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1 Introduction

Infinite groups of finite Morely rank have little truly geometric structure; how-
ever, their algebraic properties are remarkably reminiscent of algebraic groups.
The strongest conjecture to this effect is the Cherlin-Zil’ber algebraicity conjec-
ture which postulates that an infinite simple group of finite Morley rank is a
linear algebraic group over an algebraically closed field.

There are a number of partial results towards this conjecture and a complete
proof in the even & mixed type cases, read potentially characteristic two. In
other cases, much recent work has followed two themes : an analysis of the
minimal simple groups where Bender’s method is well understood [Bur07], and
the analysis of torsion using genericity arguments [BBC07, BC08], as well as
work involving both techniques [BCJ07, Del07, AB08].

A major part of the combined thread is the analysis of the Weyl group
W := N(T )/C◦(T ) of G associated to some maximal decent torus T . Here a
decent torus is merely the smallest definable subgroup containing some divisible
abelian torsion subgroup, such as a p-torus Z(p∞)n. In fact the reader my may
always replace decent torus by p-torus. One may speak of the Weyl group of G
because maximal tori are conjugate in a group of finite Morley rank [Che05].

In the present article, we show that the Weyl group is cyclic in a minimal
connected simple group of finite Morley rank.

Theorem 3.1. Let G be a minimal connected simple group of finite Morley
rank, and let T be a decent torus of G. Then the Weyl group W := N(T )/C(T )
is cyclic.

We also give a condition on the Prüfer p-rank of a torus that admits p as
a divisor of |W |. The Prüfer p-rank prp(T ) is merely the maximal n such that
Z(p∞)n is a subgroup of T .

Theorem 4.1. Let G be a minimal connected simple group of finite Morley
rank, and let T be a nontrivial p-torus of G. Suppose that p is a prime divisor
of |WT |. Then p − 1 divides the Prüfer p-rank prp(T ) of T , and p is not the
minimal prime divisor of |W | unless p = 2.
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Our primary concern here is groups of degenerate type, where Sylow 2-
subgroups are trivial [BBC07]. The second authors thesis work covers the odd
type case (see Fact 3.2 below) and the afore mentioned classification in even &
mixed types covers those cases.

As an introduction, we first prove a far stronger yet easier result, but under
strong number theoretic hypotheses.

2 Tameness Wagner style

The Weyl group of an algebraic group is the quotient of the normalizer of a
maximal algebraic torus by the centralizer of the same torus. In general, groups
of finite Morley rank need not contain any algebraic torus, but frequently have
so-called decent tori. A decent torus is a divisible abelian group which is the
definable hull of its torsion. The group WT := N(T )/C(T ) is the Weyl group
associated to a given torus T . Here one may use only the connected component
of the centralizer by the following.

Fact 2.1 ([AB08, Theorem 1]). Let T be a decent torus of a connected group
H of finite Morley rank, Then C(T ) is connected.

We naturally say “the Weyl group of G” when T is a maximal decent torus;
this is well defined by conjugacy of maximal decent tori [Che05].

Lemma 2.2. Let G be a minimal connected simple group of finite Morley rank,
and let T be a nontrivial decent torus of G. Then the Weyl group WT :=
N(T )/C(T ) associated to T is naturally isomorphic to a subgroup of the Weyl
group W of G.

Here we’ll use the fact that solvable groups have trivial Weyl groups (see
also [AB08, Lemma 5.11]).

Fact 2.3 ([AB08, Lemma 6.6]). Let H be a connected solvable group of fi-
nite Morley rank and let K be a definable connected subgroup of H such that
[NH(K) : K] < ∞. Then NH(K) = K.

Proof of Lemma 2.2. Let S be a maximal decent torus containing T . Then S ≤
C◦(T )CN(T ). So WT is a section of W := N(T )/C(T ) by a Frattini argument
using [Che05]. Of course the kernel here is the Weyl group NC(T )(S)/CC(T )(S)
of S inside C(T ). But C(T ) is solvable by Fact 2.1. So this kernel is trivial by
Fact 2.3, as desired.

