G))

for definable real closed fields R1, . . . , Rk such that UR(G) = 1 for each definable
real closed field not definably isomorphic to Ri for i = 1, . . . , k. Moreover, URi

(G)
is a homogeneous URi-group for each i = 1, . . . , k.

Proof – It follows from Proposition 3.7 that T (G) is central in G, so the group
T (G)U(G) is the central product of T (G) by U(G). We assume toward a contra-
diction that G 6= T (G)U(G). Let M be a maximal definably connected definable
subgroup of G containing T (G)U(G). Since M contains U(G), it contains UR(G)
for each definable real closed field R, and Proposition 3.14 shows that no definable
quotient of G/M is definably isomorphic to R+ for a definable real closed field R.
Thus G/M is a pseudo-torus and Proposition 3.8 gives G = T (G)M , contradicting
that M contains T (G). Hence we have G = T (G)U(G), and the decomposition of
G follows from Propositions 3.22 and 3.27. �



16 OLIVIER FRÉCON

Corollary 3.30.. – A nilpotent definably connected definable group G is a U -group
is and only if T (G) is trivial.

Proof – This follows from Corollary 3.28 and Theorem 3.29. �

Corollary 3.31.. – Every definable subgroup H of a U -group G is a U -group.

Proof – The group G is torsion-free by Proposition 3.27, so H is definably
connected and this follows from Corollary 3.30. �

Corollary 3.32.. – The derived subgroup G′ of a definably connected definable
nilpotent group G is a U -group.

Proof – This follows from Theorem 3.29, Corollary 3.6 and Lemma 3.21. �

4. Structure of definable groups

The purpose of this section is to describe the structure of any definably connected
definable group G from U(G). We show that G/U(G) is a central extension of a
direct product of definably simple definable groups (Theorem 4.10). The proof is
based on the structure of nilpotent groups (Theorem 3.29), and on the study of
group actions on a solvable group.

Lemma 4.1.. – Let G be a solvable definably connected definable group. Then G′

is contained in U(G).

Proof – By Fact 2.5, the group G′ is contained in F (G). Since G is de-
finably connected and F (G)/F (G)◦ is finite, G centralizes F (G)/F (G)◦. Since
T = F (G)◦/U(G) is a pseudo-torus by Proposition 3.8 and Theorem 3.29, the group
T is centralized by G too (Corollary 3.6). Consequently, G/U(G) is a nilpotent de-
finably connected definable group, and by Corollary 3.32, its derived subgroup is a
normal U -subgroup of F (G)/U(G).

Let R be a definable real closed field. By Proposition 3.14, we have

UR(F (G)/U(G)) = UR(F (G))U(G)/U(G),

and since U(G) = U(F (G)) contains UR(F (G)), the groups UR(F (G)/U(G)) and
U(F (G)/U(G)) are trivial. But G′U(G)/U(G) is contained in U(F (G)/U(G)) by
the previous paragraph, hence G′ is contained in U(G), as desired. �

Lemma 4.4 generalizes Fact 2.5. Thanks to Lemma 4.3, its proof is slightly
simpler than the one of [14, Theorem 6.10]. Moreover, it uses the following result.

Fact 4.2.. – [25, Corollary 2.15 (i)] Any infinite definable group has an infinite
definable abelian subgroup.

Lemma 4.3.. – Let G be a definably connected definable group. If H is a normal
definable subgroup such that G/H is solvable, then G = R(G)H.

Proof – By Fact 2.4, the subgroup R generated by all normal solvable sub-
groups of G is definable and solvable. Then we have R(G) = R◦, and G/R satisfies
the hypotheses of Fact 2.8. Thus G/R is the direct product of definable subgroups
H1/R, . . . ,Hk/R such that for every i ∈ {1, . . . , k} there is a definable real closed
field Ri and a definable isomorphism between Hi/R and a semialgebraic subgroup
of GLni

(Ri). Moreover, H◦i R/R is definably simple. Since G/R is definably con-
nected, Hi/R is definably connected for each i. In particular, Hi/R = H◦i R/R is
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definably simple for each i, and G/R has no proper definable subgroup N such that
(G/R)/N is solvable. Thus we obtain G = RH, and since G is definably connected
and R(G) = R◦, this implies G = R(G)H. �

Lemma 4.4.. – Let G and H be two definably connected definable groups. We
assume that H is solvable. If G acts definably by conjugation on H, then [G,H] is
contained in U(H).

Proof – We consider a minimal counter-example G acting on H. By minimality
of G and Fact 4.2, the group G = G/CG(H/U(H)) is abelian. By Lemma 4.3, we
have G = R(G)CG(H/U(H)), so G = R(G) is solvable by minimality of G. We
consider the semi-direct product H oG where G acts by conjugation on H. It is a
solvable definably connected definable group. Then [G,H] ≤ (H oG)′ is contained
in U(H oG) ∩H by Lemma 4.1. Since U(H oG) ∩H is a normal U -subgroup of
H by Corollary 3.31, we obtain [G,H] ≤ U(H), contradicting G 6= CG(H/U(H)).
Thus [G,H] is contained in U(H). �

Lemma 4.5.. – Let H be a (non-necessarily definable) subgroup of a nilpotent
definable group G. Then H has a unique maximal definably connected definable
subgroup.

Proof – We proceed by induction on the dimension of G. We may assume
that G is definably connected. Let M be a maximal definably connected definable
subgroup of H. We show that M is normal in H. We may assume that M is
not normal in G. By induction hypothesis, M is the unique maximal definably
connected definable subgroup of NH(M) ≤ NG(M) < G, therefore M is normal in
NH(NH(M)) and we obtain NH(NH(M)) = NH(M). But H is nilpotent, hence
NH(M) = H and M is normal in H.

Now, if N is any definably connected definable subgroup of H, then NM is a
definably connected definable subgroup of H too, and it is contained in M by the
maximality of M . This proves the uniqueness of M . �

Corollary 4.6.. – In any nilpotent definable group G, every family of definably
connected definable subgroups of G generate a definably connected definable sub-
group.

The following result and Corollary 4.9 are in the spirit of [1].

Proposition 4.7.. – Let G and H be two definably connected definable groups. We
assume that H is solvable. If G acts definably by conjugation on H, then [G,H] is
a U -subgroup of H. In particular, [G,H] is definable and definably connected.

