
Fields interpretable in rosy theoriesKrzysztof Krupi«ski∗AbstratWe are working in a monster model C of a rosy theory T . We prove thefollowing theorems, generalizing the appropriate results from the �nite Morleyrank ase and o-minimal strutures. If R is a ∨-de�nable integral domain ofpositive, �nite Uþ-rank, then its �eld of frations is interpretable in C. If Aand M are in�nite, de�nable, abelian groups suh that A ats de�nably andfaithfully on M as a group of automorphisms, M is A-minimal and Uþ(M)is �nite, then there is an in�nite �eld interpretable in C. If G is an in�nite,solvable but non nilpotent-by-�nite, de�nable group of �nite Uþ-rank and Thas NIP, then there is an in�nite �eld interpretable in 〈G, ·〉.In the last part, we study in�nite, superrosy, dependent �elds. Using mea-sures, we show that eah suh �eld K satis�es K = Kn − Kn for every n ≥ 1.0 IntrodutionAn important goal in model theory is to obtain, in a de�nable way, lassial algebraistrutures in theories satisfying some general model theoreti or algebrai assump-tions. There is a long history of results of this kind, e.g. di�erent versions of thegroup on�guration theorem (originally proved by E. Hrushovski, see [6, Chapters 5and 7℄), getting �elds from de�nable ations of abelian groups in the �nite Morleyrank ase [8, Chapter 3℄ or in o-minimal strutures [5℄, or getting �elds from solvable,non nilpotent-by-�nite groups in the �nite Morley rank ase [8, Corollary 3.20℄ andfrom any non abelian-by-�nite groups in o-minimal strutures [5, Corollary 5.1℄.The goal of this paper is to generalize some of the results about the existene ofan in�nite �eld to a general ontext of rosy theories. We also try to understand thestruture of superrosy �elds satisfying NIP.Let C be a monster model of a rosy theory T . We always work in Ceq.At the beginning of Setion 2, we generalize [5, Lemma 4.1℄. Namely, we proveTheorem 1 Let R be a ∨-de�nable integral domain of positive, �nite Uþ-rank. Thenthe �eld of frations of R, all it F , is interpretable in C. Moreover, there is a ∨-de�nable ring embedding of R onto a subring of F with the same Uþ-rank as F .
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In [5℄, this was proved in the o-minimal ontext using essentially ertain topologyon ∨-de�nable rings, whih was de�ned by means of the standard o-minimal topol-ogy. In our ase, we give a very general proof, whih just uses some properties ofUþ-rank, and that is why it works in any situation where we have a nie notion ofdimension, for example in stable or simple theories (the dimension there is SU-rank).In the further part of Setion 2, we prove some variants of [8, Theorem 3.7℄ and[5, Lemma 4.2℄ in our general rosy ontext. For example, we proveTheorem 2 Let A and M be in�nite, de�nable, abelian groups suh that A atsfaithfully and de�nably on M as a group of automorphisms, M is A-minimal andUþ(M) is �nite. Then there is an in�nite �eld interpretable in C.The proofs of these results use Zilber's Indeomposables Theorem and hain on-ditions in the �nite Morley rank ase, and the topology in the o-minimal ase. Neitherof these tools are present in our situation. Our proofs rely on Theorem 1 and sometriks eliminating appliations of topology or hain onditions on intersetions ofuniformly de�nable groups.In Setion 3, we prove the main result of this paper.Theorem 3 Let G be a group of �nite Uþ-rank de�nable in C and suppose that Thas NIP. Assume that G is solvable-by-�nite but not nilpotent-by-�nite. Then thereis an in�nite �eld interpretable in 〈G, ·〉.Similarly to the �nite Morley rank ase, in the proof of Theorem 3 we use Theorem2. But the proof in our ontext is di�erent.In the last setion we prove some partial results onerning the following onje-ture formulated in [1℄.Conjeture 4 Eah in�nite, superrosy �eld with NIP is either a real losed or analgebraially losed �eld.In partiular, we show that eah suh �eld has the property K = Kn − Knfor every n ≥ 1. In our proofs we use absolute onneted omponents and Kieslermeasures.I would like to thank Clifton Ealy and Anand Pillay for interesting disussionand suggestions.1 PreliminariesLet C be a monster model of a theory T . We work in Ceq. Our general assumptionin this paper is that T is rosy, but often, we only need a nie notion of dimension.In the rosy (or rather superrosy) ontext suh a notion of dimension is Uþ-rank.The most interesting examples of rosy theories are simple theories and o-minimaltheories. 2



We are not going to repeat the basi de�nitions of rosiness, þ-forking and Uþ-rank.The fundamental paper about these notions is [4℄. For the basi theory of rosy groups,the reader is referred to [1℄ where a short exposition of rosy theories and þ-forking isalso given. Let us only reall here that if T is rosy, then þ-independene, denoted by
|⌣
þ, is a ternary relation on subsets of Ceq, whih satis�es all the properties of forkingindependene in simple theories exept for the Independene Theorem. Using |⌣

þ,we de�ne Uþ-rank in the same way as U-rank is de�ned in stable theories by means of
|⌣. Uþ-rank has most of the nie properties that U-rank has in stable theories, e.g. itsatis�es Lasar Inequalities. If D is an A-de�nable set, then Uþ(X) := sup{Uþ(d/A) :

