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Abstract

We are working in a monster model € of a rosy theory T. We prove the
following theorems, generalizing the appropriate results from the finite Morley
rank case and o-minimal structures. If R is a \/-definable integral domain of
positive, finite UP-rank, then its field of fractions is interpretable in €. If A
and M are infinite, definable, abelian groups such that A acts definably and
faithfully on M as a group of automorphisms, M is A-minimal and UP(M)
is finite, then there is an infinite field interpretable in €. If G is an infinite,
solvable but non nilpotent-by-finite, definable group of finite UP-rank and T
has NIP, then there is an infinite field interpretable in (G, ).

In the last part, we study infinite, superrosy, dependent fields. Using mea-
sures, we show that each such field K satisfies K = K™ — K™ for every n > 1.

0 Introduction

An important goal in model theory is to obtain, in a definable way, classical algebraic
structures in theories satisfying some general model theoretic or algebraic assump-
tions. There is a long history of results of this kind, e.g. different versions of the
group configuration theorem (originally proved by E. Hrushovski, see |6, Chapters 5
and 7|), getting fields from definable actions of abelian groups in the finite Morley
rank case |8, Chapter 3| or in o-minimal structures |5|, or getting fields from solvable,
non nilpotent-by-finite groups in the finite Morley rank case [8, Corollary 3.20] and
from any non abelian-by-finite groups in o-minimal structures [5, Corollary 5.1].

The goal of this paper is to generalize some of the results about the existence of
an infinite field to a general context of rosy theories. We also try to understand the
structure of superrosy fields satisfying NIP.

Let € be a monster model of a rosy theory T'. We always work in €9,

At the beginning of Section 2, we generalize [5, Lemma 4.1|. Namely, we prove

Theorem 1 Let R be a \/-definable integral domain of positive, finite UP-rank. Then
the field of fractions of R, call it F, is interpretable in €. Moreover, there is a \/-
definable ring embedding of R onto a subring of F with the same UP-rank as F.
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In [5], this was proved in the o-minimal context using essentially certain topology
on \/-definable rings, which was defined by means of the standard o-minimal topol-
ogy. In our case, we give a very general proof, which just uses some properties of
UP-rank, and that is why it works in any situation where we have a nice notion of
dimension, for example in stable or simple theories (the dimension there is SU-rank).

In the further part of Section 2, we prove some variants of [8, Theorem 3.7] and
[5, Lemma 4.2| in our general rosy context. For example, we prove

Theorem 2 Let A and M be infinite, definable, abelian groups such that A acts
faithfully and definably on M as a group of automorphisms, M is A-minimal and
UP(M) is finite. Then there is an infinite field interpretable in €.

The proofs of these results use Zilber’s Indecomposables Theorem and chain con-
ditions in the finite Morley rank case, and the topology in the o-minimal case. Neither
of these tools are present in our situation. Our proofs rely on Theorem 1 and some
tricks eliminating applications of topology or chain conditions on intersections of
uniformly definable groups.

In Section 3, we prove the main result of this paper.

Theorem 3 Let G be a group of finite UP-rank definable in € and suppose that T
has NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite. Then there
is an infinite field interpretable in (G, -).

Similarly to the finite Morley rank case, in the proof of Theorem 3 we use Theorem
2. But the proof in our context is different.

In the last section we prove some partial results concerning the following conjec-
ture formulated in [1].

Conjecture 4 Fach infinite, superrosy field with NIP is either a real closed or an
algebraically closed field.

In particular, we show that each such field has the property K = K" — K"
for every n > 1. In our proofs we use absolute connected components and Kiesler
measures.

I would like to thank Clifton Ealy and Anand Pillay for interesting discussion
and suggestions.

1 Preliminaries

Let € be a monster model of a theory 7. We work in €%. Our general assumption
in this paper is that T is rosy, but often, we only need a nice notion of dimension.
In the rosy (or rather superrosy) context such a notion of dimension is UP-rank.

The most interesting examples of rosy theories are simple theories and o-minimal
theories.



We are not going to repeat the basic definitions of rosiness, p-forking and UP-rank.
The fundamental paper about these notions is [4]. For the basic theory of rosy groups,
the reader is referred to [1| where a short exposition of rosy theories and b-forking is
also given. Let us only recall here that if T" is rosy, then p-independence, denoted by
J/b, is a ternary relation on subsets of €%, which satisfies all the properties of forking

independence in simple theories except for the Independence Theorem. Using J/b,

we define UP-rank in the same way as U-rank is defined in stable theories by means of
L. UP-rank has most of the nice properties that U-rank has in stable theories, e.g. it
satisfies Lascar Inequalities. If D is an A-definable set, then UP(X) := sup{UP(d/A) :
d € D}. Of course, if this supremum is finite, then it is just the maximum. It turns
out that if D is a definable group and T is rosy, then the supremum is also attained
[1, Remark 1.20].

The following fact follows from a standard application of Lascar Inequalities.

Fact 1.1 If K is a definable field and T is superrosy, then for every n > 0, [K* :
(K*)"] < w and, if char(K) = p # 0, then the range of the function f : K — K
defined by f(x) = aP — x is a subgroup of finite index in K.

Another property of T" that we sometimes assume is the non independence prop-
erty (NIP), also called T' being dependent.

Definition 1.2 We say that T has the NIP if there is no formula p(z,y) and se-
quence (a;)i<, such that for every w C w there is by, such that = p(a;,by) iff i € w.

