
RETURNING TO SEMI-BOUNDED SETSYA'ACOV PETERZILAbstrat. An o-minimal expansion of an ordered vetor spaeby bounded prediates is alled a semi-bounded struture. It isshown that every suÆiently saturated suh struture is either lin-ear (hene a redut of an ordered vetor spae) or, after a modi�-ation of the language, it has an elementary substruture in whihevery interval admits a de�nable real losed �eld.As a result ertain questions about de�nably ompat groupsan be redued to either ordered vetor spaes or expansions ofreal losed �elds. Using the known results in these two settings,the number of torsion points in de�nably ompat abelian groupsin expansions of ordered groups is given. Pillay's Conjeture forsuh groups follows. 1. IntrodutionAn expansion of an ordered abelian group or an ordered vetor spaeby bounded prediates is sometimes alled a semi-bounded struture (aombination of semi-linear and bounded). The de�nable sets in suh astruture are alled semi-bounded sets. Strutural results about semi-bounded sets an be found in [21℄, [17℄, [22℄,[13℄, [5℄ (in the o-minimalsetting) and [1℄ (in arbitrary ordered abelian groups). Some results in[15℄ apply as well.In this paper I return to the semi-bounded setting, in order to reduea question about the torsion points of a de�nably ompat groups ino-minimal expansions of ordered groups to similar results in expansionsof real losed �elds, [9℄, and in ordered vetor spaes, [11℄.The idea is as follows: Let M = hM;<;+; � � �i be a semi-boundedstruture whih is assumed to be not linear (see [13℄). By the Tri-hotomy Theorem, [19℄, a real losed �eld is de�ned on some open�xed interval I � M . An interval J � M will be alled short if it isin de�nable bijetion with I; otherwise it is alled long. The strutureM will be alled short is every bounded interval in M is short.As will be observed, every de�nably ompat group in a short modelis ontained in the artesian produt of some bounded interval andDate: A preliminary version, Otober 31, 2007.1



2 PETERZILtherefore de�nable in an o-minimal expansion of a real losed �eld.Hene, all results about de�nably ompat groups in expansions of reallosed �elds hold when the model is short.Given a suÆiently saturated arbitrary semi-bounded nonlinear stru-ture M, let D be the olletion of all short elements in M (those ele-ments a suh that (0; jaj) is short). One an modify the struture Mto a new o-minimal struture M, with the same universe, basially byextending all partial 0-de�nable linear maps de�ned on long intervalsto global linear maps, and at the same time restriting dl(;), suh thatevery de�nable set in the original M is still de�nable in M. Havingdone that, the set D beomes an elementary substruture of M.Now, every M-de�nable group is de�nable in M and beause Mhas a short elementary substruture D, one an transfer the Edumndo-Otero result, [9℄, about the torsion points of de�nable groups in expan-sions of real losed �elds to groups de�nable in M.Together with the result of Eleftheriou and Starhenko, [11℄, on de-�nable groups in ordered vetor spaes, one obtains (see Theorem 7.6below):Theorem 1.1. If G is a de�nably onneted, de�nably ompat abeliangroup in an o-minimal expansion of an ordered group then for every k,Tork(G) = (Z=kZ)n:Sine this is the only missing ingredient for proving Pillay's Conje-ture for de�nable groups in o-minimal expansions of groups, one mayonlude the onjeture in this setting as well (see Setion 8).Remark 1.2. The treatment of semi-bounded sets suggested here doesnot make use of the known struture theorems for de�nable sets insemi-bounded strutures (see [17℄ and [5℄), where the analysis is givenin terms of bounded sets an unbounded intervals. Instead, boundedsets are replaed by those bounded sets that are ontained in Dn andunbounded intervals are replaed by long intervals. At the end of thepaper several onjetures are made about possible struture theoremsfor de�nable sets and groups semi0-bounded strutures.Notation The lettersM;N ;D are used for strutures whose universe,respetively, is M;N;D.Aknowledgments I returned to the semi-bounded setting after sev-eral questions from Alessandro Berardui about the impliations that



RETURNING TO SEMI-BOUNDED SETS 3the Trihotomy Theorem might have on topologial properties of o-minimal expansions of ordered groups (questions whih I was not ableto answer). 2. The basi definition and propertiesAs is shown by Edmundo in [5℄, semi-boundedness has several equiv-alent de�nitions. Here I use the following:De�nition 2.1. A semi-bounded struture M = hM;<;+; � � �i is ano-minimal expansion of an ordered group without poles. Namely, thereis no de�nable bijetion between a bounded interval and an unboundedinterval. Note that this is a property whih is preserved in elementarilyequivalent strutures.Example 2.2. (1) Every ordered vetor spae is semi-bounded.(2) The expansion Rbdd of the ordered group of real numbers by re-strited multipliation is a semi-bounded struture in whih every in-terval is short. In fat, very bounded semi-algebrai set is de�nable inRbdd .(3) Any elementary extension of Rbdd is still semi-bounded, but onlyintervals of �nite size are in de�nable bijetion with (0; 1), hene (see3.3 below) only those intervals admit a real losed �eld struture.2.1. Expansions of ordered groups. GivenM an o-minimal expan-sion of an ordered group, there are three possibilities for the strutureon M:(a) M is linear whih, by [13℄, is equivalent to saying that M is aredut of an ordered vetor spae over an ordered division ring.(b) M is nonlinear and therefore, by the Trihotomy Theorem, [19℄,a real losed �eld whose ordering agrees with that of M, is de�nableon some interval (�a; a). There are two sub-ases to onsider:(b1) M is semi-bounded.(b2) M is not semi-bounded. In this ase, one an endow thewhole struture M with a de�nable real losed �eld R (but + mightnot be the addition of the �eld). Indeed, this is laimed in [19℄, butthe referene there is not preise, so I spell out the argument: Assumethat � : (b1; b2)! (;+1) is a de�nable map with limt!b2 �(t) = +1.Without loss of generality, b2 � b1 < a.Using translation, it an be assumed that b1 = 0 and b2 < a. How-ever, being inside a real losed �eld, the intervals (0; a) and (0; b2) are



