Fields interpretable in rosy theories

Krzysztof Krupiński*

Abstract

We are working in a monster model \mathfrak{C} of a rosy theory T. We prove the following theorems, generalizing the appropriate results from the finite Morley rank case and o-minimal structures. If R is a \bigvee-definable integral domain of positive, finite U^{b}-rank, then its field of fractions is interpretable in \mathfrak{C}. If A and M are infinite, definable, abelian groups such that A acts definably and faithfully on M as a group of automorphisms, M is A-minimal and $\mathrm{U}^{\mathrm{b}}(M)$ is finite, then there is an infinite field interpretable in \mathfrak{C}. If G is an infinite, solvable but non nilpotent-by-finite, definable group of finite U^{b}-rank and T has NIP, then there is an infinite field interpretable in $\langle G, \cdot\rangle$.

In the last part, we study infinite, superrosy, dependent fields. Using measures, we show that each such field K satisfies $K=K^{n}-K^{n}$ for every $n \geq 1$.

0 Introduction

An important goal in model theory is to obtain, in a definable way, classical algebraic structures in theories satisfying some general model theoretic or algebraic assumptions. There is a long history of results of this kind, e.g. different versions of the group configuration theorem (originally proved by E. Hrushovski, see [6, Chapters 5 and 7]), getting fields from definable actions of abelian groups in the finite Morley rank case [8, Chapter 3] or in o-minimal structures [5], or getting fields from solvable, non nilpotent-by-finite groups in the finite Morley rank case [8, Corollary 3.20] and from any non abelian-by-finite groups in o-minimal structures [5, Corollary 5.1].

The goal of this paper is to generalize some of the results about the existence of an infinite field to a general context of rosy theories. We also try to understand the structure of superrosy fields satisfying NIP.

Let \mathfrak{C} be a monster model of a rosy theory T. We always work in $\mathfrak{C}^{e q}$.
At the beginning of Section 2, we generalize [5, Lemma 4.1]. Namely, we prove
Theorem 1 Let R be a \bigvee-definable integral domain of positive, finite U^{b}-rank. Then the field of fractions of R, call it F, is interpretable in \mathfrak{C}. Moreover, there is a \bigvee definable ring embedding of R onto a subring of F with the same U^{b}-rank as F.

[^0]In [5], this was proved in the o-minimal context using essentially certain topology on \bigvee-definable rings, which was defined by means of the standard o-minimal topology. In our case, we give a very general proof, which just uses some properties of U^{p}-rank, and that is why it works in any situation where we have a nice notion of dimension, for example in stable or simple theories (the dimension there is $S U$-rank).

In the further part of Section 2, we prove some variants of [8, Theorem 3.7] and [5, Lemma 4.2] in our general rosy context. For example, we prove

Theorem 2 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M is A-minimal and $U^{p}(M)$ is finite. Then there is an infinite field interpretable in \mathfrak{C}.

The proofs of these results use Zilber's Indecomposables Theorem and chain conditions in the finite Morley rank case, and the topology in the o-minimal case. Neither of these tools are present in our situation. Our proofs rely on Theorem 1 and some tricks eliminating applications of topology or chain conditions on intersections of uniformly definable groups.

In Section 3, we prove the main result of this paper.
Theorem 3 Let G be a group of finite U^{b}-rank definable in \mathfrak{C} and suppose that T has NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite. Then there is an infinite field interpretable in $\langle G, \cdot\rangle$.

Similarly to the finite Morley rank case, in the proof of Theorem 3 we use Theorem 2. But the proof in our context is different.

In the last section we prove some partial results concerning the following conjecture formulated in [1].

Conjecture 4 Each infinite, superrosy field with NIP is either a real closed or an algebraically closed field.

In particular, we show that each such field has the property $K=K^{n}-K^{n}$ for every $n \geq 1$. In our proofs we use absolute connected components and Kiesler measures.

I would like to thank Clifton Ealy and Anand Pillay for interesting discussion and suggestions.

1 Preliminaries

Let \mathfrak{C} be a monster model of a theory T. We work in $\mathfrak{C}^{e q}$. Our general assumption in this paper is that T is rosy, but often, we only need a nice notion of dimension. In the rosy (or rather superrosy) context such a notion of dimension is U^{p}-rank.

The most interesting examples of rosy theories are simple theories and o-minimal theories.

We are not going to repeat the basic definitions of rosiness, p -forking and U^{p}-rank. The fundamental paper about these notions is [4]. For the basic theory of rosy groups, the reader is referred to [1] where a short exposition of rosy theories and b-forking is also given. Let us only recall here that if T is rosy, then b-independence, denoted by \downarrow^{b}, is a ternary relation on subsets of $\mathfrak{C}^{e q}$, which satisfies all the properties of forking independence in simple theories except for the Independence Theorem. Using \downarrow^{b}, we define U^{p}-rank in the same way as U-rank is defined in stable theories by means of \downarrow. U^{b}-rank has most of the nice properties that U-rank has in stable theories, e.g. it satisfies Lascar Inequalities. If D is an A-definable set, then $\mathrm{U}^{\mathrm{b}}(X):=\sup \left\{\mathrm{U}^{\mathrm{b}}(d / A)\right.$: $d \in D\}$. Of course, if this supremum is finite, then it is just the maximum. It turns out that if D is a definable group and T is rosy, then the supremum is also attained [1, Remark 1.20].

The following fact follows from a standard application of Lascar Inequalities.
Fact 1.1 If K is a definable field and T is superrosy, then for every $n>0,\left[K^{*}\right.$: $\left.\left(K^{*}\right)^{n}\right]<\omega$ and, if char $(K)=p \neq 0$, then the range of the function $f: K \rightarrow K$ defined by $f(x)=x^{p}-x$ is a subgroup of finite index in K^{+}.

Another property of T that we sometimes assume is the non independence property (NIP), also called T being dependent.

Definition 1.2 We say that T has the NIP if there is no formula $\varphi(x, y)$ and sequence $\left\langle a_{i}\right\rangle_{i<\omega}$ such that for every $w \subseteq \omega$ there is b_{w} such that $\models \varphi\left(a_{i}, b_{w}\right)$ iff $i \in w$.

We will need the following consequence of NIP proved by Shelah (for the proof see e.g. [2, Theorem 6.1]).

Fact 1.3 If G is a (type-) definable group and T has NIP, then G^{00} (the smallest type-definable subgroup of bounded index) exists.

Another important for this paper consequence of NIP and rosiness is (see [1, Proposition 1.7]):

Fact 1.4 Suppose T is rosy and has NIP. Any group G definable in T has icc, i.e. the uniform chain condition on intersections of uniformly definable groups.

We also have the following easy observation [1, Proposition 4.1].
Fact 1.5 Let K be an infinite, definable field. If $\left(K^{+}\right)^{00}$ exists, then $\left(K^{+}\right)^{00}=K$. In particular, if T has NIP, then $\left(K^{+}\right)^{00}=K$.

Recall that a (global) Kiesler measure on a definable set D is a finitely additive probability measure on definable subsets of D. We say that a Kiesler measure μ on X is definable (over A) if for each formula $\varphi(x, y)$ and closed subset C of $[0,1]$, $\{b \in \mathfrak{C}: \mu(\varphi(D, b)) \in C\}$ is type-definable (over A). We say that a definable group G is definably amenable if there is a left invariant Kiesler measure on G.

In the last section, we will need the following fact [3, Lemma 5.8].

Fact 1.6 Assume that T has NIP and G is a definably amenable, definable group. Then there is a left invariant, definable Kiesler measure on G.