We will need the following consequence of NIP proved by Shelah (for the proof
see e.g. |2, Theorem 6.1]).

Fact 1.3 If G is a (type-)definable group and T has NIP, then G® (the smallest
type-definable subgroup of bounded indez) exists.

Another important for this paper consequence of NIP and rosiness is (see |1,
Proposition 1.7]):

Fact 1.4 Suppose T is rosy and has NIP. Any group G definable in T has icc, i.e.
the uniform chain condition on intersections of uniformly definable groups.

We also have the following easy observation |1, Proposition 4.1].

Fact 1.5 Let K be an infinite, definable field. If (KT)% exists, then (KT)%° = K.
In particular, if T has NIP, then (KT)%° = K.

Recall that a (global) Kiesler measure on a definable set D is a finitely additive
probability measure on definable subsets of D. We say that a Kiesler measure p
on X is definable (over A) if for each formula ¢(z,y) and closed subset C' of [0, 1],
{be €:ulp(D,b)) € C} is type-definable (over A). We say that a definable group
G is definably amenable if there is a left invariant Kiesler measure on G.

In the last section, we will need the following fact |3, Lemma 5.8].
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Fact 1.6 Assume that T has NIP and G is a definably amenable, definable group.
Then there is a left invariant, definable Kiesler measure on G.

Now let us recall the definition of a \/-definable ring from [5].

Definition 1.7 We say that a ring (R, -, +) is a \/-definable (or rather \/-interpretable)
ring if R = J;c; Xi where X;’s are A-definable subsets of some sort of € for some
set A, for every i,j € I there is k € I such that X; U X; C Xy, and the restrictions
of addition and multiplication to X; x X; are definable functions.

The assumption that for every ¢,j € I there is k € I such that X; U X; C X is
purely cosmetic, because we can always extend the family {X; : i € I} by adding all
unions of finitely many X;’s.

By the compactness theorem, if D is a definable subset of X, then it is covered
by finitely many X;’s (so, if fact, by one X;) and hence addition and multiplication
restricted to D are definable.

We define similarly \/-definable groups or just sets. \/-definable groups and rings
occur naturally as subgroups and subrings generated by definable subsets of definable
groups and rings.

If X =,e; X; is a \/-definable set, then UP(X) is defined as the supremum of
UP-ranks of the X;’s. If this supremum is finite, then UP-ranks of all X,’s are finite
and Ub(X) is just the maximum of UP-ranks of the X;’s. Notice that in a rosy theory,
by the compactness theorem, Ub(X) is the supremum of UP-ranks of all definable
subsets of X.

Definition 1.8 If Ry = |J,.; Xi and Ry, = UJGJY}- are \/-definable rings, then a
homomorphism f : Ry — Rs is called \/-definable if its restriction to each X; is
definable.

Another notion needed is G-minimality. If G is a definable group acting definably
on another definable group H by automorphisms, then we say that H is G-minimal if
H is infinite and does not have infinite, proper, definable subgroups invariant under
the action of G.

2 Getting fields from \/-definable rings and defin-
able actions of abelian groups

In this section, we generalize some results from Section 4 of |5] and |8, Theorem 3.7|.
The main obstacle here in comparison with the o-minimal case is that we do not have
a nice topology, and with the finite Morley rank case, that we do not have Zilber’s
Indecomposables Theorem.

We work in a monster model € of a rosy theory 7.

The following theorem was proved in the o-minimal context |5, Lemma 4.1| using
a nice topology on \/-definable rings. Here we give a very general proof, which works
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in any context in which we have a nice notion of dimension, e.g. in simple and in
o-minimal structures.

Theorem 2.1 Let R be a \/-definable integral domain of positive, finite UP-rank.
Then the field of fractions of R, call it F, is interpretable in €. Moreover, there is a
\/-definable ring embedding of R onto a subring of F with the same UP-rank as F.

Proof. Since R is \/-definable, we have that R = [J,.; X; where all X;’s are sets
definable over some set A, for any ¢,j € I there is k € [ such that X; U X; C X,
and the restrictions of addition and multiplication to any X; x X; are definable. So
for every r € R the map f. : R — R given by f.(x) = rz restricted to any X is
definable.

Now let D := X; be such that UP(D) = UP(R).

Claim 1 For any a,b € R\ {0}, (Da — Da) N (Db — Db) # {0}.
Proof of Claim 1. Consider the function f: D x D — R defined by

flry,ma) = ria + rob.

As f, | D, fo | D and + restricted to any definable subset of R are definable, so is f.
But UP(D x D) = 2UP(D) > UP(D) = UP(R), hence by Lascar inequalities we easily
get that f is not injective. Thus, there are two distinct pairs (ry, rs), (r],75) € DX D
such that ria+rb = ria+rhb. So (ry—7r)a = ra—ria = rhb—rab = (ry —r2)b. We
know that a, b # 0 and at least one of the elements 7 —r] and r5,—r3 is nonzero. Hence
the element 7 a—r}a is nonzero and, of course, it belongs to (Da—Da)N(Db—Db). O

Choose any a € R\ {0} and put X = Da — Da.
Claim 2 For any r1,m9 € R\ {0}, mX Nr.X # {0}.

