Fields interpretable in rosy theories

Krzysztof Krupiński*

Abstract

We are working in a monster model \mathfrak{C} of a rosy theory T. We prove the following theorems, generalizing the appropriate results from the finite Morley rank case and o-minimal structures. If R is a \bigvee -definable integral domain of positive, finite U^b-rank, then its field of fractions is interpretable in \mathfrak{C} . If A and M are infinite, definable, abelian groups such that A acts definably and faithfully on M as a group of automorphisms, M is A-minimal and U^b(M) is finite, then there is an infinite field interpretable in \mathfrak{C} . If G is an infinite, solvable but non nilpotent-by-finite, definable group of finite U^b-rank and T has NIP, then there is an infinite field interpretable in $\langle G, \cdot \rangle$.

In the last part, we study infinite, superrosy, dependent fields. Using measures, we show that each such field K satisfies $K = K^n - K^n$ for every $n \ge 1$.

0 Introduction

An important goal in model theory is to obtain, in a definable way, classical algebraic structures in theories satisfying some general model theoretic or algebraic assumptions. There is a long history of results of this kind, e.g. different versions of the group configuration theorem (originally proved by E. Hrushovski, see [6, Chapters 5 and 7]), getting fields from definable actions of abelian groups in the finite Morley rank case [8, Chapter 3] or in o-minimal structures [5], or getting fields from solvable, non nilpotent-by-finite groups in the finite Morley rank case [8, Corollary 3.20] and from any non abelian-by-finite groups in o-minimal structures [5, Corollary 5.1].

The goal of this paper is to generalize some of the results about the existence of an infinite field to a general context of rosy theories. We also try to understand the structure of superrosy fields satisfying NIP.

Let \mathfrak{C} be a monster model of a rosy theory T. We always work in \mathfrak{C}^{eq} .

At the beginning of Section 2, we generalize [5, Lemma 4.1]. Namely, we prove

Theorem 1 Let R be a \bigvee -definable integral domain of positive, finite U^{b} -rank. Then the field of fractions of R, call it F, is interpretable in \mathfrak{C} . Moreover, there is a \bigvee definable ring embedding of R onto a subring of F with the same U^{b} -rank as F.

^{*}Research supported by the Polish Government grant: N201 032 32/2231

⁰2000 Mathematics Subject Classification: 03C45, 03C60

⁰Key words and phrases: rosy theory, interpretable field, non independence property

In [5], this was proved in the o-minimal context using essentially certain topology on \bigvee -definable rings, which was defined by means of the standard o-minimal topology. In our case, we give a very general proof, which just uses some properties of U^{b} -rank, and that is why it works in any situation where we have a nice notion of dimension, for example in stable or simple theories (the dimension there is SU-rank).

In the further part of Section 2, we prove some variants of [8, Theorem 3.7] and [5, Lemma 4.2] in our general rosy context. For example, we prove

Theorem 2 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M is A-minimal and $U^{b}(M)$ is finite. Then there is an infinite field interpretable in \mathfrak{C} .

The proofs of these results use Zilber's Indecomposables Theorem and chain conditions in the finite Morley rank case, and the topology in the o-minimal case. Neither of these tools are present in our situation. Our proofs rely on Theorem 1 and some tricks eliminating applications of topology or chain conditions on intersections of uniformly definable groups.

In Section 3, we prove the main result of this paper.

Theorem 3 Let G be a group of finite U^{b} -rank definable in \mathfrak{C} and suppose that T has NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite. Then there is an infinite field interpretable in $\langle G, \cdot \rangle$.

Similarly to the finite Morley rank case, in the proof of Theorem 3 we use Theorem 2. But the proof in our context is different.

In the last section we prove some partial results concerning the following conjecture formulated in [1].

Conjecture 4 Each infinite, superrosy field with NIP is either a real closed or an algebraically closed field.

In particular, we show that each such field has the property $K = K^n - K^n$ for every $n \ge 1$. In our proofs we use absolute connected components and Kiesler measures.

I would like to thank Clifton Ealy and Anand Pillay for interesting discussion and suggestions.

1 Preliminaries

Let \mathfrak{C} be a monster model of a theory T. We work in \mathfrak{C}^{eq} . Our general assumption in this paper is that T is rosy, but often, we only need a nice notion of dimension. In the rosy (or rather superrosy) context such a notion of dimension is U^b-rank.

The most interesting examples of rosy theories are simple theories and o-minimal theories.

We are not going to repeat the basic definitions of rosiness, b-forking and U^b-rank. The fundamental paper about these notions is [4]. For the basic theory of rosy groups, the reader is referred to [1] where a short exposition of rosy theories and b-forking is also given. Let us only recall here that if T is rosy, then b-independence, denoted by \bigcup^{b} , is a ternary relation on subsets of \mathfrak{C}^{eq} , which satisfies all the properties of forking independence in simple theories except for the Independence Theorem. Using \bigcup^{b} , we define U^b-rank in the same way as U-rank is defined in stable theories by means of \bigcup . U^b-rank has most of the nice properties that U-rank has in stable theories, e.g. it satisfies Lascar Inequalities. If D is an A-definable set, then U^b(X) := $\sup\{U^{b}(d/A) : d \in D\}$. Of course, if this supremum is finite, then it is just the maximum. It turns out that if D is a definable group and T is rosy, then the supremum is also attained [1, Remark 1.20].

The following fact follows from a standard application of Lascar Inequalities.

Fact 1.1 If K is a definable field and T is superrosy, then for every n > 0, $[K^* : (K^*)^n] < \omega$ and, if $char(K) = p \neq 0$, then the range of the function $f : K \to K$ defined by $f(x) = x^p - x$ is a subgroup of finite index in K^+ .

Another property of T that we sometimes assume is the non independence property (NIP), also called T being dependent.

Definition 1.2 We say that T has the NIP if there is no formula $\varphi(x, y)$ and sequence $\langle a_i \rangle_{i < \omega}$ such that for every $w \subseteq \omega$ there is b_w such that $\models \varphi(a_i, b_w)$ iff $i \in w$.

We will need the following consequence of NIP proved by Shelah (for the proof see e.g. [2, Theorem 6.1]).

Fact 1.3 If G is a (type-)definable group and T has NIP, then G^{00} (the smallest type-definable subgroup of bounded index) exists.

Another important for this paper consequence of NIP and rosiness is (see [1, Proposition 1.7]):

Fact 1.4 Suppose T is rosy and has NIP. Any group G definable in T has icc, i.e. the uniform chain condition on intersections of uniformly definable groups.

We also have the following easy observation [1, Proposition 4.1].

Fact 1.5 Let K be an infinite, definable field. If $(K^+)^{00}$ exists, then $(K^+)^{00} = K$. In particular, if T has NIP, then $(K^+)^{00} = K$.