d ∈ D}. Of ourse, if this supremum is �nite, then it is just the maximum. It turnsout that if D is a de�nable group and T is rosy, then the supremum is also attained[1, Remark 1.20℄.The following fat follows from a standard appliation of Lasar Inequalities.Fat 1.1 If K is a de�nable �eld and T is superrosy, then for every n > 0, [K∗ :
(K∗)n] < ω and, if char(K) = p 6= 0, then the range of the funtion f : K → Kde�ned by f(x) = xp − x is a subgroup of �nite index in K+.Another property of T that we sometimes assume is the non independene prop-erty (NIP), also alled T being dependent.De�nition 1.2 We say that T has the NIP if there is no formula ϕ(x, y) and se-quene 〈ai〉i<ω suh that for every w ⊆ ω there is bw suh that |= ϕ(ai, bw) i� i ∈ w.We will need the following onsequene of NIP proved by Shelah (for the proofsee e.g. [2, Theorem 6.1℄).Fat 1.3 If G is a (type-)de�nable group and T has NIP, then G00 (the smallesttype-de�nable subgroup of bounded index) exists.Another important for this paper onsequene of NIP and rosiness is (see [1,Proposition 1.7℄):Fat 1.4 Suppose T is rosy and has NIP. Any group G de�nable in T has i, i.e.the uniform hain ondition on intersetions of uniformly de�nable groups.We also have the following easy observation [1, Proposition 4.1℄.Fat 1.5 Let K be an in�nite, de�nable �eld. If (K+)00 exists, then (K+)00 = K.In partiular, if T has NIP, then (K+)00 = K.Reall that a (global) Kiesler measure on a de�nable set D is a �nitely additiveprobability measure on de�nable subsets of D. We say that a Kiesler measure µon X is de�nable (over A) if for eah formula ϕ(x, y) and losed subset C of [0, 1],
{b ∈ C : µ(ϕ(D, b)) ∈ C} is type-de�nable (over A). We say that a de�nable group
G is de�nably amenable if there is a left invariant Kiesler measure on G.In the last setion, we will need the following fat [3, Lemma 5.8℄.3



Fat 1.6 Assume that T has NIP and G is a de�nably amenable, de�nable group.Then there is a left invariant, de�nable Kiesler measure on G.Now let us reall the de�nition of a ∨-de�nable ring from [5℄.De�nition 1.7 We say that a ring 〈R, ·, +〉 is a ∨-de�nable (or rather ∨-interpretable)ring if R =
⋃

i∈I Xi where Xi's are A-de�nable subsets of some sort of Ceq for someset A, for every i, j ∈ I there is k ∈ I suh that Xi ∪ Xj ⊆ Xk, and the restritionsof addition and multipliation to Xi × Xj are de�nable funtions.The assumption that for every i, j ∈ I there is k ∈ I suh that Xi ∪ Xj ⊆ Xk ispurely osmeti, beause we an always extend the family {Xi : i ∈ I} by adding allunions of �nitely many Xi's.By the ompatness theorem, if D is a de�nable subset of X, then it is overedby �nitely many Xi's (so, if fat, by one Xi) and hene addition and multipliationrestrited to D are de�nable.We de�ne similarly ∨-de�nable groups or just sets. ∨-de�nable groups and ringsour naturally as subgroups and subrings generated by de�nable subsets of de�nablegroups and rings.If X =
⋃

i∈I Xi is a ∨-de�nable set, then Uþ(X) is de�ned as the supremum ofUþ-ranks of the Xi's. If this supremum is �nite, then Uþ-ranks of all Xi's are �niteand Uþ(X) is just the maximum of Uþ-ranks of the Xi's. Notie that in a rosy theory,by the ompatness theorem, Uþ(X) is the supremum of Uþ-ranks of all de�nablesubsets of X.De�nition 1.8 If R1 =
⋃

i∈I Xi and R2 =
⋃

j∈J Yj are ∨-de�nable rings, then ahomomorphism f : R1 → R2 is alled ∨-de�nable if its restrition to eah Xi isde�nable.Another notion needed is G-minimality. If G is a de�nable group ating de�nablyon another de�nable group H by automorphisms, then we say that H is G-minimal if
H is in�nite and does not have in�nite, proper, de�nable subgroups invariant underthe ation of G.2 Getting �elds from ∨-de�nable rings and de�n-able ations of abelian groupsIn this setion, we generalize some results from Setion 4 of [5℄ and [8, Theorem 3.7℄.The main obstale here in omparison with the o-minimal ase is that we do not havea nie topology, and with the �nite Morley rank ase, that we do not have Zilber'sIndeomposables Theorem.We work in a monster model C of a rosy theory T .The following theorem was proved in the o-minimal ontext [5, Lemma 4.1℄ usinga nie topology on ∨-de�nable rings. Here we give a very general proof, whih works4



in any ontext in whih we have a nie notion of dimension, e.g. in simple and ino-minimal strutures.Theorem 2.1 Let R be a ∨-de�nable integral domain of positive, �nite Uþ-rank.Then the �eld of frations of R, all it F , is interpretable in C. Moreover, there is a∨-de�nable ring embedding of R onto a subring of F with the same Uþ-rank as F .Proof. Sine R is ∨-de�nable, we have that R =
⋃

i∈I Xi where all Xi's are setsde�nable over some set A, for any i, j ∈ I there is k ∈ I suh that Xi ∪ Xj ⊆ Xk,and the restritions of addition and multipliation to any Xi × Xj are de�nable. Sofor every r ∈ R the map fr : R → R given by fr(x) = rx restrited to any Xi isde�nable.Now let D := Xi be suh that Uþ(D) = Uþ(R).Claim 1 For any a, b ∈ R \ {0}, (Da − Da) ∩ (Db − Db) 6= {0}.Proof of Claim 1. Consider the funtion f : D × D → R de�ned by
f(r1, r2) = r1a + r2b.As fa ↾D, fb ↾D and + restrited to any de�nable subset of R are de�nable, so is f .But Uþ(D×D) = 2Uþ(D) > Uþ(D) = Uþ(R), hene by Lasar inequalities we easilyget that f is not injetive. Thus, there are two distint pairs (r1, r2), (r

′
1, r

′
2) ∈ D×Dsuh that r1a+r2b = r′1a+r′2b. So (r1−r′1)a = r1a−r′1a = r′2b−r2b = (r′2−r2)b. Weknow that a, b 6= 0 and at least one of the elements r1−r′1 and r′2−r2 is nonzero. Henethe element r1a−r′1a is nonzero and, of ourse, it belongs to (Da−Da)∩(Db−Db). �Choose any a ∈ R \ {0} and put X = Da − Da.Claim 2 For any r1, r2 ∈ R \ {0}, r1X ∩ r2X 6= {0}.Proof of Claim 2. Sine R is ommutative, riX = riDa − riDa = D(ria) − D(ria).As r1, r2 and a are nonzero, we see that r1a, r2a ∈ R \ {0}. So by Claim 1, we get

