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Abstract

Let F denote the field of germs at +∞ of Ran,exp-definable unary
functions. Starting from its characterization in terms of closure con-
ditions as given by van den Dries, Macintyre and Marker ([3], [4]),
we give a similar description of its subring consisting of the germs
of polynomial growth. More precisely, denoting this ring by Fpoly
and its unique maximal ideal by mpoly, our description picks out a
subfield Rpoly of representatives of the residue field of Fpoly modulo
mpoly. In fact, such a construction, in considerably greater generality,
was already carried out in 1997 by F-V. Kuhlmann and S. Kuhlmann
(unpublished, see arXiv:1206.0711v1 [math.LO]) using valuation the-
oretic methods, but our main aim here is to investigate the complex
extensions of the functions under consideration. It turns out that
Rpoly consists precisely of those (germs of) Ran,exp-definable unary
functions that have an Ran,exp-definable analytic continuation to a
right half plane of C and we use this fact to give a different proof of
the Kuhlmann result. (Roughly speaking, the (real) valuation theory
is replaced by the Phragmén-Lindelöf method applied to the complex
continuations.)
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We then consider the analagous situation for those (germs of) func-
tions in F having at most exponential growth. We briefly describe the
Kuhlmann representation of the residue field and although the func-
tions therein do not have analytic continuations to a right half plane
in general, they turn out to have very good approximations that do.

There has been much research over the last ten years on diophan-
tine properties of sets definable in o-minimal structures (see for ex-
ample [15], [11], [5], [1], [6]) and in the final section of this paper we
make a small contribution to this work. We apply our results to adapt
a method of Pólya ([12]), as modified by Langley ([8]), and prove the
following generalization of a result from [6]: let f : R → R be an
Ran,exp-definable function such that for some r ∈ R with 0 < r < 1,
|f(x)| ≤ 2rx for all sufficiently large x. Assume also that f(n) ∈ Z for
all sufficiently large n ∈ N. Then there exists a polynomial P with
rational coefficients such that f(x) = P (x) for all sufficiently large x.

1 Introduction

In [3] and [4] (but see also [9] for an excellent summary of the main results
contained in these papers), van den Dries, Macintyre and Marker establish
various quantifier elimination theorems for the theory of the real field ex-
panded by all restricted analytic functions and the full exponential function,
a structure that we henceforth denote by Ran,exp and its theory by Tan,exp.
They go on to characterize the Ran,exp-definable functions which, as we shall
make explicit shortly, takes a particularly simple form for the germs at +∞
of unary functions. Let F denote this collection of germs. Thus F consists of
the collection of equivalence classes of Ran,exp-definable functions f : R→ R,
where two such functions are identified if they agree at all sufficiently large
values of the argument. (We shall, however, usually regard elements of F
as functions with domain (a,∞), for sufficiently large a ∈ R, rather than
equivalence classes of such functions.)

Now F is (the domain of) an elementary extension of the structure Ran,exp

(where we identify each r ∈ R with the corresponding constant function in F)
and is, in fact, the unique nonstandard model of Tan,exp generated under the
Tan,exp-definable functions by a(ny) single element of F r R. The functions
and relations of the language of Tan,exp are, of course, interpreted “pointwise-
eventually” in F . Further, if M is any nonstandard model of Tan,exp and α is
any positive infinite element of M, then the map sending the identity function

2



on R to α extends uniquely to an elementary embedding from F into M. In
particular, if h ∈ F and h(x) → ∞ as x → ∞, then the map φ → φ ◦ h
(for φ ∈ F) is an automorphism of F that sends the identity function to
h. This has some potential interest because it allows one to transfer certain
properties of functions in F of polynomial growth to arbitrary functions in
F .

We now give the characterization of F from [3]. The operations and
relations on elements of F mentioned below are those obtained by regarding
F as a structure for the language of the theory Tan,exp, as just discussed. We
use ι to denote the identity function on R, as well as its germ considered as
an element of F .

Let G be any subset of F containing at least one nonzero constant func-
tion. Consider the following closure properties that G may or may not pos-
sess.

1.1 ι ∈ G;

1.2 for all f, g ∈ G and all α ∈ R, αf ∈ G, f + g ∈ G and f · g ∈ G;

1.3 for all f ∈ G, if f 6= 0, then 1/f ∈ G;

1.4 for all open neighbourhoods U ⊆ Rn of 0̄ ∈ Rn, and all analytic
functions g : U → R, if f1, . . . , fn ∈ G and 〈f1(x), . . . , fn(x)〉 → 0̄ as x→∞,
then g(f1, . . . , fn) ∈ G;

1.5 for all f ∈ G, if f > 0, then log(f) ∈ G;

1.6 for all f ∈ G, and all r ∈ R, if f > 0, then f r ∈ G;

1.7 for all f ∈ G with f > 0, if exp(f) is G-bounded, i.e. if there is
some g ∈ G such that exp(f) < g, then exp(f) ∈ G;

1.8 for all f ∈ G, exp(f) ∈ G.

It follows immediately from the explicit universal axiomatization of Tan,exp
given in [3] that if G satisfies 1.2-1.5 and 1.8 (which imply 1.6 and 1.7), then
G is (the domain of) an elementary substructure of F and an elementary
extension of Ran,exp. So if G also satisfies 1.1 (or if it contains any nonconstant
germ), then G = F .
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Now consider the smallest subset of F (i.e. the intersection of all subsets
of F) satisfying 1.1 to 1.7. (Actually, 1.6 is implied by others. The reason
for including it as a separate condition will become clear later.) Denote it
by Rpoly and let Fpoly denote its convex closure in F :

Fpoly := {f ∈ F : for some g ∈ Rpoly, |f | < g}.
Then Fpoly is clearly a valuation subring of the field F with maximal ideal

mpoly := {f ∈ F : for all positive g ∈ Rpoly, |f | < g}.
The following two theorems are due to F-V. Kuhlmann and S. Kuhlmann.

They appear in arXiv:1206.0711v1 [math.LO], but can also be found in S.
Kuhlmann’s monograph [7] (Theorem 6.44 combined with Theorem 6.46) to
which I shall henceforth refer for similar results.

1.9 Theorem
The map φ 7→ φ/mpoly is an isomorphism from the field Rpoly to the field

Fpoly/mpoly. In other words, Rpoly picks out exactly one element from each
mpoly-equivalence class of Fpoly.
1.10 Theorem

Every f ∈ Fpoly has polynomial growth, i.e. for some n ∈ N, |f | < ιn.

Now 1.10 might seem obvious given the restriction on exponentiation
imposed by 1.7. However, I know of no direct inductive argument for 1.10 and
the proof in [7] requires quite careful control of the value groups and residue
fields that arise during the various stages of the construction as formulated
there. Our proof of 1.10 given in section 3 uses complex methods, which I
now discuss.

As usual, we identify C with R2 when referring to definability of complex
functions and relations in structures expanding the real field. If the structure
is not mentioned, it is understood to be Ran,exp.

For a, ψ ∈ R with 0 < ψ < π, let S(a, ψ) denote the sector

{a+ teiθ : t > 0,−ψ < θ < ψ}
in C. This is clearly a definable family (as the parameters a, ψ vary as
indicated) of subsets of C. We prove the following theorem.

1.11 Theorem
Let f ∈ F . The following are equivalent.
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1.11.1 f ∈ Rpoly;

1.11.2 for some ψ, a ∈ R with π
2
< ψ < π, there exists a definable,

complex analytic function f̂ : S(a, ψ) → C such that f̂(x) = f(x) for all
x ∈ (a,∞).

Further, if 1.11.2 holds and π
2
< ψ′ < ψ, then there exists a constant c such

that (possibly after increasing a) we have |f̂(z)| ≤ |z|c for all z ∈ S(a, ψ′).
In particular, all functions in Rpoly have polynomial growth, which clearly
entails the same for functions in Fpoly as claimed in 1.10.

In the final section of this paper we give a diophantine application. We
will adapt a method of Langley who showed in [8] that if F : S(a, π

2
) → C

is any complex analytic function such that F (n) ∈ Z for all sufficiently large
n ∈ Z, and if |F (z)| = O(|z|M · 2|z|) as |z| → ∞ for z ∈ S(a, π

2
), then there

exist polynomials P (z), Q(z) ∈ Q[z] such that F (z) = P (z) · 2z + Q(z) for
all z ∈ S(a, π

2
). The basic idea of Langley’s proof originated much earlier in

a paper of Pólya ([12]), who established the corresponding result for entire
functions F . Our aim is to prove a similar, but slightly weaker, result for
definable functions F . This result is, however, still considerably stronger
that the main result of [6] which requires a stronger growth condition on the
functions involved and only applies to the expansion Rexp of the real field by
exponentiation.