Recall that a (global) Kiesler measure on a definable set D is a finitely additive probability measure on definable subsets of D. We say that a Kiesler measure μ on X is definable (over A) if for each formula $\varphi(x, y)$ and closed subset C of [0, 1], $\{b \in \mathfrak{C} : \mu(\varphi(D, b)) \in C\}$ is type-definable (over A). We say that a definable group G is definably amenable if there is a left invariant Kiesler measure on G.

In the last section, we will need the following fact [3, Lemma 5.8].

Fact 1.6 Assume that T has NIP and G is a definably amenable, definable group. Then there is a left invariant, definable Kiesler measure on G.

Now let us recall the definition of a \bigvee -definable ring from [5].

Definition 1.7 We say that a ring $\langle R, \cdot, + \rangle$ is a \bigvee -definable (or rather \bigvee -interpretable) ring if $R = \bigcup_{i \in I} X_i$ where X_i 's are A-definable subsets of some sort of \mathfrak{C}^{eq} for some set A, for every $i, j \in I$ there is $k \in I$ such that $X_i \cup X_j \subseteq X_k$, and the restrictions of addition and multiplication to $X_i \times X_j$ are definable functions.

The assumption that for every $i, j \in I$ there is $k \in I$ such that $X_i \cup X_j \subseteq X_k$ is purely cosmetic, because we can always extend the family $\{X_i : i \in I\}$ by adding all unions of finitely many X_i 's.

By the compactness theorem, if D is a definable subset of X, then it is covered by finitely many X_i 's (so, if fact, by one X_i) and hence addition and multiplication restricted to D are definable.

We define similarly \bigvee -definable groups or just sets. \bigvee -definable groups and rings occur naturally as subgroups and subrings generated by definable subsets of definable groups and rings.

If $X = \bigcup_{i \in I} X_i$ is a \bigvee -definable set, then $U^{\flat}(X)$ is defined as the supremum of U^{\flat} -ranks of the X_i 's. If this supremum is finite, then U^{\flat} -ranks of all X_i 's are finite and $U^{\flat}(X)$ is just the maximum of U^{\flat} -ranks of the X_i 's. Notice that in a rosy theory, by the compactness theorem, $U^{\flat}(X)$ is the supremum of U^{\flat} -ranks of all definable subsets of X.

Definition 1.8 If $R_1 = \bigcup_{i \in I} X_i$ and $R_2 = \bigcup_{j \in J} Y_j$ are \bigvee -definable rings, then a homomorphism $f : R_1 \to R_2$ is called \bigvee -definable if its restriction to each X_i is definable.

Another notion needed is G-minimality. If G is a definable group acting definably on another definable group H by automorphisms, then we say that H is G-minimal if H is infinite and does not have infinite, proper, definable subgroups invariant under the action of G.

2 Getting fields from \bigvee -definable rings and definable actions of abelian groups

In this section, we generalize some results from Section 4 of [5] and [8, Theorem 3.7]. The main obstacle here in comparison with the o-minimal case is that we do not have a nice topology, and with the finite Morley rank case, that we do not have Zilber's Indecomposables Theorem.

We work in a monster model \mathfrak{C} of a rosy theory T.

The following theorem was proved in the o-minimal context [5, Lemma 4.1] using a nice topology on \bigvee -definable rings. Here we give a very general proof, which works

in any context in which we have a nice notion of dimension, e.g. in simple and in o-minimal structures.

Theorem 2.1 Let R be a \bigvee -definable integral domain of positive, finite U^{b} -rank. Then the field of fractions of R, call it F, is interpretable in \mathfrak{C} . Moreover, there is a \bigvee -definable ring embedding of R onto a subring of F with the same U^{b} -rank as F.

Proof. Since R is \bigvee -definable, we have that $R = \bigcup_{i \in I} X_i$ where all X_i 's are sets definable over some set A, for any $i, j \in I$ there is $k \in I$ such that $X_i \cup X_j \subseteq X_k$, and the restrictions of addition and multiplication to any $X_i \times X_j$ are definable. So for every $r \in R$ the map $f_r : R \to R$ given by $f_r(x) = rx$ restricted to any X_i is definable.

Now let $D := X_i$ be such that $U^{\flat}(D) = U^{\flat}(R)$.

Claim 1 For any $a, b \in R \setminus \{0\}$, $(Da - Da) \cap (Db - Db) \neq \{0\}$.

Proof of Claim 1. Consider the function $f: D \times D \to R$ defined by

$$f(r_1, r_2) = r_1 a + r_2 b.$$

As $f_a \upharpoonright D$, $f_b \upharpoonright D$ and + restricted to any definable subset of R are definable, so is f. But $U^{b}(D \times D) = 2U^{b}(D) > U^{b}(D) = U^{b}(R)$, hence by Lascar inequalities we easily get that f is not injective. Thus, there are two distinct pairs $(r_1, r_2), (r'_1, r'_2) \in D \times D$ such that $r_1a + r_2b = r'_1a + r'_2b$. So $(r_1 - r'_1)a = r_1a - r'_1a = r'_2b - r_2b = (r'_2 - r_2)b$. We know that $a, b \neq 0$ and at least one of the elements $r_1 - r'_1$ and $r'_2 - r_2$ is nonzero. Hence the element $r_1a - r'_1a$ is nonzero and, of course, it belongs to $(Da - Da) \cap (Db - Db)$.

Choose any $a \in R \setminus \{0\}$ and put X = Da - Da.

Claim 2 For any $r_1, r_2 \in R \setminus \{0\}, r_1X \cap r_2X \neq \{0\}$.

Proof of Claim 2. Since R is commutative, $r_i X = r_i Da - r_i Da = D(r_i a) - D(r_i a)$. As r_1 , r_2 and a are nonzero, we see that $r_1 a, r_2 a \in R \setminus \{0\}$. So by Claim 1, we get $r_1 X \cap r_2 X = (D(r_1 a) - D(r_1 a)) \cap (D(r_2 a) - D(r_2 a)) \neq \{0\}$.

The rest of the proof that the field of fractions of R is interpretable is the same as in the proof of [5, Lemma 4.1]. Namely, the fraction field F equals $(R \times (R \setminus \{0\}))/\sim$ where $(r_1, s_1) \sim (r_2, s_2) \iff r_1 s_2 = r_2 s_1$. By Claim 2, F can be indentified with $(X \times (X \setminus \{0\}))/\sim_X$ where \sim_X is the restriction of \sim to $X \times (X \setminus \{0\})$, and obviously \sim_X is definable. Since addition and multiplication in R restricted to any definable subset are definable, we easily get that addition and multiplication in Fare definable. Hence F is an interpretable field. If we fix a nonzero $r_0 \in R$, then the map $r \mapsto (rr_0, r_0)/\sim$ gives us a \bigvee -definable embedding of R into F.