Proof of Claim 2. Since R is commutative, r; X = r;Da — r;Da = D(r;a) — D(r;a).
As 7y, 9 and a are nonzero, we see that ria,ra € R\ {0}. So by Claim 1, we get
X NreX = (D(ria) — D(ria)) N (D(rea) — D(rea)) # {0}. O

The rest of the proof that the field of fractions of R is interpretable is the same as
in the proof of [5, Lemma 4.1]. Namely, the fraction field F' equals (R x (R\{0}))/~
where (ry,s1) ~ (r2,82) <= 1S3 = res;. By Claim 2, F' can be indentified
with (X x (X \ {0}))/~x where ~x is the restriction of ~ to X x (X \ {0}), and
obviously ~x is definable. Since addition and multiplication in R restricted to any
definable subset are definable, we easily get that addition and multiplication in F'
are definable. Hence F' is an interpretable field. If we fix a nonzero ry € R, then the
map 7 +— (r79,79)/~ gives us a \/-definable embedding of R into F.

The fact that UP(F) = UP(R) requires an extra explanation. Since R is \/-
definably embeddable in F, we easily get that UP(R) < UP(F). Let B be a set con-
taining AU{a} and such that addition and multiplication restricted to any X; are de-
finable over B. Then F is interpretable over B. Now consider (r1,72) € X x (X\{0})



such that UP([(r1,79)]~,/B) = UP(F). We need to show that UP([(r, 7s)]~,/B) <
UP(R). Since the function 7 — (ryr,7or) from R\ {0} to R x (R\ {0}) is a \/-
definable injection and its range is contained in the ~-class of (r1,79) (computed
in R x (R\ {0})), there is j € I such that X C X; and UP-rank of the ~X;-
class of (r1,79) (treated as a subset of X; x (X; \ {0})) is at least UP(R). Since
(X x (X\{0}))/~x can be B-definably identified with (X; x (X; \ {0}))/~x,, we
can work in (X; X (X;\{0}))/~x,. Let d = [(rl,rg)]wxj € (X; x (X;\{0}))/~x;. So
there is (r],75) ~x; (11,72) in X; x (X \ {0}) such that UP((rh,7%)/B, d) > UP(R).
Since d € dcl(r’, 7, B), by Lascar Inequalities, we get 2UP(R) > UP((r/,7})/B) =
UE((T;,T»Q), d/B) > UP((r{,ry)/B,d)+UP(d/B) > UP(R) + UP(d/B). So UP(d/B)
UP(R).

L BVAN

Notice that in the above theorem the assumption that R is of positive UP-rank is
necessary. Indeed, if € is a real closed field, then Q is a \/-definable field of UP-rank
0 and it is not interpretable in €.

Now we are going to generalize some classical results about getting fields from
definable actions of abelian groups [8, Theorem 3.1|, |5, Lemma 4.2|. As in the o-
minimal case, we cannot apply the method from the finite Morley rank case because
we do not have Zilber’s Indecomposables Theorem. But, as in [5], we can apply
Theorem 2.1. Once again, we give here general proofs which omit any applications
of o-minimal topology or chain conditions.

Theorem 2.2 Let A and M be infinite, definable, abelian groups such that A acts
faithfully and definably on M as a group of automorphisms, M is A-minimal and
UP(M) is finite. Then there is an infinite field interpretable in €.

Proof. For a € A we define Fiz(a) = {m € M : am = m} and for m € M we
put Stab(m) = {a € A : am = m}. Of course, Fiz(a) and Stab(m) are definable
subgroups of M and A, respectively.

Claim 1 There are my,...,m, € M such that Stab(m,) N ---N Stab(m,) = {e}.

Proof of Claim 1. For every a € A\ {e}, Fiiz(a) is a proper, definable subgroup of M
invariant under the action of A. So by A-minimality of M, Fiz(a) is finite. Hence
for any infinite subset S of M, (1, g Stab(m) = {e}. Thus, by the compactness
theorem, there are my,...,m, € M such that Stab(my) N---N Stab(m,) = {e}. O

Let R be the ring of endomorphisms of M generated by A. Then R is commuta-
tive.

Notice that every r € R is determined by (r(my),...,7(my,)). If not, then there
is r € R\ {0} such that r(my) = --- = r(m,) = 0. Since R is commutative, we get
that ker(r) is a proper, definable and invariant under the action of A subgroup of
M containing {ms,...,m,}. So Amy +---+ Am,, C ker(r). On the other hand, by
choice of mq,...,m,, we get that the function a — (amyq,...,am,) is an injection
from A to M™. So there is i such that Am, is infinite, and hence ker(r) is infinite.
This contradicts the assumption that M is A-minimal.
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Having the above observation, we get the following in a rather standard way.

Claim 2 The ring R is \/-definable, contained in M™ with the addition inherited
from M", and 0 < UP(R) < w.

Proof of Claim 2. Let H = (A(my,...,m,)). By the above observation, the function
f: R — H C M" defined by f(r) = (r(my),...,7(my)) is a bijection. Of course,
H = J,., Xi where X; = £A(mq,...,my,) £---F A(my,...,my) (--many times).
So H is a \/-definable subgroup of M".

By the definition of f, we see that for any 71,79 € R we have f(ry + rq) =
f(r1) + f(r2) (+ on the left hand side is the addition in R and + on the right hand
side is the addition in M").

Now we define multiplication, *, on H to make f a ring isomorphism, i.e. f(ry)*

f(ra) := f(rire) for all 1,7 € R. We leave as an easy exercise to check that
x: H x H— H is \/-definable, i.e. for any i,j < w, % : X; X X; — M" is definable.
Of course, 0 < UP(Am,;) < UP(H) < UP(M") < w. O

The next claim has the same proof as in the finite Morley rank case.
Claim 3 R is an integral domain.