Now let us recall the definition of a \bigvee-definable ring from [5].
Definition 1.7 We say that a ring $\langle R, \cdot,+\rangle$ is a \bigvee-definable (or rather \bigvee-interpretable) ring if $R=\bigcup_{i \in I} X_{i}$ where X_{i} 's are A-definable subsets of some sort of $\mathfrak{C}^{\text {eq }}$ for some set A, for every $i, j \in I$ there is $k \in I$ such that $X_{i} \cup X_{j} \subseteq X_{k}$, and the restrictions of addition and multiplication to $X_{i} \times X_{j}$ are definable functions.

The assumption that for every $i, j \in I$ there is $k \in I$ such that $X_{i} \cup X_{j} \subseteq X_{k}$ is purely cosmetic, because we can always extend the family $\left\{X_{i}: i \in I\right\}$ by adding all unions of finitely many X_{i} 's.

By the compactness theorem, if D is a definable subset of X, then it is covered by finitely many X_{i} 's (so, if fact, by one X_{i}) and hence addition and multiplication restricted to D are definable.

We define similarly \bigvee-definable groups or just sets. \bigvee-definable groups and rings occur naturally as subgroups and subrings generated by definable subsets of definable groups and rings.

If $X=\bigcup_{i \in I} X_{i}$ is a \bigvee-definable set, then $\mathrm{U}^{\mathrm{p}}(X)$ is defined as the supremum of U^{p}-ranks of the X_{i} 's. If this supremum is finite, then U^{p}-ranks of all X_{i} 's are finite and $\mathrm{U}^{\mathrm{b}}(X)$ is just the maximum of U^{b}-ranks of the X_{i} 's. Notice that in a rosy theory, by the compactness theorem, $\mathrm{U}^{\mathrm{p}}(X)$ is the supremum of U^{p}-ranks of all definable subsets of X.

Definition 1.8 If $R_{1}=\bigcup_{i \in I} X_{i}$ and $R_{2}=\bigcup_{j \in J} Y_{j}$ are \bigvee-definable rings, then a homomorphism $f: R_{1} \rightarrow R_{2}$ is called \bigvee-definable if its restriction to each X_{i} is definable.

Another notion needed is G-minimality. If G is a definable group acting definably on another definable group H by automorphisms, then we say that H is G-minimal if H is infinite and does not have infinite, proper, definable subgroups invariant under the action of G.

2 Getting fields from V-definable rings and definable actions of abelian groups

In this section, we generalize some results from Section 4 of [5] and [8, Theorem 3.7]. The main obstacle here in comparison with the o-minimal case is that we do not have a nice topology, and with the finite Morley rank case, that we do not have Zilber's Indecomposables Theorem.

We work in a monster model \mathfrak{C} of a rosy theory T.
The following theorem was proved in the o-minimal context [5, Lemma 4.1] using a nice topology on \bigvee-definable rings. Here we give a very general proof, which works
in any context in which we have a nice notion of dimension, e.g. in simple and in o-minimal structures.

Theorem 2.1 Let R be a \bigvee-definable integral domain of positive, finite U^{b}-rank. Then the field of fractions of R, call it F, is interpretable in \mathfrak{C}. Moreover, there is a \bigvee-definable ring embedding of R onto a subring of F with the same U^{b}-rank as F.

Proof. Since R is \bigvee-definable, we have that $R=\bigcup_{i \in I} X_{i}$ where all X_{i} 's are sets definable over some set A, for any $i, j \in I$ there is $k \in I$ such that $X_{i} \cup X_{j} \subseteq X_{k}$, and the restrictions of addition and multiplication to any $X_{i} \times X_{j}$ are definable. So for every $r \in R$ the map $f_{r}: R \rightarrow R$ given by $f_{r}(x)=r x$ restricted to any X_{i} is definable.

Now let $D:=X_{i}$ be such that $\mathrm{U}^{\mathrm{p}}(D)=\mathrm{U}^{\mathrm{p}}(R)$.
Claim 1 For any $a, b \in R \backslash\{0\},(D a-D a) \cap(D b-D b) \neq\{0\}$.
Proof of Claim 1. Consider the function $f: D \times D \rightarrow R$ defined by

$$
f\left(r_{1}, r_{2}\right)=r_{1} a+r_{2} b
$$

As $f_{a} \upharpoonright D, f_{b} \upharpoonright D$ and + restricted to any definable subset of R are definable, so is f. But $\mathrm{U}^{\mathrm{b}}(D \times D)=2 \mathrm{U}^{\mathrm{p}}(D)>\mathrm{U}^{\mathrm{p}}(D)=\mathrm{U}^{\mathrm{p}}(R)$, hence by Lascar inequalities we easily get that f is not injective. Thus, there are two distinct pairs $\left(r_{1}, r_{2}\right),\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \in D \times D$ such that $r_{1} a+r_{2} b=r_{1}^{\prime} a+r_{2}^{\prime} b$. So $\left(r_{1}-r_{1}^{\prime}\right) a=r_{1} a-r_{1}^{\prime} a=r_{2}^{\prime} b-r_{2} b=\left(r_{2}^{\prime}-r_{2}\right) b$. We know that $a, b \neq 0$ and at least one of the elements $r_{1}-r_{1}^{\prime}$ and $r_{2}^{\prime}-r_{2}$ is nonzero. Hence the element $r_{1} a-r_{1}^{\prime} a$ is nonzero and, of course, it belongs to $(D a-D a) \cap(D b-D b)$.

Choose any $a \in R \backslash\{0\}$ and put $X=D a-D a$.
Claim 2 For any $r_{1}, r_{2} \in R \backslash\{0\}, r_{1} X \cap r_{2} X \neq\{0\}$.
Proof of Claim 2. Since R is commutative, $r_{i} X=r_{i} D a-r_{i} D a=D\left(r_{i} a\right)-D\left(r_{i} a\right)$. As r_{1}, r_{2} and a are nonzero, we see that $r_{1} a, r_{2} a \in R \backslash\{0\}$. So by Claim 1, we get $r_{1} X \cap r_{2} X=\left(D\left(r_{1} a\right)-D\left(r_{1} a\right)\right) \cap\left(D\left(r_{2} a\right)-D\left(r_{2} a\right)\right) \neq\{0\}$.

The rest of the proof that the field of fractions of R is interpretable is the same as in the proof of [5, Lemma 4.1]. Namely, the fraction field F equals $(R \times(R \backslash\{0\})) / \sim$ where $\left(r_{1}, s_{1}\right) \sim\left(r_{2}, s_{2}\right) \Longleftrightarrow r_{1} s_{2}=r_{2} s_{1}$. By Claim 2, F can be indentified with $(X \times(X \backslash\{0\})) / \sim_{X}$ where \sim_{X} is the restriction of \sim to $X \times(X \backslash\{0\})$, and obviously \sim_{X} is definable. Since addition and multiplication in R restricted to any definable subset are definable, we easily get that addition and multiplication in F are definable. Hence F is an interpretable field. If we fix a nonzero $r_{0} \in R$, then the map $r \mapsto\left(r r_{0}, r_{0}\right) / \sim$ gives us a \bigvee-definable embedding of R into F.