In order to carry out Langley’s argument for definable functions we will
need to analytically continue considerably more such functions than those
covered by 1.11. This will be done in section 4. It turns out that there is a
naturally defined subfield of F , call it Rsubexp, representing the residue field
of the convex subring Fsubexp of F determined by the functions f ∈ F of
subexponential growth (i.e. satisfying f(x) = exp(o(x)) as x→∞). Again,
this follows from results in [7], but we do need to give a different proof here
in order to show that all functions in this subfield have a (not necessarily
definable) analytic continuations to S(a, π

2
) for some a ∈ R.

However, there exist definable functions of exponential growth that have
no analytic continuation to S(a, π

2
) for any a, and to deal with these we make

use of the Expansion Theorem of Miller and van den Dries (see [2]). This tells
us that such functions can be well approximated (for large x) by functions
of the form
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N∑
j=1

fj(x) · exp(sjx),

where s1, . . . , sN ∈ R and each fj is a function in Rsubexp, and functions of
this form do have the required continuations.

Acknowledgements: It is a pleasure to thank Carol Wood and her team
of organizers of the MSRI semester in Model Theory, Arithmetic Geometry
and Number Theory which took place from January to May of 2014 and
where much of the work in this paper was carried out. Particular thanks go
to David Marker for so carefully commenting on the earlier drafts.

Thanks also to Salma Kuhlmann for directing me towards her monograph
[7] which contains, amongst many other results, the key characterizations of
the classes of functions (in the real case) that are considered here.

2 Models of T powan

We now work inside an arbitrary proper elementary extension M of Ran,exp.
We always use the symbol µ to denote the infinitesimals of M, i.e. µ := {α ∈
M : for all positive r ∈ R, |α| < r}.

We let C denote the class of subsets of (the domain of) M satisfying the
corresponding versions of 1.2, 1.3, 1.4, and 1.6. Thus M∈ C if and only if

2.1 M is a subfield of M and an R-subalgebra of M;

2.2 for all open neighbourhoods U of 0̄ in Rn and all real analytic g :
U → R, if α1, . . . , αn ∈ µ ∩M, then g(α, . . . , αn) ∈ M, where we continue
to use g to denote its extension to M;

2.3 for all α ∈M with α > 0, and all r ∈ R, we have αr ∈M.

Consider now the structure Rpow
an introduced by Miller in [10]. It is the

expansion of the real field by all restricted analytic functions and all power
functions x 7→ xr (= 0 if x ≤ 0) for r ∈ R. Denote the language of Rpow

an by
Lpowan .

Then Rpow
an is clearly a reduct of Ran,exp and the main results of [10],

namely that T powan (the first order theory of Rpow
an ) has quantifier elimination

and a universal axiomatization in the language Lpowan , imply that anyM∈ C
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is (the domain of) a model of T powan and, as such, is an Lpowan -elementary
substructure of the Lpowan -reduct of M.

With a view to proving 1.9 we now introduce further closure properties
for the structures in C.

Let M ∈ C. We say that an element α of M is M-bounded if |α| < β
for some β ∈ M. We say that M is log-closed if log(α) ∈ M whenever
α ∈ M and α > 0, and that M is exp-closed from below if exp(α) ∈ M
whenever α ∈ M, α > 0 and exp(α) is M-bounded. (Of course, these are
just the corresponding versions of 1.5 and 1.7 for the present situation.)

We denote the set of all M-bounded elements of M by M∗. It is the
convex closure of M in M and a valuation subring of M. We denote its
unique maximal ideal by µ(M∗):

µ(M∗) := {α ∈M∗ : for all positive β ∈M, |α| < β}.

However, unlike the arguments in [7], the only valuation that we shall be
using is the usual one determined by R and its maximal ideal µ=µ(R∗). This
valuation is denoted by ν.

For M,M′ ∈ C with M ⊆ M′, we say that M′ is M-conservative if
every M-bounded element of M′ is M-infinitesimally close to an element
of M. More precisely, for all α ∈ M′ ∩M∗, there exists β ∈ M such that
α− β ∈ µ(M∗).

We now come to the main lemma of this section. It can be extracted
from 6.25-6.28 and 6.32 of [7], but as all the properties of the class C that
we require follow directly from its rather simple statement, we prefer to keep
the paper self-contained and include a proof.

We require a little more notation. For M∈ C and S an arbitrary subset
of M, we writeM〈S〉 for the Lpowan -substructure of M generated overM by S.
SoM〈S〉 is the smallest structure in C (i.e. the intersection of all structures
in C) containing M∪ S. (But if S = {α1, . . . , αn} we write M〈α1, . . . , αn〉
for M〈S〉.)

2.4 Lemma (See [7])
LetM∈ C and suppose thatM is log-closed and exp-closed from below.

Then for any positive α1, . . . , αn ∈M, we have thatM〈exp(α1), . . . , exp(αn)〉
is log-closed and M-conservative.

Proof. Let V be the R-vector subspace of M generated by α1, . . . , αn. We
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may assume (by 2.3 and induction) that for no α ∈ V \ {0} do we have
exp(α) ∈ M. Since M is exp-closed from below it follows easily (using
properties of ordered R-vector spaces) that V has a basis, which we may as
well take to be {α1, . . . , αn}, such that for all positive γ ∈M and all positive
r1, . . . , rn ∈ R

log(γ) < r1α1 < · · · < rnαn. (∗)

It now follows from the valuation inequality for polynomially bounded
o-minimal theories (see e.g. [13]) that ν(exp(α1)), . . . , ν(exp(αn)) generate
(as an R-vector space) the value group of M′ := M〈exp(α1), . . . exp(αn)〉
over that of M.

Hence, if β is any element of M′, there exist α ∈ V , γ ∈ M and ε ∈ µ
such that

β = exp(α) · γ · (1 + ε). (∗∗)

If β > 0, then necessarily γ > 0 and

log(β) = α + log(γ) + log(1 + ε). (∗ ∗ ∗)

Now α ∈ M and log(γ) ∈ M (as M is log-closed). Further, by (**),
we have that ε ∈ M′ and hence log(1 + ε) ∈ M′ by 2.2 (applied to g(x) =
log(1 +x) and U = (−1

2
, 1

2
), say). Thus, by (***), log(β) ∈M′, and we have

shown that M′ is log-closed.

To see thatM′ isM-conservative we setM0 :=M and, for j = 1, . . . , n,
Mj := Mj−1〈exp(αj)〉, so that M′ = Mn. We show, by induction on j,
that Mj is M-conservative. So let j ≥ 1 and suppose that Mj−1 is M-
conservative. (Trivially, M0 is M-conservative.)

Let β ∈Mj be M-bounded. Say B ∈M and |β| < B.

There exists an Lpowan -definable function f :Mj →Mj with parameters in
Mj−1 such that f(exp(αj)) = β. Clearly we may suppose that |f(x)| < B for
all x ∈Mj. NowMj−1 is an Lpowan -elementary substructure ofMj so we may
interpret f in Mj−1, and by properties of polynomially bounded o-minimal
theories it follows that for some positive r ∈ R and some λ ∈Mj−1,

Mj−1 |= ∃y∀x > y(|f(x)− λ| < x−r).
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Now it follows from (*) (and an application of polynomial boundedness)
that exp(αj) > α for all α ∈ Mj−1. Therefore, upon witnessing y in Mj−1

in the above, and then going up to Mj, we obtain

Mj |= |f(exp(αj))− λ| < exp(−rαj).

Since exp(−rαj) is in µ(M∗
j−1) and µ(M∗

j−1) ⊆ µ(M∗), it follows that
|β − λ| ∈ µ(M∗). In particular, |λ| < B + 1, so λ isM-bounded, and hence,
by our inductive hypothesis, there is some γ ∈M such that |λ−γ| ∈ µ(M∗).
So |β − γ| ≤ |β − λ|+ |λ− γ| ∈ µ(M∗), and we are done.

2.5 Corollary
LetM∈ C and suppose thatM is log-closed and exp-closed from below.

Let G be a convex additive subgroup of M with 1 ∈ G, and set E :=
{exp(α) : α ∈ G}. Then M〈E〉 is log-closed, exp-closed from below and
M-conservative.

Proof. Obviously if β ∈ M〈E〉 then β ∈ M〈exp(α1), . . . , exp(αn)〉 for some
n ∈ N and some positive α1, . . . , αn ∈ G. So it follows immediately from 2.4
that M〈E〉 is log-closed and M-conservative. Further, if β > 0 and exp(β)
is M〈E〉-bounded, then we may assume that α1, . . . , αn have been chosen
so that exp(β) is M〈exp(α1), . . . , exp(αn)〉-bounded. We now want to show
that exp(β) ∈M〈E〉.

