
Fields interpretable in rosy theoriesKrzysztof Krupi«ski∗Abstra
tWe are working in a monster model C of a rosy theory T . We prove thefollowing theorems, generalizing the appropriate results from the �nite Morleyrank 
ase and o-minimal stru
tures. If R is a ∨-de�nable integral domain ofpositive, �nite Uþ-rank, then its �eld of fra
tions is interpretable in C. If Aand M are in�nite, de�nable, abelian groups su
h that A a
ts de�nably andfaithfully on M as a group of automorphisms, M is A-minimal and Uþ(M)is �nite, then there is an in�nite �eld interpretable in C. If G is an in�nite,solvable but non nilpotent-by-�nite, de�nable group of �nite Uþ-rank and Thas NIP, then there is an in�nite �eld interpretable in 〈G, ·〉.In the last part, we study in�nite, superrosy, dependent �elds. Using mea-sures, we show that ea
h su
h �eld K satis�es K = Kn − Kn for every n ≥ 1.0 Introdu
tionAn important goal in model theory is to obtain, in a de�nable way, 
lassi
al algebrai
stru
tures in theories satisfying some general model theoreti
 or algebrai
 assump-tions. There is a long history of results of this kind, e.g. di�erent versions of thegroup 
on�guration theorem (originally proved by E. Hrushovski, see [6, Chapters 5and 7℄), getting �elds from de�nable a
tions of abelian groups in the �nite Morleyrank 
ase [8, Chapter 3℄ or in o-minimal stru
tures [5℄, or getting �elds from solvable,non nilpotent-by-�nite groups in the �nite Morley rank 
ase [8, Corollary 3.20℄ andfrom any non abelian-by-�nite groups in o-minimal stru
tures [5, Corollary 5.1℄.The goal of this paper is to generalize some of the results about the existen
e ofan in�nite �eld to a general 
ontext of rosy theories. We also try to understand thestru
ture of superrosy �elds satisfying NIP.Let C be a monster model of a rosy theory T . We always work in Ceq.At the beginning of Se
tion 2, we generalize [5, Lemma 4.1℄. Namely, we proveTheorem 1 Let R be a ∨-de�nable integral domain of positive, �nite Uþ-rank. Thenthe �eld of fra
tions of R, 
all it F , is interpretable in C. Moreover, there is a ∨-de�nable ring embedding of R onto a subring of F with the same Uþ-rank as F .
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In [5℄, this was proved in the o-minimal 
ontext using essentially 
ertain topologyon ∨-de�nable rings, whi
h was de�ned by means of the standard o-minimal topol-ogy. In our 
ase, we give a very general proof, whi
h just uses some properties ofUþ-rank, and that is why it works in any situation where we have a ni
e notion ofdimension, for example in stable or simple theories (the dimension there is SU-rank).In the further part of Se
tion 2, we prove some variants of [8, Theorem 3.7℄ and[5, Lemma 4.2℄ in our general rosy 
ontext. For example, we proveTheorem 2 Let A and M be in�nite, de�nable, abelian groups su
h that A a
tsfaithfully and de�nably on M as a group of automorphisms, M is A-minimal andUþ(M) is �nite. Then there is an in�nite �eld interpretable in C.The proofs of these results use Zilber's Inde
omposables Theorem and 
hain 
on-ditions in the �nite Morley rank 
ase, and the topology in the o-minimal 
ase. Neitherof these tools are present in our situation. Our proofs rely on Theorem 1 and sometri
ks eliminating appli
ations of topology or 
hain 
onditions on interse
tions ofuniformly de�nable groups.In Se
tion 3, we prove the main result of this paper.Theorem 3 Let G be a group of �nite Uþ-rank de�nable in C and suppose that Thas NIP. Assume that G is solvable-by-�nite but not nilpotent-by-�nite. Then thereis an in�nite �eld interpretable in 〈G, ·〉.Similarly to the �nite Morley rank 
ase, in the proof of Theorem 3 we use Theorem2. But the proof in our 
ontext is di�erent.In the last se
tion we prove some partial results 
on
erning the following 
onje
-ture formulated in [1℄.Conje
ture 4 Ea
h in�nite, superrosy �eld with NIP is either a real 
losed or analgebrai
ally 
losed �eld.In parti
ular, we show that ea
h su
h �eld has the property K = Kn − Knfor every n ≥ 1. In our proofs we use absolute 
onne
ted 
omponents and Kieslermeasures.I would like to thank Clifton Ealy and Anand Pillay for interesting dis
ussionand suggestions.1 PreliminariesLet C be a monster model of a theory T . We work in Ceq. Our general assumptionin this paper is that T is rosy, but often, we only need a ni
e notion of dimension.In the rosy (or rather superrosy) 
ontext su
h a notion of dimension is Uþ-rank.The most interesting examples of rosy theories are simple theories and o-minimaltheories. 2



We are not going to repeat the basi
 de�nitions of rosiness, þ-forking and Uþ-rank.The fundamental paper about these notions is [4℄. For the basi
 theory of rosy groups,the reader is referred to [1℄ where a short exposition of rosy theories and þ-forking isalso given. Let us only re
all here that if T is rosy, then þ-independen
e, denoted by
|⌣
þ, is a ternary relation on subsets of Ceq, whi
h satis�es all the properties of forkingindependen
e in simple theories ex
ept for the Independen
e Theorem. Using |⌣

þ,we de�ne Uþ-rank in the same way as U-rank is de�ned in stable theories by means of
|⌣. Uþ-rank has most of the ni
e properties that U-rank has in stable theories, e.g. itsatis�es Las
ar Inequalities. If D is an A-de�nable set, then Uþ(X) := sup{Uþ(d/A) :

d ∈ D}. Of 
ourse, if this supremum is �nite, then it is just the maximum. It turnsout that if D is a de�nable group and T is rosy, then the supremum is also attained[1, Remark 1.20℄.The following fa
t follows from a standard appli
ation of Las
ar Inequalities.Fa
t 1.1 If K is a de�nable �eld and T is superrosy, then for every n > 0, [K∗ :
(K∗)n] < ω and, if char(K) = p 6= 0, then the range of the fun
tion f : K → Kde�ned by f(x) = xp − x is a subgroup of �nite index in K+.Another property of T that we sometimes assume is the non independen
e prop-erty (NIP), also 
alled T being dependent.De�nition 1.2 We say that T has the NIP if there is no formula ϕ(x, y) and se-quen
e 〈ai〉i<ω su
h that for every w ⊆ ω there is bw su
h that |= ϕ(ai, bw) i� i ∈ w.We will need the following 
onsequen
e of NIP proved by Shelah (for the proofsee e.g. [2, Theorem 6.1℄).Fa
t 1.3 If G is a (type-)de�nable group and T has NIP, then G00 (the smallesttype-de�nable subgroup of bounded index) exists.Another important for this paper 
onsequen
e of NIP and rosiness is (see [1,Proposition 1.7℄):Fa
t 1.4 Suppose T is rosy and has NIP. Any group G de�nable in T has i