The fact that $U^{b}(F) = U^{b}(R)$ requires an extra explanation. Since R is \bigvee definably embeddable in F, we easily get that $U^{b}(R) \leq U^{b}(F)$. Let B be a set containing $A \cup \{a\}$ and such that addition and multiplication restricted to any X_{i} are definable over B. Then F is interpretable over B. Now consider $(r_{1}, r_{2}) \in X \times (X \setminus \{0\})$

such that $U^{\flat}([(r_1, r_2)]_{\sim_X}/B) = U^{\flat}(F)$. We need to show that $U^{\flat}([(r_1, r_2)]_{\sim_X}/B) \leq U^{\flat}(R)$. Since the function $r \mapsto (r_1r, r_2r)$ from $R \setminus \{0\}$ to $R \times (R \setminus \{0\})$ is a V-definable injection and its range is contained in the ~-class of (r_1, r_2) (computed in $R \times (R \setminus \{0\})$), there is $j \in I$ such that $X \subseteq X_j$ and U^{\flat} -rank of the \sim_{X_j} -class of (r_1, r_2) (treated as a subset of $X_j \times (X_j \setminus \{0\})$) is at least $U^{\flat}(R)$. Since $(X \times (X \setminus \{0\}))/\sim_X$ can be B-definably identified with $(X_j \times (X_j \setminus \{0\}))/\sim_{X_j}$, we can work in $(X_j \times (X_j \setminus \{0\}))/\sim_{X_j}$. Let $d = [(r_1, r_2)]_{\sim_{X_j}} \in (X_j \times (X_j \setminus \{0\}))/\sim_{X_j}$. So there is $(r'_1, r'_2) \sim_{X_j} (r_1, r_2)$ in $X_j \times (X_j \setminus \{0\})$ such that $U^{\flat}((r'_1, r'_2)/B, d) \ge U^{\flat}(R)$. Since $d \in dcl(r'_1, r'_2, B)$, by Lascar Inequalities, we get $2U^{\flat}(R) \ge U^{\flat}((r'_1, r'_2)/B) = U^{\flat}((r'_1, r'_2), d/B) \ge U^{\flat}((r'_1, r'_2)/B, d) + U^{\flat}(d/B) \ge U^{\flat}(R)$.

Notice that in the above theorem the assumption that R is of positive U^b-rank is necessary. Indeed, if \mathfrak{C} is a real closed field, then \mathbb{Q} is a \bigvee -definable field of U^b-rank 0 and it is not interpretable in \mathfrak{C} .

Now we are going to generalize some classical results about getting fields from definable actions of abelian groups [8, Theorem 3.1], [5, Lemma 4.2]. As in the ominimal case, we cannot apply the method from the finite Morley rank case because we do not have Zilber's Indecomposables Theorem. But, as in [5], we can apply Theorem 2.1. Once again, we give here general proofs which omit any applications of o-minimal topology or chain conditions.

Theorem 2.2 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M is A-minimal and $U^{b}(M)$ is finite. Then there is an infinite field interpretable in \mathfrak{C} .

Proof. For $a \in A$ we define $Fix(a) = \{m \in M : am = m\}$ and for $m \in M$ we put $Stab(m) = \{a \in A : am = m\}$. Of course, Fix(a) and Stab(m) are definable subgroups of M and A, respectively.

Claim 1 There are $m_1, \ldots, m_n \in M$ such that $Stab(m_1) \cap \cdots \cap Stab(m_n) = \{e\}$.

Proof of Claim 1. For every $a \in A \setminus \{e\}$, Fix(a) is a proper, definable subgroup of M invariant under the action of A. So by A-minimality of M, Fix(a) is finite. Hence for any infinite subset S of M, $\bigcap_{m \in S} Stab(m) = \{e\}$. Thus, by the compactness theorem, there are $m_1, \ldots, m_n \in M$ such that $Stab(m_1) \cap \cdots \cap Stab(m_n) = \{e\}$. \Box

Let R be the ring of endomorphisms of M generated by A. Then R is commutative.

Notice that every $r \in R$ is determined by $(r(m_1), \ldots, r(m_n))$. If not, then there is $r \in R \setminus \{0\}$ such that $r(m_1) = \cdots = r(m_n) = 0$. Since R is commutative, we get that ker(r) is a proper, definable and invariant under the action of A subgroup of M containing $\{m_1, \ldots, m_n\}$. So $Am_1 + \cdots + Am_n \subseteq ker(r)$. On the other hand, by choice of m_1, \ldots, m_n , we get that the function $a \mapsto (am_1, \ldots, am_n)$ is an injection from A to M^n . So there is i such that Am_i is infinite, and hence ker(r) is infinite. This contradicts the assumption that M is A-minimal. Having the above observation, we get the following in a rather standard way.

Claim 2 The ring R is \bigvee -definable, contained in M^n with the addition inherited from M^n , and $0 < U^p(R) < \omega$.

Proof of Claim 2. Let $H = \langle A(m_1, \ldots, m_n) \rangle$. By the above observation, the function $f: R \to H \subseteq M^n$ defined by $f(r) = (r(m_1), \ldots, r(m_n))$ is a bijection. Of course, $H := \bigcup_{i < \omega} X_i$ where $X_i = \pm A(m_1, \ldots, m_n) \pm \cdots \pm A(m_1, \ldots, m_k)$ (*i*-many times). So H is a \bigvee -definable subgroup of M^n .

By the definition of f, we see that for any $r_1, r_2 \in R$ we have $f(r_1 + r_2) = f(r_1) + f(r_2)$ (+ on the left hand side is the addition in R and + on the right hand side is the addition in M^n).

Now we define multiplication, *, on H to make f a ring isomorphism, i.e. $f(r_1) * f(r_2) := f(r_1r_2)$ for all $r_1, r_2 \in R$. We leave as an easy exercise to check that $* : H \times H \to H$ is \bigvee -definable, i.e. for any $i, j < \omega, * : X_i \times X_j \to M^n$ is definable. Of course, $0 < U^{\flat}(Am_i) \leq U^{\flat}(H) \leq U^{\flat}(M^n) < \omega$.

The next claim has the same proof as in the finite Morley rank case.

Claim 3 R is an integral domain.

Proof of Claim 3. Take any $r_1, r_2 \in R$ such that $r_1r_2 = 0$. If $r_2 \neq 0$, then $ker(r_2)$ is a proper, definable subgroup of M invariant under the action of A. So by A-minimality of M, $ker(r_2)$ is finite. So $rng(r_2)$ is an infinite, definable subgroup of M invariant under the action of A. Thus $rng(r_2) = M$. So we get $r_1 = 0$.