Proof of Claim 3. Take any r1,79 € R such that ri79 = 0. If 75 # 0, then ker(rsy) is a
proper, definable subgroup of M invariant under the action of A. So by A-minimality
of M, ker(ry) is finite. So rng(rs) is an infinite, definable subgroup of M invariant
under the action of A. Thus rng(re) = M. So we get r = 0. O

By Claims 2, 3 and Theorem 2.1, we get an infinite field interpretable in €. W

Assuming that M does not have nontrivial, proper, definable subgroups invariant

under the action of A, we get even more specific information about our interpretable
field.

Proposition 2.3 Let A and M be infinite, definable, abelian groups such that A acts
faithfully and definably on M as a group of automorphisms, M does not have any
nontrivial, proper, definable subgroups invariant under the action of A and Ul’(M)
is finite. Then for every nonzero m € M there is a field K definable in € whose
underlying additive group is (M,+), and (A,-) is definably embeddable in K* by
sending a € A to am. After the embedding, the action of A on M becomes the scalar
multiplication.

Proof. Let R be the ring of endomorphisms of M generated by A. We easily see that
every nonzero r € R is an automorphism of M. Indeed, since ker(r) is a proper,
definable subgroup of M invariant under the action of A, it must be trivial. So
rng(r) is an infinite, definable subgroup of M invariant under the action of A, and
hence it is equal to M.

Choose a nonzero m € M. We conclude that every element r» € R is determined
by 7(m). So by the proof of Theorem 2.2, R is \/-definable (after the indentification
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of every r € R with r(m) € M), contained in M with the addition inherited from
M, and the field of fractions, F', of R is interpretable in €. More precisely, F' =
(X x (X' \{0}))/~ where X is a definable subset of R.

The rest is the same as in the last paragraph of the proof of |5, Lemma 4.2|.
Every element (a,3)/~€ F can be identified with the automorphism a3~ of M.
So F'is a field of automorphisms of M. We easily see that the action of F' on M
is definable. As above, we show that every element k € F' is determined by k(m).
Hence F' can be definably embedded into M by sending k € F' to k(m). The range
of this map is a definable field, say K, whose additive group is a subgroup of M
invariant under A, so it must be M. Of course, A is definably embeddable in K*
by sending a € A to am. The fact that after this embedding the action of A on M
coincides with the field multiplication is trivial. |

Using Proposition 2.3, we obtain the following strengthening of Theorem 2.2.

Corollary 2.4 Let A and M be infinite, definable, abelian groups such that A acts
faithfully and definably on M as a group of automorphisms, M is A-minimal and
Ub(M) is finite. Then there is an infinite field K interpretable in € whose underlying
additive group is M /My for some finite subgroup My of M invariant under A, and
A/Aq is definably embeddable in K* for some finite subgroup Ay of A. In fact,
the action of A on M induces a faithful and definable action of A/Ayg on M /My by
automorphisms, and after the embedding this action becomes the scalar multiplication.

Proof. By Proposition 2.3, in order to prove the corollary, it is enough to find a
finite subgroup M, of M which is invariant under the action of A, and a finite
subgroup Ay of A such that A/Ag acts faithfully and definably on M /M, as a group
of automorphisms and M /M, does not have nontrivial, proper, definable subgroups
invariant under A/A,.

Define My = {m € M : [A : Stab(m)] < w}. Of course, My is a subgroup of M
invariant under A. We claim that M, is finite (and hence definable). If not, there is
an infinite, countable set S contained in M. Then (), .o Stab(m) is a nontrivial (in
fact, of bounded index) subgroup of A. So there is a nontrivial a € (,,.g Stab(m),
which means that S C Fiz(a), a contradiction with the fact that Fiz(a) is finite.

Since M is invariant under A, the action of A on M induces an action of A on
M /M. Tt is easy to see that A acts on M /M, by automorphisms.

Define Aj as the set of those a € A which act as the trivial automorphism on
M /My. Then Ag is a subgroup of A. We claim that it is finite. Indeed, by Claim
1 in the proof of Theorem 2.2, there are mq,...,m, € M such that Stab(my) N
-+~ N Stab(my,) = {e}. So every a € A is determined by (amy,...,am,). On the
other hand, if a induces the trivial automorphism of M/M,, then am; € m; +
My, ..., am, € m, + My. Since M, is finite, we get only finitely many possibilities
for a € A inducing the trivial automorphism of M/Mj, i.e Ay is finite.

Summarizing, we get that A/Ag acts faithfully and definably on M /M as a group
of automorphisms. It remains to check that M /M, does not have nontrivial, proper,



definable subgroups invariant under A/Ay. Consider any definable subgroup G of
M /My invariant under A/Ay and let M; < M be the preimage of G under the
quotient map. We see that M, is a definable subgroup of M invariant under A. So
either My = M, and then G = M /My, or M is finite. In the second case, for any
m € M the orbit Am C M, is finite so [A : Stab(m)] < w, i.e. m € My; hence
My = M, which means that G is trivial. [ |

3 Getting fields in solvable non-nilpotent groups
In this section we prove the main result of the paper.

Theorem 3.1 Let G be a group of finite UP-rank definable in a monster model of a
rosy theory satisfying NIP. Assume that G is solvable-by-finite but not nilpotent-by-
finite. Then there is an infinite field interpretable in (G, -).

Before we start to prove the theorem, let us show the following general lemma
and a standard remark.