The fact that $\mathrm{U}^{\mathrm{b}}(F)=\mathrm{U}^{\mathrm{b}}(R)$ requires an extra explanation. Since R is \bigvee definably embeddable in F, we easily get that $\mathrm{U}^{\mathrm{p}}(R) \leq \mathrm{U}^{\mathrm{b}}(F)$. Let B be a set containing $A \cup\{a\}$ and such that addition and multiplication restricted to any X_{i} are definable over B. Then F is interpretable over B. Now consider $\left(r_{1}, r_{2}\right) \in X \times(X \backslash\{0\})$
such that $\mathrm{U}^{\mathrm{b}}\left(\left[\left(r_{1}, r_{2}\right)\right]_{\sim_{X}} / B\right)=\mathrm{U}^{\mathrm{b}}(F)$. We need to show that $\mathrm{U}^{\mathrm{b}}\left(\left[\left(r_{1}, r_{2}\right)\right]_{\sim_{X}} / B\right) \leq$ $\mathrm{U}^{\mathrm{b}}(R)$. Since the function $r \mapsto\left(r_{1} r, r_{2} r\right)$ from $R \backslash\{0\}$ to $R \times(R \backslash\{0\})$ is a \bigvee definable injection and its range is contained in the \sim-class of $\left(r_{1}, r_{2}\right)$ (computed in $R \times(R \backslash\{0\})$), there is $j \in I$ such that $X \subseteq X_{j}$ and U^{p}-rank of the $\sim_{X_{j}}$ class of $\left(r_{1}, r_{2}\right)$ (treated as a subset of $X_{j} \times\left(X_{j} \backslash\{0\}\right)$) is at least $\mathrm{U}^{\mathrm{b}}(R)$. Since $(X \times(X \backslash\{0\})) / \sim_{X}$ can be B-definably identified with $\left(X_{j} \times\left(X_{j} \backslash\{0\}\right)\right) / \sim_{X_{j}}$, we can work in $\left(X_{j} \times\left(X_{j} \backslash\{0\}\right)\right) / \sim_{X_{j}}$. Let $d=\left[\left(r_{1}, r_{2}\right)\right]_{\sim_{X_{j}}} \in\left(X_{j} \times\left(X_{j} \backslash\{0\}\right)\right) / \sim_{X_{j}}$. So there is $\left(r_{1}^{\prime}, r_{2}^{\prime}\right) \sim_{X_{j}}\left(r_{1}, r_{2}\right)$ in $X_{j} \times\left(X_{j} \backslash\{0\}\right)$ such that $\mathrm{U}^{\mathrm{p}}\left(\left(r_{1}^{\prime}, r_{2}^{\prime}\right) / B, d\right) \geq \mathrm{U}^{\mathrm{p}}(R)$. Since $d \in d c l\left(r_{1}^{\prime}, r_{2}^{\prime}, B\right)$, by Lascar Inequalities, we get $2 \mathrm{U}^{\mathrm{b}}(R) \geq \mathrm{U}^{\mathrm{b}}\left(\left(r_{1}^{\prime}, r_{2}^{\prime}\right) / B\right)=$ $\mathrm{U}^{\mathrm{p}}\left(\left(r_{1}^{\prime}, r_{2}^{\prime}\right), d / B\right) \geq \mathrm{U}^{\mathrm{p}}\left(\left(r_{1}^{\prime}, r_{2}^{\prime}\right) / B, d\right)+\mathrm{U}^{\mathrm{b}}(d / B) \geq \mathrm{U}^{\mathrm{b}}(R)+\mathrm{U}^{\mathrm{b}}(d / B)$. So $\mathrm{U}^{\mathrm{b}}(d / B) \leq$ $\mathrm{U}^{\mathrm{b}}(R)$.

Notice that in the above theorem the assumption that R is of positive U^{b} - rank is necessary. Indeed, if \mathfrak{C} is a real closed field, then \mathbb{Q} is a \bigvee-definable field of U^{b}-rank 0 and it is not interpretable in \mathfrak{C}.

Now we are going to generalize some classical results about getting fields from definable actions of abelian groups [8, Theorem 3.1], [5, Lemma 4.2]. As in the ominimal case, we cannot apply the method from the finite Morley rank case because we do not have Zilber's Indecomposables Theorem. But, as in [5], we can apply Theorem 2.1. Once again, we give here general proofs which omit any applications of o-minimal topology or chain conditions.

Theorem 2.2 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M is A-minimal and $U^{b}(M)$ is finite. Then there is an infinite field interpretable in \mathfrak{C}.

Proof. For $a \in A$ we define $\operatorname{Fix}(a)=\{m \in M: a m=m\}$ and for $m \in M$ we put $\operatorname{Stab}(m)=\{a \in A: a m=m\}$. Of course, $\operatorname{Fix}(a)$ and $\operatorname{Stab}(m)$ are definable subgroups of M and A, respectively.
Claim 1 There are $m_{1}, \ldots, m_{n} \in M$ such that $\operatorname{Stab}\left(m_{1}\right) \cap \cdots \cap \operatorname{Stab}\left(m_{n}\right)=\{e\}$.
Proof of Claim 1. For every $a \in A \backslash\{e\}, \operatorname{Fix}(a)$ is a proper, definable subgroup of M invariant under the action of A. So by A-minimality of M, Fix (a) is finite. Hence for any infinite subset S of $M, \bigcap_{m \in S} \operatorname{Stab}(m)=\{e\}$. Thus, by the compactness theorem, there are $m_{1}, \ldots, m_{n} \in M$ such that $\operatorname{Stab}\left(m_{1}\right) \cap \cdots \cap \operatorname{Stab}\left(m_{n}\right)=\{e\}$.

Let R be the ring of endomorphisms of M generated by A. Then R is commutative.

Notice that every $r \in R$ is determined by $\left(r\left(m_{1}\right), \ldots, r\left(m_{n}\right)\right)$. If not, then there is $r \in R \backslash\{0\}$ such that $r\left(m_{1}\right)=\cdots=r\left(m_{n}\right)=0$. Since R is commutative, we get that $\operatorname{ker}(r)$ is a proper, definable and invariant under the action of A subgroup of M containing $\left\{m_{1}, \ldots, m_{n}\right\}$. So $A m_{1}+\cdots+A m_{n} \subseteq \operatorname{ker}(r)$. On the other hand, by choice of m_{1}, \ldots, m_{n}, we get that the function $a \mapsto\left(a m_{1}, \ldots, a m_{n}\right)$ is an injection from A to M^{n}. So there is i such that $A m_{i}$ is infinite, and hence $\operatorname{ker}(r)$ is infinite. This contradicts the assumption that M is A-minimal.

Having the above observation, we get the following in a rather standard way.
Claim 2 The ring R is \bigvee-definable, contained in M^{n} with the addition inherited from M^{n}, and $0<U^{b}(R)<\omega$.
Proof of Claim 2. Let $H=\left\langle A\left(m_{1}, \ldots, m_{n}\right)\right\rangle$. By the above observation, the function $f: R \rightarrow H \subseteq M^{n}$ defined by $f(r)=\left(r\left(m_{1}\right), \ldots, r\left(m_{n}\right)\right)$ is a bijection. Of course, $H:=\bigcup_{i<\omega} X_{i}$ where $X_{i}= \pm A\left(m_{1}, \ldots, m_{n}\right) \pm \cdots \pm A\left(m_{1}, \ldots, m_{k}\right)$ (i-many times). So H is a \bigvee-definable subgroup of M^{n}.

By the definition of f, we see that for any $r_{1}, r_{2} \in R$ we have $f\left(r_{1}+r_{2}\right)=$ $f\left(r_{1}\right)+f\left(r_{2}\right)(+$ on the left hand side is the addition in R and + on the right hand side is the addition in M^{n}).

Now we define multiplication, $*$, on H to make f a ring isomorphism, i.e. $f\left(r_{1}\right) *$ $f\left(r_{2}\right):=f\left(r_{1} r_{2}\right)$ for all $r_{1}, r_{2} \in R$. We leave as an easy exercise to check that $*: H \times H \rightarrow H$ is \bigvee-definable, i.e. for any $i, j<\omega$, $*: X_{i} \times X_{j} \rightarrow M^{n}$ is definable. Of course, $0<\mathrm{U}^{\mathrm{p}}\left(A m_{i}\right) \leq \mathrm{U}^{\mathrm{b}}(H) \leq \mathrm{U}^{\mathrm{b}}\left(M^{n}\right)<\omega$.

