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Abstract. We study the theory of Lovely pairs of þ-rank one theories, in
particular O-minimal theories. We show that the class of ℵ0-saturated dense
pairs of O-minimal structures studied by van den Dries [6] agrees with the
corresponding class of lovely pairs. We also prove that the theory of lovely
pairs of O-minimal structures is super-rosy of rank ≤ ω.

1. Introduction

This paper brings together results on dense pairs by van den Dries [6] and lovely
pairs of rank one simple theories developed by Vassiliev [14] using the framework
of rosy theories. In [14] Vassiliev studies lovely pairs of a SU-rank one simple
theory T and, provided T eliminates the quanti�er ∃∞, shows that the theory of
the lovely pairs of T exists and it is simple. The �rst goal of this paper is the
generalize Vassiliev's work and show that the theory of lovely pairs of þ-rank one
rosy theories exists provided the original theory eliminates the quanti�er ∃∞.

In [6] van den Dries studies dense pairs of O-minimal theories that expand the
theory of ordered abelain groups, generalizing the classical work of Robinson on
the completeness of the theory of real closed �elds with a predicate for a real dense
closed sub�eld [13]. The author shows that the theory of dense pairs is complete and
gives a description of de�nable sets. It is well known that dense O-minimal theories
eliminate the quanti�er ∃∞ and are of þ-rank one (see section 5 of [10]), so we can
consider the corresponding theory of lovely pairs. In this paper we show that the
theory of lovely pairs of O-minimal theories expanding the theory of ordered abelian
groups agrees with the corresponding theory of dense pairs. Part of the goals of
this paper is to extend the ideas presented in [6] to the more general framework of
lovely pairs.

Berenstein, Ealy and Gunaydin showed in [4] that the theory of dense pairs of
O-minimal theories that expand the theory of ordered abelain groups is super-rosy
of rank ≤ ω. The tools used in the proof depended mainly on the description of
de�nable sets given by van den Dries in [6].

A key idea throughout this paper is the notion of smal set and smal closure.
For (M,P (M)) a lovely pair, and X ⊂ M de�nable, we say that X is small if it
is a subset of an image of a cartesian power of P (M) under a de�nable function.
For a ∈ M and B ⊂ M , we write a ∈ scl(B) if there are g1, . . . , gn ∈ P (M) such
that a ∈ dcl(B, g1, . . . , gn); that is, if a belongs to small subset de�ned over B. In
this paper we follow the ideas of van den Dries (used for dense pairs) to describe
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de�nable subsets of lovely pairs of O-minimal structures in terms of small sets.
Using this description of de�nable sets we prove that the theory of dense pairs of
O-minimal structures is super-rosy; the proof follows the steps of the corresponding
result in [4].

Finally, following ideas of Buechler and Vassiliev [2, 14], we prove that the rank
of a generic type is determined by the local geometry of the underlying O-minimal
structure:
Main Theorem Let M be an O-minimal structure, let P (M) �M and assume

that (M,P (M)) is a lovely pair. Given a ∈M the following holds:

(1) If M is trivial in a neighborhood of a, then Uþ(tp(a)) ≤ 1 and equality
holds if a is not algebraic.

(2) If M induces the structure of an ordered vector space over an ordered

division ring in a neighborhood of a, then Uþ(tp(a)) ≤ 2 and equality holds
if a 6∈ scl(∅).

(3) If M induces the structure of an O-minimal expansion of a real closed �eld

in a neighborhood of a, then Uþ(tp(a)) ≤ ω and equality holds if a 6∈ scl(∅).
This paper is divided as follows. In the second section we study lovely pairs

of þ-rank one structures that eliminate the quanti�er ∃∞. In the third section we
study the de�nable sets of a lovely pair. In section four we give a more detailed
analysis of de�nable sets of a lovely pair of O-minimal structures. In section �ve
we prove that the theory of lovely pairs of O-minimal structures is super-rosy of
rank ≤ ω. In section six we prove the Main Theorem.

We assume throughout this paper that the reader is familiar with the basic ideas
of rosy theories presented in [10], [1]. We follow the notation from [4], we write
capital leters such as C,D,X, Y for de�nable sets and sometimes we write C~b to

emphazise that C is de�nable over ~b. We may write ~b ∈ C~y to mean that ~b is a
tuple of the same arity as ~y whose components belong to C.