By Claims 2, 3 and Theorem 2.1, we get an infinite field interpretable in \mathfrak{C} .

Assuming that M does not have nontrivial, proper, definable subgroups invariant under the action of A, we get even more specific information about our interpretable field.

Proposition 2.3 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M does not have any nontrivial, proper, definable subgroups invariant under the action of A and $U^{b}(M)$ is finite. Then for every nonzero $m \in M$ there is a field K definable in \mathfrak{C} whose underlying additive group is $\langle M, + \rangle$, and $\langle A, \cdot \rangle$ is definably embeddable in K^* by sending $a \in A$ to am. After the embedding, the action of A on M becomes the scalar multiplication.

Proof. Let R be the ring of endomorphisms of M generated by A. We easily see that every nonzero $r \in R$ is an automorphism of M. Indeed, since ker(r) is a proper, definable subgroup of M invariant under the action of A, it must be trivial. So rng(r) is an infinite, definable subgroup of M invariant under the action of A, and hence it is equal to M.

Choose a nonzero $m \in M$. We conclude that every element $r \in R$ is determined by r(m). So by the proof of Theorem 2.2, R is \bigvee -definable (after the indentification of every $r \in R$ with $r(m) \in M$, contained in M with the addition inherited from M, and the field of fractions, F, of R is interpretable in \mathfrak{C} . More precisely, $F = (X \times (X \setminus \{0\}))/\sim$ where X is a definable subset of R.

The rest is the same as in the last paragraph of the proof of [5, Lemma 4.2]. Every element $(\alpha, \beta)/\sim \in F$ can be identified with the automorphism $\alpha\beta^{-1}$ of M. So F is a field of automorphisms of M. We easily see that the action of F on Mis definable. As above, we show that every element $k \in F$ is determined by k(m). Hence F can be definably embedded into M by sending $k \in F$ to k(m). The range of this map is a definable field, say K, whose additive group is a subgroup of Minvariant under A, so it must be M. Of course, A is definably embeddable in K^* by sending $a \in A$ to am. The fact that after this embedding the action of A on Mcoincides with the field multiplication is trivial.

Using Proposition 2.3, we obtain the following strengthening of Theorem 2.2.

Corollary 2.4 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M is A-minimal and $U^{b}(M)$ is finite. Then there is an infinite field K interpretable in \mathfrak{C} whose underlying additive group is M/M_{0} for some finite subgroup M_{0} of M invariant under A, and A/A_{0} is definably embeddable in K^{*} for some finite subgroup A_{0} of A. In fact, the action of A on M induces a faithful and definable action of A/A_{0} on M/M_{0} by automorphisms, and after the embedding this action becomes the scalar multiplication.

Proof. By Proposition 2.3, in order to prove the corollary, it is enough to find a finite subgroup M_0 of M which is invariant under the action of A, and a finite subgroup A_0 of A such that A/A_0 acts faithfully and definably on M/M_0 as a group of automorphisms and M/M_0 does not have nontrivial, proper, definable subgroups invariant under A/A_0 .

Define $M_0 = \{m \in M : [A : Stab(m)] < \omega\}$. Of course, M_0 is a subgroup of M invariant under A. We claim that M_0 is finite (and hence definable). If not, there is an infinite, countable set S contained in M_0 . Then $\bigcap_{m \in S} Stab(m)$ is a nontrivial (in fact, of bounded index) subgroup of A. So there is a nontrivial $a \in \bigcap_{m \in S} Stab(m)$, which means that $S \subseteq Fix(a)$, a contradiction with the fact that Fix(a) is finite.

Since M_0 is invariant under A, the action of A on M induces an action of A on M/M_0 . It is easy to see that A acts on M/M_0 by automorphisms.

Define A_0 as the set of those $a \in A$ which act as the trivial automorphism on M/M_0 . Then A_0 is a subgroup of A. We claim that it is finite. Indeed, by Claim 1 in the proof of Theorem 2.2, there are $m_1, \ldots, m_n \in M$ such that $Stab(m_1) \cap \cdots \cap Stab(m_n) = \{e\}$. So every $a \in A$ is determined by (am_1, \ldots, am_n) . On the other hand, if a induces the trivial automorphism of M/M_0 , then $am_1 \in m_1 + M_0, \ldots, am_n \in m_n + M_0$. Since M_0 is finite, we get only finitely many possibilities for $a \in A$ inducing the trivial automorphism of M/M_0 , i.e. A_0 is finite.

Summarizing, we get that A/A_0 acts faithfully and definably on M/M_0 as a group of automorphisms. It remains to check that M/M_0 does not have nontrivial, proper,

definable subgroups invariant under A/A_0 . Consider any definable subgroup G of M/M_0 invariant under A/A_0 and let $M_1 < M$ be the preimage of G under the quotient map. We see that M_1 is a definable subgroup of M invariant under A. So either $M_1 = M$, and then $G = M/M_0$, or M_1 is finite. In the second case, for any $m \in M_1$ the orbit $Am \subseteq M_1$ is finite so $[A : Stab(m)] < \omega$, i.e. $m \in M_0$; hence $M_0 = M_1$, which means that G is trivial.

3 Getting fields in solvable non-nilpotent groups

In this section we prove the main result of the paper.

Theorem 3.1 Let G be a group of finite U^{b} -rank definable in a monster model of a rosy theory satisfying NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite. Then there is an infinite field interpretable in $\langle G, \cdot \rangle$.

Before we start to prove the theorem, let us show the following general lemma and a standard remark.

Lemma 3.2 Suppose P and Q are infinite abelian groups, P acts on Q by automorphisms and for every $p \in P \setminus \{e_P\}$ and $q \in Q \setminus \{e_Q\}$, $p \cdot q \neq q$. Then $Q \rtimes P$ is solvable but not nilpotent-by-finite.

Proof. Solvability is obvious. Suppose for a contradiction that $Q \rtimes P$ is nilpotent-byfinite. Then there are subgroups P_1 and Q_1 of finite index in P and Q, respectively, such that the restriction of the action of P on Q gives us an action by automorphisms of P_1 on Q_1 satisfying the property $(\forall p \in P_1 \setminus \{e_P\})(\forall q \in Q_1 \setminus \{e_Q\})(p \cdot q \neq q)$, and moreover $Q_1 \rtimes P_1$ is nilpotent. So wlog $Q \rtimes P$ is nilpotent. To get a contradiction, it is enough to show that $Z(Q \rtimes P)$ is trivial.

We can identify Q with $Q \times \{e_P\} < Q \rtimes P$ and P with $\{e_Q\} \times P < Q \rtimes P$. After this identification $Q \rtimes P = QP$. Let e be the neutral element of $Q \rtimes P$. By assumption, for all $p \in P \setminus \{e\}$ and $q \in Q \setminus \{e\}$ we have $pqp^{-1}q^{-1} = (p \cdot q)q^{-1} \neq qq^{-1} = e$.