Proof – By Lemma 4.4, the group [G,H] is contained in U(H), so we have just
to prove that [G,H] is definable and definably connected. We proceed by induction
on the dimension of H. Since [G,H] is contained in the nilpotent definable group
U(H), it has a unique maximal definably connected definable subgroup M (Lemma
4.5). If M is nontrivial, then [G,H]/M is definable and definably connected by
induction hypothesis, so [G,H] is definable and definably connected. Thus we may
assume that [G,H] contains no non-trivial definably connected definable subgroup.

We show that [G,H] is central in U(H). We may assume that U(H) is non-
trivial. By induction hypothesis, [G,H]Z(U(H))/Z(U(H)) is definable and defin-
ably connected. Since U(H) is a U -group, it is torsion-free (Proposition 3.27),
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so Z(U(H)) is definably connected and [G,H]Z(U(H)) is a definably connected
definable subgroup.

• If U(H) = [G,H]Z(U(H)), then [G,H] contains U(H)′. By Corollary 3.32,
the subgroup U(H)′ ≤ [G,H] is definable and definably connected, so it is
trivial and U(H) is abelian.
• If [G,H]Z(U(H)) < U(H), then [U(H), [G,H]Z(U(H))] is a definably con-

nected definable subgroup by induction hypothesis, and since it is contained
in [G,H], it is trivial. Thus U(H) centralizes [G,H].

Now, for each g ∈ G, the map adg : U(H) → Z(U(H)) defined by adg(x) =
[g, x] is a definable group homomorphism. Since its image is a definably connected
definable subgroup of [G,H], it is trivial, so G centralizes U(H).

Thus, for each h ∈ H, the map adh : G→ Z(U(H)) defined by adh(x) = [x, h] is
a definable group homomorphism. Since its image is a definably connected definable
subgroup of [G,H], it is trivial, we obtain [G,H] = 1 and [G,H] is a definably
connected definable subgroup of H. �

Corollary 4.8.. – Let G be a definably connected definable group acting definably
by conjugation on a nilpotent definable group H. Then [G,H] = [G,H◦] is a U -
subgroup of H.

Proof – By Fact 2.6 (1), the group H has a finite characteristic subgroup F
such that H = H◦ ∗F . Since G is definably connected, it centralizes F and we have
[G,H] = [G,H◦]. Now the result follows from Proposition 4.7. �

The following result is not useful for Theorem 4.10, it will be used in the proof
of Theorem 5.17.

Corollary 4.9.. – Let G be a definably connected definable group acting definably by
conjugation on a solvable definable group H. Then [G,H] is a definably connected
definable subgroup of H.

Proof – We proceed by induction on the dimension of the group H oG where
G acts by conjugation on H. We may assume that G acts faithfully on H. If [G,H]
contains a non-trivial (H o G)-normal definably connected definable subgroup A,
then we may applied our induction hypothesis to H/AoG where G acts by conjuga-
tion on H/A, and we obtain that [G,H] is a definably connected definable subgroup
of H. Thus we may assume that [G,H] contains no non-trivial (H o G)-normal
definably connected definable subgroup.

The group [G,H◦] is definable and definably connected by Proposition 4.7, so
its H-conjugates too. Since [G,H◦] is normal in H◦, its H-conjugates too, so the
subgroup L generated by the H-conjugates of [G,H◦] is definable and definably
connected. But L is a subgroup of [G,H] normal in H oG. Hence it is trivial by
the previous paragraph, and G centralizes H◦.

Since H/H◦ is finite and G is definably connected, [G,H] is contained in H◦.
Then for each h ∈ H, we may consider the map uh : G → H◦ defined by uh(x) =
[x, h]. Since G centralizes H◦, the map uh is a group homomorphism, and its image
is a definably connected definable subgroup of H◦. Moreover, for each a ∈ H◦ and
each x ∈ G, since G centralizes H◦ we have

uh(x)a = [x, ha] = [x, a−1ah
−1

h] = [x, h]

So the image of uh is central in H◦, and the subgroup generated by Imuh for h ∈ H
is a definably connected definable subgroup of Z(H◦). But this subgroup is equal to
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[G,H], and it is normalized by G and H. Hence it is trivial by the first paragraph,
and G centralizes H. Thus [G,H] = 1 is definable and definably connected. �

Theorem 4.10.. – Let G be a definably connected definable group. Then G/U(G)
is a central extension of a direct product of definably simple definable groups.

More precisely, G has a normal solvable definable subgroup R such that the fol-
lowing three conditions hold:

• R contains all the normal solvable subgroups of G;
• [G,R] is a U -group and [G,R] = [G,R◦];
• (Fact 2.8) G/R is the direct product of definably simple definable subgroups
H1, . . . ,Hk such that for every i ∈ {1, . . . , k} there is a definable real closed
field Ri and a definable isomorphism between Hi and a semialgebraic sub-
group of GL(ni, Ri).

Proof – By Fact 2.4, the subgroup R generated by all normal solvable subgroups
of G is definable and solvable. Then we have R(G) = R◦, and G/R satisfies the
hypotheses of Fact 2.8. Thus, the first and the third assertions are satisfied.

Now, since [G,R◦] is a U -group (Proposition 4.7), we have just to prove that
[G,R] = [G,R◦]. Since G is definably connected and since R/R◦ is finite, G cen-
tralizes R/R◦. In particular, R/R◦ is abelian. Moreover, since [G,R◦] contains
[R,R◦], the group R centralizes R◦/[G,R◦], so the group R/[G,R◦] is nilpotent.
Then Corollary 4.8 shows that the commutator [G/[G,R◦], R/[G,R◦]] is trivial and
we obtain [G,R] = [G,R◦]. �

5. Linearity of definable groups

We prove the main theorem in this section (Theorem 5.17). Its proof is based on
the previous sections, on the study of definably linear groups (Definition 5.12 and
Fact 5.4) and on the analysis of groups definable in an o-minimal expansion of a
real closed field. In particular, the following two results are crucial for the proof of
Theorem 5.17.

Fact 5.1.. – [20, Proof of Corollary 3.1] Let R = (R,<, · · · ) be an o-minimal
expansion of a real closed field. If G is definable in R, then G/Z(G) can be definably
embedded into GLn(R).