, i.e.the uniform 
hain 
ondition on interse
tions of uniformly de�nable groups.We also have the following easy observation [1, Proposition 4.1℄.Fa
t 1.5 Let K be an in�nite, de�nable �eld. If (K+)00 exists, then (K+)00 = K.In parti
ular, if T has NIP, then (K+)00 = K.Re
all that a (global) Kiesler measure on a de�nable set D is a �nitely additiveprobability measure on de�nable subsets of D. We say that a Kiesler measure µon X is de�nable (over A) if for ea
h formula ϕ(x, y) and 
losed subset C of [0, 1],
{b ∈ C : µ(ϕ(D, b)) ∈ C} is type-de�nable (over A). We say that a de�nable group
G is de�nably amenable if there is a left invariant Kiesler measure on G.In the last se
tion, we will need the following fa
t [3, Lemma 5.8℄.3



Fa
t 1.6 Assume that T has NIP and G is a de�nably amenable, de�nable group.Then there is a left invariant, de�nable Kiesler measure on G.Now let us re
all the de�nition of a ∨-de�nable ring from [5℄.De�nition 1.7 We say that a ring 〈R, ·, +〉 is a ∨-de�nable (or rather ∨-interpretable)ring if R =
⋃

i∈I Xi where Xi's are A-de�nable subsets of some sort of Ceq for someset A, for every i, j ∈ I there is k ∈ I su
h that Xi ∪ Xj ⊆ Xk, and the restri
tionsof addition and multipli
ation to Xi × Xj are de�nable fun
tions.The assumption that for every i, j ∈ I there is k ∈ I su
h that Xi ∪ Xj ⊆ Xk ispurely 
osmeti
, be
ause we 
an always extend the family {Xi : i ∈ I} by adding allunions of �nitely many Xi's.By the 
ompa
tness theorem, if D is a de�nable subset of X, then it is 
overedby �nitely many Xi's (so, if fa
t, by one Xi) and hen
e addition and multipli
ationrestri
ted to D are de�nable.We de�ne similarly ∨-de�nable groups or just sets. ∨-de�nable groups and ringso

ur naturally as subgroups and subrings generated by de�nable subsets of de�nablegroups and rings.If X =
⋃

i∈I Xi is a ∨-de�nable set, then Uþ(X) is de�ned as the supremum ofUþ-ranks of the Xi's. If this supremum is �nite, then Uþ-ranks of all Xi's are �niteand Uþ(X) is just the maximum of Uþ-ranks of the Xi's. Noti
e that in a rosy theory,by the 
ompa
tness theorem, Uþ(X) is the supremum of Uþ-ranks of all de�nablesubsets of X.De�nition 1.8 If R1 =
⋃

i∈I Xi and R2 =
⋃

j∈J Yj are ∨-de�nable rings, then ahomomorphism f : R1 → R2 is 
alled ∨-de�nable if its restri
tion to ea
h Xi isde�nable.Another notion needed is G-minimality. If G is a de�nable group a
ting de�nablyon another de�nable group H by automorphisms, then we say that H is G-minimal if
H is in�nite and does not have in�nite, proper, de�nable subgroups invariant underthe a
tion of G.2 Getting �elds from ∨-de�nable rings and de�n-able a
tions of abelian groupsIn this se
tion, we generalize some results from Se
tion 4 of [5℄ and [8, Theorem 3.7℄.The main obsta
le here in 
omparison with the o-minimal 
ase is that we do not havea ni
e topology, and with the �nite Morley rank 
ase, that we do not have Zilber'sInde
omposables Theorem.We work in a monster model C of a rosy theory T .The following theorem was proved in the o-minimal 
ontext [5, Lemma 4.1℄ usinga ni
e topology on ∨-de�nable rings. Here we give a very general proof, whi
h works4



in any 
ontext in whi
h we have a ni
e notion of dimension, e.g. in simple and ino-minimal stru
tures.Theorem 2.1 Let R be a ∨-de�nable integral domain of positive, �nite Uþ-rank.Then the �eld of fra
tions of R, 
all it F , is interpretable in C. Moreover, there is a∨-de�nable ring embedding of R onto a subring of F with the same Uþ-rank as F .Proof. Sin
e R is ∨-de�nable, we have that R =
⋃

i∈I Xi where all Xi's are setsde�nable over some set A, for any i, j ∈ I there is k ∈ I su
h that Xi ∪ Xj ⊆ Xk,and the restri
tions of addition and multipli
ation to any Xi × Xj are de�nable. Sofor every r ∈ R the map fr : R → R given by fr(x) = rx restri
ted to any Xi isde�nable.Now let D := Xi be su
h that Uþ(D) = Uþ(R).Claim 1 For any a, b ∈ R \ {0}, (Da − Da) ∩ (Db − Db) 6= {0}.Proof of Claim 1. Consider the fun
tion f : D × D → R de�ned by
f(r1, r2) = r1a + r2b.As fa ↾D, fb ↾D and + restri
ted to any de�nable subset of R are de�nable, so is f .But Uþ(D×D) = 2Uþ(D) > Uþ(D) = Uþ(R), hen
e by Las
ar inequalities we easilyget that f is not inje
tive. Thus, there are two distin
t pairs (r1, r2), (r