Lemma 3.2 Suppose P and Q) are infinite abelian groups, P acts on ) by automor-
phisms and for every p € P\ {ep} and ¢ € Q \ {eq}t, p-q¢ # q. Then @ x P is
solvable but not nilpotent-by-finite.

Proof. Solvability is obvious. Suppose for a contradiction that ) x P is nilpotent-by-
finite. Then there are subgroups P; and (), of finite index in P and (@), respectively,
such that the restriction of the action of P on () gives us an action by automorphisms
of P, on @ satisfying the property (Vp € P\ {ep})(Vqg € Q1 \{eq})(p-q # q), and
moreover ()1 X P; is nilpotent. So wlog () x P is nilpotent. To get a contradiction,
it is enough to show that Z(Q x P) is trivial.

We can identify Q with Q@ x{ep} < @x P and P with {eg} xP < QxP. After this
identification Q x P = QQP. Let e be the neutral element of () x P. By assumption,
for allp € P\ {e} and ¢ € Q \ {e} we have pgp~lq7' = (p- q)q~ ' # qq7' = e.

Take any gp € Z(Q x P) where p € P and ¢ € Q. Then gpq(qp)~*¢™* = e so
pqp~tq~! = e. By the last paragraph, we get p = e or ¢ = e. But once again using
the last paragraph, we also see that PN Z(Q x P) =QNZ(Q x P)={e}. Sop=e
and ¢ = e. Thus we have proved that Z(Q x P) = {e}. |

Remark 3.3 (i) Let G be a group such that all definable quotients of definable sub-
groups of G have icc on centralizers. Assume that G is solvable-by-finite. Then G
has a definable, solvable subgroup H of finite index, and H has a normal sequence
{e} = Hy<H, <---<H, = H such that each quotient H; 1/ H; is abelian and each
H; is definable.

(i1) Let G be a group such that all definable quotients of definable subgroups of G
have icc on centralizers. Assume that N is a nilpotent subgroup of G. Then G has
a definable nilpotent subgroup H containing N. Thus, the upper central series of H
consists of definable subgroups of G.



Proof. (i) By a standard trick, there is a normal, solvable subgroup L of finite index
in G. Then the derivative sequence of L, call it {e} = Lo<<L1<---<1L,, = L, consists
of normal subgroups of G. Now we define a sequence {e} = Hy < H; <--- <1 H,, of
definable, normal subgroups of G' with abelian quotients, and such that H; > L; for
every 0 <7 < n.

Hy is defined as {e}. Suppose Hy,..., H; satisfying all the above assumptions
have been constructed. Then we define H;,; = 7; '[Z(C(Liy 1 H;/H;))] where 7; :
G — G/H; is the natural quotient map. Using icc on centralizers, one can easily
check that this construction works.

Now H := H, together with the sequence {e} = Hy< H; <--- < H,, = H have
the desired properties.

(ii) The proof is the same as in the stable case [8, Theorem 3.17|, by induction on
the nilpotent class. If N is abelian, then H = Z(C(N)) works. For the induction
step, let Z = Z(C(Z(N))). By icc on centralizers, Z is definable, abelian, it is cen-
tralized by N and Z(N) < Z. Hence NZ/Z = N/(N N Z) is a nilpotent subgroup of
C(Z)/Z of a smaller class of nilpotency than N so by induction hypothesis, there is
a definable, nilpotent subgroup of C(Z)/Z containing NZ/Z. Then its preimage un-
der the natural quotient map is a definable, nilpotent subgroup of G containing N. B

Proof of Theorem 3.1. By Remark 3.3, we can assume that G is solvable and it has a
normal sequence consisting of definable subgroups with abelian quotients. It is also
clear that we can assume that (G, -) is our monster model.

The proof is by induction on UP(G). In fact, in the paragraph below we will show
that our assumptions on G imply that UP(G) > 2. The fact that G is infinite follows
immediately from the assumption that G is not nilpotent-by-finite.

Assume that the theorem is true for groups of UP-rank smaller that UP(G). By
icc on centralizers, we can assume that G is centralizer connected. If Z(G) is infinite,
then since G is not nilpotent-by-finite, G/Z(G) is a non nilpotent-by-finite, solvable
group of UP-rank smaller than UP(G). So by induction hypothesis, we get an infinite
interpretable field (notice that if UP(G) = 1, then [G : Z(G)] < w, a contradiction).
So we need to consider the case when Z(G) is finite. Dividing out by Z(G), we can
assume that G is also centerless. This implies that G does not have nontrivial, finite,
normal subgroups. Indeed, if H < G is finite, then [G : C'(h)] < w for every h € H.
But G is centralizer connected so H C Z(G) = {e}. So by solvability of G, there is
an infinite, definable, abelian, normal subgroup H of G (notice that if UP(GQ) = 1,
then [G : H] < w, a contradiction; so we have proved that UP(G) > 2).

Now choose a definable subgroup Gy of finite index in G and an infinite, definable,
abelian, normal subgroup H of Gy with minimal possible UP-rank (ranging over all
such pairs (Go, H)). Wlog G = Go. We can also assume that H is centralizer
connected in G.

Since G is not nilpotent-by-finite, G /C(H) is infinite. As UP(G/C(H)) < U(@G),
by induction hypothesis, we can assume that G/C(H) is nilpotent-by-finite. Using
icc on centralizers and Remark 3.3, we can replace G be a definable subgroup of finite
index so that G/C(H) becomes nilpotent and centralizer connected. This implies
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that Z(G/C(H)) is infinite.