Proposition 5.2.. – Let R0 = (R,<,+, · ) be a definable real closed field, and let
R be a definable expansion of R0 such that, for each integer n, all the definable
relations of Rn are R-definable. Let H be a normal definable subgroup of a definable
group G. If H and G/H are definably isomorphic to an R-definable group, then G
is definably isomorphic to an R-definable group.

Proof – First we assume that G◦ is definably isomorphic to an R-definable
group. We applied the method of Borovik and Cherlin [16, Proposition 4.3]. Let W
be the wreath product of G◦ by G/G◦. It is definably isomorphic to an R-definable
group, and we have just to find a definable group monomorphism from G to W . We
consider a left transversal T = {g1, . . . , gr} to G◦ in G. For each x ∈ G and each
i ∈ {1, . . . , r}, we denote by ni(x) the unique element of G◦ such that ni(x)gix ∈ T ,
and we define a map µ : G → W by µ(x) = ((n1(x), . . . , nr(x)), xG◦). The map
µ is definable, and it is a group homomorphism (see the proof of [9, Theorem 18.9
p.68]). Moreover, if x belongs to Kerµ, the last coordinate gives x ∈ G◦, and since
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g1x ∈ {g1, . . . , gr}, we obtain g1x = g1 and x = 1. Thus µ is a definable group
monomorphism from G to W , as desired. Hence we may assume that G is definably
connected.

Now we proceed by induction on the dimension of H. By the structure of H◦

described in Theorem 4.10, we may assume that either H is finite, or H has no
non-trivial normal abelian subgroup, or H is abelian, or H is a U -group. Suppose
that H has no non-trivial normal abelian subgroup. By Theorem 4.10, the group G
has a normal solvable definable subgroup R such that the following two conditions
hold:

• R contains all the normal solvable subgroups of G;
• G/R is the direct product of definably simple definable subgroups.

Consequently, sinceHR/R is a normal definable subgroup ofG/R, the groupHR/R
is a direct product of some subgroups H1, . . . ,Hk, and G/R has a normal definable
subgroup S/R such that G/R = HR/R × S/R. Thus we have G = HS and
H ∩ S ≤ R. But R is solvable and H has no non-trivial normal abelian subgroup,
so R ∩ H is trivial, and since H and S are normal in G, we obtain G = H × S.
Hence G ' H × G/H is definably isomorphic to an R-definable group. Thus we
may assume that either H is finite, or H is abelian, or H is a U -group.

However, if H is finite, then since G is definably connected, G centralizes H,
and H is abelian. Moreover, if H is a non-abelian U -group, then H ′ is infinite and
definable (Corollary 3.32), and the induction hypothesis applied with H/H ′ and
H ′ shows that G is definably isomorphic to an R-definable group. Hence we may
assume that H is abelian.

For each g ∈ G, we denote by g = gH the left coset of g modulo H. By Fact
2.1, there is a definable function t : G → G such that for all x, y ∈ G, we have
x ∈ xH and if xH = yH then t(x) = t(y). We define a map Φ : G × G → H by
Φ(xH, yH) = t(xy)−1t(x)t(y). In particular, the map Φ is definable, so its graph is
a definable subset of G×G×H ⊆ Rn for an integer n, and Φ is R-definable by our
hypothesis over R. We consider the set L = G/H ×H and the group L = (L,⊗)
where for every (g, h) ∈ L and (g′, h′) ∈ L, the product (g, h) ⊗ (g′, h′) is defined
by

(g, h)⊗ (g′, h′) = (gg′, hg
′
h′Φ(g, g′))

We note that, since the groups G/H and H are definably isomorphic to R-definable
groups, and since Φ is R-definable too, the group L = (L,⊗) is definably iso-
morphic to an R-definable group. Moreover the map f : G → L defined by
f(g) = (g, t(g)−1g) is a definable group isomorphism, so G is definably isomor-
phic to an R-definable group. �

Corollary 5.3.. – Let R0 = (R,<,+, · ) be a definable real closed field, and let
R be a definable expansion of R0 such that, for each integer n, all the definable
relations of Rn are R-definable. Then every UR-group is definably isomorphic to
an R-definable group.

Proof – This follows from Propositions 3.22 and 5.2. �

The definable subgroups of GLn(R) are studied in [22] whose main result is
Fact 5.4. We provide below some useful complements. In particular, we show
that a definable quotient of a definably connected subgroup of GLn(R) is definably
isomorphic to a subgroup of GLn(R) (Proposition 5.11).
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Fact 5.4.. – [22, Theorem 4.1] Let R be an o-minimal expansion of a real closed
field (R,<, · · · ), and let G be a R-definably connected R-definable subgroup of
GLn(R) for an integer n. Then there are semialgebraic subgroups G1 and G2 of
GLn(R) such that G2 ≤ G ≤ G1, G2 is a normal subgroup of G1 and G1/G2 is
abelian. Moreover, there are abelian, R-definable, R-definably connected subgroups
A1, . . . , Ak of G such that G = G2 ·A1 · · ·Ak.

Fact 5.5.. – [22, Lemma 3.4 (ii)] Let R be a definable real closed field, and let G
be a definable subgroup of GLn(R) for an integer n. If G is a definable subgroup of
a semialgebraic group of the form (R+)k, then G is semialgebraic.

Corollary 5.6.. – Let R be a definable real closed field, and let G be a definable
subgroup of GLn(R) for an integer n. If G is a definable subgroup of a semialgebraic
unipotent group U , then G is semialgebraic.

Proof – We proceed by induction on the dimension of G. Since U is unipo-
tent, it is torsion-free and its definable subgroups are definably connected. Let
M be a maximal proper definable subgroup of G. By induction hypothesis, M is
semialgebraic. Then G/M is a definable subgroup of the semialgebraic unipotent
group NU (M)/M . Thus, if M is non-trivial, G/M is semialgebraic by induction
hypothesis, so G is semialgebraic. Hence we may assume that M is trivial. Now G
is abelian (Fact 4.2), and it is a definable subgroup of Z(CU (G)). Since Z(CU (G))
is an abelian semialgebraic unipotent group, it is of the form (R+)k, and G is
semialgebraic by Fact 5.5. �

We recall that a semisimple group is defined to be a definably connected definable
group with no infinite abelian normal subgroup (Definition 6.1).