A similar argument shows that, in a minimal connected simple group, the
Weyl group is isomorphic to WQ := N(Q)/Q where Q is a Carter subgroup
containing the maximal torus S. In a minimal simple group, one need not
specify the Carter subgroup Q as they are all conjugate [Fré08] but this need
not hold in general.

In the present article we examine some variations on the following result.
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Theorem 2.4. Let G be a minimal connected simple group of finite Morley
rank and degenerate type, and let T be a nontrivial decent torus of G. Then
either

1. the Weyl group W := N(T )/C(T ) is trivial, or

2. G interprets a bad field in characteristic p where p is at most the minimal
prime divisor of |W |.

Here a bad field (k, H, +, ·) is a field k of finite Morley rank with a proper
nontrivial definable subgroup H of it’s multiplicative subgroup. Such fields
exist in characteristic zero but are quite unlikely in positive characteristic p for
number theoretic reasons. In this second situation, there are only finite many
primes of the form pn−1

p−1 by [Wag97]. Moreover the asymptotics in [HW] hold :

(pn − 1)π � pαn

Here π denotes the set of primes π appearing in the bad field’s multiplicative
subgroup, and α denoted the ratio rk(T ) So our theorem says that Weyl groups
are unlikely degenerate type.

To prove the theorem, we consider a minimal connected simple group G, and
a nontrivial decent torus T of G. By Lemma 2.2, we may assume that T is a
maximal decent torus.

Let p be the minimal prime divisor of W := N(T )/C(T ). Then G contains
p-unipotence by the following important fact.

Fact 2.5 ([BC08, Theorem 5]). Let H be a connected group of finite Morley
rank. Suppose the Weyl group associated to a maximal decent torus is nontrivial
and has odd order, with p the smallest prime divisor of its order. Then H
contains a unipotent p-subgroup.

Hence there is a Borel subgroup B of G with Up(B) 6= 1. So consider some
B-minimal A ≤ Up(B).

Suppose first that CB(A) < B. By the Zilber field theorem, there is a field
k interpretable in B with A ∼= k+ and B/CB(A) ↪→ k∗. If G has degenerate
type, k is our bad field in characteristic p, as desired.

So suppose otherwise that CB(A) = B. Then B ∩ Bg = 1 for g /∈ N(B) by
the Jaligot Lemma :

Fact 2.6 ([Bur07, Lemma 2.1]). Let B1, B2 be two distinct Borel subgroups of G
satisfying Upi(Bi) 6= 1 for some prime pi (i = 1, 2). Then F (B1) ∩ F (B2) = 1.

It follows that
⋃

BG is generic in G by the genericity argument :

Fact 2.7 ([BBC07, Lemma 4.1]). Let G be a group of finite Morley rank, H a
definable subgroup of G, and X a definable subset of G. Then rk(

⋃
XG) = rk(G)

whenever
rk(X \

⋃
g/∈H

Xg) ≥ rk(H).
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But now B contains a maximal decent torus of G by the following.

Fact 2.8 ([BC08, Theorem 1]). Let G be a connected group of finite Morley
rank and a be a generic element of G. Then d(a) contains a maximal decent
torus of G.

So we may assume that B = C◦(T ), and p divides N(B)/B, contradicting the
following.

Fact 2.9 ([AB08, Lemma 4.3]). Let B be a Borel subgroup of G such that
Up(B) 6= 1 for some prime p. Then p 6 |[NG(B) : B].

This concludes the proof of Theorem 2.4.

3 Cyclicity of Weyl groups

Theorem 2.4 completes our picture of Weyl groups in minimal connected simple
groups of degenerate type, if there are no bad fields in positive characteristic.
However, one can still prove something without such strong hypotheses.

Theorem 3.1. Let G be a minimal connected simple group of finite Morley rank,
and let T be a decent torus of G. Then the Weyl group WT := N(T )/C(T ) is
cyclic.

We may start the proof with a non-trivial decent torus T which by Lemma
2.2 can be taken maximal. Again recall that C(T ) is connected by Fact 2.1.

We dispense with the odd type case by using the second author’s thesis work.
As observed after the proof of Lemma 2.2, letting Q be a Carter subgroup of G
containing T , we find W ∼= WQ := N(Q)/Q.