4 PETERZILin de�nable bijetion, so (;1) (and therefore also (0;1)) is isomor-phi to the positive elements of R. This is learly enough to get a reallosed �eld on the whole of M.2.2. Model theoreti preliminaries. Assume now that M is an o-minimal expansion of an ordered group, whih is semi-bounded.An immediate orollary of this assumption is: If f : (a; b) ! M isa de�nable funtion on a bounded interval then f is bounded on (a; b)and therefore the limit of f(t) as t tends to either a or b exists in M .Proposition 2.3. If M � N and M1 is the onvex hull of M in Nthen M1 � N .Proof. Without loss of generality, the language ontains a onstantfor every element of M . It is suÆient to see that dlN (M1) = M1.Equivalently, for every M -de�nable funtion F (�x) in N , and every �afrom M1, F (�a) 2M1. Use indution of the number of variables in F .Assume that F ( �w; y) is of n+1 variables, n � 0, and �a and b are fromM1 suh that (�a; b) 2 domF . Let f �w(y) = F ( �w; y). By partitioningthe graph of F , we may also assume that for every �w, the domain off �w is either empty, or it is an open (bounded or unbounded) interval.Also, without loss of generality, every f �w is monotonely inreasing (thedereasing ase is handled similarly).Assume �rst that domf�a = M . In this ase, Sine b is in the onvexhull of M , there are b1 < b < b2, b1; b2 2 M , and hene f�a(b1) �f�a(b) � f�a(b2): Sine f�a(b1); f�a(b2) 2 dlN (�a) one may use indution toonlude that they are in M1, so by onvexity so is f�a(b).If domf�a = (;+1), for  2M then  is in dlN (�a) hene, by indu-tion it is in M1. One an now �nd b2 2 M suh that  < b < b2 andproeed as before. The remaining ase is handled similarly. �Reall that for ordered struturesM� N ,M is said to be Dedekindomplete in N if for every element n 2 N , if m1 < n < m2 for somem1; m2 2 M then n has a standard part in M . Namely, there existsm 2 M with no element of M stritly between n and m. Note thatif M1 is onvex in N then it is learly Dedekind omplete in it. Thefollowing powerful theorem of Marker and Steinhorn [14℄ will be usedbelow:Theorem 2.4. If M is an elementary substruture of N whih ismoreover Dedekind omplete in N then for every N-de�nable set X �Nk, the set X \Mk is de�nable in M.Corollary 2.5. Assume that F : S � (a; b) ! M is a de�nable mapsuh that for every s 2 S, the map fs(x) = F (s; x) is a bijetion between



RETURNING TO SEMI-BOUNDED SETS 5the bounded interval (a; b) and (0; ds) for some d > 0. Then there isan m 2M suh that for every s 2 S, ds < m.Proof. If not, then in an elementary extension N of M, there existn 2 N whih is greater than all elements ofM, and s 2 S suh that fsis a de�nable bijetion between (a; b) and (0; n). LetM1 be the onvexhull ofM. Then by Proposition 2.3,M1 is an elementary substrutureof N , whih is obviously Dedekind omplete in N .Let � be the intersetion of the graph of fs with M1 � M1. ByTheorem 2.4, � is de�nable inM1 and it is still the graph of a de�nablefuntion. Moreover, beause fs was a bijetion, for every y > 0 inM1 there exists x 2 (a; b) � M1 suh that fs(x) = y. Thereforethere exists in M1 a surjetive map between a sub-interval of (a; b)and the interval (0;+1). This is impossible beause M1 and M areelementarily equivalent. �3. Short and long intervalsHere M is assumed to be semi-bounded and in addition nonlinear.Fix an element, all it 1 > 0, suh that a real losed �eld, whoseuniverse is (0; 1) and whose ordering agrees with the M-ordering, isde�nable in M. Assume from now on that 1 2 dl(;).De�nition 3.1. Two open intervals (a; b) and (; d) are alled equiva-lent if there exists a de�nable bijetion between them.An element a 2M is alled short if either a = 0 or (0; jaj) and (0; 1)are equivalent; otherwise it is alled tall. An interval (a; b) is alledshort if b� a is small, otherwise it is alled long.The following lemma an be proved using standard o-minimal ar-guments, together with the fat that every de�nable funtion on abounded interval has a limit at the endpoints of the interval.Lemma 3.2. If (a; b) and (; d) are equivalent intervals then there ex-ists a de�nable and ontinuous, stritly monotone bijetion betweenthem (if the intervals are bounded one an always hoose the bijetionto be inreasing).Corollary 3.3. For any interval I � M , I is short if and only if Iadmits a de�nable real losed �eld whose ordering agrees with that ofM.Proof. If I is short then, by the last lemma it has a de�nable orderedpreserving bijetion with (0; 1) so admits a de�nable real losed �eld.For the onverse, if I admits a real losed �eld struture, then aftertranslation one may assume that either (0; 1) � I or I � (0; 1). In