r1X ∩ r2X = (D(r1a) − D(r1a)) ∩ (D(r2a) − D(r2a)) 6= {0}. �The rest of the proof that the �eld of frations of R is interpretable is the same asin the proof of [5, Lemma 4.1℄. Namely, the fration �eld F equals (R× (R\{0}))/∼where (r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1. By Claim 2, F an be indenti�edwith (X × (X \ {0}))/∼X where ∼X is the restrition of ∼ to X × (X \ {0}), andobviously ∼X is de�nable. Sine addition and multipliation in R restrited to anyde�nable subset are de�nable, we easily get that addition and multipliation in Fare de�nable. Hene F is an interpretable �eld. If we �x a nonzero r0 ∈ R, then themap r 7→ (rr0, r0)/∼ gives us a ∨-de�nable embedding of R into F .The fat that Uþ(F ) = Uþ(R) requires an extra explanation. Sine R is ∨-de�nably embeddable in F , we easily get that Uþ(R) ≤ Uþ(F ). Let B be a set on-taining A∪{a} and suh that addition and multipliation restrited to any Xi are de-�nable over B. Then F is interpretable over B. Now onsider (r1, r2) ∈ X×(X \{0})5



suh that Uþ([(r1, r2)]∼X
/B) = Uþ(F ). We need to show that Uþ([(r1, r2)]∼X

/B) ≤Uþ(R). Sine the funtion r 7→ (r1r, r2r) from R \ {0} to R × (R \ {0}) is a ∨-de�nable injetion and its range is ontained in the ∼-lass of (r1, r2) (omputedin R × (R \ {0})), there is j ∈ I suh that X ⊆ Xj and Uþ-rank of the ∼Xj
-lass of (r1, r2) (treated as a subset of Xj × (Xj \ {0})) is at least Uþ(R). Sine

(X × (X \ {0}))/∼X an be B-de�nably identi�ed with (Xj × (Xj \ {0}))/∼Xj
, wean work in (Xj × (Xj \{0}))/∼Xj

. Let d = [(r1, r2)]∼Xj
∈ (Xj × (Xj \{0}))/∼Xj

. Sothere is (r′1, r
′
2) ∼Xj

(r1, r2) in Xj × (Xj \ {0}) suh that Uþ((r′1, r′2)/B, d) ≥ Uþ(R).Sine d ∈ dcl(r′1, r
′
2, B), by Lasar Inequalities, we get 2Uþ(R) ≥ Uþ((r′1, r′2)/B) =Uþ((r′1, r′2), d/B) ≥ Uþ((r′1, r′2)/B, d)+Uþ(d/B) ≥ Uþ(R)+Uþ(d/B). So Uþ(d/B) ≤Uþ(R). �Notie that in the above theorem the assumption that R is of positive Uþ-rank isneessary. Indeed, if C is a real losed �eld, then Q is a ∨-de�nable �eld of Uþ-rank0 and it is not interpretable in C.Now we are going to generalize some lassial results about getting �elds fromde�nable ations of abelian groups [8, Theorem 3.1℄, [5, Lemma 4.2℄. As in the o-minimal ase, we annot apply the method from the �nite Morley rank ase beausewe do not have Zilber's Indeomposables Theorem. But, as in [5℄, we an applyTheorem 2.1. One again, we give here general proofs whih omit any appliationsof o-minimal topology or hain onditions.Theorem 2.2 Let A and M be in�nite, de�nable, abelian groups suh that A atsfaithfully and de�nably on M as a group of automorphisms, M is A-minimal andUþ(M) is �nite. Then there is an in�nite �eld interpretable in C.Proof. For a ∈ A we de�ne Fix(a) = {m ∈ M : am = m} and for m ∈ M weput Stab(m) = {a ∈ A : am = m}. Of ourse, Fix(a) and Stab(m) are de�nablesubgroups of M and A, respetively.Claim 1 There are m1, . . . , mn ∈ M suh that Stab(m1) ∩ · · · ∩ Stab(mn) = {e}.Proof of Claim 1. For every a ∈ A\{e}, Fix(a) is a proper, de�nable subgroup of Minvariant under the ation of A. So by A-minimality of M , Fix(a) is �nite. Henefor any in�nite subset S of M , ⋂

m∈S Stab(m) = {e}. Thus, by the ompatnesstheorem, there are m1, . . . , mn ∈ M suh that Stab(m1) ∩ · · · ∩ Stab(mn) = {e}. �Let R be the ring of endomorphisms of M generated by A. Then R is ommuta-tive.Notie that every r ∈ R is determined by (r(m1), . . . , r(mn)). If not, then thereis r ∈ R \ {0} suh that r(m1) = · · · = r(mn) = 0. Sine R is ommutative, we getthat ker(r) is a proper, de�nable and invariant under the ation of A subgroup of
M ontaining {m1, . . . , mn}. So Am1 + · · ·+ Amn ⊆ ker(r). On the other hand, byhoie of m1, . . . , mn, we get that the funtion a 7→ (am1, . . . , amn) is an injetionfrom A to Mn. So there is i suh that Ami is in�nite, and hene ker(r) is in�nite.This ontradits the assumption that M is A-minimal.6



Having the above observation, we get the following in a rather standard way.Claim 2 The ring R is ∨-de�nable, ontained in Mn with the addition inheritedfrom Mn, and 0 < Uþ(R) < ω.Proof of Claim 2. Let H = 〈A(m1, . . . , mn)〉. By the above observation, the funtion
f : R → H ⊆ Mn de�ned by f(r) = (r(m1), . . . , r(mn)) is a bijetion. Of ourse,
H :=