The next claim has the same proof as in the finite Morley rank case.
Claim $3 R$ is an integral domain.
Proof of Claim 3. Take any $r_{1}, r_{2} \in R$ such that $r_{1} r_{2}=0$. If $r_{2} \neq 0$, then $\operatorname{ker}\left(r_{2}\right)$ is a proper, definable subgroup of M invariant under the action of A. So by A-minimality of $M, \operatorname{ker}\left(r_{2}\right)$ is finite. So $r n g\left(r_{2}\right)$ is an infinite, definable subgroup of M invariant under the action of A. Thus $\operatorname{rng}\left(r_{2}\right)=M$. So we get $r_{1}=0$.

By Claims 2, 3 and Theorem 2.1, we get an infinite field interpretable in \mathfrak{C}.
Assuming that M does not have nontrivial, proper, definable subgroups invariant under the action of A, we get even more specific information about our interpretable field.

Proposition 2.3 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M does not have any nontrivial, proper, definable subgroups invariant under the action of A and $U^{p}(M)$ is finite. Then for every nonzero $m \in M$ there is a field K definable in \mathfrak{C} whose underlying additive group is $\langle M,+\rangle$, and $\langle A, \cdot\rangle$ is definably embeddable in K^{*} by sending $a \in A$ to am. After the embedding, the action of A on M becomes the scalar multiplication.

Proof. Let R be the ring of endomorphisms of M generated by A. We easily see that every nonzero $r \in R$ is an automorphism of M. Indeed, since $\operatorname{ker}(r)$ is a proper, definable subgroup of M invariant under the action of A, it must be trivial. So $r n g(r)$ is an infinite, definable subgroup of M invariant under the action of A, and hence it is equal to M.

Choose a nonzero $m \in M$. We conclude that every element $r \in R$ is determined by $r(m)$. So by the proof of Theorem 2.2, R is \bigvee-definable (after the indentification
of every $r \in R$ with $r(m) \in M)$, contained in M with the addition inherited from M, and the field of fractions, F, of R is interpretable in \mathfrak{C}. More precisely, $F=$ $(X \times(X \backslash\{0\})) / \sim$ where X is a definable subset of R.

The rest is the same as in the last paragraph of the proof of [5, Lemma 4.2]. Every element $(\alpha, \beta) / \sim \in F$ can be identified with the automorphism $\alpha \beta^{-1}$ of M. So F is a field of automorphisms of M. We easily see that the action of F on M is definable. As above, we show that every element $k \in F$ is determined by $k(m)$. Hence F can be definably embedded into M by sending $k \in F$ to $k(m)$. The range of this map is a definable field, say K, whose additive group is a subgroup of M invariant under A, so it must be M. Of course, A is definably embeddable in K^{*} by sending $a \in A$ to $a m$. The fact that after this embedding the action of A on M coincides with the field multiplication is trivial.

Using Proposition 2.3, we obtain the following strengthening of Theorem 2.2.
Corollary 2.4 Let A and M be infinite, definable, abelian groups such that A acts faithfully and definably on M as a group of automorphisms, M is A-minimal and $U^{b}(M)$ is finite. Then there is an infinite field K interpretable in \mathfrak{C} whose underlying additive group is M / M_{0} for some finite subgroup M_{0} of M invariant under A, and A / A_{0} is definably embeddable in K^{*} for some finite subgroup A_{0} of A. In fact, the action of A on M induces a faithful and definable action of A / A_{0} on M / M_{0} by automorphisms, and after the embedding this action becomes the scalar multiplication.

Proof. By Proposition 2.3, in order to prove the corollary, it is enough to find a finite subgroup M_{0} of M which is invariant under the action of A, and a finite subgroup A_{0} of A such that A / A_{0} acts faithfully and definably on M / M_{0} as a group of automorphisms and M / M_{0} does not have nontrivial, proper, definable subgroups invariant under A / A_{0}.

Define $M_{0}=\{m \in M:[A: \operatorname{Stab}(m)]<\omega\}$. Of course, M_{0} is a subgroup of M invariant under A. We claim that M_{0} is finite (and hence definable). If not, there is an infinite, countable set S contained in M_{0}. Then $\bigcap_{m \in S} S t a b(m)$ is a nontrivial (in fact, of bounded index) subgroup of A. So there is a nontrivial $a \in \bigcap_{m \in S} \operatorname{Stab}(m)$, which means that $S \subseteq$ Fix (a), a contradiction with the fact that $\operatorname{Fix}(a)$ is finite.

Since M_{0} is invariant under A, the action of A on M induces an action of A on M / M_{0}. It is easy to see that A acts on M / M_{0} by automorphisms.

Define A_{0} as the set of those $a \in A$ which act as the trivial automorphism on M / M_{0}. Then A_{0} is a subgroup of A. We claim that it is finite. Indeed, by Claim 1 in the proof of Theorem 2.2, there are $m_{1}, \ldots, m_{n} \in M$ such that $\operatorname{Stab}\left(m_{1}\right) \cap$ $\cdots \cap \operatorname{Stab}\left(m_{n}\right)=\{e\}$. So every $a \in A$ is determined by $\left(a m_{1}, \ldots, a m_{n}\right)$. On the other hand, if a induces the trivial automorphism of M / M_{0}, then $a m_{1} \in m_{1}+$ $M_{0}, \ldots, a m_{n} \in m_{n}+M_{0}$. Since M_{0} is finite, we get only finitely many possibilities for $a \in A$ inducing the trivial automorphism of M / M_{0}, i.e A_{0} is finite.

Summarizing, we get that A / A_{0} acts faithfully and definably on M / M_{0} as a group of automorphisms. It remains to check that M / M_{0} does not have nontrivial, proper,
definable subgroups invariant under A / A_{0}. Consider any definable subgroup G of M / M_{0} invariant under A / A_{0} and let $M_{1}<M$ be the preimage of G under the quotient map. We see that M_{1} is a definable subgroup of M invariant under A. So either $M_{1}=M$, and then $G=M / M_{0}$, or M_{1} is finite. In the second case, for any $m \in M_{1}$ the orbit $A m \subseteq M_{1}$ is finite so $[A: \operatorname{Stab}(m)]<\omega$, i.e. $m \in M_{0}$; hence $M_{0}=M_{1}$, which means that G is trivial.

3 Getting fields in solvable non-nilpotent groups

In this section we prove the main result of the paper.
Theorem 3.1 Let G be a group of finite U^{p}-rank definable in a monster model of a rosy theory satisfying NIP. Assume that G is solvable-by-finite but not nilpotent-byfinite. Then there is an infinite field interpretable in $\langle G, \cdot\rangle$.

Before we start to prove the theorem, let us show the following general lemma and a standard remark.

Lemma 3.2 Suppose P and Q are infinite abelian groups, P acts on Q by automorphisms and for every $p \in P \backslash\left\{e_{P}\right\}$ and $q \in Q \backslash\left\{e_{Q}\right\}, p \cdot q \neq q$. Then $Q \rtimes P$ is solvable but not nilpotent-by-finite.

Proof. Solvability is obvious. Suppose for a contradiction that $Q \rtimes P$ is nilpotent-byfinite. Then there are subgroups P_{1} and Q_{1} of finite index in P and Q, respectively, such that the restriction of the action of P on Q gives us an action by automorphisms of P_{1} on Q_{1} satisfying the property $\left(\forall p \in P_{1} \backslash\left\{e_{P}\right\}\right)\left(\forall q \in Q_{1} \backslash\left\{e_{Q}\right\}\right)(p \cdot q \neq q)$, and moreover $Q_{1} \rtimes P_{1}$ is nilpotent. So wlog $Q \rtimes P$ is nilpotent. To get a contradiction, it is enough to show that $Z(Q \rtimes P)$ is trivial.