Fact 5.7.. – [22, Theorem 4.5] Let R be a definable real closed field, and let G be a
definably connected definable subgroup of GLn(R) for an integer n. Then G = NH
for a normal solvable definable subgroup N and a semialgebraic semisimple subgroup
H such that N ∩H is finite.

Lemma 5.8.. – Any semisimple group S is perfect and satisfies R(S) = 1.

Proof – Since S is a semisimple group, Z(U(S)) is finite, and U(S) is finite too
by Fact 2.2. But U(S) is a U -group, so it is definably connected, and consequently
it is trivial. Hence R(S) is abelian (Proposition 4.7), and since S is semisimple,
R(S) is finite. Thus, since R(S) is definably connected, R(S) is trivial.

Let R be the subgroup of S generated by all normal solvable subgroups of G. It
is definable and solvable (Fact 2.4), so R◦ = R(S) is trivial and R is finite. Now
S/R has no non-trivial normal abelian subgroup, and Fact 2.8 with Proposition 2.9
shows that S/R is perfect. Thus we have S = S′R and S′ has finite index in S, so
Proposition 2.9 gives S = S′. �

Lemma 5.9.. – Let R be a definable real closed field, and let G be a definably
connected definable subgroup of GLn(R) for an integer n. Then G′ = U o S for
a semialgebraic unipotent group U and a semialgebraic semisimple group S. In
particular, G′ is semialgebraic.

Proof – By Fact 5.7, we have G = NH for a normal solvable definable subgroup
N and a semialgebraic semisimple subgroup H such that N ∩H is finite. Since G is
definably connected, we may assume that N is definably connected. Moreover, we
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have R(H) = 1 and H is perfect (Lemma 5.8). Thus we have G′ = N ′[H,N ]H ′ =
N ′[H,N ]H, and U = N ′[H,N ] is a U -group by Proposition 4.7. In particular, U is
a definable subgroup of N , and it is torsion-free (Proposition 3.27), so U∩H∩N∩H
is trivial.

Let N be the smallest semialgebraic subgroup of GLn(R) containing N . Then

N is semialgebraically connected by Proposition 2.9. Moreover, N
′

is contained in

N by Fact 5.4, so N is solvable. This implies that N
′

is a semialgebraic unipotent
group. Since H is definably connected, it is semialgebraically connected, and then

[H,N ] is a semialgebraic unipotent group too. Now N
′
[H,N ]H is a semialgebraic

unipotent group. Since U = N ′[H,N ] is a definable subgroup of N
′
[H,N ], Corol-

lary 5.6 shows that U is semialgebraic, and we have the decomposition G′ = U oS
with S = H. �

Corollary 5.10.. – Let R be a definable real closed field, and let G be a defin-
ably connected definable subgroup of GLn(R) for an integer n. Then any normal
definable subgroup H of G′ is semialgebraic.

Proof – We may assume that H is definably connected. By Fact 5.7, we have
H = NT for a normal solvable definable subgroupN and a semialgebraic semisimple
subgroup T such that N ∩ T is finite. Since H is definably connected, we have
H = N◦T . Moreover, by Lemma 5.9, there are a semialgebraic unipotent group U
and a semialgebraic semisimple group S such that G′ = U oS. In particular, since
R(S) = 1 (Lemma 5.8), we have R(G′) = U . Thus N◦ is a definable subgroup
of R(H) ≤ R(G′) = U , and Corollary 5.6 implies that N◦ is semialgebraic. So
H = N◦T is semialgebraic. �

Proposition 5.11.. – Let R be a definable real closed field, and let G be a definably
connected definable subgroup of GLn(R) for an integer n. If H is a normal definable
subgroup of G, then G/H is definably isomorphic to a definable subgroup of GLm(R)
for an integer m.

Proof – By Corollary 5.10, the group H ∩G′ is semialgebraic, so NGLn(R)(H ∩
G′)/(H ∩ G′) definably embeds into the GLl(R) for an integer l, and G/(H ∩
G′) ≤ NGLn(R)(H ∩ G′)/(H ∩ G′) is definably isomorphic to a definable subgroup
of GLl(R). Thus we may assume that H ∩G′ is trivial.

By Lemma 5.9, the group G′ is semialgebraic, so NGLn(R)(G
′)/G′ definably

embeds into GLk(R) for an integer k, and G/G′ ≤ NGLn(R)(G
′)/G′ is definably

isomorphic to a definable subgroup of GLk(R). But H◦G′/G′ has a definable com-
plement C/G′ in G/G′ by Fact 2.13 (2), and since C ∩ H◦ ≤ G′ ∩ H is trivial,
G/H◦ is definably isomorphic to H◦C/H◦ ' C/(C ◦ H◦) ' C. Hence we may
assume that H is finite. Then NGLn(R)(H)/H definably embeds into GLm(R) for
an integer m, and G/H ≤ NGLn(R)(H)/H is definably isomorphic to a definable
subgroup of GLm(R), as desired. �

Definition 5.12.. – A definable group G is said to be definably linear (over finitely
many definable real closed fields R1, . . . , Rk), if G has a definable faithful linear
representation over the ring R1 ⊕ · · · ⊕Rk.

In other words, G definably embeds in H1 × · · · × Hk, where Hi is a linear
semialgebraic group over Ri for each i = 1, . . . , k.
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Lemma 5.13.. – Let R1, . . . , Rk be finitely many definable real closed fields. Any
definable group G has a smallest normal definable subgroup N such that G/N is
definably linear over R1, . . . , Rk.

Proof – It is sufficying to show that, if A and B are two normal definable
subgroups of G such that G/A and G/B are definably linear, then G/(A ∩ B) is
definably linear. Moreover, we may assume that A ∩ B is trivial. We consider
definable real closed fields R1, . . . , Rk, S1, . . . , Sl such that G/A definably embeds
in H1 × · · · × Hk, where Hi is a linear semialgebraic group over Ri for each i =
1, . . . , k, and such that G/B definably embeds in K1×· · ·×Kl, where Kj is a linear
semialgebraic group over Sj for each j = 1, . . . , l. Let f : G→ G/A×G/B be the
map defined by f(x) = (xA, xB). Since f is a definable group monomorphism, G
is definably linear. �

Lemma 5.14.. – Let R1, . . . , Rk be finitely many definable real closed fields, and
let Hi be a definable subgroup of a linear semialgebraic group over Ri for each
i = 1, . . . , k. If R1, . . . , Rk are not definably isomorphic, then for any definably
connected definable subgroup L of H1 × · · · ×Hk, we have

L = (L ∩H1)× · · · × (L ∩Hk)

In particular, if G is a definably connected definable group, and if G is definably
linear over finitely many definable real closed fields R1, . . . , Rk, then G is definably
isomorphic to a direct product of definable subgroups of GLn1

(R1), . . . ,GLnk
(Rk).