⋃
i<ω Xi where Xi = ±A(m1, . . . , mn) ± · · · ± A(m1, . . . , mk) (i-many times).So H is a ∨-de�nable subgroup of Mn.By the de�nition of f , we see that for any r1, r2 ∈ R we have f(r1 + r2) =

f(r1) + f(r2) (+ on the left hand side is the addition in R and + on the right handside is the addition in Mn).Now we de�ne multipliation, ∗, on H to make f a ring isomorphism, i.e. f(r1) ∗
f(r2) := f(r1r2) for all r1, r2 ∈ R. We leave as an easy exerise to hek that
∗ : H × H → H is ∨-de�nable, i.e. for any i, j < ω, ∗ : Xi × Xj → Mn is de�nable.Of ourse, 0 < Uþ(Ami) ≤ Uþ(H) ≤ Uþ(Mn) < ω. �The next laim has the same proof as in the �nite Morley rank ase.Claim 3 R is an integral domain.Proof of Claim 3. Take any r1, r2 ∈ R suh that r1r2 = 0. If r2 6= 0, then ker(r2) is aproper, de�nable subgroup of M invariant under the ation of A. So by A-minimalityof M , ker(r2) is �nite. So rng(r2) is an in�nite, de�nable subgroup of M invariantunder the ation of A. Thus rng(r2) = M . So we get r1 = 0. �By Claims 2, 3 and Theorem 2.1, we get an in�nite �eld interpretable in C. �Assuming that M does not have nontrivial, proper, de�nable subgroups invariantunder the ation of A, we get even more spei� information about our interpretable�eld.Proposition 2.3 Let A and M be in�nite, de�nable, abelian groups suh that A atsfaithfully and de�nably on M as a group of automorphisms, M does not have anynontrivial, proper, de�nable subgroups invariant under the ation of A and Uþ(M)is �nite. Then for every nonzero m ∈ M there is a �eld K de�nable in C whoseunderlying additive group is 〈M, +〉, and 〈A, ·〉 is de�nably embeddable in K∗ bysending a ∈ A to am. After the embedding, the ation of A on M beomes the salarmultipliation.Proof. Let R be the ring of endomorphisms of M generated by A. We easily see thatevery nonzero r ∈ R is an automorphism of M . Indeed, sine ker(r) is a proper,de�nable subgroup of M invariant under the ation of A, it must be trivial. So
rng(r) is an in�nite, de�nable subgroup of M invariant under the ation of A, andhene it is equal to M .Choose a nonzero m ∈ M . We onlude that every element r ∈ R is determinedby r(m). So by the proof of Theorem 2.2, R is ∨-de�nable (after the indenti�ation7



of every r ∈ R with r(m) ∈ M), ontained in M with the addition inherited from
M , and the �eld of frations, F , of R is interpretable in C. More preisely, F =
(X × (X \ {0}))/∼ where X is a de�nable subset of R.The rest is the same as in the last paragraph of the proof of [5, Lemma 4.2℄.Every element (α, β)/∼∈ F an be identi�ed with the automorphism αβ−1 of M .So F is a �eld of automorphisms of M . We easily see that the ation of F on Mis de�nable. As above, we show that every element k ∈ F is determined by k(m).Hene F an be de�nably embedded into M by sending k ∈ F to k(m). The rangeof this map is a de�nable �eld, say K, whose additive group is a subgroup of Minvariant under A, so it must be M . Of ourse, A is de�nably embeddable in K∗by sending a ∈ A to am. The fat that after this embedding the ation of A on Moinides with the �eld multipliation is trivial. �Using Proposition 2.3, we obtain the following strengthening of Theorem 2.2.Corollary 2.4 Let A and M be in�nite, de�nable, abelian groups suh that A atsfaithfully and de�nably on M as a group of automorphisms, M is A-minimal andUþ(M) is �nite. Then there is an in�nite �eld K interpretable in C whose underlyingadditive group is M/M0 for some �nite subgroup M0 of M invariant under A, and
A/A0 is de�nably embeddable in K∗ for some �nite subgroup A0 of A. In fat,the ation of A on M indues a faithful and de�nable ation of A/A0 on M/M0 byautomorphisms, and after the embedding this ation beomes the salar multipliation.Proof. By Proposition 2.3, in order to prove the orollary, it is enough to �nd a�nite subgroup M0 of M whih is invariant under the ation of A, and a �nitesubgroup A0 of A suh that A/A0 ats faithfully and de�nably on M/M0 as a groupof automorphisms and M/M0 does not have nontrivial, proper, de�nable subgroupsinvariant under A/A0.De�ne M0 = {m ∈ M : [A : Stab(m)] < ω}. Of ourse, M0 is a subgroup of Minvariant under A. We laim that M0 is �nite (and hene de�nable). If not, there isan in�nite, ountable set S ontained in M0. Then ⋂

m∈S Stab(m) is a nontrivial (infat, of bounded index) subgroup of A. So there is a nontrivial a ∈ ⋂
m∈S Stab(m),whih means that S ⊆ Fix(a), a ontradition with the fat that Fix(a) is �nite.Sine M0 is invariant under A, the ation of A on M indues an ation of A on

M/M0. It is easy to see that A ats on M/M0 by automorphisms.De�ne A0 as the set of those a ∈ A whih at as the trivial automorphism on
M/M0. Then A0 is a subgroup of A. We laim that it is �nite. Indeed, by Claim1 in the proof of Theorem 2.2, there are m1, . . . , mn ∈ M suh that Stab(m1) ∩
· · · ∩ Stab(mn) = {e}. So every a ∈ A is determined by (am1, . . . , amn). On theother hand, if a indues the trivial automorphism of M/M0, then am1 ∈ m1 +
M0, . . . , amn ∈ mn + M0. Sine M0 is �nite, we get only �nitely many possibilitiesfor a ∈ A induing the trivial automorphism of M/M0, i.e A0 is �nite.Summarizing, we get that A/A0 ats faithfully and de�nably on M/M0 as a groupof automorphisms. It remains to hek that M/M0 does not have nontrivial, proper,8