Since all elements ofM〈exp(α1), . . . , exp(αn)〉 are bounded by B · exp(α)
for some R-linear combination α of α1, . . . , αn, and some positive B ∈ M,
it follows that β, being positive, is itself bounded by log(B) + α, and is
therefore M-bounded. Thus |β − γ| ∈ µ(M∗), for some γ ∈ M (which
we may assume is nonnegative), since M〈E〉 is M-conservative. Now if
log(B) /∈ G then α1, . . . , αn < log(B) (as G is convex), whence E ⊆ M
(becauseM is exp-closed from below) and the result we are proving is trivial.
So we may assume that log(B), and hence log(B) + α, are in G. But clearly
0 ≤ γ < log(B)+α+1, so γ ∈ G. But β = γ+ε for some ε ∈ µ(M∗)∩M〈E〉.
Further, exp(ε) ∈ M〈E〉 by 2.2 (with U = (−1, 1) and g(x) = exp(x)) and
exp(γ) ∈ E ⊆ M〈E〉. So exp(β) = exp(γ) · exp(ε) ∈ M〈E〉, and we have
shown that M〈E〉 is exp-closed from below.
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2.6 Corollary
LetM∈ C and suppose thatM is log-closed and exp-closed from below.

Let M† be the smallest element of C containing M and closed under (full)
exponentiation. ThenM† is log-closed andM-conservative. Further,M† |=
Tan,exp andM† is an elementary substructure of M for the language of Tan,exp.

Proof. The log-closedness and M-conservativity of M† follow by iterating
2.5 (let M0 :=M and Mj+1 :=Mj〈Ej〉 where Ej := {exp(α) : α ∈ Mj}).
The remaining statements are consequences of the quantifier elimination and
universal axiomatization of Tan,exp as found in [3].

Theorem 1.9 now follows easily: just take M = F and M = Rpoly in 2.6.
Then, as discussed in section 1, M† = F .

3 Complex continuation of functions in F :

the definable case

Our aim in this section is to show that a function f ∈ F lies in Rpoly if
and only if it has a definable, complex analytic continuation to a function
f̂ : S(a, ψ) → C for some a, ψ ∈ R with π

2
< ψ < π. (Here, as throughout

this section, definability is with respect to the structure Ran,exp (in the full
language of Tan,exp), and I also remind the reader that S(a, ψ) denotes the
sector {a+ teiθ : t > 0,−ψ < θ < ψ}.)

Firstly, however, we establish some a priori properties that definable,
complex analytic functions F : S(0, ψ) → C possess. (It will be a triviality
to translate such properties to functions with domain S(a, ψ) for arbitrary
a ∈ R.)
3.1 Definition

For 0 < ψ < π, we denote by Hψ the class of all definable, complex
analytic functions with domain the sector S(0, ψ) which take real values on
the positive real axis.

Consider some F ∈ Hψ, where π
2
< ψ < π. Assume that F has no zeros in

S(0, ψ) and that F (x) > 0 for x > 0. Then there exist continuous functions
R : S(0, ψ)→ R, θ : S(0, ψ)→ R, with θ(x) = 0 for positive real x, such that
F (z) = R(z) cos θ(z) + iR(z) sin θ(z) for all z ∈ S(0, ψ). Since R(z) = |F (z)|
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(for z ∈ S(0, ψ)) it easily follows that R is definable. Hence so is cos θ (and
sin θ). We now show that θ itself is definable.

Obviously θ has total variation at most 2π on each connected component
of the definable set C \ {z ∈ S(0, ψ) : cos θ(z) = ±1} (and zero variation on
each connected component of its complement). It follows that θ is bounded
since there are only finitely many such components. Further, if Λ is a con-
nected component of the set C \ {z ∈ S(0, ψ) : cos θ(z) = ±1}, then for all
z ∈ Λ there exists a unique xz ∈ (0, 2π) such that cosxz = cos θ(z). Since
θ is continuous it follows that there is some N ∈ N (depending only on Λ)
such that θ(z) = 2Nπ + xz for all z ∈ Λ. Thus θ � Λ is definable. (The
function z 7→ xz is definable since the restriction of the function cos to any
bounded interval is definable.). Also, since θ � Λ′ is obviously definable for
each connected component Λ′ of the set {z ∈ S(0, ψ) : cos θ(z) = ±1}, it
follows that θ : S(0, ψ)→ R is definable. We can now prove

3.2 Lemma
Let π

2
< ψ < π, F ∈ Hψ and assume that F is nowhere vanishing and

positive on the positive real axis. Then logF ∈ Hψ (where we take the
branch of the logarithm that is real on the positive real axis). Further, logF
has bounded imaginary part.

Proof. We have logF (z) = logR(z) + iθ(z) with R, θ chosen as in the dis-
cussion above.

3.3 Corollary
Let π

2
< ψ′ < ψ < π, F ∈ Hψ, and suppose that F is bounded on

the set {z ∈ S(0, ψ) : |z| ≤ 1}. Then there exists a constant B such that
|F (z)| ≤ B(1 + |z|)B for all z ∈ S(0, ψ′).

Proof. We may assume that F is not identically zero. By o-minimality and
the fact that its set of zeros is discrete, F has only finitely many zeros which,
since F is real on the positive real axis, are symmetrically distributed about
the real axis. Let P be the monic polynomial vanishing precisely on the zeros
of F (and with the correct multiplicities). Then F/P ∈ Hψ (note that P
has real coefficients) and F/P is nowhere vanishing. Further, F/P is also
bounded on the set {z ∈ S(0, ψ) : |z| ≤ 1} and clearly, if we establish the
conclusion of the corollary for the function F/P , then it would follow for F .
So, we may as well assume that F is nowhere vanishing and, by multiplying
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it by −1 if necessary, that F (x) > 0 for all x > 0. Thus, by 3.2, we have that
logF ∈ Hψ and that logF has bounded imaginary part, with bound K say.

Now there exists a positive constant c such that for any z0 ∈ S(0, ψ′), the
closure of the disk ∆z0 := ∆(z0; 2c|z0|) centred at z0 and of radius 2c|z0|, is
contained in the sector S(0, ψ). (For example, c = 1

2
sin(ψ − ψ′) will work.)

It follows, by applying the Borel-Cartheodory theorem (see [14] section 5.5)
to the function logF (z)− logF (z0) (the imaginary part of which is bounded
by 2K on the disk ∆z0), that

| logF (z)− logF (z0)| ≤ 6K

for all z ∈ ∆(z0; c|z0|), from which it follows that

|F (z)| ≤ |F (z0)| · e6K

for all z ∈ ∆(z0; c|z0|). In particular, for any w ∈ S(0, ψ′) with |w| ≤ 1, and
any n ∈ N, we have

|F ((1 + c)n+1 · w)| ≤ |F ((1 + c)n · w)| · e6K (∗)

Now let z ∈ S(0, ψ′) satisfy |z| > 1. Choose n0 ∈ N such that
(1 + c)n0 < |z| ≤ (1 + c)n0+1 and set w0 := z · (1 + c)−(n0+1). Then |w0| ≤ 1
and w0 ∈ S(0, ψ′). Iterating (*) now yields

|F (z)| = |F ((1 + c)n0+1 · w0)| ≤ |F (w0)| · e(n0+1)·6K .

However, n0 < log |z|
log(1+c)

so, choosing B greater than both 6K
log(1+c)

and

e6K · sup{|F (z)| : z ∈ S(0, ψ), |z| ≤ 1} we obtain |F (z)| ≤ B(1 + |z|)B (for
all z ∈ S(0, ψ′)) as required.

3.4 Corollary
Let π

2
< ψ′ < ψ < π, F ∈ Hψ, and assume that F does not vanish

on S(0, ψ). Assume further that both F and 1/F are bounded on the set
{z ∈ S(0, ψ) : |z| ≤ 1}. Suppose that F (x) → α as x → ∞ (for x ∈ R),
where α ∈ R ∪ {±∞}. Then F (z) → α (= ∞ if α = ±∞) as |z| → ∞ for
z ∈ S(0, ψ′).

Proof. Choose ψ′′ such that π
2
< ψ′ < ψ′′ < ψ < π. Let l := {teiψ′′ : t > 0}.

Assume first that F is bounded on l. By o-minimality there exists β ∈ C
such that F (z) → β as |z| → ∞ for z ∈ l. Since F is real on the positive
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real axis we have that F (z) → β̄ as |z| → ∞ for z ∈ l̄ := {te−iψ′′ : t > 0},
where the bar denotes complex conjugation. It now follows from 3.3 and the
Phragmén-Lindelof method (see [14] sections 5.11 and 5.14) that β = β̄ = α
and, indeed, that F (z)→ α as |z| → ∞ for z ∈ S(0, ψ′).