′
1, r

′
2) ∈ D×Dsu
h that r1a+r2b = r′1a+r′2b. So (r1−r′1)a = r1a−r′1a = r′2b−r2b = (r′2−r2)b. Weknow that a, b 6= 0 and at least one of the elements r1−r′1 and r′2−r2 is nonzero. Hen
ethe element r1a−r′1a is nonzero and, of 
ourse, it belongs to (Da−Da)∩(Db−Db). �Choose any a ∈ R \ {0} and put X = Da − Da.Claim 2 For any r1, r2 ∈ R \ {0}, r1X ∩ r2X 6= {0}.Proof of Claim 2. Sin
e R is 
ommutative, riX = riDa − riDa = D(ria) − D(ria).As r1, r2 and a are nonzero, we see that r1a, r2a ∈ R \ {0}. So by Claim 1, we get

r1X ∩ r2X = (D(r1a) − D(r1a)) ∩ (D(r2a) − D(r2a)) 6= {0}. �The rest of the proof that the �eld of fra
tions of R is interpretable is the same asin the proof of [5, Lemma 4.1℄. Namely, the fra
tion �eld F equals (R× (R\{0}))/∼where (r1, s1) ∼ (r2, s2) ⇐⇒ r1s2 = r2s1. By Claim 2, F 
an be indenti�edwith (X × (X \ {0}))/∼X where ∼X is the restri
tion of ∼ to X × (X \ {0}), andobviously ∼X is de�nable. Sin
e addition and multipli
ation in R restri
ted to anyde�nable subset are de�nable, we easily get that addition and multipli
ation in Fare de�nable. Hen
e F is an interpretable �eld. If we �x a nonzero r0 ∈ R, then themap r 7→ (rr0, r0)/∼ gives us a ∨-de�nable embedding of R into F .The fa
t that Uþ(F ) = Uþ(R) requires an extra explanation. Sin
e R is ∨-de�nably embeddable in F , we easily get that Uþ(R) ≤ Uþ(F ). Let B be a set 
on-taining A∪{a} and su
h that addition and multipli
ation restri
ted to any Xi are de-�nable over B. Then F is interpretable over B. Now 
onsider (r1, r2) ∈ X×(X \{0})5



su
h that Uþ([(r1, r2)]∼X
/B) = Uþ(F ). We need to show that Uþ([(r1, r2)]∼X

/B) ≤Uþ(R). Sin
e the fun
tion r 7→ (r1r, r2r) from R \ {0} to R × (R \ {0}) is a ∨-de�nable inje
tion and its range is 
ontained in the ∼-
lass of (r1, r2) (
omputedin R × (R \ {0})), there is j ∈ I su
h that X ⊆ Xj and Uþ-rank of the ∼Xj
-
lass of (r1, r2) (treated as a subset of Xj × (Xj \ {0})) is at least Uþ(R). Sin
e

(X × (X \ {0}))/∼X 
an be B-de�nably identi�ed with (Xj × (Xj \ {0}))/∼Xj
, we
an work in (Xj × (Xj \{0}))/∼Xj

. Let d = [(r1, r2)]∼Xj
∈ (Xj × (Xj \{0}))/∼Xj

. Sothere is (r′1, r
′
2) ∼Xj

(r1, r2) in Xj × (Xj \ {0}) su
h that Uþ((r′1, r′2)/B, d) ≥ Uþ(R).Sin
e d ∈ dcl(r′1, r
′
2, B), by Las
ar Inequalities, we get 2Uþ(R) ≥ Uþ((r′1, r′2)/B) =Uþ((r′1, r′2), d/B) ≥ Uþ((r′1, r′2)/B, d)+Uþ(d/B) ≥ Uþ(R)+Uþ(d/B). So Uþ(d/B) ≤Uþ(R). �Noti
e that in the above theorem the assumption that R is of positive Uþ-rank isne
essary. Indeed, if C is a real 
losed �eld, then Q is a ∨-de�nable �eld of Uþ-rank0 and it is not interpretable in C.Now we are going to generalize some 
lassi
al results about getting �elds fromde�nable a
tions of abelian groups [8, Theorem 3.1℄, [5, Lemma 4.2℄. As in the o-minimal 
ase, we 
annot apply the method from the �nite Morley rank 
ase be
ausewe do not have Zilber's Inde
omposables Theorem. But, as in [5℄, we 
an applyTheorem 2.1. On
e again, we give here general proofs whi
h omit any appli
ationsof o-minimal topology or 
hain 
onditions.Theorem 2.2 Let A and M be in�nite, de�nable, abelian groups su
h that A a
tsfaithfully and de�nably on M as a group of automorphisms, M is A-minimal andUþ(M) is �nite. Then there is an in�nite �eld interpretable in C.Proof. For a ∈ A we de�ne Fix(a) = {m ∈ M : am = m} and for m ∈ M weput Stab(m) = {a ∈ A : am = m}. Of 
ourse, Fix(a) and Stab(m) are de�nablesubgroups of M and A, respe
tively.Claim 1 There are m1, . . . , mn ∈ M su
h that Stab(m1) ∩ · · · ∩ Stab(mn) = {e}.Proof of Claim 1. For every a ∈ A\{e}, Fix(a) is a proper, de�nable subgroup of Minvariant under the a
tion of A. So by A-minimality of M , Fix(a) is �nite. Hen
efor any in�nite subset S of M , ⋂

m∈S Stab(m) = {e}. Thus, by the 
ompa
tnesstheorem, there are m1, . . . , mn ∈ M su
h that Stab(m1) ∩ · · · ∩ Stab(mn) = {e}. �Let R be the ring of endomorphisms of M generated by A. Then R is 
ommuta-tive.Noti
e that every r ∈ R is determined by (r(m1), . . . , r(mn)). If not, then thereis r ∈ R \ {0} su
h that r(m1) = · · · = r(mn) = 0. Sin
e R is 
ommutative, we getthat ker(r) is a proper, de�nable and invariant under the a
tion of A subgroup of
M 
ontaining {m1, . . . , mn}. So Am1 + · · ·+ Amn ⊆ ker(r). On the other hand, by
hoi
e of m1, . . . , mn, we get that the fun
tion a 7→ (am1, . . . , amn) is an inje
tionfrom A to Mn. So there is i su
h that Ami is in�nite, and hen
e ker(r) is in�nite.This 
ontradi
ts the assumption that M is A-minimal.6



Having the above observation, we get the following in a rather standard way.Claim 2 The ring R is ∨-de�nable, 
ontained in Mn with the addition inheritedfrom Mn, and 0 < Uþ(R) < ω.Proof of Claim 2. Let H = 〈A(m1, . . . , mn)〉. By the above observation, the fun
tion
f : R → H ⊆ Mn de�ned by f(r) = (r(m1), . . . , r(mn)) is a bije
tion. Of 
ourse,
H :=