We can identify Q with $Q \times\left\{e_{P}\right\}<Q \rtimes P$ and P with $\left\{e_{Q}\right\} \times P<Q \rtimes P$. After this identification $Q \rtimes P=Q P$. Let e be the neutral element of $Q \rtimes P$. By assumption, for all $p \in P \backslash\{e\}$ and $q \in Q \backslash\{e\}$ we have $p q p^{-1} q^{-1}=(p \cdot q) q^{-1} \neq q q^{-1}=e$.

Take any $q p \in Z(Q \rtimes P)$ where $p \in P$ and $q \in Q$. Then $q p q(q p)^{-1} q^{-1}=e$ so $p q p^{-1} q^{-1}=e$. By the last paragraph, we get $p=e$ or $q=e$. But once again using the last paragraph, we also see that $P \cap Z(Q \times P)=Q \cap Z(Q \rtimes P)=\{e\}$. So $p=e$ and $q=e$. Thus we have proved that $Z(Q \rtimes P)=\{e\}$.

Remark 3.3 (i) Let G be a group such that all definable quotients of definable subgroups of G have icc on centralizers. Assume that G is solvable-by-finite. Then G has a definable, solvable subgroup H of finite index, and H has a normal sequence $\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=H$ such that each quotient H_{i+1} / H_{i} is abelian and each H_{i} is definable.
(ii) Let G be a group such that all definable quotients of definable subgroups of G have icc on centralizers. Assume that N is a nilpotent subgroup of G. Then G has a definable nilpotent subgroup H containing N. Thus, the upper central series of H consists of definable subgroups of G.

Proof. (i) By a standard trick, there is a normal, solvable subgroup L of finite index in G. Then the derivative sequence of L, call it $\{e\}=L_{0} \triangleleft L_{1} \triangleleft \cdots \triangleleft L_{n}=L$, consists of normal subgroups of G. Now we define a sequence $\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}$ of definable, normal subgroups of G with abelian quotients, and such that $H_{i}>L_{i}$ for every $0 \leq i \leq n$.
H_{0} is defined as $\{e\}$. Suppose H_{0}, \ldots, H_{i} satisfying all the above assumptions have been constructed. Then we define $H_{i+1}=\pi_{i}^{-1}\left[Z\left(C\left(L_{i+1} H_{i} / H_{i}\right)\right)\right]$ where π_{i} : $G \rightarrow G / H_{i}$ is the natural quotient map. Using icc on centralizers, one can easily check that this construction works.

Now $H:=H_{n}$ together with the sequence $\{e\}=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=H$ have the desired properties.
(ii) The proof is the same as in the stable case [8, Theorem 3.17], by induction on the nilpotent class. If N is abelian, then $H=Z(C(N))$ works. For the induction step, let $Z=Z(C(Z(N)))$. By icc on centralizers, Z is definable, abelian, it is centralized by N and $Z(N)<Z$. Hence $N Z / Z \cong N /(N \cap Z)$ is a nilpotent subgroup of $C(Z) / Z$ of a smaller class of nilpotency than N so by induction hypothesis, there is a definable, nilpotent subgroup of $C(Z) / Z$ containing $N Z / Z$. Then its preimage under the natural quotient map is a definable, nilpotent subgroup of G containing N.

Proof of Theorem 3.1. By Remark 3.3, we can assume that G is solvable and it has a normal sequence consisting of definable subgroups with abelian quotients. It is also clear that we can assume that (G, \cdot) is our monster model.

The proof is by induction on $\mathrm{U}^{\mathrm{b}}(G)$. In fact, in the paragraph below we will show that our assumptions on G imply that $\mathrm{U}^{\mathrm{b}}(G) \geq 2$. The fact that G is infinite follows immediately from the assumption that G is not nilpotent-by-finite.

Assume that the theorem is true for groups of U^{p}-rank smaller that $\mathrm{U}^{\mathrm{b}}(G)$. By icc on centralizers, we can assume that G is centralizer connected. If $Z(G)$ is infinite, then since G is not nilpotent-by-finite, $G / Z(G)$ is a non nilpotent-by-finite, solvable group of U^{b}-rank smaller than $\mathrm{U}^{\mathrm{b}}(G)$. So by induction hypothesis, we get an infinite interpretable field (notice that if $\mathrm{U}^{\mathrm{p}}(G)=1$, then $[G: Z(G)]<\omega$, a contradiction). So we need to consider the case when $Z(G)$ is finite. Dividing out by $Z(G)$, we can assume that G is also centerless. This implies that G does not have nontrivial, finite, normal subgroups. Indeed, if $H \triangleleft G$ is finite, then $[G: C(h)]<\omega$ for every $h \in H$. But G is centralizer connected so $H \subseteq Z(G)=\{e\}$. So by solvability of G, there is an infinite, definable, abelian, normal subgroup H of G (notice that if $\mathrm{U}^{\mathrm{b}}(G)=1$, then $[G: H]<\omega$, a contradiction; so we have proved that $\mathrm{U}^{\mathrm{p}}(G) \geq 2$).

Now choose a definable subgroup G_{0} of finite index in G and an infinite, definable, abelian, normal subgroup H of G_{0} with minimal possible U^{b}-rank (ranging over all such pairs $\left.\left(G_{0}, H\right)\right)$. Wlog $G=G_{0}$. We can also assume that H is centralizer connected in G.

Since G is not nilpotent-by-finite, $G / C(H)$ is infinite. As $\mathrm{U}^{\mathrm{p}}(G / C(H))<\mathrm{U}^{\mathrm{b}}(G)$, by induction hypothesis, we can assume that $G / C(H)$ is nilpotent-by-finite. Using icc on centralizers and Remark 3.3, we can replace G be a definable subgroup of finite index so that $G / C(H)$ becomes nilpotent and centralizer connected. This implies
that $Z(G / C(H))$ is infinite.
Put $A=Z(G / C(H))$ and $A_{0}=\pi^{-1}[A]$ where $\pi: G \rightarrow G / C(H)$ is the natural quotient map. Then A_{0} is a definable, normal subgroup of G and $A=A_{0} / C(H)$ is an infinite, abelian group interpretable in $\langle G, \cdot\rangle$. Moreover, A acts faithfully and definably on H by automorphisms: $a C(H) * h=h^{a}$ for $a C(H) \in A$ and $h \in H$.
Claim 1 For every $a \in A_{0} \backslash C(H), C(a) \cap H=\{e\}$.
Proof of Claim 1. Let $B=C(a) \cap H$. It is enough to show that $B \triangleleft G$ (because H was chosen to have minimal possible positive $\mathrm{U}^{\mathrm{p}}-\mathrm{rank}, H$ is centralizer connected in G and G does not have nontrivial, finite, normal subgroups). Take any $g \in G$. We need to show $B^{g}=B$. Of course, $B^{g}=C\left(a^{g}\right) \cap H$. Since $A=Z(G / C(H)), a^{g} C(H)=(a C(H))^{g}=a C(H)$. So $a^{g}=a c$ for some $c \in C(H)$. Thus $B^{g}=C\left(a^{g}\right) \cap H=C(a c) \cap H=C(a) \cap H=B$.