Take any $qp \in Z(Q \rtimes P)$ where $p \in P$ and $q \in Q$. Then $qpq(qp)^{-1}q^{-1} = e$ so $pqp^{-1}q^{-1} = e$. By the last paragraph, we get p = e or q = e. But once again using the last paragraph, we also see that $P \cap Z(Q \times P) = Q \cap Z(Q \rtimes P) = \{e\}$. So p = e and q = e. Thus we have proved that $Z(Q \rtimes P) = \{e\}$.

Remark 3.3 (i) Let G be a group such that all definable quotients of definable subgroups of G have icc on centralizers. Assume that G is solvable-by-finite. Then G has a definable, solvable subgroup H of finite index, and H has a normal sequence $\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = H$ such that each quotient H_{i+1}/H_i is abelian and each H_i is definable.

(ii) Let G be a group such that all definable quotients of definable subgroups of G have icc on centralizers. Assume that N is a nilpotent subgroup of G. Then G has a definable nilpotent subgroup H containing N. Thus, the upper central series of H consists of definable subgroups of G.

Proof. (i) By a standard trick, there is a normal, solvable subgroup L of finite index in G. Then the derivative sequence of L, call it $\{e\} = L_0 \triangleleft L_1 \triangleleft \cdots \triangleleft L_n = L$, consists of normal subgroups of G. Now we define a sequence $\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n$ of definable, normal subgroups of G with abelian quotients, and such that $H_i > L_i$ for every $0 \leq i \leq n$.

 H_0 is defined as $\{e\}$. Suppose H_0, \ldots, H_i satisfying all the above assumptions have been constructed. Then we define $H_{i+1} = \pi_i^{-1}[Z(C(L_{i+1}H_i/H_i))]$ where $\pi_i : G \to G/H_i$ is the natural quotient map. Using icc on centralizers, one can easily check that this construction works.

Now $H := H_n$ together with the sequence $\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = H$ have the desired properties.

(ii) The proof is the same as in the stable case [8, Theorem 3.17], by induction on the nilpotent class. If N is abelian, then H = Z(C(N)) works. For the induction step, let Z = Z(C(Z(N))). By icc on centralizers, Z is definable, abelian, it is centralized by N and Z(N) < Z. Hence $NZ/Z \cong N/(N \cap Z)$ is a nilpotent subgroup of C(Z)/Z of a smaller class of nilpotency than N so by induction hypothesis, there is a definable, nilpotent subgroup of C(Z)/Z containing NZ/Z. Then its preimage under the natural quotient map is a definable, nilpotent subgroup of G containing N.

Proof of Theorem 3.1. By Remark 3.3, we can assume that G is solvable and it has a normal sequence consisting of definable subgroups with abelian quotients. It is also clear that we can assume that (G, \cdot) is our monster model.

The proof is by induction on $U^{b}(G)$. In fact, in the paragraph below we will show that our assumptions on G imply that $U^{b}(G) \geq 2$. The fact that G is infinite follows immediately from the assumption that G is not nilpotent-by-finite.

Assume that the theorem is true for groups of U^{\flat} -rank smaller that $U^{\flat}(G)$. By icc on centralizers, we can assume that G is centralizer connected. If Z(G) is infinite, then since G is not nilpotent-by-finite, G/Z(G) is a non nilpotent-by-finite, solvable group of U^{\flat} -rank smaller than $U^{\flat}(G)$. So by induction hypothesis, we get an infinite interpretable field (notice that if $U^{\flat}(G) = 1$, then $[G : Z(G)] < \omega$, a contradiction). So we need to consider the case when Z(G) is finite. Dividing out by Z(G), we can assume that G is also centerless. This implies that G does not have nontrivial, finite, normal subgroups. Indeed, if $H \triangleleft G$ is finite, then $[G : C(h)] < \omega$ for every $h \in H$. But G is centralizer connected so $H \subseteq Z(G) = \{e\}$. So by solvability of G, there is an infinite, definable, abelian, normal subgroup H of G (notice that if $U^{\flat}(G) = 1$, then $[G : H] < \omega$, a contradiction; so we have proved that $U^{\flat}(G) \ge 2$).

Now choose a definable subgroup G_0 of finite index in G and an infinite, definable, abelian, normal subgroup H of G_0 with minimal possible U^b-rank (ranging over all such pairs (G_0, H)). Wlog $G = G_0$. We can also assume that H is centralizer connected in G.

Since G is not nilpotent-by-finite, G/C(H) is infinite. As $U^{\flat}(G/C(H)) < U^{\flat}(G)$, by induction hypothesis, we can assume that G/C(H) is nilpotent-by-finite. Using icc on centralizers and Remark 3.3, we can replace G be a definable subgroup of finite index so that G/C(H) becomes nilpotent and centralizer connected. This implies that Z(G/C(H)) is infinite.

Put A = Z(G/C(H)) and $A_0 = \pi^{-1}[A]$ where $\pi : G \to G/C(H)$ is the natural quotient map. Then A_0 is a definable, normal subgroup of G and $A = A_0/C(H)$ is an infinite, abelian group interpretable in $\langle G, \cdot \rangle$. Moreover, A acts faithfully and definably on H by automorphisms: $aC(H) * h = h^a$ for $aC(H) \in A$ and $h \in H$.

Claim 1 For every $a \in A_0 \setminus C(H)$, $C(a) \cap H = \{e\}$.

Proof of Claim 1. Let $B = C(a) \cap H$. It is enough to show that $B \triangleleft G$ (because H was chosen to have minimal possible positive U^b-rank, H is centralizer connected in G and G does not have nontrivial, finite, normal subgroups). Take any $g \in G$. We need to show $B^g = B$. Of course, $B^g = C(a^g) \cap H$. Since $A = Z(G/C(H)), a^g C(H) = (aC(H))^g = aC(H)$. So $a^g = ac$ for some $c \in C(H)$. Thus $B^g = C(a^g) \cap H = C(ac) \cap H = C(a) \cap H = B$.

By Claim 1, P := A and Q := H satisfy the assumptions of Lemma 3.2 so we conclude that $R := H \rtimes A$ is an interpretable group which is solvable but not nilpotent-by-finite. We also have $U^{\flat}(R) = U^{\flat}(H) + U^{\flat}(A)$. So if $U^{\flat}(A) < U^{\flat}(G/H)$, then $U^{\flat}(R) < U^{\flat}(H) + U^{\flat}(G/H) = U^{\flat}(G)$ and hence we are done by induction hypothesis. Therefore, we can assume that $U^{\flat}(A) = U^{\flat}(G/H)$. But $U^{\flat}(A) =$ $U^{\flat}(A_0) - U^{\flat}(C(H)) \leq U^{\flat}(G) - U^{\flat}(H) = U^{\flat}(G/H)$ and equality holds iff $[G : A_0] < \omega$ and $[C(H) : H] < \omega$. So we get $[C(H) : H] < \omega$, and we can assume that $G = A_0$. By NIP, H^{00} exists.