2. Lovely pairs of þ-rank one structures

We begin by translating to the setting of þ-rank one theories, the de�nitions
used by Vassiliev in [14]. Let T be a þ-rank one theory (see [10]) with quanti�er
elimination in a language L. By symmetry of thorn forking, in any model of T acl
has the exchange property and de�nes a pregeometry. Examples of such theories
includes strongly minimal theories, SU -rank one simple theories with quanti�er
elimination and O-minimal theories. Let P be a new unary predicate and let
LP = L ∪ {P}. Let T ′ be the LP -theory of all structures (M,P ), where M |= T
and P (M) is an L-algebraically closed subset of M . Let Tpairs be the theory of
elementary T -pairs, that is, the theory of structures of the form (M,P (M)) where
P (M) �M and M |= T .

Notation 2.1. Let (M,P (M)) |= T ′ and let A ⊂M . We write P (A) for P (M)∩A.

Notation 2.2. Throughout this section independence means aclL-independent, where
aclL means algebraic closure in the sense of L. We write tp(~a) for the L-type of a.

De�nition 2.3. We say that a structure (M,P (M)) is a lovely pair of models of
T if

(1) (M,P (M)) |= T ′
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(2) (Density property) If A ⊂M is algebraically closed and �nite dimensional
and q ∈ S1(A) is non-algebraic, there is a ∈ P (M) such that a |= q.

(3) (Extension property) If A ⊂M is algebraically closed and �nite dimensional
and q ∈ S1(A) is non-algebraic, there is a ∈ M , a |= q and a 6∈ acl(A ∪
P (M)).

Equivalently, we could follow the approach from [3] and de�ne, for κ ≥ |T |+,
the class of κ-lovely pairs, replacing the condition A ⊂ M is algebraically closed
and �nite dimensional in the clauses (2) and (3) above for A ⊂ M is algebraically
closed of dimension ≤ κ.

Note that if (M,P (M)) is a lovely pair, the extension property implies that M
is ℵ0-saturated. If (M,P (M)) is a κ-lovely pair, the extension property implies
that M is κ-saturated and that M \ P (M) is non-empty. Assume now that T is
an O-minimal theory and that a, b ∈ M are such that a < b; then the partial type
a < x < b is non-algebraic and by the density property it is realized in P (M).
Thus, the density property implies that P (M) is dense in M .

Lemma 2.4. Any lovely T -pair is an elementary T -pair.

Proof. We apply the Tarski-Vaught test. Let (M,P (M)) be a lovely T pair, let

ϕ(x, ~y) be an L-formula and let ~b ∈ P (M)~y. Assume that there is a ∈ M such

that M |= ϕ(a,~b). If a is algebraic over ~b, since P (M) is algebraically closed we

get a ∈ P (M). If a is not algebraic over ~b, the type tp(a/~b) is not algebraic and

by the density property there is a′ ∈ P (M) such that a′ |= tp(a/~b); in particular,

M |= ϕ(a′,~b). �

We follow now section 3 of [3]. The existence of κ-lovely pairs follows from
[3, Lemma 3.5]. The proof presented there does not use the Independence Theo-
rem, in fact it only uses transitivity and the existence of non-forking extensions.
Exchanging the word independence for þ-independence gives a proof in our setting.

De�nition 2.5. Let A be a subset of a lovely pair (M,P (M)) of models of T . We
say that A is P -independent if A is independent from P (M) over P (A).

Lemma 2.6. Let (M,P (M)) and (N,P (N)) be lovely pairs of modells of T . Let

~a, ~b be �nite tuples of the same length from M , N respectively, which are both P -

independent. Assume that ~a, ~b have the same quanti�er free LP -type. Then ~a, ~b
have the same LP -type.

Proof. It is a similar argument to the one presented in [3, Lemma 3.8]. �

The previous result has the following consequence:

Corollary 2.7. All lovely pairs of T are elementary equivalent.

We write TP for the common complete theory of all lovely pairs of T .
To axiomatize TP we follow the ideas of [14, Prop 2.15]. Here we need an

additional hypothesis, namely, we assume that T eliminates ∃∞. It follows from
a result of Hrushovski (Lemma 4.2 [9]) that a supersimple theory of SU-rank 1
satis�es this property. It is also well known, by uniform �niteness, that a dense
O-minimal theory eliminates this quanti�er. Recall that whenever T eliminates ∃∞
the expression the formula ϕ(x, b̄) is nonalgebraic is �rst order.

Theorem 2.8. Assume T eliminates ∃∞. Then the theory TP is axiomatized by:
3



(1) T ′

(2) For all L-formulas ϕ(x, ~y)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ P )).

(3) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x 6∈ P ) ∧
∀w1 . . .∀wm ∈ P¬ψ(x,w1, . . . , wm, ~y))

The second scheme of axioms corresponds to the density property and the third
scheme to the extension property.