Proof – Since G is definably linear over R1, . . . , Rk, the group G definably
embeds into a direct product H1 × · · · × Hk, where Hi is a linear semialgebraic
group over Ri for each i = 1, . . . , k. It is sufficying to show that, for any definably
connected definable subgroup L of H1 × · · · ×Hk, we have

L = (L ∩H1)× · · · × (L ∩Hk)

We assume toward a contradiction that L is a counter-example of minimal di-
mension. Therefore, for each proper definably connected definable subgroup L0 of
L we have L0 = (L0 ∩ H1) × · · · × (L0 ∩ Hk). This implies that, if we consider
K = (L∩H1)×· · ·× (L∩Hk), then K◦ contains all the proper definably connected
definable subgroups of L.

For each i ∈ {1, . . . , k}, we denote by pi : H1 × · · · ×Hk → Hi the ith projection
map. Since K is proper in L, there is i ∈ {1, . . . , k} such that pi(L) is non-trivial.
If pj(L) is trivial for each j 6= i, then L is contained in Hi, contradicting K < L.
Therefore there exists j 6= i such that pj(L) is non-trivial. We consider Ki = Ker pi
and Kj = Ker pj . They are proper subgroups of L, so K contains K◦i and K◦j ,
and KiKj is a proper normal definable subgroup of L. But L/Ki and L/Kj are
definably isomorphic to pi(L) ≤ Hi and pj(L) ≤ Hj respectively, so there exists two
integer m and n such that L/KiKj is definably isomorphic to a definable subgroup
Pi of GLm(Ri) and to a definable subgroup Pj of GLn(Rj). Hence the fields Ri
and Rj are definably isomorphic by Proposition 2.15, contradicting that the fields
R1, . . . , Rk are not definably isomorphic. �

Lemma 5.15.. – Let G be a definably connected definable group. If U(Z(G)) is
trivial, then G/Z(G) is centerless.



24 OLIVIER FRÉCON

Proof – We consider Z/Z(G) = Z(G/Z(G)). The subgroup Z is definable,
nilpotent and normal in G. By Corollary 4.8, the group [G,Z] is a U -group, and
since it is contained in Z(G), the subgroup Z is central in G. Thus G/Z(G) is
centerless. �

Lemma 5.16.. – Let G be a definable group and let R be a definable real closed
field. Then G has a smallest normal definable subgroup K such that G/K is a
UR-group.

Proof – We have just to prove that if A and B are two normal definable
subgroups such that G/A and G/B are UR-groups, then G/(A∩B) is a UR-group.
Since G/A and G/B are nilpotent, G/(A ∩ B) is nilpotent too. But AB/B is a
definable subgroup of G/B, so it is a homogeneous UR-group by Proposition 3.22,
and by Proposition 3.22 again, G/A is a homogeneous UR-group. Hence, since
A/(A∩B) ' AB/B, it follows from Lemma 3.17 that G/(A∩B) is a homogeneous
UR-group. �

Theorem 5.17.. – Let G be a definably connected definable group. Then G/Z(G) is
the direct product of definable groups H1, . . . ,Hk such that for every i ∈ {1, . . . , k}
there is a definable real closed field Ri, an integer ni and a definable isomorphism
from Hi to a definable subgroup of GLni(Ri).

Proof – By Lemma 5.14, we have just to prove that G/Z(G) is definably linear.
We proceed by induction on the dimension of G. By Fact 2.12, we may assume
G/Z(G) is not centerless. In particular, U(Z(G)) is non-trivial by Lemma 5.15.
Let R be a definable real closed field such that UR(Z(G)) is non-trivial, and A be
a G-minimal subgroup of UR(Z(G)) (Definition 3.18). In particular, A is torsion-
free (Proposition 3.22). Since A is G-minimal and central in G, it has no proper
non-trivial subgroup, and since it is a UR-group, it is definably isomorphic to R+.

We show that we may assume that A is the unique G-minimal subgroup of G.
Indeed, if G has another G-minimal subgroup B 6= A, we consider ZA/A = Z(G/A)
and ZB/B = Z(G/B). By induction hypothesis, the groups G/ZA and G/ZB are
definably linear, so G/(ZA ∩ ZB) is definably linear by Lemma 5.13. Since A and
B are G-minimal, the group A ∩ B is finite, and since G is definably connected,
A ∩ B is central in G. Thus, for each z ∈ ZA ∩ ZB , the map uz : G → A ∩ B
is a definable group homomorphism, and since G is definably connected, its image
is a definably connected subgroup of the finite subgroup A ∩ B. Therefore z is
centralizes G and ZA ∩ ZB = Z(G). Now G/Z(G) is definably linear, and we may
assume that A is the unique G-minimal subgroup of G. In particular, U(G) is a
UR-group (Proposition 3.27).

Let Z/A = Z(G/A). We show that Z = UR(Z)Z(G) and that Z/Z(G) is a UR-
group. By induction hypothesis, the group G/Z is definably linear. For each g ∈ G,
the map ug : Z → A defined by ug(x) = [g, x] is a group homomorphism, and since
A ' R+, we have either Kerug = Z or Z/Kerug ' R+. It follows from Lemma 5.16
that Z/Z(G) is a UR-group. Then, by Proposition 3.14, we have Z = UR(Z)Z(G).