Claim 2 H^{00} is definable.

Proof. Take any $a \in G \setminus C(H)$. We claim that C(a) is infinite. If not, then $U^{\flat}(a^G) = U^{\flat}(G)$ so $(aH)^G$ is an infinite subset of G/H. But since G/C(H) is abelian and $[C(H):H] < \omega$, we get a contradiction.

On the other hand, by Claim 1, $C(a) \cap H = \{e\}$. So if we put $G_1 = HC(a)$, then $[G_1 : H]$ is infinite.

By NIP, G_1^{00} exists. Notice that $H^{00} = G_1^{00} \cap H$. The inclusion (\subseteq) is obvious. To prove (=), assume for a contradiction that $H^{00} \subsetneq G_1^{00} \cap H$. By the definition of G_1 and the fact that $C(a) \cap H = \{e\}$, we get that $H^{00}C(a)$ is a type-definable subgroup of G_1 of bounded index, not containing G_1^{00} , a contradiction.

Since $[G_1 : G_1 \cap C(H)] \ge \omega$, there is $b \in G_1^{00} \setminus C(H)$. By Claim 1, for every $c \in bH$ we have $U^{\flat}(c^H) = U^{\flat}(H) = U^{\flat}(bH)$. As bH is closed under conjugations by elements of H, we get that $bH = c_1^H \cup \cdots \cup c_n^H$ for some $c_1, \ldots, c_n \in bH$. We also know that $G_1^{00} \triangleleft G_1$ so $bH \cap G_1^{00} = c_{i_1}^H \cup \cdots \cup c_{i_k}^H$ for some $1 \le i_1 < \cdots < i_k \le n$. Thus, $bH \cap G_1^{00}$ is definable. On the other hand, since $b \in G_1^{00}$, by the last paragraph, we get $bH \cap G_1^{00} = b(H \cap G_1^{00}) = bH^{00}$. Therefore, H^{00} is definable. \Box

By Claim 2, replacing H by H^{00} (and repeating all arguments preceding Claim 2 for this new H), we can assume that $H = H^{00}$.

Claim 3 H does not have nontrivial, proper, definable subgroups invariant under the action of A.

Proof of Claim 3. Suppose H_1 is a definable subgroup of H invariant under A. Since A = G/C(H), we get $H_1 \triangleleft G$. So, by minimality of $U^{b}(H)$, H_1 is either finite or of finite index in H. On the other hand, we know that G does not have nontrivial, finite, normal subgroups and $H = H^{00}$. Hence $H_1 = \{e\}$ or $H_1 = H$.

By Claim 3, we see that M := H and A satisfy the assumptions of Theorem 2.2 (or even Proposition 2.3) so an infinite, interpretable field exists.

In [1], Theorem 3.1 was proved in the case of $U^{b}(G) = 2$ but under a much stronger assumption that G has hereditarily fsg (finitely satisfiable generics). In fact, under this assumption there was proved even more, namely:

Fact 3.4 Assume that G has NIP, hereditarily fsg, $U^{b}(G) = 2$ and G is not nilpotentby-finite. Then, after possibly passing to a definable subgroup of finite index and quotienting by its finite center, G is (definably) the semidirect product of the additive and multiplicative groups of an algebraically closed field F interpretable in $\langle G, \cdot \rangle$, and moreover $G = G^{00}$.

Analyzing carefully the proof of Theorem 3.1 and modifying it a little bit, we obtain the following strengthening of Theorem 3.1 in the U^{b} -rank 2 case.

Corollary 3.5 Let G be a group of U^b -rank 2 definable in a monster model of a rosy theory satisfying NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite. Then, after possibly passing to a definable subgroup of finite index and quotienting by its finite center, G is (definably) the semidirect product of the additive group and a finite index subgroup of the multiplicative group of a field K interpretable in $\langle G, \cdot \rangle$.

Proof. By the proof of Theorem 3.1, we know that there is no group of U^{b} -rank 0 or 1 satisfying the assumptions of Theorem 3.1. Therefore, under the assumption $U^{b}(G) = 2$, the proof of Theorem 3.1 necessarily leads us to the last paragraph and produces a field using Proposition 2.3. So for any nontrivial $h \in H$ we get an interpretable field, say K, whose additive group is $\langle H, \cdot \rangle$ and such that the map $f: G/C(H) \to K^*$ given by $f(gC(H)) = gC(H) * h = h^g$ is a definable embedding of G/C(H) into K^* , and after this embedding the action of G/C(H) on H coincides with the field multiplication. Since $U^{b}(K^*) = 1 = U^{b}(G/C(H))$, the image of G/C(H) by f is a finite index subgroup of K^* , call it L.

Claim 1 Without loss of generality we can assume that G = HB where B is a definable, abelian group of U^{b} -rank 1, $H \cap B = \{e\}$ and C(H) = H.

Proof of Claim 1. Since [C(H) : H] is finite, we can choose $a \in G \setminus C(H)$. By the first paragraph of the proof of Claim 2 and by Claim 1 in the proof of Theorem 3.1, we get that C(a) is infinite and $C(a) \cap H = \{e\}$. Thus $U^{b}(C(a)) = 1$ and so C(a) is nilpotent-by-finite. Using Remark 3.3 and considering the centralizer connected component of C(a), we get that C(a) has a definable abelian subgroup B of finite index. Since $U^{b}(HB) = 2$, we can assume G = HB. In order to finish the proof of

Claim 1, it is enough to show the following

Subclaim C(H) = H.

Proof of Subclaim. It is enough to show that $C(H) \cap B = \{e\}$. So we will be done if we show that for any $b \in B \setminus C(H)$, $C(b) \cap C(H) = \{e\}$. We proceed in the same way as in the proof of Claim 1 in the proof of Theorem 3.1.

Take any $b \in B \setminus C(H)$. Let $C = C(b) \cap C(H)$. It is enough to show that $C \triangleleft G$. Indeed, if $C \triangleleft G$, then since G does not have nontrivial, finite, normal subgroups, we get that either $C = \{e\}$ or C is infinite. In the second case, [C(H) : C] is finite. This implies that $[H : H \cap C]$ is finite. Since $H = H^{00}$, we get $H \subseteq C$ and so $b \in C(H)$, a contradiction.