Proof. Let T0 be the theory axiomatized by the scheme of axioms described above.
Claim Any lovely T -pair is a model of T0.
Let (M,P (M)) be a lovely T -pair. Clearly it is a model of T ′. Now let ϕ(x, ~y) be

a formula, let ~b ∈M~y and assume that ϕ(x,~b) is non-algebraic. Let B = acl(~b) and
let p(x) be a non algebraic L-type over B extending ϕ(x,~b). Since (M,P (M)) is a
lovely pair, by the density property p(x) is realized in P (M) and thus the second
axiom holds. Now assume that ψ(x, ~z, ~y) is a formula such that there is n with the
property that for all ~z, ~y there are at most n realizations of ψ(x, ~z, ~y). Let ϕ(x, ~y) be
a formula, let ~b ∈M~y be such that ϕ(x,~b) is non-algebraic. Let B = acl(~b) and let

p(x) be a non algebraic L-type over B extending ϕ(x,~b). By the extension property

there is c ∈ M realizing p and independent from P (M) over B. Let ~d ∈ P (M)~z,

then c is not algebraic over ~d~b, so M |= ¬ψ(c, ~d,~b) and the third axiom holds.
Claim Any ℵ0-saturated model of T0 is a lovely pair.
Let (M,P (M)) |= T0 be ℵ0-saturated and let A ⊂M be algebraically closed and

�nite dimensional. Let p(x) be a non-algebraic L-type over A. First consider the LP

partial type p(x)∧P (x). By the second axiom this partial type is �nitely realizable
and by ℵ0-saturation it is realized in (M,P (M)). Thus (M,P (M)) satis�es the
density property. Now consider the partial type p(x) ∪ {∀~w ∈ P¬ψ(x, ~w,~a) : ψ is
as in (3), ~a ∈ A~y}. By the third axiom this type is �nitely realizable in (M,P (M))
and by ℵ0-saturation it is realized in (M,P (M)). Thus (M,P (M)) satis�es the
extension property. �

We now compare lovely pairs with the dense pairs studied by van den Dries in
[6]. We start by recalling some de�nitions from that paper:

Let L = {<, 0, 1,+,−, . . . } be a language and let T be an O-minimal L-theory
that extends the theory of ordered abelian groups with a positive element 1.

De�nition 2.9. A dense pair is an elementary pair (so P (M) � M) such that
P (M) 6= M and P (M) is dense in M .

Clearly any lovely T pair (M,P (M)) is a dense pair. It is proved in [6, Theorem
2.5] that the common theory of dense pairs is complete and thus it coincides with
TP . The study of TP can be seen as a generalization of van den Dries' work on
dense pairs of O-minimal structures.

3. Definable sets

Fix T a þ-rank one theory that eliminates quanti�ers and eliminates ∃∞ and let
(M,P (M) |= TP . Our next goal is to obtain a description of de�nable subsets of
M and P (M) in the language LP .
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We start by considering the LP -de�nable subsets of M , we follow the ideas from
[3, Corollary 3.11]. We will extend the language adding new relation symbols. Let
L′P be LP together with new relation symbols Rϕ(~y) for each L-formula ϕ(~x, ~y). Let
T ′p be the theory TP together with the sentences ∀~y(Rϕ(~y) ↔ ∃~x(P (~x) ∧ ϕ(~x, ~y))).
Since Tp is a complete theory so is T ′p. We will show that T ′p has quanti�er elim-
ination. We should point out that this result is also proved in [6, Theorem 2.5]
for dense pairs of O-minimal structures that extends the theory of ordered abelian
groups.

Lemma 3.1. Let (M,P (M)), (N,P (N)) be lovely pairs. Let ~a, ~b be tuples of the
same arity from M , N respectively. Then the following are equivalent:

(1) ~a, ~b have the same quanti�er-free L′P -type.

(2) ~a, ~b have the same LP -type.

Proof. Clearly (ii) implies (i). Assume (i). Since L has quanti�er elimination,

tp(~a) = tp(~b). Since T is super-rosy, there isA ⊂ P (M) �nite such that tp(~a/P (M))
does not þ-fork over A. Let q(~z,~a) be the L-type of A over ~a. Since the quanti�er

free L′P type of ~a agrees with the quanti�er free L′P type of ~b, q(~z,~b) does not þ-fork
over P (N). Since (N,P (N)) is a lovely pair, q(~z,~b) is realized in P (N), say by B.