6 PETERZILboth ases one gets an interval inside another real losed �eld so thetwo are in de�nable bijetions. (Atually, by [16℄, the �elds on (0; 1)and I and are also de�nably isomorphi but this will not be requiredhere). �Lemma 3.4. (1) If I is a short interval then it is de�nably bijetivewith any subinterval of I. In partiular, if a is short and 0 <jbj < jaj then b is short.(2) If (a; b) and (b; ) are short interval then so is (a; ).(3) If a and b are short elements then so are a + b and �a.Proof. (1) By the last lemma, I admits a reals losed �eld struturewhose ordering agrees with the M-ordering. In real losed �eld anytwo 1-dimensional open intervals are de�nably bijetive.(2) Sine (a; b) is in bijetion with (0; 1) is it also in bijetion with(0; 1=2), and similarly, (b; ) is in bijetion with (1=2; 1).(3) This is immediate from (2). �Lemma 3.5. Assume that f : X ! M is a de�nable funtion whosedomain X is a de�nably onneted set, ontained in a artesian produtof short intervals. Then f(X) is ontained in a short interval.Proof. If not, then by de�nable hoie there is a de�nable urve in Xwhih is in bijetion with a long interval in M . Using projetions onegets a bijetion between short and long intervals. Contradition. �Proposition 3.6. If M is jT j+-saturated then the set D of all shortelements in M is a proper onvex subgroup of M . In partiular, it isnot de�nable.Proof. By 3.4, it is left to see that D 6= M , and here saturation isimportant sine without it this might fail (onsider the reals with re-strited multipliation). Assume towards ontradition that D = M .Consider the type p(x) whih says, for every uniformly de�nablefamily of injetions from (0; 1) into M , that none of these maps is abijetion between (0; 1) and (0; x). By our assumptions, this type isinonsistent, hene there are �nitely many de�nable families of inje-tions from (0; 1) into M suh that for every x 2 M , one suh injetiongives a bijetion between (0; 1) and (0; x). In partiular, there existsan a 2 M and a de�nable family of bijetions fs : (0; 1) ! (0; s), forall s > a. This ontradits Corollary 2.5. �An immediate orollary of the non-de�nability of D is:Lemma 3.7. Let fIs : s 2 Sg be a uniformly de�nable family of inter-vals in a jT j+-saturated M. If all intervals are short then there existsa short a 2 M suh that the length of every Is is at most a. If all



RETURNING TO SEMI-BOUNDED SETS 7intervals are long then there exists a tall b 2M suh that the length ofevery Is is not less than b.4. Affine and linear funtionsHere M is a semi-bounded non-linear struture.Some of the results in this setion, suh as 4.3 and 4.7, were provedin [15℄ for unbounded intervals instead of long ones.De�nition 4.1. A funtion f : (a; b) ! M is alled linear on (a; b) iffor every x; y 2 (a; b), if x+y 2 (a; b) then f(x)+f(y) = f(x+y): Thefuntion is aÆne if for some (all)  2 (a; b), the funtion f(+x)�f()is linear on (a� ; b� ).f : (a; b) ! M is alled loally linear (aÆne) if for every x 2 (a; b)there exists a neighborhood on whih f is linear (aÆne).The following is standard:Lemma 4.2. If f : (a; b) ! M is de�nable and loally linear (aÆne)then f is linear (aÆne) on (a; b).Lemma 4.3. If (a; b) is an interval in M (a; b 2 M [ f�1g) andf : (a; b) ! M is 0-de�nable then there are a = a0 < � � � < an = b indl(;) suh that whenever I = (ai; ai+1) is long the restrition of f toI is aÆne.Proof. The funtion f an be assumed to be ontinuous and stritly in-reasing. The set of all x suh that f loally aÆne near x is de�nable,and therefore there is a 0-de�nable partition a = a0 < � � � < an = bsuh that on eah (ai; ai+1) either f is loally aÆne (hene aÆne on thewhole interval) or f is nowhere aÆne. It is suÆient to see that when-ever the latter ours then the interval must be short. Assume towardsa ontradition that f is nowhere aÆne on (ai; ai+1) and that the in-terval is long. Notie that the interval remains long in any elementaryextension hene one may assume that M is suÆiently saturated.Consider the map g(x) = f(x+1)�f(x), de�ned on the long intervalJ = (ai; ai+1�1). The funtion g is ontinuous and, by our assumptionon f , it is positive everywhere. The interval J an be partitioned into�nitely many sub-intervals suh that g is either onstant or stritlymonotone on eah sub-interval.The following is again obtained by a standard o-minimal argument.Claim 4.4. If g is onstant on a sub-interval J 0 then f is aÆne on J 0.Beause f is assumed to be nowhere aÆne, it follows that g is stritlymonotone on eah sub-interval of J and by 3.4, at least one of theseintervals, whih is denoted by J again, is long.



8 PETERZILClaim 4.5. There is d 2 D suh that for every x 2 J , g(x) < d.Proof. Indeed, onsider the family of maps, hx : (0; 1) ! M , x 2J , given by hx(t) = f(x + t) � f(x). This is a de�nable family ofstritly inreasing ontinuous bijetions between (0; 1) and the interval(0; g(x)), hene (learly, all intervals (0; g(x)) are short) by Lemma3.7, there exists a bound d 2 D suh that g(x) < d for all x 2 J , thusproving the laim.It now follows that the map g, whih is injetive on J , sends J intothe interval (0; d). This is impossible beause J is long while (0; d) isshort. �Two aÆne funtions f1 : I ! M and f2 : J ! M are said tobe equivalent if the assoiated linear funtions f1(a + x) � f1(a) andf2(b + x)� f(b), a 2 I, b 2 J , have the same germ at 0.Remark 4.6. Note that two linear funtions, de�ned on the same openinterval I are equivalent if and only if they agree one at least onenonzero element in their ommon domain (see for example Proposi-tion 4.1 in [13℄).As in the ase for unbounded intervals, one an prove that there isno in�nite de�nable family of non-equivalent linear funtions on longintervals:Lemma 4.7. If ffs : s 2 Sg is a 0-de�nable family of linear funtions,fs : (0; as) ! M then there are �nitely many 0-de�nable linear fun-tions �1; : : : ; �k, and a short b 2M , suh that for every s 2 S,(i) Either jIsj < b, or(ii) For some i = 1; : : : ; k, the funtion fs is the restrition of �i to Is(in partiular, Is is ontained in dom(�i)).Proof. The equivalene relation on linear funtions indues a de�nableequivalene relation � on S and by de�nable hoie there exists ade�nable set of representatives S1 � S for the �-lasses.For every r 2 S1, let Jr = Ss�r Is, and let �r = Ss�r fs (this makessense beause of the equivalene). Our goal is to show that there is a�nite set F � S1 suh that for all r 2 S1 n F , the interval Jr is short.Indeed, if that is proved then, by 3.7 there is an upper bound b on thelength of all Jr, r 2 S1nF , and therefore jIsj < b for all s � r 2 (S1nF ).Assume towards ontradition that there are in�nitely many r 2 S1for whih Ir is long. By ontinuity arguments (applied to the end-points of Js) one may �nd an in�nite de�nable S2 � S1 and a tall `suh that for every r 2 S2, (0; `) � Jr. Sine the equivalene lass of alinear funtion is determined by its value at a single non-zero element,