Take any $g \in G$. We need to show $C^g = C$. Of course, $C^g = C(b^g) \cap H$. Since $G/H \cong B$ is abelian, $b^g H = (bH)^g = bH$. So $b^g = bc$ for some $c \in H$. Thus $C^g = C(b^g) \cap C(H) = C(bc) \cap C(H) = C(b) \cap C(H) = C$.

By Claim 1, $G/C(H) = G/H = BH/H \cong B$ and we see that B is definably isomorphic to L by sending $b \in B$ to h^b . We also easily see that the action of L on H by the field multiplication is the same as the action of B on H by conjugation. So G = HB is definably isomorphic to $K^+ \rtimes L$.

4 Superrosy dependent fields

The main motivation in this section is Conjecture 4. To prove this conjecture it is enough to show that each infinite, superrosy field K with NIP and containing $\sqrt{-1}$ is algebraically closed. In fact, it suffices to show that for every natural number n > 0, $K^n = K$, and if p is the characteristic of K, then the function $f: K \to K$ defined by $f(x) = x^p - x$ is onto (because then we can apply the standard Macintyre's proof [8, Theorem 3.1]). The fact that f is onto follows from Facts 1.1 and 1.5.

In this paper we will prove a weaker condition than $K^n = K$, namely that for every natural number n > 0, $K = K^n - K^n$. In particular, if n is odd or if $\sqrt[2^k]{-1}$ exists in K where 2^k is the largest power of 2 dividing n, then $K = K^n + K^n$. We also prove other results of this kind. The main idea involved here is to apply definable measures.

Let us start from a general fact.

Proposition 4.1 Let K be any field and $G = K \rtimes K^*$ (i.e. $(k_1, k_2) \cdot (k'_1, k'_2) = (k_1 + k_2k'_1, k_2k'_2))$. Then G is amenable and there is a finitely additive, probabilistic measure on K which is invariant under additive and non-zero multiplicative translations.

Proof. Of course, G is solvable so it is amenable, i.e. there is a finitely additive, probabilistic, left (two-sided) invariant measure \mathbf{m} on G.

Define a function $\mu : \mathcal{P}(K) \to [0, 1]$ by

$$\mu(A) = \mathbf{m}(A \times K^*).$$

It is obvious that μ is a finitely additive, probabilistic measure on K. Now we will check that μ is additively and multiplicatively invariant. In the additive case, for every $A \subseteq K$ and $k \in K$ we have:

$$\mu(k+A) = \mathbf{m}((k+A) \times K^*) = \mathbf{m}((k,1) \cdot (A \times K^*)) = \mathbf{m}(A \times K^*) = \mu(A).$$

In the multiplicative case, for every $A \subseteq K$ and $k \in K^*$ we have:

$$\mu(kA) = \mathbf{m}((kA) \times K^*) = \mathbf{m}((0,k) \cdot (A \times K^*)) = \mathbf{m}(A \times K^*) = \mu(A).$$

Note that if K is definable in a monster model \mathfrak{C} of a theory satisfying NIP, then since $G := K \rtimes K^*$ is also definable in \mathfrak{C} and G is amenable, by Fact 1.6, there is a definable, left invariant Keisler measure on G. Using this measure as **m** in the above proof we get:

Corollary 4.2 Let K be any field definable in a monster model of a theory satisfying NIP. Then there is a definable Keisler measure on K invariant under additive and non-zero multiplicative translations.

Definition 4.3 Suppose G is a definably amenable group (with left invariant Keisler measure μ) definable in a monster model of any theory T. We say that a definable set $X \subseteq G$ is μ -generic if $\mu(X) > 0$. We say that a type (or its set of realizations) is μ -generic if the conjunction of any finitely many formulas in this type defines a set whose intersection with G is μ -generic.

It is obvious that in every definably amenable group non- μ -generic sets form an ideal and hence every partial μ -generic type can be extended to a global μ -generic type. In particular, at least one global μ -generic type exists.

The following proposition (except for point (i)) is a variant of [2, Corollary 4.3] for μ -generics.

Proposition 4.4 Let G be a definably amenable group definable in a monster model of a theory satisfying NIP. Then

(i) there is a definable, left invariant Keisler measure μ on G,

(ii) there are only boundedly many global μ -generic types,

(iii) for every global type p, $Stab(p) \subseteq G^{00}$,

(iv) for every definable set $X \subseteq G$, $Stab_{\mu}(X) := \{g \in G : \mu(gX \triangle X) = 0\}$ is a type-definable subgroup of bounded index in G; in particular, $G^{00} \subseteq Stab_{\mu}(X)$, (v) for every global μ -generic type p, $Stab(p) = G^{00}$.

Proof. (i) is just Fact 1.6.

(ii) is true for an arbitrary Keisler measure and it follows from [2, Corollary 3.4].

(iii) is true whenever G^{00} exists; it follows from the fact that a partial type defining some translate of G^{00} is in p.

(iv). The fact that $Stab_{\mu}(X)$ is a subgroup follows from left invariance of μ . The fact that $Stab_{\mu}(X)$ is type-definable follows from definability of μ . Finally, the fact that

the index of $Stab_{\mu}(X)$ in G is bounded follows from [2, Corollary 3.4] and the observation that for every $g, h \in G$ we have: $gStab_{\mu}(X) = hStab_{\mu}(X)$ iff $\mu(gX \triangle hX) = 0$. (v) Since μ is left invariant, gp is μ -generic for every $g \in G$. So $\bigcap \{Stab_{\mu}(X) : X \in p\} \subseteq Stab(p)$. Hence we are done by (iii) and (iv).

From now on, let K be an infinite field definable in a monster model of a theory T satisfying NIP. By Corollary 4.2, we can find a definable Keisler measure invariant under additive and non-zero multiplicative translations; we denote it by μ .

Proposition 4.5 If X is a definable (or type-definable) μ -generic subset of K, then (i) for every $k \in K$, $(k + X) \cap X$ is μ -generic and of the same measure as X, (ii) K = X - X, (iii) for every $k \in (K^*)^{00}$, $kX \cap X$ is μ -generic and of the same measure as X, (iv) $(K^*)^{00} \subseteq XX^{-1}$.

Proof. Items (ii) and (iv) follow from (i) and (iii), respectively. Item (i) follows from Fact 1.5 and Proposition 4.4(iv). Item (iii) follows from Proposition 4.4(iv).

From now on, assume that T is additionally superrosy.

Corollary 4.6 For every natural number n > 0 we have $K = K^n - K^n$. Hence, if *n* is odd or if $\sqrt[2^k]{-1}$ exists in K where 2^k is the largest power of 2 dividing n, then $K = K^n + K^n$.