de�nable subgroups invariant under A/A0. Consider any de�nable subgroup G of
M/M0 invariant under A/A0 and let M1 < M be the preimage of G under thequotient map. We see that M1 is a de�nable subgroup of M invariant under A. Soeither M1 = M , and then G = M/M0, or M1 is �nite. In the seond ase, for any
m ∈ M1 the orbit Am ⊆ M1 is �nite so [A : Stab(m)] < ω, i.e. m ∈ M0; hene
M0 = M1, whih means that G is trivial. �3 Getting �elds in solvable non-nilpotent groupsIn this setion we prove the main result of the paper.Theorem 3.1 Let G be a group of �nite Uþ-rank de�nable in a monster model of arosy theory satisfying NIP. Assume that G is solvable-by-�nite but not nilpotent-by-�nite. Then there is an in�nite �eld interpretable in 〈G, ·〉.Before we start to prove the theorem, let us show the following general lemmaand a standard remark.Lemma 3.2 Suppose P and Q are in�nite abelian groups, P ats on Q by automor-phisms and for every p ∈ P \ {eP} and q ∈ Q \ {eQ}, p · q 6= q. Then Q ⋊ P issolvable but not nilpotent-by-�nite.Proof. Solvability is obvious. Suppose for a ontradition that Q⋊P is nilpotent-by-�nite. Then there are subgroups P1 and Q1 of �nite index in P and Q, respetively,suh that the restrition of the ation of P on Q gives us an ation by automorphismsof P1 on Q1 satisfying the property (∀p ∈ P1 \ {eP})(∀q ∈ Q1 \ {eQ})(p · q 6= q), andmoreover Q1 ⋊ P1 is nilpotent. So wlog Q ⋊ P is nilpotent. To get a ontradition,it is enough to show that Z(Q ⋊ P ) is trivial.We an identify Q with Q×{eP } < Q⋊P and P with {eQ}×P < Q⋊P . After thisidenti�ation Q ⋊ P = QP . Let e be the neutral element of Q ⋊ P . By assumption,for all p ∈ P \ {e} and q ∈ Q \ {e} we have pqp−1q−1 = (p · q)q−1 6= qq−1 = e.Take any qp ∈ Z(Q ⋊ P ) where p ∈ P and q ∈ Q. Then qpq(qp)−1q−1 = e so
pqp−1q−1 = e. By the last paragraph, we get p = e or q = e. But one again usingthe last paragraph, we also see that P ∩Z(Q×P ) = Q∩Z(Q ⋊ P ) = {e}. So p = eand q = e. Thus we have proved that Z(Q ⋊ P ) = {e}. �Remark 3.3 (i) Let G be a group suh that all de�nable quotients of de�nable sub-groups of G have i on entralizers. Assume that G is solvable-by-�nite. Then Ghas a de�nable, solvable subgroup H of �nite index, and H has a normal sequene
{e} = H0 � H1 � · · ·� Hn = H suh that eah quotient Hi+1/Hi is abelian and eah
Hi is de�nable.(ii) Let G be a group suh that all de�nable quotients of de�nable subgroups of Ghave i on entralizers. Assume that N is a nilpotent subgroup of G. Then G hasa de�nable nilpotent subgroup H ontaining N . Thus, the upper entral series of Honsists of de�nable subgroups of G. 9



Proof. (i) By a standard trik, there is a normal, solvable subgroup L of �nite indexin G. Then the derivative sequene of L, all it {e} = L0�L1� · · ·�Ln = L, onsistsof normal subgroups of G. Now we de�ne a sequene {e} = H0 � H1 � · · · � Hn ofde�nable, normal subgroups of G with abelian quotients, and suh that Hi > Li forevery 0 ≤ i ≤ n.
H0 is de�ned as {e}. Suppose H0, . . . , Hi satisfying all the above assumptionshave been onstruted. Then we de�ne Hi+1 = π−1

i [Z(C(Li+1Hi/Hi))] where πi :
G → G/Hi is the natural quotient map. Using i on entralizers, one an easilyhek that this onstrution works.Now H := Hn together with the sequene {e} = H0 � H1 � · · · � Hn = H havethe desired properties.(ii) The proof is the same as in the stable ase [8, Theorem 3.17℄, by indution onthe nilpotent lass. If N is abelian, then H = Z(C(N)) works. For the indutionstep, let Z = Z(C(Z(N))). By i on entralizers, Z is de�nable, abelian, it is en-tralized by N and Z(N) < Z. Hene NZ/Z ∼= N/(N ∩Z) is a nilpotent subgroup of
C(Z)/Z of a smaller lass of nilpoteny than N so by indution hypothesis, there isa de�nable, nilpotent subgroup of C(Z)/Z ontaining NZ/Z. Then its preimage un-der the natural quotient map is a de�nable, nilpotent subgroup of G ontaining N . �Proof of Theorem 3.1. By Remark 3.3, we an assume that G is solvable and it has anormal sequene onsisting of de�nable subgroups with abelian quotients. It is alsolear that we an assume that (G, ·) is our monster model.The proof is by indution on Uþ(G). In fat, in the paragraph below we will showthat our assumptions on G imply that Uþ(G) ≥ 2. The fat that G is in�nite followsimmediately from the assumption that G is not nilpotent-by-�nite.Assume that the theorem is true for groups of Uþ-rank smaller that Uþ(G). Byi on entralizers, we an assume that G is entralizer onneted. If Z(G) is in�nite,then sine G is not nilpotent-by-�nite, G/Z(G) is a non nilpotent-by-�nite, solvablegroup of Uþ-rank smaller than Uþ(G). So by indution hypothesis, we get an in�niteinterpretable �eld (notie that if Uþ(G) = 1, then [G : Z(G)] < ω, a ontradition).So we need to onsider the ase when Z(G) is �nite. Dividing out by Z(G), we anassume that G is also enterless. This implies that G does not have nontrivial, �nite,normal subgroups. Indeed, if H � G is �nite, then [G : C(h)] < ω for every h ∈ H .But G is entralizer onneted so H ⊆ Z(G) = {e}. So by solvability of G, there isan in�nite, de�nable, abelian, normal subgroup H of G (notie that if Uþ(G) = 1,then [G : H ] < ω, a ontradition; so we have proved that Uþ(G) ≥ 2).Now hoose a de�nable subgroup G0 of �nite index in G and an in�nite, de�nable,abelian, normal subgroup H of G0 with minimal possible Uþ-rank (ranging over allsuh pairs (G0, H)). Wlog G = G0. We an also assume that H is entralizeronneted in G.Sine G is not nilpotent-by-�nite, G/C(H) is in�nite. As Uþ(G/C(H)) < Uþ(G),by indution hypothesis, we an assume that G/C(H) is nilpotent-by-�nite. Usingi on entralizers and Remark 3.3, we an replae G be a de�nable subgroup of �niteindex so that G/C(H) beomes nilpotent and entralizer onneted. This implies10