Fact 3.2 ([Del07, see Théorème p.89]). Let G be a minimal connected simple
group of finite Morley rank of odd type, and let Q be a Carter subgroup of G
containing a Sylow◦ 2-subgroup. Then |N(Q)/Q| = 1, 2, 3.

So |W | = 1, 2, 3 if such a G has odd type. We may therefore assume that G has
degenerate type by the Even Type Theorem [ABC07].

The real starting point for our analysis is an earlier result about Weyl groups
in minimal connected simple groups.

Fact 3.3 ([AB08, Proposition 5.1 & Corollary 5.7]). W is a metacyclic Frobe-
nius complement.

A Frobenius complement is the stabilizer of a point in a Frobenius group;
whch is a transitive permutation group on a finite set, such that no non-trivial
element fixes more than one point and some non-trivial element fixes a point.
Such groups have a quite restrictive structure, which is described by the follow-
ing.

Fact 3.4 ([Gor80, 10.3.1 p. 339]). Let W be a Frobenius complement. Then

4



1. Any subgroup of W of order pq, p and q primes, is cyclic.

2. Sylow p-subgroups of W are either cyclic or possibly generalized quaternion
if p = 2.

Of course metacyclicity follows for any Frobenius complement inside a degener-
ate type group [Gor80, 7.6.2 p. 258].

Consider a minimal non-cyclic subgroup Ξ of W . Then Ξ is metacyclic but
not cyclic while every proper subgroup of Ξ is cyclic. In particular every proper
subgroup of Ξ is abelian yet Ξ itself is not.

Claim 3.5. There are prime numbers p and q|p−1 and elements α, β ∈ Ξ with
αp = 1, βqm

= 1, and βq 6= 1 such that :

• Ξ = 〈α, β〉;

• [α, βq] = 1;

• Ξ′ = 〈α〉.

Proof. Say Ξ/C1
∼= C2 where C1 and C2 are cyclic groups. Let α ∈ Ξ be a

generator of C1, and let β be an element of Ξ whose image modulo C1 generates
C2. Of course [α, β] 6= 1 since Ξ is not abelian.

By minimality of Ξ, α and β must have prime powers as orders, say pn and
qm respectively. It follows that p 6= q because Sylow p-subgroups are cyclic.

Also notice that by minimality:

[αp, β] = [α, βq] = 1 (†)

So 〈β〉 ' Z/qmZ normalizes C1 = 〈α〉 ' Z/pnZ. As X is non-abelian, the
action is non-trivial. Recall that any group automorphism of Z/pnZ as a group
is also a ring automorphism. Our action of β on 〈α〉 by conjugation therefore
becomes a multiplicative action on Z/pnZ by some 1 6= λ ∈ Z/pnZ.

By (†), the action of λq is trivial, i.e. λq ≡ 1 (mod pn). On the other hand, b
acts trivially on 〈āp〉, so pλ ≡ p (mod pn). This means pn−1|λ− 1. Hence there
is an integer k ∈ {1, . . . , p − 1} such that λ ≡ 1 + kpn−1 (mod pn). Raising to
the qth power, we find 1 ≡ λq ≡ (1 + kpn−1)q (mod pn).

Now, if n were ≥ 2, we’d have 1 ≡ 1 + qkpn−1 (mod pn) because all other
terms are divisible by at least p2(n−1), which is trivial in Z/pnZ. So, if n ≥ 2,
we derive p|qk, which is absurd. Therefore n = 1, and α has order exactly p.

Now Fact 3.4(1) and non-abelianness of Ξ together imply that βq must be
non-trivial.

Clearly 〈α〉 contains Ξ′ 6= 1. As [α, β] 6= 1, everything is proved.

Our next step is to lift Ξ isomorphically to a subgroup X ≤ N(T ), which
will require some attention.

Let a be a p-element of N(T ) \ C◦(T ) whose image in Ξ ≤ W is α. 1 Such
liftings exist by the usual torsion lifting principle [BN94, Ex. 11 p. 93; Ex. 13c
p. 72]. However, such a wild lifting of b need not normalize our 〈a〉.