Since G/Z is definably linear, Lemma 5.14 says that G is definably isomorphic
to a direct product K1/Z × · · · × Kk/Z, where Ki/Z is a definably linear group
over a definable real closed field Ri for each i = 1, . . . , k. Since G is definably
connected, Ki/Z is definably connected for each i = 1, . . . , k. Moreover, we may
assume that R = R1, and that the fields R1, . . . , Rk are not definably isomorphic.
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We note that we does not say that K1/Z is non-trivial. We show that [K1,Kj ]
is contained in Z(G) for each j 6= 1. For each g ∈ K1 and each j 6= 1, the map
adjg : Kj → Z/Z(G) defined by adjg(x) = [g, x] is a group homomorphism, and

Kj/Ker adjg is definably isomorphic to a subgroup of Z/Z(G), so it is a UR-group

(Proposition 3.22). Since Ker adjg contains Z, either Kj = Ker adjg, or the group

Kj/Z has a normal definable subgroup N/Z such that (Kj/Z)/(N/Z) is definably
isomorphic to R+. In the second case, since (Kj/Z)/(N/Z) is definably isomorphic
to a definable linear group over Rj by Proposition 5.11, the fields Rj and R = R1

are definably isomorphic by Proposition 2.15, contradicting j 6= 1. Thus we have
Kj = Ker adjg, and [K1,Kj ] is contained in Z(G) for each j 6= 1.

Let j 6= 1 and let Hj/Z(G) be a definable subgroup of Kj/Z(G) such that
Kj = ZHj , and minimal for this condition. We prove that K1 centralizes Hj .
Since Z/Z(G) is a UR-group, it is definably connected, and since Kj/Z is definably
connected too, the group Kj/Z(G) is definably connected, so such a subgroup
Hj/Z(G) is definably connected. By the previous paragraph, for each g ∈ K1

and each j 6= 1, we may define a group homomorphism adjg : Hj → Z(G) by

adjg(x) = [g, x]. Therefore Hj/Ker adjg is definably isomorphic to the subgroup

Im adjg of Z(G). In particular, Hj/Ker adjg is abelian. Since Ker adjg contains

Z(G) and since Hj/Z(G) is definably connected, Lemma 4.3 gives Hj = RjKer adjg
where Rj/Z(G) = R(Hj/Z(G)). Now Rj is a normal solvable subgroup of G, and
[G,Rj ] is a U -group (Corollary 3.31 and Theorem 4.10). Thus, since U(G) is a UR-
group by the second paragraph, [G,Rj ] and Im adjg are UR-subgroups (Proposition

3.22). So, if Im adjg ' Hj/Ker adjg is non-trivial, then Hj/Ker adjg has a proper

normal definable subgroup N/Ker adjg such that Hj/N is definably isomorphic to

R+. By minimality of Hj , we have Kj 6= ZN , so we obtain (Z ∩ Hj)N < Hj ,
and since Hj/N ' R+ has no non-trivial proper definable subgroup (Fact 2.10), we
have Z ∩Hj ≤ N . Thus we obtain

(Kj/Z)/(NZ/Z) ' Kj/NZ = HjZ/NZ ' Hj/(Hj ∩NZ) = Hj/N ' R+

Now, by Propositions 2.15 and 5.11, the fields R1 = R and Rj are definably iso-
morphic, contradicting j 6= 1. Consequently Im adjg is trivial and every g ∈ K1

centralizes Hj .
In particular, the previous paragraph shows that H2, . . . Hk centralize Z ≤ K1,

and since G = K1H2 · · ·Hk, we obtain CZ(K1) = CZ(G) = Z(G). Then, for
each j = 2, . . . k, we have Hj ∩ Z ≤ CZ(K1) = Z(G), and by the previous para-
graph again, we have CKj (K1) = CZHj (K1) = HjCZ(K1) = HjZ(G) = Hj .
Consequently Hj is a normal definable subgroup of G. Moreover, we note that
Z ∩ (H2 · · ·Hk) is contained in Z ∩CG(K1) = Z(G). Thus, since G/Z is the direct
product of K1/Z, . . .Kk/Z, and since Ki = ZHi for each i = 2, . . . , k, we obtain

G/Z(G) = K1/Z(G)×H2/Z(G)× · · · ×Hk/Z(G)

But for each i = 2, . . . , k, the group Hi/Z(G) = Hi/(Hi ∩ Z) ' HiZ/Z = Ki/Z is
definably linear over Ri. Hence we have just to prove that K1/Z(G) is definably
linear over R.

Let U/UR(G) = UR(G/UR(G)). We show that CZ(U) = Z(G). For each
z ∈ Z, we consider the definable group homomorphism vz : G → A defined by
vz(x) = [x, z]. Since A is definably isomorphic to R+, the group G/Ker vz ' Im vz
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is a UR-group for each z ∈ Z, and G/CG(Z) is a UR-group by Lemma 5.16. More-
over, Lemma 4.3 shows that G = R(G)CG(Z). In particular, R(G)/(R(G)∩CG(Z))
is a nilpotent group. Let D = UR(R(G) ∩ CG(Z)). Since R(G)/U(G) is abelian
(Proposition 4.7) and since U(G) is a UR-group, the group [R(G), R(G) ∩ CG(Z)]
is a definable subgroup of UR(G) (Corollary 4.9), and it is contained in D (Propo-
sition 3.22). This implies that R(G)/D is a nilpotent group. Since R(G)/(R(G) ∩
CG(Z)) ' G/CG(Z) is a UR-group and D is contained in R(G) ∩ CG(Z), Propo-
sition 3.14 shows that the subgroup V defined by V/D = UR(R(G)/D) covers
R(G)/(R(G) ∩ CG(Z)) and G/CG(Z). Moreover, UR(G) contains D and, since
UR(G)/D is a UR-group (Proposition 3.14), the group V/D contains UR(G)/D,
and V/UR(G) ' (V/D)/(UR(G)/D) is a normal UR-subgroup of G/UR(G). Thus
V is contained in U , and we obtain G = V CG(Z) = UCG(Z), so CZ(U) = Z(G).

Let R be a definable expansion of (R,<,+, · ) such that, for each integer n, all the
definable relations of Rn are R-definable. By Proposition 5.2 and Corollary 5.3, the
groups UR(G), U and Z/Z(G) = UR(G)Z(G)/Z(G) are definably isomorphic to R-
definable groups. Moreover, since K1/Z is definably linear over R, Proposition 5.2
says that K1/Z(G) is definably isomorphic to an R-definable group. We consider
the semi-direct product L = U o K1/Z(G) where K1/Z(G) acts by conjugation
on U . Then, by Proposition 5.2 again, the group L is definably isomorphic to
an R-definable group. Now L/Z(L) is definably linear over L (Fact 5.1). Let
N/Z(G) = Z(L) ∩ K1/Z(G). Then K1/N is definably linear over R. Moreover,
since CZ(U) = Z(G) by the previous paragraph, Z(L) ∩ Z/Z(G) is trivial, so
N ∩ Z = Z(G). Since K1/Z and K1/N are definably linear over R, Lemma 5.13
shows that K1/Z(G) is definably linear over R, and we conclude that G/Z(G) is
definably linear over R. �

We may state Theorem 5.17 under the following formulation.