RETURNING TO SEMI-BOUNDED SETS 9it is possible to re-parameterize the family f�r : r 2 S2g by �r(`) andso assume that S2 is an open interval in M .Fixing a generi r0 2 S2 then, by ontinuity, for r suÆiently loseto r0 the element a = �r(`) � �r0(`) is a short element. The funtion�r(t)��s0(t) is now a linear funtion (hene ontinuous and monotone)sending the long interval (0; `) onto the short interval (0; a). Contra-dition.It was therefore shown that for all but �nitely many r 2 S1, the do-main of �r is a short interval, whose length is bounded by some shortb 2 D. It is left to see that this �nite set of r's is 0-de�nable. This anbe done by onsidering the 0-de�nable set of intervals fJr : r 2 S1g. Ifall Jr's are short there is nothing to do. Otherwise, what was shownso far implies that there are only �nitely many Jr's of maximal length(possibly in�nite). This set is learly 0-de�nable so an be omitted,onsider the remaining Jr's and repeat the proess, until there are noremaining long Jr's in the family. �Remark 4.8. In the notation of the last proof, it is possible that S1will be in�nite, namely that there will be an in�nite family of nonequiv-alent linear maps, all de�ned on short intervals. This will imply thede�nability of loal multipliation over the group hM;+i but does notontradit semi-boundedness.The following lemma will not be used in the subsequent arguments.It is inluded here for a possible future use.Lemma 4.9. Assume that C �Mn+1 is an open ell, C1 the projetionof C on the �rst n oordinates. If F : C !M is a 0-de�nable funtionthen there are �nitely many 0-de�nable linear funtions �1; : : : ; �k, eahde�ned on a long interval, and for every x 2 C1, there is a partition ofthe interval Cx as follows: a0(x) < a1(x) < � � � < ar(x) (r dependingon x), and for every i, either(i) The interval (ai(x); ai+1(x)) is short, or(ii) The funtion fx(y) = F (x; y) is aÆne on (ai(x); ai+1(x)) and themap t 7! fx(ai(x) + t)� fx(ai(x)) is the restrition of one of the �0js.Proof. The initial partition of every Cx is given by Lemma 4.3. Forevery x, onsider all intervals in the partition of Cx on whih fx isnowhere aÆne. This is a de�nable family of short intervals, hene by3.7, there is a short upper bound b on the length of all of these intervals.The remaining intervals in Cx are those on whih fx is aÆne andnow onsider the family of all fx, restrited to these intervals, as xvaries in C1 (namely, for every x 2 C1 there might be �nitely many



10 PETERZILsuh funtions). By translation, one may assume that eah suh fun-tion is linear. Applying 4.7 one obtains �nitely many de�nable linearfuntions �1; : : : ; �k and a short element b, suh that every interval inthis family is either of length less than b or is a restrition of some �i,i = 1; : : : ; k. This implies the lemma. �5. Changing the languageAssume now that M is semi-bounded, non-linear and jT j+-saturated.Let � be the olletion of all 0-de�nable linear funtions whose do-main is a long interval of the form (0; a�). For every 0-de�nableX � Dnin M, let RX be an n-plae prediate symbol and let LD be the ol-letion of all those prediates.Let eL = f<;+; 1g [ LD [ f� : � 2 �g;where eah � is a unary funtion symbol. Let fM be the orrespondingeL-struture whose universe is M and all other symbols in the languageinterpreted naturally (with � taken to be 0 outside (0; a�)).Obviously, every 0-de�nable set in fM is 0-de�nable in M. Theonverse is almost true, in the following sense:Theorem 5.1. Let fMC be the expansion of fM by a new onstantsymbol for every element in dlM(;). Then, every 0-de�nable set inthe struture M is de�nable in fMC.Proof. This will be done by indution in a usual o-minimal method. Itis suÆient to show that every 0-de�nable f : U ! M , where U is anopen ell Mn, is de�nable in fMC .De�nition 5.2. Let U � Mn be an open set, f : U ! M a de�nablefuntion. For S � f1; : : : :ng, the funtion f is S-bounded if if forall i 2 S there exists d 2 D suh that �i(U) � [�d; d℄ (where �iis the projetion onto the i-th oordinate). In partiular, every f is;-bounded.Note that if S = f1; : : : ; ng and f is 0-de�nable inM and S-boundedthen its domain is ontained in Dn and by 3.5, its image is ontainedin a short interval, so after translation by an element of dlM(;), thefuntion is fMC-de�nable. Using this notion it is suÆient to prove thefollowing laim:



RETURNING TO SEMI-BOUNDED SETS 11Claim 5.3. For every 0-de�nable funtion f : U ! M . If f is S-bounded, for some S ( f1; : : : ; ng and i =2 S then f an be de�nedusing �nitely many fMC-de�nable sets, together with �nitely many 0-de�nable funtions in M whih are S [ fig-bounded.One the laim is proved, then by proeeding to handle the S [ fig-bounded funtions one an eventually reah f1; : : : ; ng-bounded fun-tions, thus proving the theorem.Proof of Claim 5.3.: Use indution on n:For n = 1: As usual, domf an be assumed to be either M or aninterval (a; b) with b 2 M [ f+1g (in ase domf = (�1; b) f anbe replaed by f(�x)). The funtion f an also be assumed to beweakly monotone, and either nowhere aÆne on its domain or aÆne onits whole domain.First, replae f by ef(t) = f(a1+ t)�f(a1), with a = 0 if domf = Mand a1 = a if domf = (a; b) (note that \f(a1)" makes sense beause fextends ontinuously to a1). Hene, dom ef is either M , or (0; b�a). Ineither ase, ef is 0-de�nable in M and ef(0) = 0.If domf is short then f is 1-bounded, whih implies that it is fM-de�nable. If domf is long then, by 4.3, ef(x) must be linear and 0-de�nable in M, therefore it equals �(x) for some � 2 �.In both ases, f is learly de�ned using ef , +, and a1 2 dl(;), heneit is fMC-de�nable.The n + 1 ase: Without loss of generality, i = n + 1 =2 S. Bystandard o-minimal methods one may assume the following:(1) The domain of f is an open ell C 2Mn+1 whose projetion in Mnis denoted by C1:C = f(x; y) 2 C1 �M : h1(x) < y < h2(x)g;for 0-de�nable h1; h2 : C !M [ f�1g suh that h1 < h2 on C1.(2) For every x 2 C1, the following hold:(a) The �ber Cx is either M , or of the form (h1(x); h2(x)) for h1(x) 2M , and h2(x) 2 M [ f+1g, uniformly in x. (Indeed, if Cx is of theform (�1; b) then f(x; y) an be replaed by f(�x; y))).(b) The funtion fx(t) = f(x; t) is ontinuous and is either onstant,stritly inreasing in t, or stritly dereasing in t, uniformly in x.() Either, for every x 2 C1 the funtion fx is nowhere aÆne, or forevery x 2 C1 the funtion fx is aÆne on its domain.



12 PETERZIL(d) If Cx 6= M then the limit of fx(t) as t tends to h1(x) (the lowerbound of Cx), exists in M , all it �(x).Atually, all exept 2(d) an be ahieved in any o-minimal struture.The semi-boundedness assumption gives 2(d) as well.First replae f by a funtion ef de�ned as follows: If Cx = M forevery x 2 C1, let ef(x; t) = f(x; t)� f(x; 0):If Cx = (h1(x); h2(x)) for h1(x) 6= �1, letef(x; t) = f(x; h1(x) + t)� f(x; h1(x)):(by 2(d), fx an be extended to h1(x)).The new domain of ef , whih will still be alled C, is either C1 �Mor f(x; y) : x 2 C1; 0 < y < h2(x)� h1(x)g(where +1� h1(x) is taken to be +1), so ef is still S-bounded. Inboth ases, efx(0) = 0 for every x 2 C1.By indution, h1; h2, f(x; 0) and f(x; h1(x)) are fMC-de�nable. Also,f an learly be reovered from ef using h1(x), f(x; h1(x)) and +, soit is suÆient to show that ef an be de�ned using �nitely many fMC-de�nable sets, together with �nitely many 0-de�nable funtions in Mwhih are S [ fn+ 1g-bounded.Case 1 For every x 2 C1, the funtion fx(t) = f(x; t) is nowhere aÆne.In this ase, by 4.3, every interval (0; h2(x)�h1(x)) is short and henethere exists an upper bound b 2 D to the length of all Cx. Namely thedomain of ef is ontained in C1 � (0; b), so f is S [ fn + 1g-bounded.Case 2 For every x 2 C1 the funtion fx is aÆne on its domain.It follows that every efx is linear. By Lemma 4.7, there exists a shortelement b and there are �nitely many funtions �1; : : : ; �k 2 � suhthat for every x 2 C1, either jCxj < b, or efx is a restrition of one ofthe �i's to Cx.By further partitions (using �1; : : : ; �k), it an be assumed that eitherfor every x 2 C1, efx is the restrition of some �i (same �i uniformly inx), or for every x 2 C1, Cx � (0; b).In the �rst ase, ef is de�nable using C and funtions in �, so byindution it is fMC-de�nable. In the seond ase, the domain of ef isontained in C1 � (0; b) so it is S [ fn + 1g-bounded. �



RETURNING TO SEMI-BOUNDED SETS 13Lemma 5.1 shows in partiular that if a struture M has no polesthen every de�nable set is de�ned using the ordered group struture,partial (or global) 0-de�nable linear funtions, and �nitely many boundedsets. This shows that the \no poles" de�nition of semi-boundedness im-plies the one from the introdution. The opposite impliation is provedusing automorphisms (see the proof of Theorem 1.2 in [17℄). The equiv-alene of the two de�nitions was originally established by Edmundo in[5℄. 6. Extending partial linear maps to global onesFor � 2 �, denote by b� the orresponding equivalene lass of thelinear funtion, and let b� be the olletion of all those equivalenelasses. Notie that b� is a ring under point-wise addition. Moreover,beause the image of a long interval under a linear funtion is also long,b� is losed under omposition and inverse omposition, therefore it isan ordered division ring. Atually, as in Corollary 9.3 in [19℄, sineit was assumed that M is not a linear struture, a real losed �eld Ris de�nable in a neighborhood of 0, and therefore the ompositionalgroup b� n f0g an be embedded in GL1(R) whih is ommutative. Itfollows that hb�;+; Æi is atually an ordered �eld.Lemma 6.1. There exists an expansion of fM to an o-minimal stru-ture M = hM;<;+; fRX 2 eLDg; fb� : � 2 �ig;in whih every b� : M !M is a global linear map, extending all orre-sponding �0s in � (and all other symbols in eL are interpreted as before).Proof. The �rst step is to expand the strutureM� = hM;<;+; f� : � 2 �gi;to a full ordered vetor spae V = hM;<;+; fb� : � 2 �gi over the�eld b�, where every partial linear map � is extended to a global linearmap b� : M ! M . The existene of suh a V is exatly the ontent ofTheorem 6.1 in [13℄: Indeed, although there is a linearity assumptionin that theorem, the proof itself is done in the setting of an o-minimalexpansion of an ordered group by partial linear funtions, as givenhere. Also, beause M is already saturated there is no need to go toan elementary extension in the urrent setting.Having V as above, de�neM = hM;<;+; fRX 2 eLDg; fb� : � 2 �gi;