1Let’s be consistent about the use of notation blocks.
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Claim 3.6. C(T ) has p⊥-type.

Proof. Otherwise we suppose towards a contradiction that Up(C(T )) 6= 1. Then
C(T ) lies inside a unique Borel subgroup B by Fact 2.6. In particular B is
normalized by the Weyl element representative a. As Up(B) 6= 1, it follows that
a ∈ B using Fact 2.9, but this contradicts Fact 2.3.

In consequence, [BC08, Theorem 4] says that any definable subgroup of
N(T ) satisfies conjugacy of Sylow p-subgroups

We let Tp denote the maximal p-torus in T , which might be trivial.

Claim 3.7. There is a q-element b0 lifting β and normalizing 〈a〉Tp.

Proof. Let π : N(T ) → N(T )/C(T ) denote the quotient map, and let H =
π−1(Ξ) and K = π−1(〈α〉). Of course K C H by Claim 3.5. Also, 〈a〉Tp is
clearly a Sylow p-subgroup of K. As Sylow p-subgroups of K are K-conjugate,
a Frattini argument yields H = K ·NH(〈a〉Tp). So N(〈a〉Tp) meets the coset β.
Again torsion lifting yields a q-element b0 in N(〈a〉Tp) whose image is β.

Claim 3.8. The group X0 := 〈a, b0〉 is finite.

Proof. As 〈a〉Tp is locally finite, so is (〈a〉Tp) · 〈b0〉 ≥ 〈a, b0〉.

Our X0 needn’t yet be isomorphic to Ξ; however, it’s elements retain their
original orders.

Lemma 3.9. Let G be a minimal connected simple group of finite Morley rank,
let T be a nontrivial maximal torus, and let x̄ ∈ N(T )/C(T ). Then any lifting
of x̄ to a torsion element x ∈ N(T ) \ C(T ) has order |x̄|. In other words
〈x〉 ∩ C(T ) = 1 whenever x ∈ N(T ) \ C(T ) is torsion.

Here we use the that minimal simple groups are covered by their Borel
subgroups.

Fact 3.10 ([AB08, Corollary 4.4]). Let G be a minimal connected simple group
of finite Morley rank. Any torsion element x of G lies inside any Borel subgroup
of G which contains C◦(x).

Proof of Lemma 3.9. Consider a lifting x of finite order with xn ∈ C(T ). Sup-
pose towards a contradiction that xn = 1. Fix some Borel subgroup B contain-
ing C◦(xn) ≥ C◦(x). Since x is torsion, x ∈ B by Fact 3.10. But T ≤ C◦(xn) ≤
B too, contradicting Fact 2.3.

In particular a has order p and b0 order qm.
To prove the isomorphism, we require the following observation.

Lemma 3.11. Let T be a torus in a minimal connected simple group, and let
x ∈ N(T ) \ C(T ). Then the function ϕ : T → given by t 7→ [t, x] is a surjective
endomorphism.
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Proof. The map ϕ is obviously a group homomorphism. Now ker ϕ = CT (x).
If the latter is infinite, then there is a non-trivial subtorus 1 6= τ ≤ T such
that x ∈ C(τ) = C◦(τ) by Fact 2.1. Hence C◦(τ) contains the group T ·
〈x〉, a contradiction to Fact 2.3. This proves that CT (x) is finite, hence ϕ is
surjective.

Claim 3.12. There is a q-element b lifting β and normalizing 〈a〉.

Proof. A translation tb0 of b0 by some t ∈ T has the same qm, by Lemma 3.9.
So we search for a t for which b normalizes 〈a〉.

Since β normalizes 〈α〉 but does not centralize it, there is an integer 1 < k < p
with αβ = αk. So there is an element s ∈ C(T ) such that ab0 = sak, and clearly
s ∈ X0 has finite order. Since b0 normalizes ≥ aTp and a normalizes Tp, we
actually have s ∈ Tp ≤ T .