⋃
i<ω Xi where Xi = ±A(m1, . . . , mn) ± · · · ± A(m1, . . . , mk) (i-many times).So H is a ∨-de�nable subgroup of Mn.By the de�nition of f , we see that for any r1, r2 ∈ R we have f(r1 + r2) =

f(r1) + f(r2) (+ on the left hand side is the addition in R and + on the right handside is the addition in Mn).Now we de�ne multipli
ation, ∗, on H to make f a ring isomorphism, i.e. f(r1) ∗
f(r2) := f(r1r2) for all r1, r2 ∈ R. We leave as an easy exer
ise to 
he
k that
∗ : H × H → H is ∨-de�nable, i.e. for any i, j < ω, ∗ : Xi × Xj → Mn is de�nable.Of 
ourse, 0 < Uþ(Ami) ≤ Uþ(H) ≤ Uþ(Mn) < ω. �The next 
laim has the same proof as in the �nite Morley rank 
ase.Claim 3 R is an integral domain.Proof of Claim 3. Take any r1, r2 ∈ R su
h that r1r2 = 0. If r2 6= 0, then ker(r2) is aproper, de�nable subgroup of M invariant under the a
tion of A. So by A-minimalityof M , ker(r2) is �nite. So rng(r2) is an in�nite, de�nable subgroup of M invariantunder the a
tion of A. Thus rng(r2) = M . So we get r1 = 0. �By Claims 2, 3 and Theorem 2.1, we get an in�nite �eld interpretable in C. �Assuming that M does not have nontrivial, proper, de�nable subgroups invariantunder the a
tion of A, we get even more spe
i�
 information about our interpretable�eld.Proposition 2.3 Let A and M be in�nite, de�nable, abelian groups su
h that A a
tsfaithfully and de�nably on M as a group of automorphisms, M does not have anynontrivial, proper, de�nable subgroups invariant under the a
tion of A and Uþ(M)is �nite. Then for every nonzero m ∈ M there is a �eld K de�nable in C whoseunderlying additive group is 〈M, +〉, and 〈A, ·〉 is de�nably embeddable in K∗ bysending a ∈ A to am. After the embedding, the a
tion of A on M be
omes the s
alarmultipli
ation.Proof. Let R be the ring of endomorphisms of M generated by A. We easily see thatevery nonzero r ∈ R is an automorphism of M . Indeed, sin
e ker(r) is a proper,de�nable subgroup of M invariant under the a
tion of A, it must be trivial. So
rng(r) is an in�nite, de�nable subgroup of M invariant under the a
tion of A, andhen
e it is equal to M .Choose a nonzero m ∈ M . We 
on
lude that every element r ∈ R is determinedby r(m). So by the proof of Theorem 2.2, R is ∨-de�nable (after the indenti�
ation7



of every r ∈ R with r(m) ∈ M), 
ontained in M with the addition inherited from
M , and the �eld of fra
tions, F , of R is interpretable in C. More pre
isely, F =
(X × (X \ {0}))/∼ where X is a de�nable subset of R.The rest is the same as in the last paragraph of the proof of [5, Lemma 4.2℄.Every element (α, β)/∼∈ F 
an be identi�ed with the automorphism αβ−1 of M .So F is a �eld of automorphisms of M . We easily see that the a
tion of F on Mis de�nable. As above, we show that every element k ∈ F is determined by k(m).Hen
e F 
an be de�nably embedded into M by sending k ∈ F to k(m). The rangeof this map is a de�nable �eld, say K, whose additive group is a subgroup of Minvariant under A, so it must be M . Of 
ourse, A is de�nably embeddable in K∗by sending a ∈ A to am. The fa
t that after this embedding the a
tion of A on M
oin
ides with the �eld multipli
ation is trivial. �Using Proposition 2.3, we obtain the following strengthening of Theorem 2.2.Corollary 2.4 Let A and M be in�nite, de�nable, abelian groups su
h that A a
tsfaithfully and de�nably on M as a group of automorphisms, M is A-minimal andUþ(M) is �nite. Then there is an in�nite �eld K interpretable in C whose underlyingadditive group is M/M0 for some �nite subgroup M0 of M invariant under A, and
A/A0 is de�nably embeddable in K∗ for some �nite subgroup A0 of A. In fa
t,the a
tion of A on M indu
es a faithful and de�nable a
tion of A/A0 on M/M0 byautomorphisms, and after the embedding this a
tion be
omes the s
alar multipli
ation.Proof. By Proposition 2.3, in order to prove the 
orollary, it is enough to �nd a�nite subgroup M0 of M whi
h is invariant under the a
tion of A, and a �nitesubgroup A0 of A su
h that A/A0 a
ts faithfully and de�nably on M/M0 as a groupof automorphisms and M/M0 does not have nontrivial, proper, de�nable subgroupsinvariant under A/A0.De�ne M0 = {m ∈ M : [A : Stab(m)] < ω}. Of 
ourse, M0 is a subgroup of Minvariant under A. We 
laim that M0 is �nite (and hen
e de�nable). If not, there isan in�nite, 
ountable set S 
ontained in M0. Then ⋂

m∈S Stab(m) is a nontrivial (infa
t, of bounded index) subgroup of A. So there is a nontrivial a ∈ ⋂
m∈S Stab(m),whi
h means that S ⊆ Fix(a), a 
ontradi
tion with the fa
t that Fix(a) is �nite.Sin
e M0 is invariant under A, the a
tion of A on M indu
es an a
tion of A on

M/M0. It is easy to see that A a
ts on M/M0 by automorphisms.De�ne A0 as the set of those a ∈ A whi
h a
t as the trivial automorphism on
M/M0. Then A0 is a subgroup of A. We 
laim that it is �nite. Indeed, by Claim1 in the proof of Theorem 2.2, there are m1, . . . , mn ∈ M su
h that Stab(m1) ∩
· · · ∩ Stab(mn) = {e}. So every a ∈ A is determined by (am1, . . . , amn). On theother hand, if a indu
es the trivial automorphism of M/M0, then am1 ∈ m1 +
M0, . . . , amn ∈ mn + M0. Sin
e M0 is �nite, we get only �nitely many possibilitiesfor a ∈ A indu
ing the trivial automorphism of M/M0, i.e A0 is �nite.Summarizing, we get that A/A0 a
ts faithfully and de�nably on M/M0 as a groupof automorphisms. It remains to 
he
k that M/M0 does not have nontrivial, proper,8