Claim ~b is þ-free from P (N) over B.
Say ~b = (b1, . . . , bn) and assume that for some k ≤ n, (b1, . . . , bk) are B inde-

pendent and ~b ∈ acl(B, b1, . . . , bk). If the claim does not hold, dim(~b/B ∪ P (N)) <
k say bk ∈ acl(b1, . . . , bk−1, B, P (N)). Let d1, . . . , dm ∈ P (N) such that bk ∈
acl(b1, . . . , bk−1, B, d1, . . . , dm). Since the quanti�er free L′P type of ~a,A agrees

with the quanti�er free L′P type of ~b,B, there are c1, . . . , cm ∈ P (M) such that
ak ∈ acl(a1, . . . , ak−1, A, d1, . . . , dm), a contradiction.

Also note that ~aA, ~bB have the same quanti�er free LP -type, so the result follows
from Lemma 2.6. �

Now we are interested in the LP -de�nable subsets of P (M). For this material
we follow the presentation from [6, Theorem 2].

Proposition 3.2. Let (M,P (M)) be a lovely pair and let Y ⊂ P (M)n be LP -
de�nable. Then there is X ⊂Mn L-de�nable such that Y = X ∩ P (M)n.

Proof. Let (M1, P (M1)) � (M,P (M)) be κ-saturated where κ > |M |+ |L| and let

~a,~b ∈ P (M1)n such that tp(~a/M) = tp(~b/M). We will prove that tpP (~a/M) =
tpP (~b/M) and the result will follow by compactness. Since ~a,~b ∈ P (M1)n, we get

that M~a, M~b are P -independent sets and thus by Lemma 2.6 we get tpP (~a/M) =
tpP (~b/M). �

4. More on definable sets: the O-minimal case

Fix T an O-minimal theory that eliminates the quanti�er ∃∞.

De�nition 4.1. Let (M,P (M)) be a lovely pair of models of T . A de�nable set
D ⊂ Mk is small if and only if there is some m, and an L-de�nable function
f : Mm → Mk such that D ⊂ f(P (M)m). Let F be a cell and let S ⊂ F be
de�nable. We say S is large in F if F \ S is small. A de�nable subset D ⊂ Mk is
basic small if it is small and of the form ∃y1 ∈ P . . . ∃yn ∈ Pϕ(~x, ~y), where ϕ(~x, ~y)
is an L-formula.
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The de�nition above is what is called P (M)-bound in [4] and it turns out to
be equivalent to the notion of small set from [4] (see Corollary 2.16). Note that if
D1, D2 ⊂Mk are small their union is also small.

We need to re�ne the description of LP -de�nable subsets of M that we obtained
in the previous section. In particular, we want to generalize Theorem 4 of [6] to
general lovely pairs of O-minimal structures. We will follow the strategy from [6]
and we start by reproving Lemma 4.3 of [6]. The proof we present is the one given
in [6], we include it for completeness.

Lemma 4.2. Let X ⊂ M be small. Then X is a �nite union of sets of the form
f(P (M)m ∩ E) where E is an L-de�nable open cell in Mm and f : E → M is
L-de�nable and continuous.

Proof. Since X is small, X ⊂ f(P (M)m) for some L-de�nable function f fromMm

intoM . Thus we may writeX = f(X ′) for some LP -de�nable setX
′ ⊂ P (M)m. By

Proposition 3.2 we have X ′ = P (M)m∩Y for some L-de�nable Y ⊂Mm. The rest
of the proof is by induction on m. The case m = 0 is trivial, as X is either empty
or a single point. So assume the result holds for values lower than m and we will
prove it for m. We can subdivide Y into smaller cells E so that f �E is continuous.
If E is an open cell in Mm we get the conclusion of the lemma. If E is not open
and dim(E) = d < m, there are indices 1 ≤ i1 < i2 < · · · < id ≤ m such that the
projection map π : Mm → Md, π(x1, . . . , xn) = (xi1 , . . . , xid

) is homeomorphism
from E into the open cell E′ = π(E) ofMd. Let µ be the inverse of this map. Then
f(P (M)m∩E) = (f ◦µ)(P (M)d∩E′∩µ−1(P (M)m)) and by Proposition 3.2 there
is an L-de�nable set F ′ ⊂ E′ such that P (M)d ∩E′ ∩µ−1(P (M)m) = P (M)d ∩F ′.
By the induction hypothesis, f(P (M)m∩E) = (f ◦µ)(P (M)d∩F ′) is of the desired
form. �

Lemma 4.3. Let C ⊂Mk be a cell. Then there is a partition C1, . . . , Cn of C into
cells such that Ci ∩ P (M)k is either empty or a dense subset of Ci.