Now if F is not bounded on l, then |F (z)| → ∞ as |z| → ∞ for z ∈ l
(by o-minimality). Since F has no zeros, we have that 1/F ∈ Hψ and
(1/F )(z) → 0 as |z| → ∞ for z ∈ l. Applying the above argument to 1/F
and α = 0, we see that (1/F )(z) → 0 as |z| → ∞ for z ∈ S(0, ψ′). Thus it
must have been the case that α = ±∞, and we have F (z)→∞ as |z| → ∞
for z ∈ S(0, ψ′), as required.

We now show that each function f ∈ Rpoly has a definable, complex
analytic continuation to some right half plane {z ∈ C : Re(z) > a}. It is
clearly sufficient to show that there exist a, ψ ∈ R, with π

2
< ψ < π, and

some F ∈ Hψ such that F (x) = f(a + x) for all positive x ∈ R. For then

the function f̂ : S(a, π
2
) → C given by f̂(z) = F (z − a) is the required

continuation. So let F̃ denote the collection of all such f . That is

F̃ := {f ∈ F : ∃a ∈ R, ψ ∈ (
π

2
, π), F ∈ Hψ,∀x > 0 F (x) = f(a+ x)}.

We must show that F̃ satisfies 1.1 to 1.7 (for G = F̃).

Now 1.1 and 1.2 are clear, although for 1.2 we should remark that if
F1 ∈ Hψ1 , a1 ∈ R and F2 ∈ Hψ2 , a2 ∈ R work for f1, f2 ∈ F̃ , then we may
assume that a1 = a2 and ψ1 = ψ2: just take ψ = min(ψ1, ψ2), and if a1 < a2

change F1(z) to F1(a2 − a1 + z). Then, for example, F1 + F2, a2, ψ work for
f1 + f2.

A similar observation works for 1.3 and 1.5: we may always translate
any (nonzero) F ∈ Hψ so that so that it has no zeros in S(0, ψ), and then
1/F ∈ Hψ and, by 3.2, logF ∈ Hψ.

We now deal with 1.4. Let n ≥ 1 and r > 0 and suppose that g : U → R
is a real analytic function, where U is an open set in Rn with {x̄ ∈ Rn : ||x̄|| ≤
r} ⊆ U . (We use the supnorm, ||x̄|| = ||〈x1, . . . , xn〉|| := max{|x1|, . . . , |xn|}
for real or complex x1, . . . , xn.)

Now choose r0 > 0 with r0 ≤ r such that g extends to a complex analytic
function (which we also denote by g) from the polydisk {z̄ ∈ C : ||z̄|| ≤ r0} to
C. Let f1 . . . , fn ∈ F̃ be such that fj(x)→ 0 as x→∞ for each j = 1, . . . n.
By applying a similar remark to that used in establishing 1.2 above, choose

13



a, ψ ∈ R, with π
2
< ψ < π, and F1, . . . , Fn ∈ Hψ such that Fj(x) = fj(a+ x)

for all x > 0 and j = 1, . . . n. We have to extend the function g(f1, . . . , fn).
We may clearly assume (by induction) that no fj is (eventually) the

zero function. So by increasing a if necessary we may assume also that
the hypotheses of 3.4 are satisfied for each Fj (and with α = 0). Thus by
decreasing ψ slightly we have that each Fj(z) converges to 0 on S(0, ψ) as
|z| → ∞. In particular, there exists R > 0 such that |Fj(z)| < r0 for all
z ∈ S(0, ψ) with |z| > R. Now choose R′ > R so that the disk ∆(0, R) and
the sector S(R′, ψ) have no points in common. Then |Fj(R′+ z)| < r0 for all
z ∈ S(0, ψ) and all j = 1, . . . , n. It follows that g(F1(R′+ z), . . . , Fn(R′+ z))
is a well-defined, complex analytic function of z ∈ S(0, ψ′) and it is clearly
definable (because the real and imaginary parts of g are restricted analytic
functions, and F1, . . . , Fn ∈ Hψ′). Hence it is in Hψ′ . Further,
g(F1(R′ + x), . . . , Fn(R′ + x)) = g(f1(a+R′ + x), . . . , fn(a+R′ + x)) for all
x > 0. This shows that g(f1, . . . , fn) ∈ F̃ , and so F̃ satisfies 1.4.

Finally, 1.7 will follow easily from the following

3.5 Lemma
Let π

2
< ψ < π and suppose that F ∈ Hψ. Assume that |F (x)| ≤ C · log x

for all sufficiently large x ∈ R, where C is some positive constant. Then for
any ψ′ with π

2
< ψ′ < ψ, there exists b ≥ 0 such that the imaginary part of

F is bounded on S(b, ψ′).

Proof. We may assume that F is not constant. Since the derivative of a
definable, complex analytic function is definable (via the usual ε-δ definition),
we have that F ′ ∈ Hψ. Further, it is an easy consequence of the given bound
on F (and o-minimality) that |F ′(x)| ≤ C+1

x
for all sufficiently large x ∈ R.

Now choose a ≥ 0 large enough so that F ′(z) does not vanish for z ∈ S(a, ψ)
and so that both |zF ′(z)| and 1/|zF ′(z)| are bounded for z ∈ S(a, ψ) with
|z− a| ≤ 1. Now the boundedness of xF ′(x) for sufficiently large x ∈ R (and
o-minimality) implies that xF ′(x) converges to a finite limit as x→∞, and
so by reducing ψ slightly, we see from 3.4 that zF ′(z) converges, as |z| → ∞
for z ∈ S(a, ψ), to this same limit. In particular, there exists a constant
K ∈ R such that (possibly after increasing a)

|F ′(z)| ≤ K

|z|
for all z ∈ S(a, ψ). (∗)

Now consider a point z0 = a+Reiθ0 ∈ S(a, ψ) where R > 0 and −ψ < θ0 < ψ.
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Let Γ denote the directed arc of the circle centred at a and radius R joining
the point a+R to z0. Then

|F (z0)− F (a+R)| = |
∫

Γ

F ′(z)dz|

= |
∫ θ0

0

F ′(a+Reiθ) · i ·R · eiθdθ|

≤ R ·
∫ θ0

0

|F ′(a+Reiθ)|dθ

≤ RK ·
∫ θ0

0

dθ

|a+Reiθ|
by (*)

≤ RK|θ0|
R− a

for R > a

≤ 2Kπ for R > 2a.

However, since F (a+ R) is real, the imaginary part of F (z0) is bounded
by |F (z0)−F (a+R)|, and hence by 2Kπ, for all z ∈ S(b, ψ), provided that b
is chosen large enough so that b > a and the sector S(b, ψ) does not intersect
the disk ∆(a, 2a).

Now to show that 1.7 holds for F̃ , let f, g ∈ F̃ with 0 < f and exp(f) < g.
We choose ψ with π

2
< ψ < π, a ∈ R and F,G ∈ Hψ so that f(a+x) = F (x)

and g(a + x) = G(x) for all x > 0. We may also assume that a, F,G have
been chosen so that G(z) is bounded on {z ∈ S(a, ψ) : |z| ≤ 1}. Then by 3.3
(after reducing ψ slightly if necessary) we may assume that |G| is bounded
by a polynomial in |z| on S(a, ψ) and hence that 0 < f(x) < C · log x for
all sufficiently large x ∈ R and some constant C > 0. By reducing ψ again
(though, of course, still maintaining that π

2
< ψ) it follows from 3.5 that for

some b > 0, the imaginary part of F (z) is bounded for z ∈ S(b, ψ).
Thus F (x+iy) = σ(x, y)+iτ(x, y), where σ, τ are definable real functions

of x, y for x + iy ∈ S(b, ψ) and where τ is bounded. Now sin � [−X,X] and
cos � [−X,X] are restricted analytic functions (for any fixed X > 0) from
which it follows that cos τ(x, y) and sin τ(x, y) are definable functions of x, y
for x + iy ∈ S(b, ψ), and hence that exp(F (z)) is a definable function of
z for z ∈ S(b, ψ). But then exp(F (z + b)) is a definable function of z for
z ∈ S(0, ψ), and since it is equal to exp(f(a+ b+ z)) for z real and positive,
it follows that exp(f) ∈ F̃ , as required.
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3.6 Theorem
Rpoly = F̃ and all functions in Fpoly do indeed have polynomial growth

(cf 1.10).

Proof. We have just shown that F̃ satisfies all the closure conditions 1.1-
1.7, so Rpoly ⊆ F̃ since Rpoly is the smallest subcollection of F satisfying
these conditions. Further, it follows from 3.3 that every function in F̃ is
polynomially bounded, i.e. it lies in Fpoly. So Rpoly ⊆ F̃ ⊆ Fpoly.