de�nable subgroups invariant under A/A0. Consider any de�nable subgroup G of
M/M0 invariant under A/A0 and let M1 < M be the preimage of G under thequotient map. We see that M1 is a de�nable subgroup of M invariant under A. Soeither M1 = M , and then G = M/M0, or M1 is �nite. In the se
ond 
ase, for any
m ∈ M1 the orbit Am ⊆ M1 is �nite so [A : Stab(m)] < ω, i.e. m ∈ M0; hen
e
M0 = M1, whi
h means that G is trivial. �3 Getting �elds in solvable non-nilpotent groupsIn this se
tion we prove the main result of the paper.Theorem 3.1 Let G be a group of �nite Uþ-rank de�nable in a monster model of arosy theory satisfying NIP. Assume that G is solvable-by-�nite but not nilpotent-by-�nite. Then there is an in�nite �eld interpretable in 〈G, ·〉.Before we start to prove the theorem, let us show the following general lemmaand a standard remark.Lemma 3.2 Suppose P and Q are in�nite abelian groups, P a
ts on Q by automor-phisms and for every p ∈ P \ {eP} and q ∈ Q \ {eQ}, p · q 6= q. Then Q ⋊ P issolvable but not nilpotent-by-�nite.Proof. Solvability is obvious. Suppose for a 
ontradi
tion that Q⋊P is nilpotent-by-�nite. Then there are subgroups P1 and Q1 of �nite index in P and Q, respe
tively,su
h that the restri
tion of the a
tion of P on Q gives us an a
tion by automorphismsof P1 on Q1 satisfying the property (∀p ∈ P1 \ {eP})(∀q ∈ Q1 \ {eQ})(p · q 6= q), andmoreover Q1 ⋊ P1 is nilpotent. So wlog Q ⋊ P is nilpotent. To get a 
ontradi
tion,it is enough to show that Z(Q ⋊ P ) is trivial.We 
an identify Q with Q×{eP } < Q⋊P and P with {eQ}×P < Q⋊P . After thisidenti�
ation Q ⋊ P = QP . Let e be the neutral element of Q ⋊ P . By assumption,for all p ∈ P \ {e} and q ∈ Q \ {e} we have pqp−1q−1 = (p · q)q−1 6= qq−1 = e.Take any qp ∈ Z(Q ⋊ P ) where p ∈ P and q ∈ Q. Then qpq(qp)−1q−1 = e so
pqp−1q−1 = e. By the last paragraph, we get p = e or q = e. But on
e again usingthe last paragraph, we also see that P ∩Z(Q×P ) = Q∩Z(Q ⋊ P ) = {e}. So p = eand q = e. Thus we have proved that Z(Q ⋊ P ) = {e}. �Remark 3.3 (i) Let G be a group su
h that all de�nable quotients of de�nable sub-groups of G have i

 on 
entralizers. Assume that G is solvable-by-�nite. Then Ghas a de�nable, solvable subgroup H of �nite index, and H has a normal sequen
e
{e} = H0 � H1 � · · ·� Hn = H su
h that ea
h quotient Hi+1/Hi is abelian and ea
h
Hi is de�nable.(ii) Let G be a group su
h that all de�nable quotients of de�nable subgroups of Ghave i

 on 
entralizers. Assume that N is a nilpotent subgroup of G. Then G hasa de�nable nilpotent subgroup H 
ontaining N . Thus, the upper 
entral series of H
onsists of de�nable subgroups of G. 9



Proof. (i) By a standard tri
k, there is a normal, solvable subgroup L of �nite indexin G. Then the derivative sequen
e of L, 
all it {e} = L0�L1� · · ·�Ln = L, 
onsistsof normal subgroups of G. Now we de�ne a sequen
e {e} = H0 � H1 � · · · � Hn ofde�nable, normal subgroups of G with abelian quotients, and su
h that Hi > Li forevery 0 ≤ i ≤ n.
H0 is de�ned as {e}. Suppose H0, . . . , Hi satisfying all the above assumptionshave been 
onstru
ted. Then we de�ne Hi+1 = π−1

i [Z(C(Li+1Hi/Hi))] where πi :
G → G/Hi is the natural quotient map. Using i

 on 
entralizers, one 
an easily
he
k that this 
onstru
tion works.Now H := Hn together with the sequen
e {e} = H0 � H1 � · · · � Hn = H havethe desired properties.(ii) The proof is the same as in the stable 
ase [8, Theorem 3.17℄, by indu
tion onthe nilpotent 
lass. If N is abelian, then H = Z(C(N)) works. For the indu
tionstep, let Z = Z(C(Z(N))). By i

 on 
entralizers, Z is de�nable, abelian, it is 
en-tralized by N and Z(N) < Z. Hen
e NZ/Z ∼= N/(N ∩Z) is a nilpotent subgroup of
C(Z)/Z of a smaller 
lass of nilpoten
y than N so by indu
tion hypothesis, there isa de�nable, nilpotent subgroup of C(Z)/Z 
ontaining NZ/Z. Then its preimage un-der the natural quotient map is a de�nable, nilpotent subgroup of G 
ontaining N . �Proof of Theorem 3.1. By Remark 3.3, we 
an assume that G is solvable and it has anormal sequen
e 
onsisting of de�nable subgroups with abelian quotients. It is also
lear that we 
an assume that (G, ·) is our monster model.The proof is by indu
tion on Uþ(G). In fa
t, in the paragraph below we will showthat our assumptions on G imply that Uþ(G) ≥ 2. The fa
t that G is in�nite followsimmediately from the assumption that G is not nilpotent-by-�nite.Assume that the theorem is true for groups of Uþ-rank smaller that Uþ(G). Byi

 on 
entralizers, we 
an assume that G is 
entralizer 
onne
ted. If Z(G) is in�nite,then sin
e G is not nilpotent-by-�nite, G/Z(G) is a non nilpotent-by-�nite, solvablegroup of Uþ-rank smaller than Uþ(G). So by indu
tion hypothesis, we get an in�niteinterpretable �eld (noti
e that if Uþ(G) = 1, then [G : Z(G)] < ω, a 
ontradi
tion).So we need to 
onsider the 
ase when Z(G) is �nite. Dividing out by Z(G), we 
anassume that G is also 
enterless. This implies that G does not have nontrivial, �nite,normal subgroups. Indeed, if H � G is �nite, then [G : C(h)] < ω for every h ∈ H .But G is 
entralizer 
onne
ted so H ⊆ Z(G) = {e}. So by solvability of G, there isan in�nite, de�nable, abelian, normal subgroup H of G (noti
e that if Uþ(G) = 1,then [G : H ] < ω, a 
ontradi
tion; so we have proved that Uþ(G) ≥ 2).Now 
hoose a de�nable subgroup G0 of �nite index in G and an in�nite, de�nable,abelian, normal subgroup H of G0 with minimal possible Uþ-rank (ranging over allsu
h pairs (G0, H)). Wlog G = G0. We 
an also assume that H is 
entralizer
onne
ted in G.Sin
e G is not nilpotent-by-�nite, G/C(H) is in�nite. As Uþ(G/C(H)) < Uþ(G),by indu
tion hypothesis, we 
an assume that G/C(H) is nilpotent-by-�nite. Usingi

 on 
entralizers and Remark 3.3, we 
an repla
e G be a de�nable subgroup of �niteindex so that G/C(H) be
omes nilpotent and 
entralizer 
onne
ted. This implies10