By Claim 1, $P:=A$ and $Q:=H$ satisfy the assumptions of Lemma 3.2 so we conclude that $R:=H \rtimes A$ is an interpretable group which is solvable but not nilpotent-by-finite. We also have $\mathrm{U}^{\mathrm{b}}(R)=\mathrm{U}^{\mathrm{b}}(H)+\mathrm{U}^{\mathrm{b}}(A)$. So if $\mathrm{U}^{\mathrm{b}}(A)<\mathrm{U}^{\mathrm{p}}(G / H)$, then $\mathrm{U}^{\mathrm{b}}(R)<\mathrm{U}^{\mathrm{p}}(H)+\mathrm{U}^{\mathrm{b}}(G / H)=\mathrm{U}^{\mathrm{b}}(G)$ and hence we are done by induction hypothesis. Therefore, we can assume that $\mathrm{U}^{\mathrm{p}}(A)=\mathrm{U}^{\mathrm{p}}(G / H)$. But $\mathrm{U}^{\mathrm{p}}(A)=$ $\mathrm{U}^{\mathrm{p}}\left(A_{0}\right)-\mathrm{U}^{\mathrm{b}}(C(H)) \leq \mathrm{U}^{\mathrm{b}}(G)-\mathrm{U}^{\mathrm{b}}(H)=\mathrm{U}^{\mathrm{b}}(G / H)$ and equality holds iff $\left[G: A_{0}\right]<\omega$ and $[C(H): H]<\omega$. So we get $[C(H): H]<\omega$, and we can assume that $G=A_{0}$.

By NIP, H^{00} exists.
Claim $2 H^{00}$ is definable.
Proof. Take any $a \in G \backslash C(H)$. We claim that $C(a)$ is infinite. If not, then $\mathrm{U}^{\mathrm{b}}\left(a^{G}\right)=\mathrm{U}^{\mathrm{b}}(G)$ so $(a H)^{G}$ is an infinite subset of G / H. But since $G / C(H)$ is abelian and $[C(H): H]<\omega$, we get a contradiction.

On the other hand, by Claim 1, $C(a) \cap H=\{e\}$. So if we put $G_{1}=H C(a)$, then [$\left.G_{1}: H\right]$ is infinite.

By NIP, G_{1}^{00} exists. Notice that $H^{00}=G_{1}^{00} \cap H$. The inclusion (\subseteq) is obvious. To prove ($=$), assume for a contradiction that $H^{00} \subsetneq G_{1}^{00} \cap H$. By the definition of G_{1} and the fact that $C(a) \cap H=\{e\}$, we get that $H^{00} C(a)$ is a type-definable subgroup of G_{1} of bounded index, not containing G_{1}^{00}, a contradiction.

Since $\left[G_{1}: G_{1} \cap C(H)\right] \geq \omega$, there is $b \in G_{1}^{00} \backslash C(H)$. By Claim 1, for every $c \in b H$ we have $\mathrm{U}^{\mathrm{b}}\left(c^{H}\right)=\mathrm{U}^{\mathrm{p}}(H)=\mathrm{U}^{\mathrm{b}}(b H)$. As $b H$ is closed under conjugations by elements of H, we get that $b H=c_{1}^{H} \cup \cdots \cup c_{n}^{H}$ for some $c_{1}, \ldots, c_{n} \in b H$. We also know that $G_{1}^{00} \triangleleft G_{1}$ so $b H \cap G_{1}^{00}=c_{i_{1}}^{H} \cup \cdots \cup c_{i_{k}}^{H}$ for some $1 \leq i_{1}<\cdots<i_{k} \leq n$. Thus, $b H \cap G_{1}^{00}$ is definable. On the other hand, since $b \in G_{1}^{00}$, by the last paragraph, we get $b H \cap G_{1}^{00}=b\left(H \cap G_{1}^{00}\right)=b H^{00}$. Therefore, H^{00} is definable.

By Claim 2, replacing H by H^{00} (and repeating all arguments preceding Claim 2 for this new H), we can assume that $H=H^{00}$.
Claim $3 H$ does not have nontrivial, proper, definable subgroups invariant under the action of A.

Proof of Claim 3. Suppose H_{1} is a definable subgroup of H invariant under A. Since $A=G / C(H)$, we get $H_{1} \triangleleft G$. So, by minimality of $\mathrm{U}^{\mathrm{b}}(H), H_{1}$ is either finite or of finite index in H. On the other hand, we know that G does not have nontrivial, finite, normal subgroups and $H=H^{00}$. Hence $H_{1}=\{e\}$ or $H_{1}=H$.

By Claim 3, we see that $M:=H$ and A satisfy the assumptions of Theorem 2.2 (or even Proposition 2.3) so an infinite, interpretable field exists.

In [1], Theorem 3.1 was proved in the case of $\mathrm{U}^{\mathrm{b}}(G)=2$ but under a much stronger assumption that G has hereditarily fsg (finitely satisfiable generics). In fact, under this assumption there was proved even more, namely:

Fact 3.4 Assume that G has NIP, hereditarily $f s g, U^{b}(G)=2$ and G is not nilpotent-by-finite. Then, after possibly passing to a definable subgroup of finite index and quotienting by its finite center, G is (definably) the semidirect product of the additive and multiplicative groups of an algebraically closed field F interpretable in $\langle G, \cdot\rangle$, and moreover $G=G^{00}$.

Analyzing carefully the proof of Theorem 3.1 and modifying it a little bit, we obtain the following strengthening of Theorem 3.1 in the U^{b}-rank 2 case.

Corollary 3.5 Let G be a group of U^{b}-rank 2 definable in a monster model of a rosy theory satisfying NIP. Assume that G is solvable-by-finite but not nilpotent-by-finite. Then, after possibly passing to a definable subgroup of finite index and quotienting by its finite center, G is (definably) the semidirect product of the additive group and a finite index subgroup of the multiplicative group of a field K interpretable in $\langle G, \cdot\rangle$.

Proof. By the proof of Theorem 3.1, we know that there is no group of U^{b}-rank 0 or 1 satisfying the assumptions of Theorem 3.1. Therefore, under the assumption $\mathrm{U}^{\mathrm{p}}(G)=2$, the proof of Theorem 3.1 necessarily leads us to the last paragraph and produces a field using Proposition 2.3. So for any nontrivial $h \in H$ we get an interpretable field, say K, whose additive group is $\langle H, \cdot\rangle$ and such that the map $f: G / C(H) \rightarrow K^{*}$ given by $f(g C(H))=g C(H) * h=h^{g}$ is a definable embedding of $G / C(H)$ into K^{*}, and after this embedding the action of $G / C(H)$ on H coincides with the field multiplication. Since $\mathrm{U}^{\mathrm{b}}\left(K^{*}\right)=1=\mathrm{U}^{\mathrm{b}}(G / C(H))$, the image of $G / C(H)$ by f is a finite index subgroup of K^{*}, call it L.
Claim 1 Without loss of generality we can assume that $G=H B$ where B is a definable, abelian group of U^{b}-rank $1, H \cap B=\{e\}$ and $C(H)=H$.

Proof of Claim 1. Since $[C(H): H]$ is finite, we can choose $a \in G \backslash C(H)$. By the first paragraph of the proof of Claim 2 and by Claim 1 in the proof of Theorem 3.1, we get that $C(a)$ is infinite and $C(a) \cap H=\{e\}$. Thus $\mathrm{U}^{\mathrm{b}}(C(a))=1$ and so $C(a)$ is nilpotent-by-finite. Using Remark 3.3 and considering the centralizer connected component of $C(a)$, we get that $C(a)$ has a definable abelian subgroup B of finite index. Since $\mathrm{U}^{\mathrm{p}}(H B)=2$, we can assume $G=H B$. In order to finish the proof of

Claim 1, it is enough to show the following
Subclaim $C(H)=H$.
Proof of Subclaim. It is enough to show that $C(H) \cap B=\{e\}$. So we will be done if we show that for any $b \in B \backslash C(H), C(b) \cap C(H)=\{e\}$. We proceed in the same way as in the proof of Claim 1 in the proof of Theorem 3.1.

Take any $b \in B \backslash C(H)$. Let $C=C(b) \cap C(H)$. It is enough to show that $C \triangleleft G$. Indeed, if $C \triangleleft G$, then since G does not have nontrivial, finite, normal subgroups, we get that either $C=\{e\}$ or C is infinite. In the second case, $[C(H): C]$ is finite. This implies that $[H: H \cap C]$ is finite. Since $H=H^{00}$, we get $H \subseteq C$ and so $b \in C(H)$, a contradiction.