It remains to show that F̃ ⊆ Rpoly, so let f ∈ F̃ . Then f is certainly
Rpoly-bounded, since it is polynomially bounded. So, by 1.9, there is some
h ∈ Rpoly such that h− f ∈ mpoly. Then f and h are both in F̃ , so if f 6= h
then (f − h)−1 would be too (by 1.2 and 1.3 for F̃). But this is impossible
since (f − h)−1 /∈ Fpoly. So f = h and f ∈ Rpoly as required.

Clearly 1.11 now follows from 3.6.

4 Complex continuation of functions in F :

the non-definable case.

We now want to find complex continuations (to a right half plane) of func-
tions f ∈ F which have greater than polynomial growth. We know from
the results of the last section that such continuations cannot be definable.
We first investigate the subexponential case. To this end, let L denote the
subcollection of Rpoly consisting of the functions of sublinear growth:

L := {g ∈ Rpoly :
g(x)

x
→ 0 as x→∞},

and define

Fsubexp := {f ∈ F : for some g ∈ L, |f | < exp(g)}.

Now, working within the Lpowan -structure F , let

Rsubexp := Rpoly〈{exp(g) : g ∈ L}〉.

We have the following analogue of 1.9.

4.1 Theorem (F-V. Kuhlmann and S. Kuhlmann, see [7])
The structure Rsubexp is log-closed and exp-closed from below (in F).

Further, F is Rsubexp-conservative. Thus Rsubexp is a copy of the residue field
of the valuation ring Fsubexp.
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Proof. This follows immediately from 2.5 with M = F , M = Rpoly and
G = L.

We shall prove the following

4.2 Theorem
Let f ∈ Rsubexp. Then there exists a ∈ R such that f has a complex

analytic continuation to S(a, π
2
). Further, denoting this continuation by f̂ ,

we have that if f(x) → 0 as x → ∞, then f̂(z) → 0 as |z| → ∞ for
z ∈ S(a, π

2
).

Our proof relies heavily on the characterization of the Lpowan -definable,
unary functions as given by Miller in [10]. In fact we need a version that is
uniform in parameters and this can be found in [2]. We apply the result-the
Expansion Theorem from section 4 of [2]- in the following form.

4.3 Proposition (van den Dries, Miller [2])
Let M1, M2 be models of the theory T powan with M1 ⊆M2. Let t ∈M2

be greater than every element of M1 and let ω ∈M1〈t〉. Then there exist

(i) a real analytic function F : (−1 − ε, 1 + ε)m × (−ε, ε)d → R for some
positive ε ∈ R and some m, d ∈ N (and we use the same symbol, F , to
denote its interpretation in M1 and in M2),

(ii) real numbers r0, . . . , rd, with r1, . . . , rd positive, and

(iii) elements α, β1, . . . , βm, γ of M1 with α > 0,−1 ≤ β1, . . . , βm ≤ 1, and
γ ≥ 1 such that F (β1, . . . , βm, 0, . . . , 0) 6= 0 and

ω = α · tr0 · F (β1, . . . , βm, (
γ

t
)r1 , . . . , (

γ

t
)rd).

(I have applied the van den Dries-Miller Expansion Theorem (at +∞
rather than at 0+) in the following way. First of all, choose an Lpowan -definable
(without parameters) (p+ 1)-ary function G and α1, . . . , αp ∈M1 such that
G(α1, . . . , αp, t) = ω. Working in Rpow

an , apply the Expansion Theorem with
f = G and A = Rp to obtain a partition, A1, . . . , Al say, of Rp such that
G has a uniform expansion on each Ai. (We may ignore the “eventually 0”
case.) Now interpret the Ai’s inM1 and choose the i0 ∈ {1, . . . , l} such that
〈α1, . . . , αp〉 ∈ Ai0 . Now, back in Rpow

an , choose the data as given in (1), (2)
and (3) of the definition of a function having a uniform expansion on Ai0 (the
first definition of section 4 of [2]). Then interpreting the resulting definable

17



maps, a, b1, . . . , bm, c in M2, I have set α := a(α1, . . . αp), γ := c(α1, . . . αp)
and βj := bj(α1, . . . αp) for j = 1, . . .m.)

4.4 Remark
We may simplify the representation of ω in 4.3(iii) as follows. For each

j = 1, . . . ,m, let β0
j be the standard part of βj, i.e. β0

j is the unique real
numbers satisfying (βj − β0

j ) ∈ µ. Then by substituting Xj + β0
j for the j’th

variable Xj of F and replacing βj by βj −β0
j , we may assume (provided that

we restrict the domain of F to the box (−ε, ε)m+d) that β1, . . . , βm ∈ µ. Note
also that (γ

t
)r1 , . . . , (γ

t
)rd ∈ µ.

Before proceeding with the proof of 4.2 we require the following version
of the Phragmén-Lindelöf method.

4.5 Lemma
Let g ∈ L, g > 0, and let ĝ : S(0, ψ) → C be the definable, complex

analytic continuation of a suitable translate of g, as given by 3.6 (for some
π
2
< ψ < π). Suppose that g(x)→∞ as x→∞ (but recall that g(x)/x→ 0

as x→∞). Then Re(ĝ(z))→∞ as |z| → ∞ for z ∈ S(0, π
2
).

Proof. If the conclusion were false, then for some C ∈ R we would have
Re(ĝ(z)) ≤ C for an unbounded set of z ∈ S(0, π

2
). Since Re(ĝ) is defin-

able and Re(ĝ(z)) = Re(ĝ(z̄)) for all z ∈ S(0, π
2
) (the bar denotes complex

conjugation), it follows that there exists a definable function η : [0,∞) →
S(0, π

2
) : t 7→ η1(t) + iη2(t), with η2 positive, such that Re(ĝ(η(t))) ≤ C

and Re(ĝ(η(t))) ≤ C for all t > 0, and, further, max{η1(t), η2(t)} → ∞ as
t→∞. By o-minimality we may assume η1 and η2 are both continuous and
monotonic (or constant).

Now consider the region Σ ⊆ S(0, π
2
) bounded by the two curves {η(t) :

t > 0}, {η(t) : t > 0} and by the vertical line {η1(0) + iy : −η2(0) ≤ y ≤
η2(0)} and which contains the interval (η1(0),∞) of the real axis. Let G(z) :=
exp(ĝ(z)). Then G(z) is bounded for z on the boundary of Σ. Further, we
may clearly suppose (because g, and therefore (exercise) any translate of g,
lies in L) that, for sufficiently large b > 0, the function F : S(0, ψ)→ C given
by F (z) := ĝ(z + b)/(z + b) satisfies the hypotheses of of 3.4 with α = 0. It
follows that F (z)→ 0 as |z| → ∞ for z ∈ S(0, ψ) (possibly after reducing ψ
slightly). In particular, Re(ĝ(z)) = o(|z|), and hence G(z) = exp(o(|z|)), as
|z| → ∞ for z ∈ S(0, π

2
). We now apply the Phragmén-Lindelöf method in a

more subtle form than was used in the proof of 3.4. For this see section 5.6.2
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of [14] and the comments immediately preceeding this section. The method
tells us that G must in fact be bounded (by C) throughout Σ. In particular,
G(x) is bounded for x ∈ (η1(0),∞). However, this contradicts the facts that
for some a ∈ R we have that G(x) = exp(g(x + a)) for all x > 0 and, by
hypothesis, g(x)→∞ as x→∞.

Proof of 4.2 Let ω ∈ Rsubexp. Then there exists k ∈ N such that ω ∈
Rpoly〈exp(g1), . . . , exp(gk)〉 for some g1, . . . , gk ∈ L. Just as in the proof of
2.4, we may assume that for all positive s0, . . . , sk ∈ R we have

s0 log(ι) < s1g1 < · · · < skgk (∗)

(Recall that every element of Rpoly is bounded by some (finite) power of
the identity function ι : R → R : x 7→ x. I will also use, without further
mention, the immediate consequence of (*) and the polynomial boundedness
of the theory T powan , that for any subset Q ⊆ {1, . . . , k}, the value group of
Rpoly〈{exp(gq) : q ∈ Q}〉 is generated over ν(Rpoly), as an R-vector space, by
{ν(exp(gq)) : q ∈ Q}.)

We may assume, by induction, that the required result holds for all h ∈
Rpoly〈exp(g1), . . . , exp(gk−1〉. That is, for some a > 0, the function h has a

complex analytic continuation, ĥ say, to S(a, π
2
), and if h(x)→ 0 as x→∞,

then ĥ(z)→ 0 as |z| → ∞ for z ∈ S(a, π
2
). (The case k = 0 is covered by the

results of section 3.)
We now apply 4.3 and 4.4 with M1 = Rpoly〈exp(g1), . . . , exp(gk−1)〉,

M2 = Rpoly〈exp(g1), . . . , exp(gk)〉 and t = exp(gk).
Thus, for some α, γ ∈ M1 with γ ≥ 1, some β1, . . . , βm ∈ M1 ∩ µ, some

positive r1, . . . , rd ∈ R and some r0 ∈ R we have that

ω = α · exp(r0gk) · F (β1, . . . , βm, (γ exp(−gk))r1 , . . . , (γ exp(−gk))rd) (∗∗)

where F is (the extension toM2 of) a real analytic function mapping (−ε, ε)m+d

to R for some positive ε ∈ R. We also have that F (β1, . . . , βm, 0, . . . , 0) is
a nonzero element of M1. Further, we may suppose that F extends to a
complex analytic function on {z̄ ∈ Cm+d : ||z̄|| ≤ ε}.