Put A = Z(G/C(H)) and Ay = n~[A] where 7 : G — G/C(H) is the natural
quotient map. Then Ay is a definable, normal subgroup of G and A = Ay/C(H)
is an infinite, abelian group interpretable in (G,-). Moreover, A acts faithfully and
definably on H by automorphisms: aC'(H) * h = h* for aC(H) € A and h € H.

Claim 1 For everya € Ay \ C(H), C(a) N H = {e}.

Proof of Claim 1. Let B = C(a) N H. It is enough to show that B < G (be-
cause H was chosen to have minimal possible positive UP-rank, H is centralizer
connected in G and G does not have nontrivial, finite, normal subgroups). Take
any g € G. We need to show BY = B. Of course, BY = C(a?) N H. Since
A=Z7Z(G/C(H)), a?C(H) = (aC(H))? = aC(H). So a? = ac for some ¢ € C(H).
Thus BY = C(a9)NH = C(ac) N H =C(a) N H = B. O

By Claim 1, P := A and @ := H satisfy the assumptions of Lemma 3.2 so
we conclude that R := H x A is an interpretable group which is solvable but not
nilpotent-by-finite. We also have UP(R) = UP(H) +UP(A). So if UP(A) < UP(G/H),
then UP(R) < UP(H) + UP(G/H) = UP(G) and hence we are done by induction
hypothesis. Therefore, we can assume that UP(A) = UP(G/H). But UP(A) =
UP(A4y)—UP(C(H)) < UP(G)—UP(H) = UP(G/H) and equality holds iff [G : Ay] < w
and [C(H): H] <w. So we get [C(H) : H| < w, and we can assume that G = A,.

By NIP, H exists.

Claim 2 HY is definable.

Proof. Take any a € G\ C(H). We claim that C(a) is infinite. If not, then
UP(a®) = UP(G) so (aH)® is an infinite subset of G/H. But since G/C(H) is
abelian and [C(H) : H| < w, we get a contradiction.

On the other hand, by Claim 1, C(a) N H = {e}. So if we put G; = HC(a), then
|G : H] is infinite.

By NIP, G{° exists. Notice that H = GY°N H. The inclusion (C) is obvious. To
prove (=), assume for a contradiction that H% C G% N H. By the definition of G,
and the fact that C'(a) N H = {e}, we get that H°°C(a) is a type-definable subgroup
of G of bounded index, not containing G{°, a contradiction.

Since [G) : Gy N C(H)] > w, there is b € GY° \ C(H). By Claim 1, for every
¢ € bH we have UP(cH) = UP(H) = UP(bH). As bH is closed under conjugations by
elements of H, we get that bH = cff U---UcH for some cy,...,c, € bH. We also
know that GY° <Gy so bHNGY = ¢ U--- Ul for some 1 <4y < --- < i < .
Thus, bH NG is definable. On the other hand, since b € G%°, by the last paragraph,
we get bH NG = b(H NGY) = bH®. Therefore, H is definable. O

By Claim 2, replacing H by HY (and repeating all arguments preceding Claim
2 for this new H), we can assume that H = H%.

Claim 3 H does not have nontrivial, proper, definable subgroups invariant under the
action of A.

11



Proof of Claim 3. Suppose H; is a definable subgroup of H invariant under A. Since
A = G/C(H), we get H; < G. So, by minimality of UP(H), Hy is either finite or
of finite index in H. On the other hand, we know that G does not have nontrivial,
finite, normal subgroups and H = H*. Hence H; = {e} or H; = H. O

By Claim 3, we see that M := H and A satisfy the assumptions of Theorem 2.2
(or even Proposition 2.3) so an infinite, interpretable field exists. ]

In [1], Theorem 3.1 was proved in the case of UP(G) = 2 but under a much
stronger assumption that G has hereditarily fsg (finitely satisfiable generics). In
fact, under this assumption there was proved even more, namely:

Fact 3.4 Assume that G has NIP, hereditarily fsg, UP(G) 2 and G is not nilpotent-
by-finite. Then, after possibly passing to a definable subgroup of finite index and
quotienting by its finite center, G is (definably) the semidirect product of the additive
and multiplicative groups of an algebraically closed field F' interpretable in (G, -), and
moreover G = G,

Analyzing carefully the proof of Theorem 3.1 and modifying it a little bit, we
obtain the following strengthening of Theorem 3.1 in the UP-rank 2 case.

Corollary 3.5 Let G be a group of UP-rank 2 definable in a monster model of a rosy
theory satisfying NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite.
Then, after possibly passing to a definable subgroup of finite index and quotienting
by its finite center, G is (definably) the semidirect product of the additive group and
a finite index subgroup of the multiplicative group of a field K interpretable in (G, -).

Proof. By the proof of Theorem 3.1, we know that there is no group of UP-rank 0
or 1 satisfying the assumptions of Theorem 3.1. Therefore, under the assumption
UP(G) = 2, the proof of Theorem 3.1 necessarily leads us to the last paragraph
and produces a field using Proposition 2.3. So for any nontrivial h € H we get
an interpretable field, say K, whose additive group is (H,-) and such that the map
f:G/C(H) — K* given by f(gC(H)) = gC(H)*h = h? is a definable embedding
of G/C(H) into K*, and after this embedding the action of G/C(H) on H coincides
with the field multiplication. Since UP(K*) = 1 = UP(G/C(H)), the image of
G/C(H) by f is a finite index subgroup of K*, call it L.

Claim 1 Without loss of generality we can assume that G = HB where B is a
definable, abelian group of UP-rank 1, HN B = {e} and C(H) = H.