that Z(G/C(H)) is in�nite.Put A = Z(G/C(H)) and A0 = π−1[A] where π : G → G/C(H) is the naturalquotient map. Then A0 is a de�nable, normal subgroup of G and A = A0/C(H)is an in�nite, abelian group interpretable in 〈G, ·〉. Moreover, A a
ts faithfully andde�nably on H by automorphisms: aC(H) ∗ h = ha for aC(H) ∈ A and h ∈ H .Claim 1 For every a ∈ A0 \ C(H), C(a) ∩ H = {e}.Proof of Claim 1. Let B = C(a) ∩ H . It is enough to show that B � G (be-
ause H was 
hosen to have minimal possible positive Uþ-rank, H is 
entralizer
onne
ted in G and G does not have nontrivial, �nite, normal subgroups). Takeany g ∈ G. We need to show Bg = B. Of 
ourse, Bg = C(ag) ∩ H . Sin
e
A = Z(G/C(H)), agC(H) = (aC(H))g = aC(H). So ag = ac for some c ∈ C(H).Thus Bg = C(ag) ∩ H = C(ac) ∩ H = C(a) ∩ H = B. �By Claim 1, P := A and Q := H satisfy the assumptions of Lemma 3.2 sowe 
on
lude that R := H ⋊ A is an interpretable group whi
h is solvable but notnilpotent-by-�nite. We also have Uþ(R) = Uþ(H)+Uþ(A). So if Uþ(A) < Uþ(G/H),then Uþ(R) < Uþ(H) + Uþ(G/H) = Uþ(G) and hen
e we are done by indu
tionhypothesis. Therefore, we 
an assume that Uþ(A) = Uþ(G/H). But Uþ(A) =Uþ(A0)−Uþ(C(H)) ≤ Uþ(G)−Uþ(H) = Uþ(G/H) and equality holds i� [G : A0] < ωand [C(H) : H ] < ω. So we get [C(H) : H ] < ω, and we 
an assume that G = A0.By NIP, H00 exists.Claim 2 H00 is de�nable.Proof. Take any a ∈ G \ C(H). We 
laim that C(a) is in�nite. If not, thenUþ(aG) = Uþ(G) so (aH)G is an in�nite subset of G/H . But sin
e G/C(H) isabelian and [C(H) : H ] < ω, we get a 
ontradi
tion.On the other hand, by Claim 1, C(a)∩H = {e}. So if we put G1 = HC(a), then
[G1 : H ] is in�nite.By NIP, G00

1 exists. Noti
e that H00 = G00
1 ∩H . The in
lusion (⊆) is obvious. Toprove (=), assume for a 
ontradi
tion that H00 ( G00

1 ∩ H . By the de�nition of G1and the fa
t that C(a)∩H = {e}, we get that H00C(a) is a type-de�nable subgroupof G1 of bounded index, not 
ontaining G00
1 , a 
ontradi
tion.Sin
e [G1 : G1 ∩ C(H)] ≥ ω, there is b ∈ G00

1 \ C(H). By Claim 1, for every
c ∈ bH we have Uþ(cH) = Uþ(H) = Uþ(bH). As bH is 
losed under 
onjugations byelements of H , we get that bH = cH

1 ∪ · · · ∪ cH
n for some c1, . . . , cn ∈ bH . We alsoknow that G00

1 � G1 so bH ∩ G00
1 = cH

i1
∪ · · · ∪ cH

ik
for some 1 ≤ i1 < · · · < ik ≤ n.Thus, bH∩G00

1 is de�nable. On the other hand, sin
e b ∈ G00
1 , by the last paragraph,we get bH ∩ G00

1 = b(H ∩ G00
1 ) = bH00. Therefore, H00 is de�nable. �By Claim 2, repla
ing H by H00 (and repeating all arguments pre
eding Claim2 for this new H), we 
an assume that H = H00.Claim 3 H does not have nontrivial, proper, de�nable subgroups invariant under thea
tion of A. 11



Proof of Claim 3. Suppose H1 is a de�nable subgroup of H invariant under A. Sin
e
A = G/C(H), we get H1 � G. So, by minimality of Uþ(H), H1 is either �nite orof �nite index in H . On the other hand, we know that G does not have nontrivial,�nite, normal subgroups and H = H00. Hen
e H1 = {e} or H1 = H . �By Claim 3, we see that M := H and A satisfy the assumptions of Theorem 2.2(or even Proposition 2.3) so an in�nite, interpretable �eld exists. �In [1℄, Theorem 3.1 was proved in the 
ase of Uþ(G) = 2 but under a mu
hstronger assumption that G has hereditarily fsg (�nitely satis�able generi
s). Infa
t, under this assumption there was proved even more, namely:Fa
t 3.4 Assume that G has NIP, hereditarily fsg, Uþ(G)=2 and G is not nilpotent-by-�nite. Then, after possibly passing to a de�nable subgroup of �nite index andquotienting by its �nite 
enter, G is (de�nably) the semidire
t produ
t of the additiveand multipli
ative groups of an algebrai
ally 
losed �eld F interpretable in 〈G, ·〉, andmoreover G = G00.Analyzing 
arefully the proof of Theorem 3.1 and modifying it a little bit, weobtain the following strengthening of Theorem 3.1 in the Uþ-rank 2 
ase.Corollary 3.5 Let G be a group of Uþ-rank 2 de�nable in a monster model of a rosytheory satisfying NIP. Assume that G is solvable-by-�nite but not nilpotent-by-�nite.Then, after possibly passing to a de�nable subgroup of �nite index and quotientingby its �nite 
enter, G is (de�nably) the semidire
t produ
t of the additive group anda �nite index subgroup of the multipli
ative group of a �eld K interpretable in 〈G, ·〉.Proof. By the proof of Theorem 3.1, we know that there is no group of Uþ-rank 0or 1 satisfying the assumptions of Theorem 3.1. Therefore, under the assumptionUþ(G) = 2, the proof of Theorem 3.1 ne
essarily leads us to the last paragraphand produ
es a �eld using Proposition 2.3. So for any nontrivial h ∈ H we getan interpretable �eld, say K, whose additive group is 〈H, ·〉 and su
h that the map
f : G/C(H) → K∗ given by f(gC(H)) = gC(H) ∗ h = hg is a de�nable embeddingof G/C(H) into K∗, and after this embedding the a
tion of G/C(H) on H 
oin
ideswith the �eld multipli
ation. Sin
e Uþ(K∗) = 1 = Uþ(G/C(H)), the image of
G/C(H) by f is a �nite index subgroup of K∗, 
all it L.Claim 1 Without loss of generality we 
an assume that G = HB where B is ade�nable, abelian group of Uþ-rank 1, H ∩ B = {e} and C(H) = H.Proof of Claim 1. Sin
e [C(H) : H ] is �nite, we 
an 
hoose a ∈ G \ C(H). By the�rst paragraph of the proof of Claim 2 and by Claim 1 in the proof of Theorem 3.1,we get that C(a) is in�nite and C(a) ∩ H = {e}. Thus Uþ(C(a)) = 1 and so C(a)is nilpotent-by-�nite. Using Remark 3.3 and 
onsidering the 
entralizer 
onne
ted
omponent of C(a), we get that C(a) has a de�nable abelian subgroup B of �niteindex. Sin
e Uþ(HB) = 2, we 
an assume G = HB. In order to �nish the proof of12