Now by our inductive hypothesis, we know that α, γ, β1, . . . , βm, and
gk all have the required complex analytic extensions, α̂, γ̂, β̂1, . . . , β̂m, ĝk :
S(a, π

2
) → C, for sufficiently large a > 0. (Of course, the inductive hypoth-

esis is not required here for gk since it is in Rpoly).) Further, since each βj
is in µ, i.e. βj(x)→ 0 as x→∞, our inductive hypothesis also tells us that
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βj(z)→ 0 as |z| → ∞ for z ∈ S(a, π
2
). So to obtain the required continuation

of ω it only remains to show that γ̂(z) exp(−ĝk(z))→ 0 as |z| → ∞, for then
we may increase a so that γ̂(z) 6= 0 and
||〈β̂1(z), . . . , β̂m(z), (γ̂(z) exp(−ĝk(z)))r1 , . . . , (γ̂(z) exp(−ĝk(z)))rd〉|| < ε for
all z ∈ S(a, π

2
), and then (**) naturally provides the required continuation.

Let us first observe that γ(x) exp(−gk(x)) → 0 as x → ∞ (by (*)
and the parenthetical comments immediately following (*)). Thus gk(x) −
log(γ(x))→∞ as x→∞. We shall be done if we can show that Re(ĝk(z)−
log(γ̂(z)) → ∞ as |z| → ∞ (for z ∈ S(a, π

2
)). Unfortunately, we cannot

apply 4.5 directly because the function gk − log(γ) may not lie in Rpoly, and
hence not in L. However, M1 is log-closed and Rpoly-conservative (by 2.4
with M = F and M = Rpoly). Hence log(γ) ∈M1 and since

0 ≤ log(γ) < gk ∈ L ⊆ Rpoly (∗ ∗ ∗)

we also have that log(γ) is an Rpoly-bounded element ofM1. So there exists
a (unique) element, δ say, of Rpoly such that δ − log(γ) ∈ mpoly. In fact, we
only require from this that δ(x)− log(γ(x))→ 0 as x→∞, that δ ∈ L (using
(***)) and, upon setting g := gk − δ, that g ∈ L and g(x) → ∞ as x → ∞.
So now we may apply 4.5 (after suitably translating g so that it is defined
on S(0, π

2
)) to conclude that Re(ĝ(z))→∞ as |z| → ∞ for z ∈ S(a, π

2
).

We now invoke the principle of analytic continuation. This implies that
the operation f 7→ f̂ , of extending the functions in M1 analytically to
S(a, π

2
), commutes with the R-algebra operations, with log and with exp

(where defined). Thus, for example, we have that ĝ = ĝk − δ̂ and ĥ =
δ̂ − log(γ̂), where h := δ − log(γ). So, Re(ĝk(z) − δ̂(z)) → ∞ and, by a
further use of the inductive hypothesis, δ̂(z)− log(γ̂(z))→ 0 as |z| → ∞, for
z ∈ S(a, π

2
). Clearly these facts imply that Re(ĝk(z) − log(γ̂(z))) → ∞ as

|z| → ∞, for z ∈ S(a, π
2
), which completes the first half of the proof. Notice

that the argument shows that for any η ∈M1 and any positive r ∈ R

η̂(z) exp(−rĝk(z))→ 0 as |z| → ∞ for z ∈ S(a,
π

2
) (†).

For the second half of the proof, we keep the same notation and now
assume that ω(x) → 0 as x → ∞ (i.e. ω ∈ µ), and we must show that
ω̂(z)→ 0 as |z| → ∞ for z ∈ S(a, π

2
).

By Schwarz’s Lemma (see section 5.2 of [14]) and induction on d, there
exist a positive K ∈ R such that for all 〈w1, . . . , wm, z1, . . . , zd〉 ∈ (−ε, ε)m+d

|F (w1, . . . , wm, z1, . . . , zd)−F (w1, . . . , wm, 0, . . . , 0)| ≤ K·(|z1|+· · ·+|zd|) (††)
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Applying this (for real arguments) in the structure M2, we see immediately
from (∗) and the fact that F (β1, . . . , βm, 0, . . . , 0) is a nonzero element ofM1,
that r0 ≤ 0.

I do the harder case that r0 = 0, after which the reader will easily be able
to complete the details of the case that r0 < 0.

Thus, if r0 = 0 then (††) and (∗) imply that ν(ω) = ν(α · β), where
β := F (β1, . . . , βm, 0, . . . , 0). (Recall that ν denotes the usual valuation of
F .) So α · β ∈ µ. But then, by our inductive hypothesis, α̂(z) · β̂(z) → 0
as |z| → 0 for z ∈ S(a, π

2
). Now by (∗∗) and (††) we obtain that for all

z ∈ S(a, π
2
), |ω̂(z)| is bounded by

|α̂(z)β̂(z)|+K|α̂(z)|(|(γ̂(z) exp(−ĝk(z)))r1|+ . . .+ |(γ̂(z) exp(−ĝk(z)))rd |).

We have already seen that the first main summand here converges to 0 as
|z| → ∞ (for z ∈ S(a, π

2
)). That the second one does too follows immediately

from (†). Thus ω̂(z)→ 0 as |z| → ∞ (for z ∈ S(a, π
2
)) as required.

This completes the proof of 4.2.

We now take our final step up the F -hierarchy, namely to the functions
of exponential growth:

4.6 Definition
(i) Fexp := {f ∈ F : for some c ∈ R, |f | ≤ exp(c · ι)}.
(ii) Rexp := Rsubexp〈exp(ι)〉.
Clearly Rexp ⊆ Fexp and Fexp is the convex closure of Rexp in F . Further,

we have the following
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4.7 Theorem (F-V. Kuhlmann and S. Kuhlmann, see [7])
Rexp is log-closed, exp-closed from below and F is Rexp-conservative.

Thus Rexp is (isomorphic to) the residue field of the valuation ring Fexp. In
particular, for all f ∈ Fexp and all positive R ∈ R, there exist g ∈ Rexp and
B ∈ R such that |f(x)− g(x)| < exp(−Rx) for all x > B.

Proof. Let G := {f ∈ Rpoly : for some c ∈ R, |f | < c · ι}. Then by 2.5 (with
M = F and M = Rpoly) we have that Rpoly〈{exp(f) : f ∈ G}〉 is log-closed
and exp-closed from below. Further, every element f of G may clearly be
written (uniquely) in the form f = g + rι where r ∈ R and g ∈ L (cf.
the first paragraph of section 4), and it follows immediately from this that
Rpoly〈{exp(f) : f ∈ G}〉 = Rsubexp〈exp(ι)〉, and hence that Rexp is log-closed
and exp-closed from below.

So we may now apply 2.6 with M = Rexp (and M = F). Since (as
previously observed) M† = F , it follows that F is Rexp-conservative.

The following result will be needed in our final section.

4.8 Corollary Let f ∈ Fexp. Then for any positive R ∈ R, there exist
N ∈ N, s1, . . . , sN ∈ R, f1, . . . , fN ∈ Rsubexp and B ∈ R such that for all
x > B,

|f(x)−
N∑
j=1

fj(x) · exp(sjx)| < exp(−Rx).

Proof. By 4.7 we may assume that f ∈ Rexp. We apply 4.3 and 4.4 with
M1 = Rsubexp, M2 = F and t = exp(ι), so that f ∈M1〈t〉. Thus we obtain
r0, . . . , rd ∈ R, with r1, . . . , rd positive, elements α, β1, . . . , βm, γ ∈ M1 with
α > 0, γ ≥ 1, and β1, . . . , βm ∈ µ such that (in M2)

f = α · tr0 · F (β1, . . . , βm, (
γ

t
)r1 , . . . , (

γ

t
)rd) (∗)

where F is the interpretation in M2 of some real analytic function (also
denoted) F : (−ε, ε)m+d → R, for some ε ∈ R with 0 < ε < 1.