that Z(G/C(H)) is in�nite.Put A = Z(G/C(H)) and A0 = π−1[A] where π : G → G/C(H) is the naturalquotient map. Then A0 is a de�nable, normal subgroup of G and A = A0/C(H)is an in�nite, abelian group interpretable in 〈G, ·〉. Moreover, A ats faithfully andde�nably on H by automorphisms: aC(H) ∗ h = ha for aC(H) ∈ A and h ∈ H .Claim 1 For every a ∈ A0 \ C(H), C(a) ∩ H = {e}.Proof of Claim 1. Let B = C(a) ∩ H . It is enough to show that B � G (be-ause H was hosen to have minimal possible positive Uþ-rank, H is entralizeronneted in G and G does not have nontrivial, �nite, normal subgroups). Takeany g ∈ G. We need to show Bg = B. Of ourse, Bg = C(ag) ∩ H . Sine
A = Z(G/C(H)), agC(H) = (aC(H))g = aC(H). So ag = ac for some c ∈ C(H).Thus Bg = C(ag) ∩ H = C(ac) ∩ H = C(a) ∩ H = B. �By Claim 1, P := A and Q := H satisfy the assumptions of Lemma 3.2 sowe onlude that R := H ⋊ A is an interpretable group whih is solvable but notnilpotent-by-�nite. We also have Uþ(R) = Uþ(H)+Uþ(A). So if Uþ(A) < Uþ(G/H),then Uþ(R) < Uþ(H) + Uþ(G/H) = Uþ(G) and hene we are done by indutionhypothesis. Therefore, we an assume that Uþ(A) = Uþ(G/H). But Uþ(A) =Uþ(A0)−Uþ(C(H)) ≤ Uþ(G)−Uþ(H) = Uþ(G/H) and equality holds i� [G : A0] < ωand [C(H) : H ] < ω. So we get [C(H) : H ] < ω, and we an assume that G = A0.By NIP, H00 exists.Claim 2 H00 is de�nable.Proof. Take any a ∈ G \ C(H). We laim that C(a) is in�nite. If not, thenUþ(aG) = Uþ(G) so (aH)G is an in�nite subset of G/H . But sine G/C(H) isabelian and [C(H) : H ] < ω, we get a ontradition.On the other hand, by Claim 1, C(a)∩H = {e}. So if we put G1 = HC(a), then
[G1 : H ] is in�nite.By NIP, G00

1 exists. Notie that H00 = G00
1 ∩H . The inlusion (⊆) is obvious. Toprove (=), assume for a ontradition that H00 ( G00

1 ∩ H . By the de�nition of G1and the fat that C(a)∩H = {e}, we get that H00C(a) is a type-de�nable subgroupof G1 of bounded index, not ontaining G00
1 , a ontradition.Sine [G1 : G1 ∩ C(H)] ≥ ω, there is b ∈ G00

1 \ C(H). By Claim 1, for every
c ∈ bH we have Uþ(cH) = Uþ(H) = Uþ(bH). As bH is losed under onjugations byelements of H , we get that bH = cH

1 ∪ · · · ∪ cH
n for some c1, . . . , cn ∈ bH . We alsoknow that G00

1 � G1 so bH ∩ G00
1 = cH

i1
∪ · · · ∪ cH

ik
for some 1 ≤ i1 < · · · < ik ≤ n.Thus, bH∩G00

1 is de�nable. On the other hand, sine b ∈ G00
1 , by the last paragraph,we get bH ∩ G00

1 = b(H ∩ G00
1 ) = bH00. Therefore, H00 is de�nable. �By Claim 2, replaing H by H00 (and repeating all arguments preeding Claim2 for this new H), we an assume that H = H00.Claim 3 H does not have nontrivial, proper, de�nable subgroups invariant under theation of A. 11



Proof of Claim 3. Suppose H1 is a de�nable subgroup of H invariant under A. Sine
A = G/C(H), we get H1 � G. So, by minimality of Uþ(H), H1 is either �nite orof �nite index in H . On the other hand, we know that G does not have nontrivial,�nite, normal subgroups and H = H00. Hene H1 = {e} or H1 = H . �By Claim 3, we see that M := H and A satisfy the assumptions of Theorem 2.2(or even Proposition 2.3) so an in�nite, interpretable �eld exists. �In [1℄, Theorem 3.1 was proved in the ase of Uþ(G) = 2 but under a muhstronger assumption that G has hereditarily fsg (�nitely satis�able generis). Infat, under this assumption there was proved even more, namely:Fat 3.4 Assume that G has NIP, hereditarily fsg, Uþ(G)=2 and G is not nilpotent-by-�nite. Then, after possibly passing to a de�nable subgroup of �nite index andquotienting by its �nite enter, G is (de�nably) the semidiret produt of the additiveand multipliative groups of an algebraially losed �eld F interpretable in 〈G, ·〉, andmoreover G = G00.Analyzing arefully the proof of Theorem 3.1 and modifying it a little bit, weobtain the following strengthening of Theorem 3.1 in the Uþ-rank 2 ase.Corollary 3.5 Let G be a group of Uþ-rank 2 de�nable in a monster model of a rosytheory satisfying NIP. Assume that G is solvable-by-�nite but not nilpotent-by-�nite.Then, after possibly passing to a de�nable subgroup of �nite index and quotientingby its �nite enter, G is (de�nably) the semidiret produt of the additive group anda �nite index subgroup of the multipliative group of a �eld K interpretable in 〈G, ·〉.Proof. By the proof of Theorem 3.1, we know that there is no group of Uþ-rank 0or 1 satisfying the assumptions of Theorem 3.1. Therefore, under the assumptionUþ(G) = 2, the proof of Theorem 3.1 neessarily leads us to the last paragraphand produes a �eld using Proposition 2.3. So for any nontrivial h ∈ H we getan interpretable �eld, say K, whose additive group is 〈H, ·〉 and suh that the map
f : G/C(H) → K∗ given by f(gC(H)) = gC(H) ∗ h = hg is a de�nable embeddingof G/C(H) into K∗, and after this embedding the ation of G/C(H) on H oinideswith the �eld multipliation. Sine Uþ(K∗) = 1 = Uþ(G/C(H)), the image of
G/C(H) by f is a �nite index subgroup of K∗, all it L.Claim 1 Without loss of generality we an assume that G = HB where B is ade�nable, abelian group of Uþ-rank 1, H ∩ B = {e} and C(H) = H.Proof of Claim 1. Sine [C(H) : H ] is �nite, we an hoose a ∈ G \ C(H). By the�rst paragraph of the proof of Claim 2 and by Claim 1 in the proof of Theorem 3.1,we get that C(a) is in�nite and C(a) ∩ H = {e}. Thus Uþ(C(a)) = 1 and so C(a)is nilpotent-by-�nite. Using Remark 3.3 and onsidering the entralizer onnetedomponent of C(a), we get that C(a) has a de�nable abelian subgroup B of �niteindex. Sine Uþ(HB) = 2, we an assume G = HB. In order to �nish the proof of12