Take any $g \in G$. We need to show $C^{g}=C$. Of course, $C^{g}=C\left(b^{g}\right) \cap H$. Since $G / H \cong B$ is abelian, $b^{g} H=(b H)^{g}=b H$. So $b^{g}=b c$ for some $c \in H$. Thus $C^{g}=C\left(b^{g}\right) \cap C(H)=C(b c) \cap C(H)=C(b) \cap C(H)=C$.
By Claim 1, $G / C(H)=G / H=B H / H \cong B$ and we see that B is definably isomorphic to L by sending $b \in B$ to h^{b}. We also easily see that the action of L on H by the field multiplication is the same as the action of B on H by conjugation. So $G=H B$ is definably isomorphic to $K^{+} \rtimes L$.

4 Superrosy dependent fields

The main motivation in this section is Conjecture 4. To prove this conjecture it is enough to show that each infinite, superrosy field K with NIP and containing $\sqrt{-1}$ is algebraically closed. In fact, it suffices to show that for every natural number $n>0$, $K^{n}=K$, and if p is the characteristic of K, then the function $f: K \rightarrow K$ defined by $f(x)=x^{p}-x$ is onto (because then we can apply the standard Macintyre's proof [8, Theorem 3.1]). The fact that f is onto follows from Facts 1.1 and 1.5.

In this paper we will prove a weaker condition than $K^{n}=K$, namely that for every natural number $n>0, K=K^{n}-K^{n}$. In particular, if n is odd or if $\sqrt[2 k]{-1}$ exists in K where 2^{k} is the largest power of 2 dividing n, then $K=K^{n}+K^{n}$. We also prove other results of this kind. The main idea involved here is to apply definable measures.

Let us start from a general fact.
Proposition 4.1 Let K be any field and $G=K \rtimes K^{*}$ (i.e. $\left(k_{1}, k_{2}\right) \cdot\left(k_{1}^{\prime}, k_{2}^{\prime}\right)=\left(k_{1}+\right.$ $\left.k_{2} k_{1}^{\prime}, k_{2} k_{2}^{\prime}\right)$). Then G is amenable and there is a finitely additive, probabilistic measure on K which is invariant under additive and non-zero multiplicative translations.

Proof. Of course, G is solvable so it is amenable, i.e. there is a finitely additive, probabilistic, left (two-sided) invariant measure \mathbf{m} on G.

Define a function $\mu: \mathcal{P}(K) \rightarrow[0,1]$ by

$$
\mu(A)=\mathbf{m}\left(A \times K^{*}\right)
$$

It is obvious that μ is a finitely additive, probabilistic measure on K. Now we will check that μ is additively and multiplicatively invariant. In the additive case, for every $A \subseteq K$ and $k \in K$ we have:

$$
\mu(k+A)=\mathbf{m}\left((k+A) \times K^{*}\right)=\mathbf{m}\left((k, 1) \cdot\left(A \times K^{*}\right)\right)=\mathbf{m}\left(A \times K^{*}\right)=\mu(A)
$$

In the multiplicative case, for every $A \subseteq K$ and $k \in K^{*}$ we have:
$\mu(k A)=\mathbf{m}\left((k A) \times K^{*}\right)=\mathbf{m}\left((0, k) \cdot\left(A \times K^{*}\right)\right)=\mathbf{m}\left(A \times K^{*}\right)=\mu(A)$.
Note that if K is definable in a monster model \mathfrak{C} of a theory satisfying NIP, then since $G:=K \rtimes K^{*}$ is also definable in \mathfrak{C} and G is amenable, by Fact 1.6, there is a definable, left invariant Keisler measure on G. Using this measure as \mathbf{m} in the above proof we get:

Corollary 4.2 Let K be any field definable in a monster model of a theory satisfying NIP. Then there is a definable Keisler measure on K invariant under additive and non-zero multiplicative translations.

Definition 4.3 Suppose G is a definably amenable group (with left invariant Keisler measure μ) definable in a monster model of any theory T. We say that a definable set $X \subseteq G$ is μ-generic if $\mu(X)>0$. We say that a type (or its set of realizations) is μ-generic if the conjunction of any finitely many formulas in this type defines a set whose intersection with G is μ-generic.

It is obvious that in every definably amenable group non- μ-generic sets form an ideal and hence every partial μ-generic type can be extended to a global μ-generic type. In particular, at least one global μ-generic type exists.

The following proposition (except for point (i)) is a variant of [2, Corollary 4.3] for μ-generics.

Proposition 4.4 Let G be a definably amenable group definable in a monster model of a theory satisfying NIP. Then
(i) there is a definable, left invariant Keisler measure μ on G,
(ii) there are only boundedly many global μ-generic types,
(iii) for every global type $p, \operatorname{Stab}(p) \subseteq G^{00}$,
(iv) for every definable set $X \subseteq G, \operatorname{Stab}_{\mu}(X):=\{g \in G: \mu(g X \triangle X)=0\}$ is a type-definable subgroup of bounded index in G; in particular, $G^{00} \subseteq \operatorname{Stab}_{\mu}(X)$,
(v) for every global μ-generic type $p, \operatorname{Stab}(p)=G^{00}$.

Proof. (i) is just Fact 1.6.
(ii) is true for an arbitrary Keisler measure and it follows from [2, Corollary 3.4].
(iii) is true whenever G^{00} exists; it follows from the fact that a partial type defining some translate of G^{00} is in p.
(iv). The fact that $\operatorname{Stab}_{\mu}(X)$ is a subgroup follows from left invariance of μ. The fact that $\operatorname{Stab}_{\mu}(X)$ is type-definable follows from definability of μ. Finally, the fact that
the index of $\operatorname{Stab}_{\mu}(X)$ in G is bounded follows from [2, Corollary 3.4] and the observation that for every $g, h \in G$ we have: $g \operatorname{Stab}_{\mu}(X)=h \operatorname{Stab}_{\mu}(X)$ iff $\mu(g X \triangle h X)=0$. (v) Since μ is left invariant, $g p$ is μ-generic for every $g \in G$. So $\bigcap\left\{\operatorname{Stab}_{\mu}(X): X \in\right.$ $p\} \subseteq \operatorname{Stab}(p)$. Hence we are done by (iii) and (iv).

From now on, let K be an infinite field definable in a monster model of a theory T satisfying NIP. By Corollary 4.2, we can find a definable Keisler measure invariant under additive and non-zero multiplicative translations; we denote it by μ.

Proposition 4.5 If X is a definable (or type-definable) μ-generic subset of K, then (i) for every $k \in K,(k+X) \cap X$ is μ-generic and of the same measure as X,
(ii) $K=X-X$,
(iii) for every $k \in\left(K^{*}\right)^{00}, k X \cap X$ is μ-generic and of the same measure as X, (iv) $\left(K^{*}\right)^{00} \subseteq X X^{-1}$.

Proof. Items (ii) and (iv) follow from (i) and (iii), respectively. Item (i) follows from Fact 1.5 and Proposition 4.4(iv). Item (iii) follows from Proposition 4.4(iv).

From now on, assume that T is additionally superrosy.
Corollary 4.6 For every natural number $n>0$ we have $K=K^{n}-K^{n}$. Hence, if n is odd or if $\sqrt[2^{k}]{-1}$ exists in K where 2^{k} is the largest power of 2 dividing n, then $K=K^{n}+K^{n}$.

Proof. By Fact 1.1, K^{*} is a union of finitely many cosets of $\left(K^{*}\right)^{n}$. So at least one and hence all the cosets of $\left(K^{*}\right)^{n}$ are μ-generic (and of the same measure). So by Proposition 4.5 (ii) we get $K=K^{n}-K^{n}$. From this the second part follows immediately.