Proof of Claim 1. Since [C(H) : H] is finite, we can choose a € G\ C(H). By the
first paragraph of the proof of Claim 2 and by Claim 1 in the proof of Theorem 3.1,
we get that C(a) is infinite and C(a) N H = {e}. Thus UP(C(a)) = 1 and so C(a)
is nilpotent-by-finite. Using Remark 3.3 and considering the centralizer connected
component of C'(a), we get that C'(a) has a definable abelian subgroup B of finite
index. Since UP(HB) = 2, we can assume G = HB. In order to finish the proof of
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Claim 1, it is enough to show the following
Subclaim C(H) = H.

Proof of Subclaim. It is enough to show that C(H) N B = {e}. So we will be done
if we show that for any b € B\ C(H), C(b) N C(H) = {e}. We proceed in the same
way as in the proof of Claim 1 in the proof of Theorem 3.1.

Take any b € B\ C(H). Let C = C(b)NC(H). It is enough to show that C' < G.
Indeed, if C'<1 G, then since G does not have nontrivial, finite, normal subgroups, we
get that either C' = {e} or C'is infinite. In the second case, [C(H) : C] is finite. This
implies that [H : H N C] is finite. Since H = H® we get H C C and so b € C(H),
a contradiction.

Take any g € G. We need to show C9 = C. Of course, CY = C(b?) N H. Since
G/H = B is abelian, ¥H = (bH)? = bH. So b9 = bc for some ¢ € H. Thus
CI=C)NCH)=Cbc)NC(H)=C(b)NC(H)=C. O

By Claim 1, G/C(H) = G/H = BH/H = B and we see that B is definably iso-
morphic to L by sending b € B to h’. We also easily see that the action of L on H
by the field multiplication is the same as the action of B on H by conjugation. So
G = HB is definably isomorphic to K x L. [

4 Superrosy dependent fields

The main motivation in this section is Conjecture 4. To prove this conjecture it is
enough to show that each infinite, superrosy field K with NIP and containing v/—1 is
algebraically closed. In fact, it suffices to show that for every natural number n > 0,
K" = K, and if p is the characteristic of K, then the function f : K — K defined
by f(x) = 2P — x is onto (because then we can apply the standard Macintyre’s proof
|8, Theorem 3.1]). The fact that f is onto follows from Facts 1.1 and 1.5.

In this paper we will prove a weaker condition than K™ = K, namely that for
every natural number n > 0, K = K" — K. In particular, if n is odd or if 3/—1
exists in K where 2% is the largest power of 2 dividing n, then K = K"+ K™. We also
prove other results of this kind. The main idea involved here is to apply definable
measures.

Let us start from a general fact.

Proposition 4.1 Let K be any field and G = K x K* (i.e. (ki, k) - (k}, kb)) = (k1 +
kok!, kokl)). Then G is amenable and there is a finitely additive, probabilistic measure
on K which 1s invariant under additive and non-zero multiplicative translations.

Proof. Of course, G is solvable so it is amenable, i.e. there is a finitely additive,
probabilistic, left (two-sided) invariant measure m on G.
Define a function p: P(K) — [0, 1] by

u(A) = m(A x K*).
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It is obvious that u is a finitely additive, probabilistic measure on K. Now we will
check that p is additively and multiplicatively invariant. In the additive case, for
every A C K and k € K we have:

wk+A) =m((k+A) x K*) =m((k,1)- (A x K¥)) =m(A x K*) = u(A).
In the multiplicative case, for every A C K and k € K* we have:
wkA) =m((kA) x K*) =m((0,k) - (Ax K¥)) =m(A x K*) = u(A). |

Note that if K is definable in a monster model € of a theory satisfying NIP, then
since G := K x K* is also definable in € and G is amenable, by Fact 1.6, there is a
definable, left invariant Keisler measure on G. Using this measure as m in the above
proof we get:

Corollary 4.2 Let K be any field definable in a monster model of a theory satisfying
NIP. Then there is a definable Keisler measure on K invariant under additive and
non-zero multiplicative translations.

Definition 4.3 Suppose G is a definably amenable group (with left invariant Keisler
measure ) definable in a monster model of any theory T. We say that a definable
set X C G is p-generic if u(X) > 0. We say that a type (or its set of realizations) is
w-generic if the conjunction of any finitely many formulas in this type defines a set
whose intersection with G is p-generic.

It is obvious that in every definably amenable group non-p-generic sets form an
ideal and hence every partial u-generic type can be extended to a global p-generic
type. In particular, at least one global p-generic type exists.

The following proposition (except for point (i)) is a variant of |2, Corollary 4.3|
for p-generics.

Proposition 4.4 Let G be a definably amenable group definable in a monster model
of a theory satisfying NIP. Then

(i) there is a definable, left invariant Keisler measure p on G,

(ii) there are only boundedly many global u-generic types,

(i11) for every global type p, Stab(p) C G,

() for every definable set X C G, Stab,(X) :={9 € G : p(gX A X) =0} isa
type-definable subgroup of bounded index in G; in particular, G C Stab,(X),

(v) for every global p-generic type p, Stab(p) = G°.

Proof. (i) is just Fact 1.6.

(ii) is true for an arbitrary Keisler measure and it follows from |2, Corollary 3.4].
(iii) is true whenever G exists; it follows from the fact that a partial type defining
some translate of G% is in p.