By Lemma 3.11, there is a t ∈ T be such that [t, a−1] = s−b0
−1

. Set b := tb0.
Then still π(b) = β. As bqm ∈ T has finite order, b has order qm by Lemma 3.9.
Furthermore,

ab = (at)b0 = ([t, a−1]a)b0 = [t, a−1]b0ab0 = s−1sak.

So now X := 〈a, b〉 ≤ N(T ) is an isomorphic group lifting Ξ.
We next push our subgroup X into some Borel subgroup of G, after first

extracting one more consequence of Borel covering (Fact 3.10).

Lemma 3.13. Let G be a minimal connected simple group of finite Morley
rank. If U is a finite subgroup of G with a cyclic Sylow r-subgroup R that meets
Z(U), then U lies inside some Borel subgroup of G; in fact any Borel subgroup
containing C◦(z) for some z ∈ Z(U).

Proof. Fix z ∈ Z(U) of order r, and let B be a Borel containing C◦(z). Consider
some x ∈ U . If r divides |x| then z is a power of y := x. If r does not divide |x|
then z is a power of y := xz. In either case C◦(y) ≤ C◦(z). So y ∈ B by Fact
3.10. Hence x ∈ 〈y〉 lies inside B too.

Claim 3.14. There is a Borel subgroup B of G containing X.

Proof. Suppose first that ap 6= 1. By Claim 3.5, we find that Y := 〈ap, b〉 is
cyclic, and ap is central in X. So B exists by Lemma 3.13.

Suppose alternatively that ap = 1. Then, since [a, b] 6= 1, one has bq 6= 1 by
Fact 3.4 (i). Again Y := 〈a, bq〉 is cyclic by Claim 3.5, and now pq is central in
X. So once again B exists by Lemma 3.13.

Of course X determines the roles of a and b inside B.

Claim 3.15. X ′ = 〈a〉 ≤ Up(B) and b /∈ F (B)
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Proof. Let Sp be a Sylow p-subgroup of B′ containing a. By [BN94, Theorem
9.29 & Corollary 6.20], Sp = Up(B) ∗ Tp where Tp is some maximal p-torus
of F (B). Of course Tp is central in B by [BN94, Theorem 6.16]. So a /∈ Tp

since [a, b] 6= 1. The cylic group X ′ = 〈a〉 is the Sylow p-subgroup of X. So
a ∈ Up(B).

Also b /∈ F (B) since X is non-nilpotent.

We now find an honestly toral alternative to b who still centralizes some
unipotent element related to a. In fact such an element must centralize an
infinite unipotent subgroup by the following lemma.

Lemma 3.16. Let B be a Borel subgroup with Up(B) 6= 1, and t ∈ B. If
CUp(B)(t) 6= 1 then it is infinite.

Here one uses the following fact about relatively prime actions.

Fact 3.17 ([ABCC01], [Bur04, Fact 3.3]). Let H = KT be a group of finite
Morley rank. Suppose that T is a solvable π-group of bounded exponent and that
K is a definable abelian normal π⊥-subgroup of H. Then H = [H,T ]⊕CH(T ).

Proof of Lemma 3.16. Let x ∈ CUp(B)(t)# and let Zi := Z◦
i (Up(B)) for i ∈ N.

As Up(B) is nilpotent and connected, there is some integer i such that x ∈
Zi+1 \ Zi. In particular the action of t on the connected abelian quotient Y :=
Zi+1/Zi has some centralization. By Fact 3.17, CY (t) ∼= Y/[Y, t] is connected
and infinite, and hence CY (t) is infinite. As now Up(CY (t)) 6= 1, it follows that
Up(CB(t)) 6= 1.

Claim 3.18. There is a toral q-element t of B with an infinite centralizer in
either Up(B) or possibly Uq(B). In particular B is the only Borel containing
C◦

B(t).

Proof. Fix some Sylow q-subgroup Sq of B containing b. By [BN94, Theorem
9.29 & Corollary 6.20], Sq = Tq ∗ Uq(B), where Tq is a q-torus of B. We thus
have Tq 6= 1 because Sq cannot centralize a ∈ Up(B) while Uq(B) does. So we
may assume Uq(B) = 1 since otherwise any element of Tq suffices. In particular
b ∈ Tq is toral.