Claim 1, it is enough to show the followingSublaim C(H) = H .Proof of Sublaim. It is enough to show that C(H) ∩ B = {e}. So we will be doneif we show that for any b ∈ B \ C(H), C(b) ∩ C(H) = {e}. We proeed in the sameway as in the proof of Claim 1 in the proof of Theorem 3.1.Take any b ∈ B \C(H). Let C = C(b)∩C(H). It is enough to show that C �G.Indeed, if C �G, then sine G does not have nontrivial, �nite, normal subgroups, weget that either C = {e} or C is in�nite. In the seond ase, [C(H) : C] is �nite. Thisimplies that [H : H ∩ C] is �nite. Sine H = H00, we get H ⊆ C and so b ∈ C(H),a ontradition.Take any g ∈ G. We need to show Cg = C. Of ourse, Cg = C(bg) ∩ H . Sine
G/H ∼= B is abelian, bgH = (bH)g = bH . So bg = bc for some c ∈ H . Thus
Cg = C(bg) ∩ C(H) = C(bc) ∩ C(H) = C(b) ∩ C(H) = C. �By Claim 1, G/C(H) = G/H = BH/H ∼= B and we see that B is de�nably iso-morphi to L by sending b ∈ B to hb. We also easily see that the ation of L on Hby the �eld multipliation is the same as the ation of B on H by onjugation. So
G = HB is de�nably isomorphi to K+ ⋊ L. �4 Superrosy dependent �eldsThe main motivation in this setion is Conjeture 4. To prove this onjeture it isenough to show that eah in�nite, superrosy �eld K with NIP and ontaining √−1 isalgebraially losed. In fat, it su�es to show that for every natural number n > 0,
Kn = K, and if p is the harateristi of K, then the funtion f : K → K de�nedby f(x) = xp −x is onto (beause then we an apply the standard Maintyre's proof[8, Theorem 3.1℄). The fat that f is onto follows from Fats 1.1 and 1.5.In this paper we will prove a weaker ondition than Kn = K, namely that forevery natural number n > 0, K = Kn − Kn. In partiular, if n is odd or if 2

k√−1exists in K where 2k is the largest power of 2 dividing n, then K = Kn+Kn. We alsoprove other results of this kind. The main idea involved here is to apply de�nablemeasures.Let us start from a general fat.Proposition 4.1 Let K be any �eld and G = K ⋊K∗ (i.e. (k1, k2) · (k′
1, k

′
2) = (k1 +

k2k
′
1, k2k

′
2)). Then G is amenable and there is a �nitely additive, probabilisti measureon K whih is invariant under additive and non-zero multipliative translations.Proof. Of ourse, G is solvable so it is amenable, i.e. there is a �nitely additive,probabilisti, left (two-sided) invariant measure m on G.De�ne a funtion µ : P(K) → [0, 1] by

µ(A) = m(A × K∗).13



It is obvious that µ is a �nitely additive, probabilisti measure on K. Now we willhek that µ is additively and multipliatively invariant. In the additive ase, forevery A ⊆ K and k ∈ K we have:
µ(k + A) = m((k + A) × K∗) = m((k, 1) · (A × K∗)) = m(A × K∗) = µ(A).In the multipliative ase, for every A ⊆ K and k ∈ K∗ we have:

µ(kA) = m((kA)×K∗) = m((0, k) · (A×K∗)) = m(A×K∗) = µ(A). �Note that if K is de�nable in a monster model C of a theory satisfying NIP, thensine G := K ⋊ K∗ is also de�nable in C and G is amenable, by Fat 1.6, there is ade�nable, left invariant Keisler measure on G. Using this measure as m in the aboveproof we get:Corollary 4.2 Let K be any �eld de�nable in a monster model of a theory satisfyingNIP. Then there is a de�nable Keisler measure on K invariant under additive andnon-zero multipliative translations.De�nition 4.3 Suppose G is a de�nably amenable group (with left invariant Keislermeasure µ) de�nable in a monster model of any theory T . We say that a de�nableset X ⊆ G is µ-generi if µ(X) > 0. We say that a type (or its set of realizations) is
µ-generi if the onjuntion of any �nitely many formulas in this type de�nes a setwhose intersetion with G is µ-generi.It is obvious that in every de�nably amenable group non-µ-generi sets form anideal and hene every partial µ-generi type an be extended to a global µ-generitype. In partiular, at least one global µ-generi type exists.The following proposition (exept for point (i)) is a variant of [2, Corollary 4.3℄for µ-generis.Proposition 4.4 Let G be a de�nably amenable group de�nable in a monster modelof a theory satisfying NIP. Then(i) there is a de�nable, left invariant Keisler measure µ on G,(ii) there are only boundedly many global µ-generi types,(iii) for every global type p, Stab(p) ⊆ G00,(iv) for every de�nable set X ⊆ G, Stabµ(X) := {g ∈ G : µ(gX △ X) = 0} is atype-de�nable subgroup of bounded index in G; in partiular, G00 ⊆ Stabµ(X),(v) for every global µ-generi type p, Stab(p) = G00.Proof. (i) is just Fat 1.6.(ii) is true for an arbitrary Keisler measure and it follows from [2, Corollary 3.4℄.(iii) is true whenever G00 exists; it follows from the fat that a partial type de�ningsome translate of G00 is in p.(iv). The fat that Stabµ(X) is a subgroup follows from left invariane of µ. The fatthat Stabµ(X) is type-de�nable follows from de�nability of µ. Finally, the fat that14