Proof. By Fact 1.1, K^* is a union of finitely many cosets of $(K^*)^n$. So at least one and hence all the cosets of $(K^*)^n$ are μ -generic (and of the same measure). So by Proposition 4.5(ii) we get $K = K^n - K^n$. From this the second part follows immediately.

In fact, we get even more, namely, for every $k \in K$, $(k + K^n) \cap K^n$ is μ -generic and of the same measure as K^n . We also get that every element of K can be written as a difference x - y where $x, y \in (K^*)^{00} \subseteq \bigcap_{n>0} K^n$. Notice also that this property (and, in particular, the conclusion of Corollary 4.6) holds in every finite extension of K.

Conjecture 4.7 Assume $\sqrt{-1}$ exists in K. Then for every natural number n and $a \in K^*$ we have that $K = K^n - aK^n$.

If we proved the above conjecture (even only for prime numbers n), we could apply the proof of [7, Theorem 4.6] to get that the Brauer group of K is trivial (assuming that $\sqrt{-1} \in K$). Corollary 4.6 is a weaker result than Conjecture 4.7.

Now using our measure μ we will easily conclude that certain particular formulas have the order property.

Proposition 4.8 For every natural number n > 0, if $K^n \neq K$, then the formula $(\exists z)(x - y = z^n)$ has the order property.

Proof. We need to find sequences $(a_i)_{i \in \omega}$ and $(b_i)_{i \in \omega}$ such that $a_i - b_j \in K^n \iff i > j$.

For the base step it is enough to choose any $b_0 \in K$ and $a_0 \notin b_0 + K^n$. In order to do that, we need to know that $b_0 + K^n \neq K$. Take any $a \notin K^n$. Since by the comment right after Corollary 4.6, $\mu((b_0 + K^n) \setminus K^n) = 0$, we get $\mu((b_0 + K^n) \cap aK^n) = 0$. As $\mu(K^n) = \mu(aK^n) > 0$, it follows that $aK^n \setminus (b_0 + K^n) \neq \emptyset$.

Suppose we have chosen $(a_i)_{i \leq m}$ and $(b_i)_{i \leq m}$ satisfying the desired property. Then it is enough to choose any $a_{m+1} \in \bigcap_{i \leq m} (b_i + K^n)$ and $b_{m+1} \notin \bigcup_{i \leq m+1} (a_i - K^n)$. In order to do that we need to show that $\bigcap_{i \leq m} (b_j + K^n) \neq \emptyset$ and $\bigcup_{i \leq m+1} (a_i - K^n) \neq K$. By the comment right after Corollary 4.6, we get that $\bigcap_{i \leq m} (b_i + K^n)$ is μ -generic so it is nonempty. To show $\bigcup_{i \leq m+1} (a_i - K^n) \neq K$, we use a similar argument as in the base induction step.

Proposition 4.9 Assume $a \notin -K^n$. Then there is an indiscernible (over a) sequence $(a_i)_{i \in \omega}$ such that:

(i) if $1 - a \in K^n$, then $a_i - aa_j \in K^n \iff i \ge j$, (ii) if $1 - a \notin K^n$, then $a_i - aa_j \in K^n \iff i > j$. In particular, the formula $(\exists z)(x - ay = z^n)$ has the order property.

Proof. By compactness it is enough to construct a sequence satisfying (i) or (ii). For the base step we choose any $a_0 \in (K^*)^n$.

Suppose we have chosen $(a_i)_{i \leq m}$. Now it is enough to show that the set $A := ((K^*)^n \cap \bigcap_{i \leq m} (aa_i + K^n)) \setminus \bigcup_{i \leq m} (\frac{1}{a}a_i - \frac{1}{a}K^n)$ is non-empty and to choose any $a_{m+1} \in A$.

In order to see that $A \neq \emptyset$, notice that $(K^*)^n \cap \bigcap_{i \leq m} (aa_i + K^n)$ is μ -generic and is contained in K^n . On the other hand, $\mu(\bigcup_{i \leq m} (\frac{1}{a}a_i - \frac{1}{a}K^n) \setminus -\frac{1}{a}K^n) = 0$, so $\mu(K^n \cap \bigcup_{i \leq m} (\frac{1}{a}a_i - \frac{1}{a}K^n)) = 0$ (as $-\frac{1}{a}K^n \cap K^n = \{0\}$). Hence $A \neq \emptyset$.

Proposition 4.10 If n is odd, then for every $a \in K$ the formula $\phi(x, y) := (\exists z)(x - ay = z^n)$ does not have the strict order property.

Proof. We will show that there are no $k, l \in K$ such that $\phi(K, k)$ is a proper subset of $\phi(K, l)$. Suppose $\phi(K, k) \subseteq \phi(K, l)$, i.e. $ak + K^n \subseteq al + K^n$. Then $-ak - K^n \subseteq -al - K^n$, so $-ak + K^n \subseteq -al + K^n$, so $al + K^n \subseteq ak + K^n$.

It is well-known that if a formula ϕ has the order property and does not have the independence property, then a conjunction of finitely many instances (or their negations) of ϕ has the strict order property. In Propositions 4.8 and 4.9 we have found (assuming that $K \neq K^n$ for some n) some particular formulas with the order property about which, by Proposition 4.10, we know that they do not have the strict order property (if n is odd). Maybe a more complicated computation (involving somehow superrosiness) could show that also finite conjunctions of instances of those formulas do not have the strict order property, and then we would get that $K = K^n$ (at least for odd n's).

References

- [1] C. Ealy, K. Krupiński, A. Pillay. Superrosy dependent groups having finitely satisfiable generics, Annals of Pure and Applied Logic, to appear.
- [2] E. Hrushovski, Y. Peterzil, A. Pillay. Groups, measures and the NIP, Journal of AMS, to appear.
- [3] E. Hrushovski, A. Pillay. On NIP and invariant measures, preprint.
- [4] A. Onshuus. Properties and consequences of thorn-independence, Journal of Symbolic Logic 71, no. 1, 1-21, 2006.
- [5] Y. Peterzil, S. Starchenko. Definable homomorphisms of abelian groups in ominimal structures, Annals of Pure and Applied Logic 101, 1-27, 2000.
- [6] A. Pillay, *Geometric stability theory*, Clarendon Press, Oxford, 1996.
- [7] A. Pillay, T. Scanlon, F. Wagner. Supersimple fields and division rings, Mathematical Research Letters 5, 473-483, 1998.
- [8] B. Poizat. Stable Groups, Mathematical Surveys and Monographs, 87, American Mathematical Society, Providence, 2001.

Mathematical Institute, University of Wrocław pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland. e-mail: kkrup@math.uni.wroc.pl and Mathematics Department University of Illinois at Urbana-Champaign 1409 W. Green Street, Urbana, IL 61801, USA. e-mail: kkrup@math.uiuc.edu