By Claims 3.5, 3.12, and 3.15, bq centralizes a ∈ Up(B)#. So our main
conclusion follows from Corollary 3.16. Now our last conclusion follows from
Fact 2.6.

At this point, the structure surrounding B solidifies considerably.
Fix g ∈ G such that t ∈ T g. Set T1 := T g. Of course T1 ≤ B by Claim 3.18.

Claim 3.19. There is no Borel subgroup of G both containing T and meeting
N(T ) \ C◦(T ).

Proof. Suppose there is a Borel subgroup B0 of G containing both T and some
c ∈ N(T ) \ C(T ). As B0 is connected and solvable, NB0(T ) = CB0(T ) by Fact
2.3. So c centralizes T , a contradiction.
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Claim 3.20. ag /∈ N(B).

Proof. Here ag /∈ B because a /∈ Bg−1
by Claim 3.19. So ag /∈ N(B) by Fact

2.9.

Lemma 3.21. The Prüfer p-rank prq(T1) of T1 is at least 3.

Proof. Suppose first that prq(T1) = 1. Then ag ∈ N(T1) normalizes 〈t〉. As B is
the only Borel subgroup containing C◦(t), ag also normalizes B, in contradiction
with Claim 3.20.

Suppose next that prq(T1) = 2. We have p > q+1 because q|p−1 and q 6= 2.
So there is no injective homomorphisms from Z/pZ to GL2(Z/qZ). So ag must
centralize t, again contradicting Claim 3.20.

We now derive our final contradiction. By the following, there is an el-
ementary abelian q-group E0 ≤ E := Ω1(T ) with mq(E0) ≥ 2 such that
CUp(B)(E0) 6= 1.

Fact 3.22 ([Bur04, Fact 3.7]). Let q be a prime number. Let H be a solvable
q⊥-group of finite Morley rank. Let E be a finite elementary abelian q-group
acting definably on H. Then

H = 〈CH(E0) : E0 ≤ E, [E : E0] = q〉.

By Fact 3.22 again, there is a v ∈ E#
0 such that CUp(Ba)(v) 6= 1 too. But

now Up(C◦(v)) meets both Up(B) and Up(Ba) nontrivially, a contradiction to
Fact 2.6.

This concludes the proof of theorem 3.1.

4 Possible Prüfer p-ranks

We’re aware, thanks to Fact 2.5, that a nontrivial Weyl group W produces p-
unipotence for some divisor p of |W |; making p-tori seem unlikey. Here we show
that such a p-torus has only a limited selection of the Prüfer p-ranks.

Theorem 4.1. Let G be a minimal connected simple group of finite Morley
rank, and let T be a nontrivial p-torus of G. Suppose that p is a prime divisor
of |WT |. Then p − 1 divides the Prüfer p-rank prp(T ) of T , and p is not the
minimal prime divisor of |W | unless p = 2.

The proof entirely relies on the following observation.

Lemma 4.2. Let T be a p-torus and α be an automorphism of order p of T .
Then:

• T has Prüfer-rank at least p− 1;

• if T has Prüfer-rank p and lives inside a group of finite Morley rank in
which α is a definable automorphism of T , then CT (α) is infinite.
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Here we apply the Tate module construction of a complex representation for
our Weyl group.

Fact 4.3 ([Ber01, BB04, §3.3]). Let T be a p-torus of Prüfer p-rank n. Then
End(T ) can be faithfully represented as the ring Mn×n(Zp) of n × n matrices
over the p-adic integers Zp.

Proof of Lemma 4.2. Recall that 1+X + · · ·+Xp−1 is irreducible in Qp[X]. In
the Tate module, α is represented by a matrix M ∈ GLd(Zp) ≤ GLd(Qp) where
d = prp(T ). As Mp = 1, the minimal polynomial µ of M must divide Xp − 1.
Since α 6= Id, we have M 6= Id, so µ 6= X − 1. Therefore µ 6= X − 1 divides
Xp − 1 = (X − 1)(1 + X + · · · + Xp−1). As 1 + X + · · · + Xp−1 is irreducible
over Qp, it follows that 1 + X + · · ·+ Xp−1 divides µ.