Corollary 5.18.. – Let G be a definably connected definable group. Then G is the
central product of definable subgroups H1, . . . ,Hk such that for every i ∈ {1, . . . , k}
there is a definable real closed field Ri, an integer ni and a definable isomorphism
from HiZ(G)/Z(G) to a definable subgroup of GLni(Ri).

Proof – We may assume that G is ω-saturated. We consider the groups
Hi/Z(G) = Hi in Theorem 5.17, and we assume that the fields R1, . . . , Rk are
not definably isomorphic. We have just to prove that the groups Hi/Z(G) = Hi in
Theorem 5.17 satisfy [Hi, Hj ] = 1 for each j 6= i. By Facts 2.6 (1) and 4.2, there
are a ∈ Hi and b ∈ Hj such that [a, b] is of infinite order. We consider the maps
u : Hj → Z(G) defined by u(x) = [a, x] and v : Hi → Z(G) defined by v(x) = [x, b].
They are definable group homomorphisms, and since I = Imu∩ Im v contains [a, b],
the group I is infinite. But Keru (resp. Ker v) contains Z(G), so Imu (resp. Im v)
is definably isomorphic to a definable quotient of Hi/Z(G) (resp. Hj/Z(G)) which
is definably isomorphic to a definable subgroup of GLni

(Ri) (resp. GLnj
(Rj)). This

implies that I is an infinite definable group which is, by Proposition 5.11, definably
linear over Ri and definably linear over Rj . Hence, by Proposition 2.15, the fields
Ri and Rj are definably isomorphic, contradicting our hypothesis over the fields
R1, . . . , Rk. �

Corollary 5.19.. – Let G be a definably connected definable group. Then the
group G′Z(G)/Z(G) is a definably connected definable subgroup. More precisely,
G′Z(G)/Z(G) is a direct product of definably connected definable groups H1, . . . ,Hk
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such that for every i ∈ {1, . . . , k} there is a definable real closed field Ri and a
definable isomorphism between Hi and a semialgebraic linear group over Ri.

Proof – This follows from Theorem 5.17 and Lemma 5.9. �

6. A Levi-like decomposition

Conversano exhibited a definably connected definable group G such that R(G) =
Z(G) and whose derived subgroup is not definable [5, Example 3.1.7]. Moreover,
this group G has no semisimple subgroup S such that G = R(G)S. This motivates
the introduction of quasi-semisimple groups.

Definition 6.1.. – Let S be a definably connected definable subgroup of a definable
group G.

• S is said to be semisimple if it has no infinite abelian normal subgroup;
• S is said to be quasi-semisimple if R(S)H < S for every proper definable

subgroup H of S.

Remark 6.2.. – It follows from Lemma 5.8 that any semisimple group S is quasi-
semisimple.

Conversano and Pillay introduce in [6] ind-definable semisimple subgroups, and
they show their existence and conjugacy in every definably connected group G
definable in an o-minimal expansion R of a real closed field.

We refer to [6] for the definition of an ind-definable semisimple subgroup, and we
provide just their main properties.

Fact 6.3.. – [6, Theorem 1.1] Let R be an o-minimal expansion of a real closed field
K, and let G be an R-definably connected R-definable group. Then G has a max-
imal ind-definable semisimple subgroup S, unique up to conjugacy in G. Moreover
G = R(G)S, and the centre Z(S) of S is finitely generated and contains R(G)∩ S.

Furthermore, the following properties are satisfied:

(1) [6, Lemma 2.7] any ind-definable semisimple subgroup of G is perfect;
(2) [6, Proof of Theorem 1.1] there is a maximal semisimple subgroup T/Z(G)◦

of G/Z(G)◦ such that S = T ′.
(3) [6, Proofs of Lemmas 4.1 and 4.2] if G is a definable subgroup of GLn(K)

for an integer n, the maximal ind-definable semisimple subgroups of G are
precisely its maximal semisimple subgroups.

We will show that, if S is a subgroup of an R-definably connected R-definable
group, then S is a maximal ind-definable semisimple subgroup if and only if it is
the derived subgroup of a maximal quasi-semisimple subgroup (Corollary 6.7).

Lemma 6.4.. – Let G be a definably linear definable group. If G is definably
connected, then G has a maximal semisimple subgroup S, unique up to conjugacy
in G. Moreover, G = R(G)S and R(G) ∩ S is finite and contained in the centre of
S.

Proof – By Lemma 5.14, there are finitely many definable real closed fields
R1, . . . , Rk such that G is definably isomorphic to a direct product H1 × · · · ×Hk,
where Hi is a definable subgroup of a linear algebraic group over Ri for each i =
1, . . . , k. By Fact 5.7, for each i, we find in Hi a maximal semisimple subgroup
Si such that Hi = R(Hi)Si and R(Hi) ∩ Si is finite. Then we have R(G) =
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R(H1)×· · ·×R(Hk), and S = S1×· · ·×Sk is a semisimple subgroup. In particular,
we obtain G = R(G)S, and R(G) ∩ S is finite. Moreover, since S is definably
connected, it centralizes the finite normal subgroup R(G) ∩ S.

Let T be a maximal semisimple subgroup of G. By Lemma 5.14, we have

T = (T ∩H1)× · · · × (T ∩Hk)

In particular, for each i, the subgroup T ∩ Hi is a maximal semisimple subgroup
of Hi, and by Fact 6.3, the subgroups Si and T ∩Hi are conjugate in Hi. Thus S
and T are conjugate in G. �

Corollary 6.5.. – Let G be a definably linear definable group. Then G is semisimple
if and only if it is quasi-semisimple.

Proof – By Remark 6.2, we may assume that G is a quasi-semisimple group,
and we have just to prove that G is semisimple. By Lemma 6.4, the group G has
a semisimple subgroup S such that G = R(G)S. Since G is quasi-semisimple, this
implies that G = S is semisimple. �

For each subset X of a definable group G, the intersection of all definable sub-
groups of G containing X is a definable subgroup by descending chain condition on
definable subgroups [25, Remark 2.13 (ii)]. This subgroup is denoted by d(X).