Claim 1, it is enough to show the followingSub
laim C(H) = H .Proof of Sub
laim. It is enough to show that C(H) ∩ B = {e}. So we will be doneif we show that for any b ∈ B \ C(H), C(b) ∩ C(H) = {e}. We pro
eed in the sameway as in the proof of Claim 1 in the proof of Theorem 3.1.Take any b ∈ B \C(H). Let C = C(b)∩C(H). It is enough to show that C �G.Indeed, if C �G, then sin
e G does not have nontrivial, �nite, normal subgroups, weget that either C = {e} or C is in�nite. In the se
ond 
ase, [C(H) : C] is �nite. Thisimplies that [H : H ∩ C] is �nite. Sin
e H = H00, we get H ⊆ C and so b ∈ C(H),a 
ontradi
tion.Take any g ∈ G. We need to show Cg = C. Of 
ourse, Cg = C(bg) ∩ H . Sin
e
G/H ∼= B is abelian, bgH = (bH)g = bH . So bg = bc for some c ∈ H . Thus
Cg = C(bg) ∩ C(H) = C(bc) ∩ C(H) = C(b) ∩ C(H) = C. �By Claim 1, G/C(H) = G/H = BH/H ∼= B and we see that B is de�nably iso-morphi
 to L by sending b ∈ B to hb. We also easily see that the a
tion of L on Hby the �eld multipli
ation is the same as the a
tion of B on H by 
onjugation. So
G = HB is de�nably isomorphi
 to K+ ⋊ L. �4 Superrosy dependent �eldsThe main motivation in this se
tion is Conje
ture 4. To prove this 
onje
ture it isenough to show that ea
h in�nite, superrosy �eld K with NIP and 
ontaining √−1 isalgebrai
ally 
losed. In fa
t, it su�
es to show that for every natural number n > 0,
Kn = K, and if p is the 
hara
teristi
 of K, then the fun
tion f : K → K de�nedby f(x) = xp −x is onto (be
ause then we 
an apply the standard Ma
intyre's proof[8, Theorem 3.1℄). The fa
t that f is onto follows from Fa
ts 1.1 and 1.5.In this paper we will prove a weaker 
ondition than Kn = K, namely that forevery natural number n > 0, K = Kn − Kn. In parti
ular, if n is odd or if 2

k√−1exists in K where 2k is the largest power of 2 dividing n, then K = Kn+Kn. We alsoprove other results of this kind. The main idea involved here is to apply de�nablemeasures.Let us start from a general fa
t.Proposition 4.1 Let K be any �eld and G = K ⋊K∗ (i.e. (k1, k2) · (k′
1, k

′
2) = (k1 +

k2k
′
1, k2k

′
2)). Then G is amenable and there is a �nitely additive, probabilisti
 measureon K whi
h is invariant under additive and non-zero multipli
ative translations.Proof. Of 
ourse, G is solvable so it is amenable, i.e. there is a �nitely additive,probabilisti
, left (two-sided) invariant measure m on G.De�ne a fun
tion µ : P(K) → [0, 1] by

µ(A) = m(A × K∗).13



It is obvious that µ is a �nitely additive, probabilisti
 measure on K. Now we will
he
k that µ is additively and multipli
atively invariant. In the additive 
ase, forevery A ⊆ K and k ∈ K we have:
µ(k + A) = m((k + A) × K∗) = m((k, 1) · (A × K∗)) = m(A × K∗) = µ(A).In the multipli
ative 
ase, for every A ⊆ K and k ∈ K∗ we have:

µ(kA) = m((kA)×K∗) = m((0, k) · (A×K∗)) = m(A×K∗) = µ(A). �Note that if K is de�nable in a monster model C of a theory satisfying NIP, thensin
e G := K ⋊ K∗ is also de�nable in C and G is amenable, by Fa
t 1.6, there is ade�nable, left invariant Keisler measure on G. Using this measure as m in the aboveproof we get:Corollary 4.2 Let K be any �eld de�nable in a monster model of a theory satisfyingNIP. Then there is a de�nable Keisler measure on K invariant under additive andnon-zero multipli
ative translations.De�nition 4.3 Suppose G is a de�nably amenable group (with left invariant Keislermeasure µ) de�nable in a monster model of any theory T . We say that a de�nableset X ⊆ G is µ-generi
 if µ(X) > 0. We say that a type (or its set of realizations) is
µ-generi
 if the 
onjun
tion of any �nitely many formulas in this type de�nes a setwhose interse
tion with G is µ-generi
.It is obvious that in every de�nably amenable group non-µ-generi
 sets form anideal and hen
e every partial µ-generi
 type 
an be extended to a global µ-generi
type. In parti
ular, at least one global µ-generi
 type exists.The following proposition (ex
ept for point (i)) is a variant of [2, Corollary 4.3℄for µ-generi
s.Proposition 4.4 Let G be a de�nably amenable group de�nable in a monster modelof a theory satisfying NIP. Then(i) there is a de�nable, left invariant Keisler measure µ on G,(ii) there are only boundedly many global µ-generi
 types,(iii) for every global type p, Stab(p) ⊆ G00,(iv) for every de�nable set X ⊆ G, Stabµ(X) := {g ∈ G : µ(gX △ X) = 0} is atype-de�nable subgroup of bounded index in G; in parti
ular, G00 ⊆ Stabµ(X),(v) for every global µ-generi
 type p, Stab(p) = G00.Proof. (i) is just Fa
t 1.6.(ii) is true for an arbitrary Keisler measure and it follows from [2, Corollary 3.4℄.(iii) is true whenever G00 exists; it follows from the fa
t that a partial type de�ningsome translate of G00 is in p.(iv). The fa
t that Stabµ(X) is a subgroup follows from left invarian
e of µ. The fa
tthat Stabµ(X) is type-de�nable follows from de�nability of µ. Finally, the fa
t that14