(iv). The fact that Stab,(X) is a subgroup follows from left invariance of p. The fact
that Stab,(X) is type-definable follows from definability of p. Finally, the fact that
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the index of Stab,(X) in G is bounded follows from [2, Corollary 3.4] and the obser-
vation that for every g, h € G we have: gStab,(X) = hStab,(X) iff u(¢X AhX) = 0.
(v) Since p is left invariant, gp is p-generic for every g € G. So ({Stab,(X) : X €
p} C Stab(p). Hence we are done by (iii) and (iv). [

From now on, let K be an infinite field definable in a monster model of a theory
T satisfying NIP. By Corollary 4.2, we can find a definable Keisler measure invariant
under additive and non-zero multiplicative translations; we denote it by pu.

Proposition 4.5 If X is a definable (or type-definable) j1-generic subset of K, then
(i) for every k € K, (k+ X) N X is p-generic and of the same measure as X,

(i) K =X — X,

(iii) for every k € (K*)°, kX N X is u-generic and of the same measure as X,

(iv) (K*)% C X X1

Proof. Ttems (ii) and (iv) follow from (i) and (iii), respectively. Item (i) follows from
Fact 1.5 and Proposition 4.4(iv). Item (iii) follows from Proposition 4.4(iv). [

From now on, assume that 71" is additionally superrosy.

Corollary 4.6 For every natural number n > 0 we have K = K™ — K". Hence, if
n s odd or if 2/—1 exists in K where 2% is the largest power of 2 dividing n, then
K=K"+ K".

Proof. By Fact 1.1, K* is a union of finitely many cosets of (K*)™. So at least one and
hence all the cosets of (K™*)™ are p-generic (and of the same measure). So by Propo-
sition 4.5(ii) we get K = K" — K™. From this the second part follows immediately. H

In fact, we get even more, namely, for every k € K, (k+ K™) N K" is p-generic
and of the same measure as K. We also get that every element of K can be written
as a difference  — y where z,y € (K*)" C (., K" Notice also that this property

(and, in particular, the conclusion of Corollary 4.6) holds in every finite extension of
K.

Conjecture 4.7 Assume \/—1 exists in K. Then for every natural number n and
a € K* we have that K = K™ — aK™".

If we proved the above conjecture (even only for prime numbers n), we could
apply the proof of [7, Theorem 4.6] to get that the Brauer group of K is trivial
(assuming that v/—1 € K). Corollary 4.6 is a weaker result than Conjecture 4.7.

Now using our measure p we will easily conclude that certain particular formulas
have the order property.

Proposition 4.8 For every natural number n > 0, if K™ # K, then the formula
(32)(x —y = 2") has the order property.
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Proof. We need to find sequences (a;)ic, and (b;);e,, such that a; —b; € K" <=
i> .

For the base step it is enough to choose any by € K and ag ¢ by+ K". In order to
do that, we need to know that by+ K™ # K. Take any a ¢ K™. Since by the comment
right after Corollary 4.6, u((bo + K™) \ K™) =0, we get u((bo + K")NaK"™) = 0. As
u(K™) = p(aK™) > 0, it follows that a K™\ (by + K™) # 0.

Suppose we have chosen (a;);<m, and (b;);<m satisfying the desired property. Then
it is enough to choose any ay,11 € ();<,,(bi + K") and byy1 ¢ ;g (@i — K™). In
order to do that we need to show that (,,,(b;+K") # 0 and |, (a; —K") # K.
By the comment right after Corollary 4.6, we get that (.., (b;+ K™) is u-generic so
it is nonempty. To show |J,,,.;(a; — K™) # K, we use a similar argument as in the
base induction step. [ ]

Proposition 4.9 Assume a ¢ —K™. Then there is an indiscernible (over a) se-
quence (a;)iew Such that:

(i) if 1 —a € K", then a; —aa; € K™ <= 1> 7,

(i1) if 1 —a ¢ K", then a; —aa; € K" <= i > j.

In particular, the formula (32)(x — ay = z"™) has the order property.

Proof. By compactness it is enough to construct a sequence satisfying (i) or (ii). For
the base step we choose any ag € (K*)".

Suppose we have chosen (a;);<;,. Now it is enough to show that the set A :=
(K" NV (@i + K™)\U;<n(2a; = LK™) is non-empty and to choose any a,,11 €
A. - -

In order to see that A # (), notice that (K*)" N (,,,(aa; + K") is p-generic
and is contained in K™. On the other hand, M(Uigm(%ai —IK™)\ =1K") =0, so
w(K™N Uigm(%ai —1K™) =0 (as =2 K" N K" = {0}). Hence A # 0. [
Proposition 4.10 Ifn is odd, then for every a € K the formula ¢(x,y) := (Iz)(x—
ay = z") does not have the strict order property.

Proof. We will show that there are no k,l € K such that ¢(K, k) is a proper
subset of ¢(K,l). Suppose ¢(K,k) C ¢(K,l), i.e. ak + K" C al + K". Then
—ak — K" C —al — K", so —ak + K™ C —al + K", so al + K™ C ak + K™. |

It is well-known that if a formula ¢ has the order property and does not have
the independence property, then a conjunction of finitely many instances (or their
negations) of ¢ has the strict order property. In Propositions 4.8 and 4.9 we have
found (assuming that K # K™ for some n) some particular formulas with the order
property about which, by Proposition 4.10, we know that they do not have the strict
order property (if n is odd). Maybe a more complicated computation (involving
somehow superrosiness) could show that also finite conjunctions of instances of those
formulas do not have the strict order property, and then we would get that K = K"
(at least for odd n’s).
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