14 PETERZILwith the original interpretation of every RX . The goal is to show thatM is o-minimal.Consider the following (see Proposition 5.1 in [13℄):Proposition 6.2. Let V be an ordered vetor spae over a �eld b�,I = [�a; a℄ a losed interval in V , and letV = hV;<;+; fb� : � 2 �g; fP : P 2 Pgibe an expansion of V by some olletion P of subsets of In, for variousn. Assume also:(i) P ontains all those a-de�nable sets in the ordered vetor spae V .(ii) P is losed under de�nability in I, namely, every 0-de�nable set inthe struture I = hI; fP : P 2 Pgi is already in P.Then V eliminates quanti�ers.Let us see �rst why this theorem implies that M is o-minimal. Itis learly enough to onsider �nitely many prediates from bL so, bytaking the projetion of eah suh RX into D, it is possible to �nda 2 dlfM(;) \D, suh that all RX 's are ontained in [�a; a℄ for somea 2 D.Let P be the olletion of all ;-de�nable subsets of In in fM, as nvaries.Claim 6.3. P satis�es assumption (i) and (ii) of Proposition 6.2.Proof. (i) Every a-de�nable subset of In in the ordered vetor spae isalready in P:The problem is that V has linear funtion whih do not exist infM. However, by quanti�er elimination in ordered vetor spaes, everya-de�nable set on V n is a boolean ombination of solutions to:(1)b�1(x1)+� � �+b�k(xk)+b�k+1(a) = 0 ; b�1(x1)+� � �+b�k(xk)+b�k+1(a) > 0;for b�i 2 b�.On elements of D, b�i = �i and therefore these equalities and inequal-ities are already de�nable in fM and hene are in P.For (ii), beause every I-de�nable set is already fM-de�nable it islear, by the de�nition of P, that it is losed under de�nability in I.End of Claim 6.3.



RETURNING TO SEMI-BOUNDED SETS 15Now that the assumptions of Proposition 6.2 are established, onemay onlude that the strutureMP = hM;<;+; fP : P 2 Pg; fb� : � 2 �gi(whih expands fM) has Quanti�er elimination.Claim 6.4. MP is o-minimal.Proof. By quanti�er elimination, every 0-de�nable set in MP is aboolean ombination of terms inequalities in the ordered vetor spaestruture, and formulas of the form(t1(x1; : : : ; xn); : : : ; tk(x1; : : : ; xn)) 2 X;for some I-de�nable X � Ik and t1; : : : ; tk terms in the ordered ve-tor spae language. It is learly suÆient to handle this last type offormulas, whih gives rise to 1-variable formulas:(b�1(x) + a1; : : : ; b�k(x) + ak) 2 X;for a1; : : : ; ak 2 M . Beause b�(x) + a = b�(x + ��1(a)), every suhformula de�nes a set of the form:B = fx 2M : (b�1(x+ b1); : : : ; b�k(x + bk)) 2 Xg;for b1; : : : ; bk 2M . Now letA = f(x1; : : : ; xk) 2Mk : (b�1(x1); : : : ; b�k(xk)) 2 Xg:It may be assumed that none of the b�i is 0. Beause X � Ik (and Iis short) the set A is also ontained in some Jk, for some short J , andtherefore de�nable in the original fM. The set B is now the set of allx 2M suh that (x; : : : ; x) 2 A� (b1; : : : ; bk). This set is also de�nablein fM and therefore it is a �nite union of intervals.The struture MP is therefore o-minimal and as a result M is o-minimal as well. �Remark 6.5. Proposition 6.2 above is exatly Proposition 5.1 from[13℄. However, it was pointed out by Belegradek, [1℄, that the proof ofthat proposition ontained a serious gap. The gap was then �xed byBelegradek himself, using an idea of Hrushovski, to yield a similar, butslightly di�erent result. The two results are disussed in Appendix,For every b� 2 b�, b�(D) � D, hene the set D � M is an bL- substru-ture of M, whih is denoted by bD.



16 PETERZILLemma 6.6. The struture bD is an elementary substruture of M.Proof. This is a repetition of the proof of Theorem 1.2 from [17℄. Byo-minimality, it is suÆient to prove that dlM(D) = D. Equivalently,it will be shown that for every a 2M nD, there exists an automorphism� of M, �xing D point-wise, suh that �(a) 6= a.Fix a 2 M n D. Beause D is a b�-subspae of M , it has a (non-de�nable) omplement D in M suh that M = D�D, as an orderedvetor spae. If one now takes �(d) = d for every d 2 D, and �(y) = 2yfor every y 2 D then � is an automorphism of the ordered vetor spaeV whose �xed elements are exatly the elements of D. Beause everyother atomi relation of M is ontained in Dn for some n, � is learlyan automorphism of M �xing D point-wise and moving a. It followsthat dlM(D) = D and therefore bD is an elementary substruture ofM. �7. Definable groups in semi-bounded struturesThere are several papers on de�nable sets and groups whih arede�nable in o-minimal expansions of ordered groups (rather than reallosed �elds). The main diÆulty there is the lak of a triangulationtheorem and therefore the development of the basi topologial tools ismuh more diÆult. In [2℄ and [7℄ sheaf Cohomology for suh strutureshas started to emerge. In [8℄ the authors use this Cohomology to givean upper bound for the number of torsion points in abelian de�nablegroups. In [6℄ other properties of groups in the semi-bounded settingare developed.Here is a simple observation:Lemma 7.1. If G is a de�nably ompat group in a semi-boundedstruture then every hart in the atlas of G is bounded.Proof. If not then there exists a de�nable urve in one of the harts Uof M whih is unbounded. Beause there are no de�nable poles, thereis a de�nable injetion � : (a;+1) ! U whose image is unbounded.Beause G is de�nably ompat this map has a limit point g in G (inthe G-topology) as t tends to 1. This limit point belongs to anotherhart U but now it is easy to obtain a de�nable injetion from anunbounded interval to a bounded interval. Contradition. �7.1. De�nable groups in short models.De�nition 7.2. LetM be an o-minimal semi-bounded struture whihis not linear. M is alled short if every element inM is a short element.