the index of Stabµ(X) in G is bounded follows from [2, Corollary 3.4℄ and the obser-vation that for every g, h ∈ G we have: gStabµ(X) = hStabµ(X) i� µ(gX△hX) = 0.(v) Sin
e µ is left invariant, gp is µ-generi
 for every g ∈ G. So ⋂{Stabµ(X) : X ∈
p} ⊆ Stab(p). Hen
e we are done by (iii) and (iv). �From now on, let K be an in�nite �eld de�nable in a monster model of a theory
T satisfying NIP. By Corollary 4.2, we 
an �nd a de�nable Keisler measure invariantunder additive and non-zero multipli
ative translations; we denote it by µ.Proposition 4.5 If X is a de�nable (or type-de�nable) µ-generi
 subset of K, then(i) for every k ∈ K, (k + X) ∩ X is µ-generi
 and of the same measure as X,(ii) K = X − X,(iii) for every k ∈ (K∗)00, kX ∩ X is µ-generi
 and of the same measure as X,(iv) (K∗)00 ⊆ XX−1.Proof. Items (ii) and (iv) follow from (i) and (iii), respe
tively. Item (i) follows fromFa
t 1.5 and Proposition 4.4(iv). Item (iii) follows from Proposition 4.4(iv). �From now on, assume that T is additionally superrosy.Corollary 4.6 For every natural number n > 0 we have K = Kn − Kn. Hen
e, if
n is odd or if 2

k√−1 exists in K where 2k is the largest power of 2 dividing n, then
K = Kn + Kn.Proof. By Fa
t 1.1, K∗ is a union of �nitely many 
osets of (K∗)n. So at least one andhen
e all the 
osets of (K∗)n are µ-generi
 (and of the same measure). So by Propo-sition 4.5(ii) we get K = Kn−Kn. From this the se
ond part follows immediately. �In fa
t, we get even more, namely, for every k ∈ K, (k + Kn) ∩ Kn is µ-generi
and of the same measure as Kn. We also get that every element of K 
an be writtenas a di�eren
e x − y where x, y ∈ (K∗)00 ⊆ ⋂

n>0
Kn. Noti
e also that this property(and, in parti
ular, the 
on
lusion of Corollary 4.6) holds in every �nite extension of

K.Conje
ture 4.7 Assume √
−1 exists in K. Then for every natural number n and

a ∈ K∗ we have that K = Kn − aKn.If we proved the above 
onje
ture (even only for prime numbers n), we 
ouldapply the proof of [7, Theorem 4.6℄ to get that the Brauer group of K is trivial(assuming that √−1 ∈ K). Corollary 4.6 is a weaker result than Conje
ture 4.7.Now using our measure µ we will easily 
on
lude that 
ertain parti
ular formulashave the order property.Proposition 4.8 For every natural number n > 0, if Kn 6= K, then the formula
(∃z)(x − y = zn) has the order property. 15



Proof. We need to �nd sequen
es (ai)i∈ω and (bi)i∈ω su
h that ai − bj ∈ Kn ⇐⇒
i > j.For the base step it is enough to 
hoose any b0 ∈ K and a0 /∈ b0 +Kn. In order todo that, we need to know that b0+Kn 6= K. Take any a /∈ Kn. Sin
e by the 
ommentright after Corollary 4.6, µ((b0 + Kn) \Kn) = 0, we get µ((b0 + Kn)∩ aKn) = 0. As
µ(Kn) = µ(aKn) > 0, it follows that aKn \ (b0 + Kn) 6= ∅.Suppose we have 
hosen (ai)i≤m and (bi)i≤m satisfying the desired property. Thenit is enough to 
hoose any am+1 ∈ ⋂

i≤m(bi + Kn) and bm+1 /∈ ⋃
i≤m+1

(ai − Kn). Inorder to do that we need to show that ⋂
i≤m(bj +Kn) 6= ∅ and ⋃

i≤m+1
(ai−Kn) 6= K.By the 
omment right after Corollary 4.6, we get that ⋂

i≤m(bi + Kn) is µ-generi
 soit is nonempty. To show ⋃
i≤m+1

(ai −Kn) 6= K, we use a similar argument as in thebase indu
tion step. �Proposition 4.9 Assume a /∈ −Kn. Then there is an indis
ernible (over a) se-quen
e (ai)i∈ω su
h that:(i) if 1 − a ∈ Kn, then ai − aaj ∈ Kn ⇐⇒ i ≥ j,(ii) if 1 − a /∈ Kn, then ai − aaj ∈ Kn ⇐⇒ i > j.In parti
ular, the formula (∃z)(x − ay = zn) has the order property.Proof. By 
ompa
tness it is enough to 
onstru
t a sequen
e satisfying (i) or (ii). Forthe base step we 
hoose any a0 ∈ (K∗)n.Suppose we have 
hosen (ai)i≤m. Now it is enough to show that the set A :=
((K∗)n∩⋂

i≤m(aai +Kn))\⋃
i≤m( 1

a
ai− 1

a
Kn) is non-empty and to 
hoose any am+1 ∈

A. In order to see that A 6= ∅, noti
e that (K∗)n ∩ ⋂
i≤m(aai + Kn) is µ-generi
and is 
ontained in Kn. On the other hand, µ(

⋃
i≤m( 1

a
ai − 1

a
Kn) \ −1

a
Kn) = 0, so

µ(Kn ∩ ⋃
i≤m( 1

a
ai − 1

a
Kn)) = 0 (as −1

a
Kn ∩ Kn = {0}). Hen
e A 6= ∅. �Proposition 4.10 If n is odd, then for every a ∈ K the formula φ(x, y) := (∃z)(x−

ay = zn) does not have the stri
t order property.Proof. We will show that there are no k, l ∈ K su
h that φ(K, k) is a propersubset of φ(K, l). Suppose φ(K, k) ⊆ φ(K, l), i.e. ak + Kn ⊆ al + Kn. Then
−ak − Kn ⊆ −al − Kn, so −ak + Kn ⊆ −al + Kn, so al + Kn ⊆ ak + Kn. �It is well-known that if a formula φ has the order property and does not havethe independen
e property, then a 
onjun
tion of �nitely many instan
es (or theirnegations) of φ has the stri
t order property. In Propositions 4.8 and 4.9 we havefound (assuming that K 6= Kn for some n) some parti
ular formulas with the orderproperty about whi
h, by Proposition 4.10, we know that they do not have the stri
torder property (if n is odd). Maybe a more 
ompli
ated 
omputation (involvingsomehow superrosiness) 
ould show that also �nite 
onjun
tions of instan
es of thoseformulas do not have the stri
t order property, and then we would get that K = Kn(at least for odd n's). 16
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