Now let a positive R ∈ R be given and choose p ∈ N so that
p · min{r1, . . . , rd} − r0 > R. Let a ∈ (− ε

2
, ε

2
)m. Then by applying Taylor’s

theorem around 0 ∈ Rd (with a suitable form of the remainder), we have
that for all y = 〈y1, . . . , yd〉 ∈ (− ε

2
, ε

2
)d

|F (a, y)−
∑
|λ|≤p

Fλ(a, 0)

λ!
yλ| ≤ C ·max{

d∏
l=1

|yl|λl : |λ| = p+ 1} (∗∗)
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where C is some positive constant (depending only on F and p). (I have used
the usual multi-index notation for λ = 〈λ1, . . . , λd〉 ∈ N and the derivatives
Fλ of F are taken with respect to the last d variables. Also, 00 is taken to
be 1.)

We now apply (**) inM2 with a = 〈β1, . . . , βm〉 and y = 〈(γ
t
)r1 , . . . , (γ

t
)rd〉

(which are both tuples of infinitesimals). After multiplying (**) by α · tr0
(which is positive) and using (*) we obtain

|f −
∑
|λ|≤p

fλ · tsλ | ≤ A · tsλ′ (∗ ∗ ∗)

where, for λ ∈ Nd,

sλ := r0 − (r1λ1 + · · ·+ rdλd) ∈ R

and if |λ| ≤ p,

fλ := α · Fλ(β1, . . . , βm, 0)

λ!
∈M1.

Further,
A := α · C · γr0−sλ′ ∈M1

where λ′ is chosen so that |λ′| = p + 1 and (γ
t
)r0−sλ′ ≥ (γ

t
)r0−sλ for each λ

with |λ| = p+ 1.
Now sλ′ ≤ r0 − (p + 1) min{r1, . . . , rd} < −R − rq for some q = 1, . . . , d,

by the choice of p. But A · t−rq < 1 (since A ∈ M1) so we see from (***)
that

|f −
∑
|λ|≤p

fλ · tsλ| ≤ t−R

which, upon noting the definition of equality and inequality in M2 (= F)
(!), clearly implies the required result.

As we have already suggested, we cannot replace Rsubexp by Rexp in 4.2.
For example let g(x) = exp(

√
x− x) for x > 3. Then g ∈ Rexp and g(x)→ 0

as x→∞, but the analytic continuation ĝ of g to S(a, π
2
) (for any a ≥ 3) is

given by ĝ(z) = exp(
√
z−z) (where the square root is taken to be positive on

the positive real axis), and |ĝ(a+ 1 + it)| → ∞ as t→∞. So it is certainly
not the case that ĝ(z)→ 0 as |z| → ∞ for z ∈ S(a, ψ), and hence the second
part of 4.2 fails.

23



It is now easy to produce an example for which the first part of 4.2 fails:
just let F : ∆(0; 1)→ C be any analytic function on the unit disk in C having
S1 := {z ∈ C : |z| = 1} as a natural boundary. Then F ◦ g ∈ Rexp (note
that |g(x)| < 1

2
for x > 3) but any analytic continuation of F ◦ g to a sector

S(a, π
2
) would result in a continuation of F across S1.

However, we do have the following result. I only sketch the proof since it
will not be needed (and, indeed, is not strong enough) for our diophantine
application.

4.2 Theorem
Let f ∈ Rexp and let ψ ∈ R satisfy 0 < ψ < π

2
. Then there exists

a ∈ R such that f has a complex analytic continuation to S(a, ψ). Further,
denoting this continuation by f̂ , we have that if f(x) → 0 as x → ∞, then
f̂(z)→ 0 as |z| → ∞ for z ∈ S(a, ψ).

Proof. With f , ψ as in the hypotheses, let r = 2ψ
π

, ρ0(x) = xr and ρ1(x) = x
1
r

for x > 0. Then 0 < r < 1 and one easily checks that f ◦ ρ0 ∈ Rsubexp. So
by 4.2 there exists an analytic continuation, H : S(a, π

2
) → C say, of f ◦ ρ0

(for some a > 0). Now the analytic continuation ρ̂1 of ρ1 to S(a, ψ) takes
values in S(a, π

2
), and since H ◦ ρ1(x) = f(x) for all x > 0, the function

H ◦ ρ̂1 : S(a, ψ)→ C is the required continuation.
I leave the proof of the second part of the theorem as an exercise.

5 Diophantine questions

In this section we consider the problem of characterizing those functions in
F that take integral values for all sufficiently large integral arguments.

Let f ∈ F be such a function. Say f(a) ∈ Z for all a ≥ B. (The letter a,
as well as n and j, will always range over N from now on.) Following Pólya
([12]), we consider the nth-difference function ∆nf defined for all n and all
a ≥ B by

∆nf(a) :=
n∑
j=0

(−1)n−j
n!

j!(n− j)!
f(a+ j) (∗)

(One easily checks that ∆n is the nth iterate of the difference operator ∆
defined by ∆f(a) := f(a+ 1)− f(a).)
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One expects that ∆f grows more slowly than f (e.g. if f is a polynomial
then ∆f is a polynomial of one degree lower) and the idea is to use additional
analytic information about f in order to show that for fixed a ≥ B, ∆nf(a)→
0 as n → ∞. Since, obviously, ∆nf(a) is integer valued as a function of n,
it follows that it must be 0 for sufficiently large n. But this easily implies,
as Pólya observed, that f is a polynomial (on N ∩ (B,∞) and hence, in our
o-minimal situation, on (B,∞).).

Notice, however, that the function f(x) = 2x is a fixed point for the
difference operator and so provides a natural limitation of the method. I
shall prove the following

5.1 Theorem
Let f ∈ F and assume that f(n) ∈ Z for all sufficiently large n. Suppose

that r is a real number satisfying 0 < r < 1 and that |f(x)| ≤ 2rx for all
sufficiently large x. Then there exists a polynomial P such that f(x) = P (x)
for all sufficiently large x.

We will use 4.8, but a difficulty arises: the fact that two functions, f
and g say, have the property that |f(x)− g(x)| is small for large x does not
imply that |∆nf(a) − ∆ng(a)| is small for large n if a is fixed. However, it
will be small if a and n are of the same order of magnitude. So we require a
modification of Pólya’s observation above. The following will suffice.

5.2 Lemma
Let f : N → R be any function and let K be a positive integer. Assume

that for all sufficiently large a, we have that ∆nf(a) = 0 for all n satisfying
Ka < n ≤ K(a + 1) + 1. Then there exists a polynomial P such that
f(x) = P (x) for all sufficiently large x ∈ N.

Proof. Choose B ∈ N so that ∆nf(a) = 0 for all a ≥ B and all n with
Ka < n ≤ K(a+ 1) + 1.

Now fix an arbitrary a with a ≥ B. Let Pa be the polynomial (over R)
of degree at most Ka such that f(a + x) = Pa(x) for x = 0, . . . , Ka. Then
it follows from (*) that ∆nf(a) = ∆nPa(0) for n = 0, . . . , Ka. However,
since, as remarked above, the difference operator ∆ reduces the degree of
polynomials, it follows that ∆Pa(0) = 0 for all n > Ka, so in fact we have
that ∆nf(a) = ∆nPa(0) for n = 0, . . . , K(a + 1) + 1. So using (*) again
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together with induction on n we see that

f(a+ n) = Pa(n) for n = 0, . . . , K(a+ 1) + 1 (†)a
In particular, (†)a implies that f(a+n+1) = Pa(n+1) for n = 0, . . . , K(a+1),
whereas (†)a+1 implies that f(a+1+n) = Pa+1(n) for n = 0, . . . , K(a+2)+1.
Hence Pa(n+ 1)− Pa+1(n) = 0 for n = 0, . . . , K(a+ 1). However,
Pa(x + 1) − Pa+1(x) is a polynomial in x of degree at most K(a + 1), so
it must be identically zero. Since this is true for all a ≥ B it follows by
induction that Pa(x) = PB(x + a − B) for all x ∈ R and all a ≥ B. But
if we now apply (†)a for an abitrary integer a ≥ B and n = 0, we see
that f(a) = Pa(0) = PB(a − B), which completes the proof upon setting
P (x) := PB(x−B).

We require two further lemmas.

5.3 Lemma
Let f ∈ Rsubexp. Then for any ε > 0, there exists a positive integer a such

that f has a complex analytic continuation f̂ : S(a, π
2
) → C that satisfies

|f̂(z)| < 2ε|z| for all z ∈ S(a, π
2
).

Proof. We may assume that f(x) > 0 for all sufficiently large x.

Let φ(x) := log f(x)
x

.
Since f ∈ Rsubexp, we have that φ ∈ Rsubexp by 4.1 and hence, by 4.2, there

exist complex analytic continuations f̂ , φ̂ : S(a, π
2
)→ C for some sufficiently

large a. Further, since φ(x) → 0 as x → ∞ (by definition of Fsubexp, which

containsRsubexp) it follows from 4.2 that φ̂(z)→ 0 as |z| → ∞ for z ∈ S(a, π
2
).