Theorem 6.6.. – Let G be a definably connected definable group. Then G has a
maximal quasi-semisimple subgroup S, unique up to conjugacy in G. Moreover

• G = R(G)S;
• R(G) ∩ S is central in S.

Moreover, SZ(G)/Z(G) is a maximal semisimple subgroup of G/Z(G), S′ is a
perfect group, S = d(S′), and S/Z(S) has no non-trivial normal abelian subgroup.

Proof – By Theorem 5.17, the group G/Z(G) is definably linear. By Corollary
6.5, its semisimple subgroups are precisely its quasi-semisimple subgroups. By
Lemma 6.4, it has a maximal quasi-semisimple subgroup S0/Z(G), unique up to
conjugacy in G/Z(G). Moreover, we have

G/Z(G) = R(G/Z(G))S0/Z(G)

and R(G/Z(G)) ∩ S0/Z(G) is contained in the (finite) centre of S0/Z(G), and by
Lemma 5.8, the subgroup S0/Z(G) is perfect.

We consider S = d(S′0). Since S0/Z(G) is perfect, we have S0 = S′0Z(G) =
S′′0Z(G), so S0 = SZ(G) and S′0 = S′. In particular, we have S = d(S′). Moreover,
since S0/S

′′
0 = Z(G)S′′0 /S

′′
0 is abelian, we obtain S′ = S′0 = S′′0 = S′′ and S′ is

perfect.
We show that S is a quasi-semisimple subgroup and that R(S) is contained

in Z(G) ∩ S. Since SZ(G)/Z(G) = S0/Z(G) is quasi-semisimple, it is definably
connected, and we have S = S◦(S ∩Z(G)). Therefore S′0 = S′ = (S◦)′ is contained
in S◦, and S = d(S′0) is contained in S◦ too, so S is definably connected. Since
S/(Z(G) ∩ S) ' SZ(G)/Z(G) = S0/Z(G) is semisimple, the radical R(S/(Z(G) ∩
S)) is trivial (Lemma 5.8) and R(S) is contained in Z(G) ∩ S. Thus, if H is a
definable subgroup of S such that R(S)H = S, then we have (Z(G)∩S)H = S and
H ′ = S′ = S′0. This implies that H contains S = d(S′0) = d(H ′), so H = S and S
is quasi-semisimple.

We show that any quasi-semisimple subgroup of G is contained in a conjugate of
S. Let T be such a subgroup. We may assume that no quasi-semisimple subgroup
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of G contains properly T . If H/Z(G) is a definable subgroup of TZ(G)/Z(G) such
that R(TZ(G)/Z(G))H/Z(G) = TZ(G)/Z(G), then we have

TZ(G) = R(TZ(G))H = R(T )H

and T = R(T )(T ∩ H), so T ∩ H = T because T is quasi-semisimple. There-
fore H contains T , we have H/Z(G) = TZ(G)/Z(G), and TZ(G)/Z(G) is quasi-
semisimple. Now TZ(G)/Z(G) is a semisimple subgroup of G/Z(G), and it is
contained in a conjugate of S0/Z(G) = SZ(G)/Z(G) by Lemma 6.4, so we may
assume that TZ(G)/Z(G) is contained in SZ(G)/Z(G). In particular, we have
T ′ = (TZ(G))′ ≤ (SZ(G))′ = S′. But TZ(G)/Z(G) is a semisimple group, so it is
perfect (Lemma 5.8), and we obtain TZ(G) = T ′Z(G) and

T = T ′(T ∩ Z(G)) = d(T ′)(T ∩ Z(G))◦ = d(T ′)R(T )

Hence, since T is quasi-semisimple, we have T = d(T ′) and T is contained in
d(S′) ≤ S, as desired.

We show that S/Z(S) has no non-trivial normal abelian subgroup. If A/Z(S)
is a normal abelian subgroup of S/Z(S), then Z/Z(S) = Z(CG/Z(S)(A/Z(S))) is a
definable normal abelian subgroup of S/Z(S), and Z is a definable normal nilpotent
subgroup of S. But R(S) is contained in Z(G) ∩ S, so we have Z◦ ≤ Z(G). Hence
Corollary 4.8 implies that

[S,A] ≤ [S,Z] = [S,Z◦] ≤ [S,Z(G)] = 1

and A is central in S. Thus S/Z(S) has no non-trivial normal abelian subgroup.
We prove that G = R(G)S and that R(G) ∩ S is central in S. Since G/Z(G) =

R(G/Z(G))S0/Z(G), we have G = R(G)S0 = R(G)SZ(G), and since G is definably
connected and R(G) contains Z(G)◦, we obtain G = R(G)S. Moreover, (R(G) ∩
S)Z(S)/Z(S) is a normal solvable subgroup of S/Z(S). Thus, since the previous
paragraph says that S/Z(S) has no non-trivial normal abelian subgroup, R(G)∩S
is contained in Z(S). �

Corollary 6.7.. – Let R be an o-minimal expansion of a real closed field, and let
G be an R-definably connected R-definable group. Then, for any subgroup S of G,
the following conditions are equivalent:

• S is a maximal ind-definable semisimple subgroup (in the sense of [6]);
• S is the derived subgroup of a maximal quasi-semisimple subgroup.

Proof – Let S be a maximal ind-definable semisimple subgroup of G. By Fact
6.3 (2), there is a maximal semisimple subgroup T/Z(G)◦ of G/Z(G)◦ such that S =
T ′. Since Z(G)/Z(G)◦ is finite, TZ(G)/Z(G) is a maximal semisimple subgroup
of G/Z(G). But the maximal semisimple subgroups of G/Z(G) are conjugate by
Facts 5.1 and 6.3, so Theorem 6.6 provides a maximal quasi-semisimple subgroup
L of G such that TZ(G)/Z(G) = LZ(G)/Z(G). Hence we have

S = T ′ = (TZ(G))′ = (LZ(G))′ = L′

Now the result follows from the conjugacy of the maximal ind-definable semisimple
subgroups in G (Fact 6.3) and from the conjugacy of the maximal quasi-semisimple
subgroups in G (Theorem 6.6). �
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