In fact, we get even more, namely, for every $k \in K,\left(k+K^{n}\right) \cap K^{n}$ is μ-generic and of the same measure as K^{n}. We also get that every element of K can be written as a difference $x-y$ where $x, y \in\left(K^{*}\right)^{00} \subseteq \bigcap_{n>0} K^{n}$. Notice also that this property (and, in particular, the conclusion of Corollary 4.6) holds in every finite extension of K.

Conjecture 4.7 Assume $\sqrt{-1}$ exists in K. Then for every natural number n and $a \in K^{*}$ we have that $K=K^{n}-a K^{n}$.

If we proved the above conjecture (even only for prime numbers n), we could apply the proof of [7, Theorem 4.6] to get that the Brauer group of K is trivial (assuming that $\sqrt{-1} \in K$). Corollary 4.6 is a weaker result than Conjecture 4.7.

Now using our measure μ we will easily conclude that certain particular formulas have the order property.

Proposition 4.8 For every natural number $n>0$, if $K^{n} \neq K$, then the formula $(\exists z)\left(x-y=z^{n}\right)$ has the order property.

Proof. We need to find sequences $\left(a_{i}\right)_{i \in \omega}$ and $\left(b_{i}\right)_{i \in \omega}$ such that $a_{i}-b_{j} \in K^{n} \Longleftrightarrow$ $i>j$.

For the base step it is enough to choose any $b_{0} \in K$ and $a_{0} \notin b_{0}+K^{n}$. In order to do that, we need to know that $b_{0}+K^{n} \neq K$. Take any $a \notin K^{n}$. Since by the comment right after Corollary 4.6, $\mu\left(\left(b_{0}+K^{n}\right) \backslash K^{n}\right)=0$, we get $\mu\left(\left(b_{0}+K^{n}\right) \cap a K^{n}\right)=0$. As $\mu\left(K^{n}\right)=\mu\left(a K^{n}\right)>0$, it follows that $a K^{n} \backslash\left(b_{0}+K^{n}\right) \neq \emptyset$.

Suppose we have chosen $\left(a_{i}\right)_{i \leq m}$ and $\left(b_{i}\right)_{i \leq m}$ satisfying the desired property. Then it is enough to choose any $a_{m+1} \in \bigcap_{i \leq m}\left(b_{i}+K^{n}\right)$ and $b_{m+1} \notin \bigcup_{i \leq m+1}\left(a_{i}-K^{n}\right)$. In order to do that we need to show that $\bigcap_{i \leq m}\left(b_{j}+K^{n}\right) \neq \emptyset$ and $\bigcup_{i \leq m+1}\left(a_{i}-K^{n}\right) \neq K$. By the comment right after Corollary $4 . \overline{6}$, we get that $\bigcap_{i \leq m}\left(b_{i}+K^{n}\right)$ is μ-generic so it is nonempty. To show $\bigcup_{i \leq m+1}\left(a_{i}-K^{n}\right) \neq K$, we use a similar argument as in the base induction step.

Proposition 4.9 Assume $a \notin-K^{n}$. Then there is an indiscernible (over a) sequence $\left(a_{i}\right)_{i \in \omega}$ such that:
(i) if $1-a \in K^{n}$, then $a_{i}-a a_{j} \in K^{n} \Longleftrightarrow i \geq j$,
(ii) if $1-a \notin K^{n}$, then $a_{i}-a a_{j} \in K^{n} \Longleftrightarrow i>j$.

In particular, the formula $(\exists z)\left(x-a y=z^{n}\right)$ has the order property.
Proof. By compactness it is enough to construct a sequence satisfying (i) or (ii). For the base step we choose any $a_{0} \in\left(K^{*}\right)^{n}$.

Suppose we have chosen $\left(a_{i}\right)_{i \leq m}$. Now it is enough to show that the set $A:=$ $\left(\left(K^{*}\right)^{n} \cap \bigcap_{i \leq m}\left(a a_{i}+K^{n}\right)\right) \backslash \bigcup_{i \leq m}\left(\frac{1}{a} a_{i}-\frac{1}{a} K^{n}\right)$ is non-empty and to choose any $a_{m+1} \in$ A.

In order to see that $A \neq \emptyset$, notice that $\left(K^{*}\right)^{n} \cap \bigcap_{i \leq m}\left(a a_{i}+K^{n}\right)$ is μ-generic and is contained in K^{n}. On the other hand, $\mu\left(\bigcup_{i \leq m}\left(\frac{1}{a} a_{i}-\frac{1}{a} K^{n}\right) \backslash-\frac{1}{a} K^{n}\right)=0$, so $\mu\left(K^{n} \cap \bigcup_{i \leq m}\left(\frac{1}{a} a_{i}-\frac{1}{a} K^{n}\right)\right)=0\left(\right.$ as $\left.-\frac{1}{a} K^{n} \cap K^{n}=\{0\}\right)$. Hence $A \neq \emptyset$.

Proposition 4.10 If n is odd, then for every $a \in K$ the formula $\phi(x, y):=(\exists z)(x-$ $a y=z^{n}$) does not have the strict order property.

Proof. We will show that there are no $k, l \in K$ such that $\phi(K, k)$ is a proper subset of $\phi(K, l)$. Suppose $\phi(K, k) \subseteq \phi(K, l)$, i.e. $a k+K^{n} \subseteq a l+K^{n}$. Then $-a k-K^{n} \subseteq-a l-K^{n}$, so $-a k+K^{n} \subseteq-a l+K^{n}$, so $a l+K^{n} \subseteq a k+K^{n}$.

It is well-known that if a formula ϕ has the order property and does not have the independence property, then a conjunction of finitely many instances (or their negations) of ϕ has the strict order property. In Propositions 4.8 and 4.9 we have found (assuming that $K \neq K^{n}$ for some n) some particular formulas with the order property about which, by Proposition 4.10, we know that they do not have the strict order property (if n is odd). Maybe a more complicated computation (involving somehow superrosiness) could show that also finite conjunctions of instances of those formulas do not have the strict order property, and then we would get that $K=K^{n}$ (at least for odd n 's).

References

[1] C. Ealy, K. Krupiński, A. Pillay. Superrosy dependent groups having finitely satisfiable generics, Annals of Pure and Applied Logic, to appear.
[2] E. Hrushovski, Y. Peterzil, A. Pillay. Groups, measures and the NIP, Journal of AMS, to appear.
[3] E. Hrushovski, A. Pillay. On NIP and invariant measures, preprint.
[4] A. Onshuus. Properties and consequences of thorn-independence, Journal of Symbolic Logic 71, no. 1, 1-21, 2006.
[5] Y. Peterzil, S. Starchenko. Definable homomorphisms of abelian groups in ominimal structures, Annals of Pure and Applied Logic 101, 1-27, 2000.
[6] A. Pillay, Geometric stability theory, Clarendon Press, Oxford, 1996.
[7] A. Pillay, T. Scanlon, F. Wagner. Supersimple fields and division rings, Mathematical Research Letters 5, 473-483, 1998.
[8] B. Poizat. Stable Groups, Mathematical Surveys and Monographs, 87, American Mathematical Society, Providence, 2001.

Mathematical Institute, University of Wrocław
pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
e-mail: kkrup@math.uni.wroc.pl
and
Mathematics Department
University of Illinois at Urbana-Champaign
1409 W. Green Street, Urbana, IL 61801, USA.
e-mail: kkrup@math.uiuc.edu

[^0]: *Research supported by the Polish Government grant: N201 032 32/2231
 ${ }^{0} 2000$ Mathematics Subject Classification: 03C45, 03C60
 ${ }^{0}$ Key words and phrases: rosy theory, interpretable field, non independence property