Let ε > 0 be given and increase a so that |φ̂(z)| < ε
2

for all z ∈ S(a, π
2
).

Now, by analytic continuation, φ̂(z) = log f̂(z)
z

for all z ∈ S(a, π
2
) and

hence, for each such z we have

log |f̂(z)| = Re(log f̂(z)) ≤ | log f̂(z)| = |zφ̂(z)| < ε

2
|z|,

and hence that |f̂(z)| < exp( ε
2
|z|) < 2ε|z|, as required.

5.4 Lemma
Let f ∈ Rsubexp, r ∈ R with r < 1, and set g(x) := f(x) · 2rx. Let K be

a positive integer satisfying K > (1 − 1
21−r

)−1 + 2. Then for all sufficiently
large a and all n satisfying Ka < n ≤ K(a+ 1) + 1 we have |∆ng(a)| < 1

a
.
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Proof. Let f , r be as in the hypotheses and set ε = min{1−r
2
, 1

2
log2(1 + 1

4K
)}

so that 0 < ε < 1
2
. Choose N0 ∈ N large enough so that the conclusion of 5.3

holds for all a ≥ N0−3. Now fix a > N0+2 and n withKa < n ≤ K(a+1)+1.
Following Pólya’s method ([12]) we use the following formula, which is

easily derived from (*) using the residue theorem:

∆ng(a) =
1

2πi

∫
Γ

n! · 2r(z+N0) · f̂(z +N0) dz

(z − (a−N0))(z − (a−N0 + 1)) · · · (z − (a−N0 + n))
(∗∗)

where Γ is any simple closed contour in C (orientated in the anticlockwise
direction) surrounding the points a−N0, a−N0 + 1, . . . , a−N0 +n and such
that Re(z) ≥ −2 for all z on Γ.

We take Γ to be the contour Cn from Lemma 3.2 of Langley’s paper
[8] (with s = 2, µ = 0). That is, Γ consists of the arc Ωn of the circle
{z ∈ C : |z| = 2n} from the point −2 − i

√
4n2 − 1 to the point −2 +

i
√

4n2 − 1 (traversed in the anticlockwise direction), followed by the straight
line segment Tn from −2 + i

√
4n2 − 1 down to −2− i

√
4n2 − 1. (Note that

0 ≤ a − N0 < a − N0 + 1 < · · · < a − N0 + n < 2n, and hence these points
do lie within Cn.)

We complete the proof by showing that the integral is bounded in modulus
by 1

a
if a is sufficiently large. We note here that K ≥ 2 and so n ≥ 2a.

Now, for z on Ωn we have, for each j = 0, . . . n, |z − (a − N0 + j)| ≥
2n− a+N0 − j ≥ (2n− j)(1− a

n
) ≥ (2n− j)(1− 1

K
) and hence

|
n∏
j=0

(z − (a−N0 + j)| ≥ (1− 1

K
)n+1 ·

n∏
j=0

(2n− j).

But
∏n

j=0(2n − j) ≥ n! · 22n−1 for n ≥ 2 and so the integrand Iz in (**)
satisfies (for z on Ωn)

|Iz| ≤
2rN0 · |2rz| · |f̂(z +N0)|

22n−1 · (1− 1
K

)n+1
.

However, assuming for the moment that r ≥ 0, we have that |2rz| ≤ 2r|z| =
22rn. Further, taking into account the conclusion of 5.3, we see that
|f̂(z +N0)| ≤ 2ε|z+N0| ≤ 2εN0 · 22εn.

So, letting A and s denote the constants 2(r+ε)N0+1

(1− 1
K

)
and 22(r+ε)

4·(1− 1
K

)
respectively,

we obtain the bound |Iz| ≤ A · sn.
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Now ε ≤ 1−r
2

and K > (1 − 1
21−r

)−1 which easily imply that 0 < s < 1.
Further, since the length of the contour Ωn is 2πn, we obtain

| 1

2πi

∫
Ωn

Izdz| ≤ A · n · sn ≤ 1

n
≤ 1

2a

for sufficiently large a. Recall that this is under the assumption that r ≥ 0.
However, if r < 0 then the term |2rz| is bounded everywhere on Cn by the
constant 22|r| and the same argument succeeds even more readily.

It remains to show that | 1
2πi

∫
Tn
Izdz| < 1

2a
for sufficiently large a.

For this we observe that for z on Tn and j = 1, . . . , n, we have that
|z − (a−N0 + j)| ≥ | − 2− (a−N0 + j)| = a+ j + 2−N0 ≥ j(1 + a−N0

j
) ≥

j(1 + a
n
− N0

n
).

However, from the upper bound for n in the hypotheses of the lemma it
clearly follows that a

n
≥ 1

2K
for sufficiently large a, and hence that

|z − (a−N0 + j)| ≥ j(1 + 1
3K

) for sufficiently large a. Since also
|z− (a−N0 + j)| ≥ 1 for j = 0, we arrive at the lower bound of n! · (1 + 1

3K
)n

for the modulus of the denominator of the integrand Iz (for z on Tn).

As for the numerator of Iz, we note that |2r(z+N0)| ≤ c and |f̂(z +N0)| ≤
c22εn (for z on Tn) for some constant c. Since ε ≤ 1

2
log2(1 + 1

4K
) we obtain

the upper bound c2 · n! · (1 + 1
4K

)n for the modulus of the numerator of Iz
(for z on Tn). Letting σ := (1 + 1

4K
)(1 + 1

3K
)−1, so that 0 < σ < 1, we see

that, for some constant c′,

| 1

2πi

∫
Tn

Izdz| ≤ c′ · n · σn < 1

n
≤ 1

2a

for sufficiently large a, as required.

We can now complete the proof of 5.1 as follows.

Let f ∈ F and r be as in the hypotheses. Let K = [(1− 1
21−r

)−1 + 3] and
apply 4.8 with R = 2K. With the notation of 4.8, let

H(x) := f(x)−
N∑
j=0

fj(x) · exp(sjx)
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so that for sufficiently large x, say for x ≥ B, we have that |H(x)| <
exp(−2Kx).

Since ∆n is a linear operator we have, for any positive integers a, n,

∆nf(a) = ∆nH(a) +
N∑
j=0

∆ngj(a) (†)

where gj(x) := fj(x) · exp(sjx) for j = 1, . . . , n.
We want to show that ∆nf(a) = 0 for sufficiently large a and for all n

satisfying a < n ≤ K(a+ 1) + 1, for then 5.1 follows from 5.2.
Since ∆nf(a) ∈ Z for all a and n, it is sufficient to show that |∆nf(a)| < 1

for a, n in the stated range.
Assume that B + 2 < a < n ≤ K(a + 1) + 1. Then the first term in (†)

may be estimated directly from the formula (*):

|∆nH(a))| ≤
n∑
j=0

|H(a+ j)| · n!

j!(n− j)!

≤
n∑
j=0

exp(−2K(a+ j)) · n!

j!(n− j)!

≤ exp(−2Ka) ·
n∑
j=0

n!

j!(n− j)!

= exp(−2Ka) · 2n

≤ exp(−2Ka) · 2K(a+1)+1

<
1

2
since a,K ≥ 2.

In view of (†), it only remains to show that |
∑N

j=0 ∆ngj(a)| < 1
2
.

Let tj =
sj

log 2
for j = 0, . . . N , so that gj(x) = fj(x) · 2tjx.

Since we may clearly assume that the tj’s are pairwise distinct, the growth
condition on f implies that tj ≤ r for j = 0, . . . N . Further, since each fj
is in Rsubexp, we may apply 5.4 to gj. So for all sufficiently large a, say for
a > Bj, and all n with a < n ≤ K(a + 1) + 1, we have |∆ngj(a)| < 1

a
(note

that K ≥ (1− 1

21−tj
)−1 + 2 because tj ≤ r).
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It follows that for a > max{B + 2, B0, . . . , BN , 2N + 3} and Ka < n ≤
K(a + 1) + 1 we have that |

∑N
j=0 ∆ngj(a)| < 1

2
, as required, and the proof

of 5.1 is now complete.

As a final remark, I would guess that the growth of the function f in the
statement of Theorem 5.1 can be weakened to the condition that f(x)·2−x →
0 as x→∞. In fact, it seems reasonable to go further and make the following

Conjecture

Let f : R → R be Ran,exp-definable and suppose that f(n) ∈ Z for all
sufficiently large positive integers n. Assume further that for some r > 0
we have that |f(x)| < exp(rx) for all sufficiently large x ∈ R. Then there
exist a polynomial P (x, y1, . . . , ym) with rational coefficients, and positive
real algebraic integers a1, . . . , am such that f(x) = P (x, ax1 , . . . , a

x
m) for all

sufficiently large x.
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