So the minimal polynomial has degree at least p−1. By the Cayley-Hamilton
Theorem, so must the characteristic polynomial; but the latter has degree d,
whence d ≥ p− 1. This proves the first claim.

Also, if d = p, then the characteristic polynomial is (1+X+· · ·+Xp−1)(X−a)
for some element a ∈ Qp, which is an eigenvalue of M . So a has multiplicative
order p in Qp, and this proves a = 1. Let x be an eigenvector for the eigenvalue
1. We may assume that x lies in Zd

p \ Zd.
Now projecting, we deduce that at every stage (Z/pnZ)d, α centralizes an

element xn of order pn. By compactness, α centralizes some element of infinite
order. Therefore CT (α) is infinite.

We now begin the proof of Theorem 4.1. Let T be a p-torus where p divides
|WT |. Let g be a p-element of N(T ) that has order p in WT , i.e. gp ∈ C(T ).

Claim 4.4. CT (g) is finite.

Proof. If not, then τ = C◦
T (g) is a non-trivial subtorus of T . In particular, Fact

2.1 says that C(τ) is a connected solvable group. Since it contains the p-group
T · 〈g〉, we find g ∈ C(T ), in contradiction with Fact 2.3.

Let T0 ≤ T be a subtorus of Prüfer p-rank exactly 1. Let T1 = T0 + T g
0 +

· · ·+ T gp−1

0 . This is a non-trivial g-invariant p-torus of Prüfer rank at most p.

Claim 4.5. T1 has Prüfer rank p− 1.

Proof. If either prp(T1) < p − 1 or prp(T1) = p, then Lemma 4.2 says that g
centralizes a non-trivial subtorus of T1. But this contradicts Claim 4.4.

Claim 4.6. There is a g-invariant subtorus T ′ < T , possibly trivial, with
Prüfer-rank prp(T ′) = prp(T )− (p− 1).

Proof. Since we’re working with an automorphism of order p, the intersection
T1 ∩ T ′ may be non-trivial but remains finite. The rank computation follows as
in Maschke’s theorem. 2

2I’ve not actually 100% sure about this comment anyway, change as you like.
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It follows, by induction on prp(T ), that T (k) = 0 eventually. So prp(T ) =
k(p− 1) as desired.

This proves the first part of Theorem 4.1.

We prove the second as follows.

Proposition 4.7. Let G be a minimal connected simple group of finite Morley
rank, let T be a decent torus of G, and let a ∈ N(T ) \ C(T ) be a p-element.
Then either prp(T ) = 0 or Up(C(a)) = 1.

Of course both are impossible together by [BC08, Theorem 3].

Proof. Otherwise suppose that both prp(T ) = 0 and Up(C(a)) = 1 hold. As
Up(C(a)) 6= 1, C◦(a) lies inside a unique Borel subgroup Ba by Fact 2.6. Let
Tp be the p-torus of T , and its nontrivial. Then there is some nontrivial z ∈
Z(〈a〉Tp) ∩ Tp by [BN94, ???]. So z normalizes C◦(a), and hence Ba. Hence
z ∈ Ba by Fact 2.9, and Up(CBa(z)) 6= 1 too. But T ≤ C(z). So Up(C(Tp)) 6= 1.
Again, by Fact 2.6, C(Tp) lies inside a unique Borel subgroup Bz, and a ∈ Bz

by Fact 2.9. But NBz (T ) = CBz (T ) by Fact 2.3, a contradiction.

Corollary 4.8. Let G be a minimal connected simple group whose Weyl group
W has odd order. Then G has no divisible p-torsion for p the minimal prime
divisor of |W |.

The corollary is a direct consequence of the following variation on Fact 2.5
above.

Fact 4.9 ([BC08, Corollary 5.3]). Let G be a minimal connected simple group
of finite Morley rank. Suppose the Weyl group is nontrivial and has odd order,
with r the smallest prime divisor of its order. Then any r-element representing
an element of order r in W centralizes a unipotent r-subgroup.

This proves the second part of Theorem 4.1.
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