the index of Stabµ(X) in G is bounded follows from [2, Corollary 3.4℄ and the obser-vation that for every g, h ∈ G we have: gStabµ(X) = hStabµ(X) i� µ(gX△hX) = 0.(v) Sine µ is left invariant, gp is µ-generi for every g ∈ G. So ⋂{Stabµ(X) : X ∈
p} ⊆ Stab(p). Hene we are done by (iii) and (iv). �From now on, let K be an in�nite �eld de�nable in a monster model of a theory
T satisfying NIP. By Corollary 4.2, we an �nd a de�nable Keisler measure invariantunder additive and non-zero multipliative translations; we denote it by µ.Proposition 4.5 If X is a de�nable (or type-de�nable) µ-generi subset of K, then(i) for every k ∈ K, (k + X) ∩ X is µ-generi and of the same measure as X,(ii) K = X − X,(iii) for every k ∈ (K∗)00, kX ∩ X is µ-generi and of the same measure as X,(iv) (K∗)00 ⊆ XX−1.Proof. Items (ii) and (iv) follow from (i) and (iii), respetively. Item (i) follows fromFat 1.5 and Proposition 4.4(iv). Item (iii) follows from Proposition 4.4(iv). �From now on, assume that T is additionally superrosy.Corollary 4.6 For every natural number n > 0 we have K = Kn − Kn. Hene, if
n is odd or if 2

k√−1 exists in K where 2k is the largest power of 2 dividing n, then
K = Kn + Kn.Proof. By Fat 1.1, K∗ is a union of �nitely many osets of (K∗)n. So at least one andhene all the osets of (K∗)n are µ-generi (and of the same measure). So by Propo-sition 4.5(ii) we get K = Kn−Kn. From this the seond part follows immediately. �In fat, we get even more, namely, for every k ∈ K, (k + Kn) ∩ Kn is µ-generiand of the same measure as Kn. We also get that every element of K an be writtenas a di�erene x − y where x, y ∈ (K∗)00 ⊆ ⋂

n>0
Kn. Notie also that this property(and, in partiular, the onlusion of Corollary 4.6) holds in every �nite extension of

K.Conjeture 4.7 Assume √
−1 exists in K. Then for every natural number n and

a ∈ K∗ we have that K = Kn − aKn.If we proved the above onjeture (even only for prime numbers n), we ouldapply the proof of [7, Theorem 4.6℄ to get that the Brauer group of K is trivial(assuming that √−1 ∈ K). Corollary 4.6 is a weaker result than Conjeture 4.7.Now using our measure µ we will easily onlude that ertain partiular formulashave the order property.Proposition 4.8 For every natural number n > 0, if Kn 6= K, then the formula
(∃z)(x − y = zn) has the order property. 15



Proof. We need to �nd sequenes (ai)i∈ω and (bi)i∈ω suh that ai − bj ∈ Kn ⇐⇒
i > j.For the base step it is enough to hoose any b0 ∈ K and a0 /∈ b0 +Kn. In order todo that, we need to know that b0+Kn 6= K. Take any a /∈ Kn. Sine by the ommentright after Corollary 4.6, µ((b0 + Kn) \Kn) = 0, we get µ((b0 + Kn)∩ aKn) = 0. As
µ(Kn) = µ(aKn) > 0, it follows that aKn \ (b0 + Kn) 6= ∅.Suppose we have hosen (ai)i≤m and (bi)i≤m satisfying the desired property. Thenit is enough to hoose any am+1 ∈ ⋂

i≤m(bi + Kn) and bm+1 /∈ ⋃
i≤m+1

(ai − Kn). Inorder to do that we need to show that ⋂
i≤m(bj +Kn) 6= ∅ and ⋃

i≤m+1
(ai−Kn) 6= K.By the omment right after Corollary 4.6, we get that ⋂

i≤m(bi + Kn) is µ-generi soit is nonempty. To show ⋃
i≤m+1

(ai −Kn) 6= K, we use a similar argument as in thebase indution step. �Proposition 4.9 Assume a /∈ −Kn. Then there is an indisernible (over a) se-quene (ai)i∈ω suh that:(i) if 1 − a ∈ Kn, then ai − aaj ∈ Kn ⇐⇒ i ≥ j,(ii) if 1 − a /∈ Kn, then ai − aaj ∈ Kn ⇐⇒ i > j.In partiular, the formula (∃z)(x − ay = zn) has the order property.Proof. By ompatness it is enough to onstrut a sequene satisfying (i) or (ii). Forthe base step we hoose any a0 ∈ (K∗)n.Suppose we have hosen (ai)i≤m. Now it is enough to show that the set A :=
((K∗)n∩⋂

i≤m(aai +Kn))\⋃
i≤m( 1

a
ai− 1

a
Kn) is non-empty and to hoose any am+1 ∈

A. In order to see that A 6= ∅, notie that (K∗)n ∩ ⋂
i≤m(aai + Kn) is µ-generiand is ontained in Kn. On the other hand, µ(

⋃
i≤m( 1

a
ai − 1

a
Kn) \ −1

a
Kn) = 0, so

µ(Kn ∩ ⋃
i≤m( 1

a
ai − 1

a
Kn)) = 0 (as −1

a
Kn ∩ Kn = {0}). Hene A 6= ∅. �Proposition 4.10 If n is odd, then for every a ∈ K the formula φ(x, y) := (∃z)(x−

ay = zn) does not have the strit order property.Proof. We will show that there are no k, l ∈ K suh that φ(K, k) is a propersubset of φ(K, l). Suppose φ(K, k) ⊆ φ(K, l), i.e. ak + Kn ⊆ al + Kn. Then
−ak − Kn ⊆ −al − Kn, so −ak + Kn ⊆ −al + Kn, so al + Kn ⊆ ak + Kn. �It is well-known that if a formula φ has the order property and does not havethe independene property, then a onjuntion of �nitely many instanes (or theirnegations) of φ has the strit order property. In Propositions 4.8 and 4.9 we havefound (assuming that K 6= Kn for some n) some partiular formulas with the orderproperty about whih, by Proposition 4.10, we know that they do not have the stritorder property (if n is odd). Maybe a more ompliated omputation (involvingsomehow superrosiness) ould show that also �nite onjuntions of instanes of thoseformulas do not have the strit order property, and then we would get that K = Kn(at least for odd n's). 16
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