RETURNING TO SEMI-BOUNDED SETS 17It follows that if M is a short model then every de�nably ompatgroup in M is de�nable in some o-minimal expansion of a real losed�eld. Indeed, all the harts of G must be bounded so there exists an ininterval I suh that all harts are ontained in In for some n. BeauseM is short I admits a de�nable real losed �eld.This in turn implies, using the (heavy) theorem of Edmundo andOtero [9℄:Corollary 7.3. If G is a de�nably ompat, de�nably onneted abeliann-dimensional group in a short model then for every k 2 N,Tork(G) = (Z=kZ)n:7.2. Uniformity in parameters. Beause not every de�nable groupin o-minimal expansion of group an neessarily be embedded, as atopologial group, in Mn (or at least, it is not known whether thisis so), there is some subtlety in showing that de�nable onnetednessand de�nable ompatness, with respet to the group topology, arede�nable properties in parameters.In this setion M an be any o-minimal expansion of a group.Lemma 7.4. Let fGs : s 2 Sg be a uniformly de�nable family ofabelian groups. Then:(i) The set of s for whih Gs is de�nably onneted is de�nable.(ii) The set of s for whih Gs is de�nably ompat is de�nable.Proof. (i) It is known, [20℄, that Gs is not de�nably onneted if andonly if there exists n 2 N suh that the image of Gs under g 7! ng,all it nGs, is di�erent than Gs. By ompatness there exist a boundN 2 N suh that whenever nGs 6= Gs for some n then neessarily thereexists suh an n with n � N . But now, Gs is de�nably onneted ifand only if N !Gs 6= Gs.(ii) Without loss of generality every Gs has the same dimension n.By Pillay's theorem on groups, [20℄, there exists, uniformly in s, ade�nable family of atlases and maps for the family of groups. Namely,there is some k, and there exists an de�nable family of open subsetsof Mn, fUi;s : s 2 S; i = 1; : : : ; kg, together with a de�nable familyof bijetions �i;s : Ui;s ! Gs, suh that Gs = Ski=1 �i;s(Ui;s) for everys 2 S, the transition maps are ontinuous, and suh that the groupoperations on Gs are ontinuous when read through the harts. By7.1, it may be assumed that eah Ui;s is a bounded subset of Mn.For every � > 0 in M , let U �i;s be the set of all elements in Ui;swhose distane (using the maximum norm) from the boundary of Ui;sis greater than �. This is easily seen to be an open set as well. Thefollowing laim is based on an observation of Elefethriou:



18 PETERZILClaim 7.5. For every s 2 S, the group Gs is de�nably ompat if andonly if there exists an � > 0 suh thatGs = k[i=1�i;s(U �i;s):Proof. If Gs is de�nably ompat then the negation of the onditionyields a de�nable urve  : (0; a)! Gs, suh that for every t,(t) 2 Gs n k[i=1�i;s(U ti;s):If g 2 Gs is the limit of (t) as t tends to 0 (whih exists by de�n-able ompatness) then for some i = 1; : : : ; k, ��1i;s (g) 2 Ui;s, thereforefor all suÆiently small � > 0, �i;s(g) 2 U �i;s. This easily leads to aontradition.For the onverse, if there exists an � as above, then any de�nableurve  in Gs will be eventually ontained in one of the �i;s(U �i;s), andbeause U �i;s is bounded the urve ��1i;s ((t)) has a limit in x 2 Mn,whih must be in Ui;s. The element �i;s(x) 2 Gs is the limit of (t). �7.3. Torsion of de�nably ompat groups.Theorem 7.6. Let G be a de�nably ompat, de�nably onneted,abelian group in an o-minimal expansionM of an ordered group. Thenfor every k 2 N, we haveTork(G) = (Z=kZ)n:Proof. By Elefetheriou-Starhenko [11℄, the result holds for groups de-�nable in ordered vetor spaes over ordered division rings, and henefor all linear expansions of ordered groups. By Edmundo-Otero theresult holds in those expansions whih are not semi-bounded (see dis-ussion in Setion 2.1)One may therefore assume that M is semi-bounded. Consider thestruture M as given in Theorem 6.1, and its elementary sub-struturebD (whih is a short model).The group G is de�nable in the struture M, possibly over a set ofparameters s. Namely, G = Gs for some D-de�nable family fGs : s 2Sg of de�nable groups, in the struture M. By 7.4, one may assumethat for every r 2 S(D), the group Gr(D) is de�nably onneted,de�nably ompat abelian group.Beause bD is a short model, given k 2 N , for every r 2 S(D),Tork(Gr(D)) = (Z=kZ)n: This is learly a �rst order property of bD,hene it is true in M as well and in partiular for G = Gs. �



RETURNING TO SEMI-BOUNDED SETS 198. Pillay's ConjetureAs is pointed out in [12℄ (see Remark 4 at the end of Setion 8), thepresene of an ambient real losed �eld is used twie in the proof ofPillay's Conjeture:1. In order to apply Theorem 2.1 from [18℄ to a de�nably ompat groupG one needs to know that losed subsets of G are losed and bounded.This is true if G, with its group topology, is a subspae of Mn, whihin expansions of real losed �eld this an always be ahieved, but notknown in expansions of groups. The following idea was suggested byEleftheriou:Using Claim 7.5, there are �nitely many pairs of bounded open setsV1 � U1; : : : ; Vk � Uk, subsets of Mn, suh that for eah i, Cl(Vi) � Ui(losure taken in Mn) and suh thatG =[i �i(Ui) =[i �i(Vi):Given any losed set X � G, eah set ��1i (X)\Cl(Vi) is losed andbounded in Mn. Using Theorem 2.1 in [18℄, this is suÆient to provethe result needed in that paper:If X � G is a de�nable losed set and M0 is a small model then theset of M0-onjugates of X is �nitely onsistent if and only if X has apoint in M0.2. The seond missing ingredient in the proof of Pillay's Conjeture issTheorem 7.6, whih is now proved.It therefore follows that Pillay's onjeture holds in expansions ofordered groups. 9. some open questions9.1. The struture of de�nable sets. In [17℄ and [5℄, struture the-orems for de�nable sets in semi-bounded strutures are given. Theonjeture below is a natural strengthening of those results.Conjeture 1 IfM is semi-bounded then every de�nable subset of Mnan be written as a �nite union of sets of the form:C + f�ki=1(�i;1(ti); � � � ; �i;n(ti)) : t1 2 I1; : : : ; tk 2 Ikg;



20 PETERZILfor a de�nable C � Dn, �i;j 2 � and I1; : : : ; Ik long (possibly un-bounded) intervals.9.2. De�nable groups in semi-bounded strutures. It was shownby Edmundo, Eleftherious and Onshuus, [6℄, that every de�nable groupin a semi-bounded struture has a de�nable normal subgroup whih isde�nably isomorphi to hMn;+i, suh that the quotient is de�nablyisomorphi to a bounded group (namely, a group whose universe is abounded set in Mn). Beause of the above onjetured struture theo-rem and beause de�nable funtions are linear outside short intervals,the following onjeture seems reasonable:Conjeture 2 Let G a de�nable group in a semi-bounded struture.Then there exists a de�nable normal A � G, with A is de�nably iso-morphi to a semi-linear group, suh that the quotient G=A is de�nablyisomorphi to to a group ontained in Dn.The onjeture, if true, will allow to analyze every de�nable groupin an o-minimal expansion of ordered groups in terms of semi-lineargroups and groups de�nable in expansions of real losed �elds.9.3. A general transfer priniple. The arguments used to proveTheorem 7.6 an learly be used to transfer other results from o-minimal expansions of real losed �elds to o-minimal expansions ofgroups. This suggests a possible general transfer priniple between o-minimal expansions of �elds and of groups. The following onjetureis modeled after another transfer priniple, suggested by L. van denDries in [4℄ (and proved false in the original setting):Let �(R1; : : : ; Rn; f1; : : : ; fk) be a sentene in a language L expandingthe language of ordered sets, with R1; : : : ; Rn; f1; : : : ; fk all relation andfuntion symbols that are di�erent than <.Conjeture 3 Assume that �(R1; : : : ; Rn; f1; : : : ; fk) holds in everyo-minimal L-expansion of a real losed �eld, where < is interpreted asthe natural ordering of the �eld.Then �(R1; : : : ; Rn; f1; : : : ; fk) holds in every o-minimal L-expansionof an ordered group that is not linear, where < is interpreted as thenatural ordering.The arguments presented here show that it is enough to prove theabove for short models.



RETURNING TO SEMI-BOUNDED SETS 2110. AppendixI now return to Proposition 6.2 (Proposition 5.1 from [13℄). As waspointed out in [1℄, the proof for that theorem ontained an error. Theerror was �xed in Belegradek's paper, using an idea of Hrushovski.However, the new result (Fat 0.1 in [1℄), reads as follows:Fat 10.1. Let V be an ordered vetor spae over an ordered divisionring D, a a nonnegative element in V andV = hV;<;+; f� : � 2 Dg; fP : P 2 Pgian expansion of V by a olletion P of relations on I = [�a; a℄. Sup-poses that every relation on [�a; a℄ whih is a-de�nable in V belongs toP. Then the struture MP admits elimination of quanti�ers.To see that Fat 10.1 implies Proposition 6.2 it is left to prove:Every a-de�nable subset of In in the struture V is already de�nable inI = hI; <; fP : P 2 Pgi.Proof. It is suÆient to prove that every automorphism of I an beextended to an automorphism of V whih �xes a. Let � : I ! I besuh an I-automorphism. Beause 0 2 I is de�nable, � is neessarilyorder preserving. As was shown in Claim 6.3, every subset of In that isde�nable in the ordered vetor spae V is already I-de�nable therefore�, as a vetor spae automorphism, an be extended to a vetor spaeautomorphism of V whih neessarily �xes a. However, all atomirelations in V whih are not part of the ordered vetor spae are partof the I struture, and therefore � is a V-automorphism as well.Referenes[1℄ Oleg Belegradek, Semi-bounded relations in ordered abelian groups, Model the-ory and appliations, Quad. Mat., vol. 11, Arane, Rome, 2002, pp. 15{39.[2℄ A. Berardui and A. Fornasiero, O-minimal ohomology: Finiteness and in-variane results, preprint (2007).[3℄ Lou van den Dries, Tame topology and o-minimal strutures, London Math-ematial Soiety Leture Note Series, vol. 248, Cambridge University Press,Cambridge, 1998.[4℄ , o-minimal strutures, Logi: from foundations to appliations(Sta�ordshire, 1993), 1996, pp. 137{185.[5℄ Mario J. Edmundo, Struture theorems for o-minimal expansions of groups,Ann. Pure Appl. Logi 102 (2000), no. 1-2, 159{181.[6℄ M. Edmundo, P. Eleftheriou, and A. Onshuus, De�nable groups in semi-bounded o-minimal strutures, preprint (2005).
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