Proof. The proof is by induction on k. The result is clear for k = 0. Assume now
that the result holds for values smaller than or equal to k and we will prove it for
k + 1. First assume that C is the set of realizations of the formula f(y1, . . . , yk) <
x < g(y1, . . . , yk) for ~y in a cell D and f , g continuous functions. By induction
hypothesis we need to consider two cases. If D ∩ P (M)k is dense in D, then
C ∩ P (M)k+1 is dense in C. If D ∩ P (M)k is empty, then so is C ∩ P (M)k+1.

Now assume that C is of the form x = f(y1, . . . , yk) for ~y in a cell D and f
a continuous function. Then there is d ≤ k and there are indices 1 ≤ i1 < i2 <
· · · < id ≤ k + 1 such that the projection map π : Mk+1 →Md, π(x1, . . . , xk+1) =
(xi1 , . . . , xid

) is homeomorphism from C into the open cell C ′ = π(C) of Md.
Let µ be the inverse of this map. Note that µ is a de�nable function. Then
P (M)k+1 ∩ C = µ(P (M)d ∩ C ′ ∩ µ−1(P (M)k+1)) and by Proposition 3.2 there is
an L-de�nable set F ⊂ C ′ such that P (M)d ∩ C ′ ∩ µ−1(P (M)) = P (M)d ∩ F . By
the induction hypothesis we can �nd a �nite partition F into cells {Fj : j ≤ n1}
such that either Fj ∩ P (M)d = ∅ or Fj ∩ P (M)d is dense in Fj . Furthermore,
we can extend the partition {Fj : j ∈ J} to a partition {C ′i : i ≤ n2} of C ′

with the same properties. Since µ is a homeomorphism, {µ(C ′j) : j ∈ J} forms

a partition of C into cells. Let Cj = µ(C ′j). Note that if Ck ∩ P (M)k+1 6= ∅,
then π(Ck) ∩ P (M)d ∩ µ−1(P (M)k+1) 6= ∅, so π(Ck) = Fj for some j such that
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Fj ∩ P (M)d is dense in Fj . Then µ(Fj ∩ P (M)d) is a dense subset of Cj . Since
P (M)d ∩ Fj ⊂ P (M)d ∩ C ′ ∩ µ−1(P (M)k+1), µ(Fj ∩ P (M)d) ⊂ P (M)k+1, so
Cj ∩ P (M)k+1 is a dense subset of Cj . �

Now we generalize Lemma 2.15 from [4]:

Proposition 4.4. Let D ⊂M be de�nable in (M,P (M)) over ~d. Then there is a
partition −∞ = a0 < · · · < an = ∞ and basic small dense sets S1, . . . , Sn such that
D∩ [ai−1, ai] is either contained in the set Si or contains the set Sc

i ∩ [ai−1, ai], and
each Si is de�ned from ~d.

Proof. We �rst show the result for setsD de�ned by formulas of the form ∃y1 . . .∃ynP (y1)∧
· · · ∧ P (yn) ∧ ϕ(y1, . . . , yn, x), where ϕ(y1, . . . , yn, x) is a cell.

Assume the cell ϕ(y1, . . . , yn, x) is of the form f(y1, . . . , yn) < x < g(y1, . . . , yn)
for ~y in a cell C and f , g continuous functions. Then, after subdividing C if
necessary, we obtain two cases. If P (M)n ∩ C is empty, then D is empty. If
P (M)n ∩ C is dense in C, then D is an open interval.

Now assume that the cell ϕ(y1, . . . , yn, x) is of the form x = f(y1, . . . , yn) for ~y in
a cell C and f is a continuous function, which is either constant, strictly increasing
or strictly decreasing. As above, after subdividing C if necessary, we obtain the
following cases. If P (M)n ∩ C is empty, then D is empty. If P (M)n ∩ C is dense
in C and f is constant, then D is a point. If f is strictly monotone, then D is a
dense small subset of f(C).

Clearly if the conclusion of the Proposition holds for a setD, then it also holds for
the complement of D. It remains to see what happens with intersections. Assume

that D1, D2 are de�nable over ~d and that there is a partition −∞ = a0 < · · · <
an = ∞ and basic small dense sets S11, . . . , S1n, S21, . . . , S2n as prescribed by the
Proposition for D1, D2 respectively. If D1 ∩ [ai, ai+1] ⊂ Si1, then (D1 ∩ D2) ∩
[ai, ai+1] ⊂ Si1. On the other hand, if D1 ∩ [ai, ai+1] ⊃ Sc

i1 ∩ [ai, ai+1], D2 ∩
[ai, ai+1] ⊃ Sc

i2 ∩ [ai, ai+1], then D1 ∩D2 ∩ [ai, ai+1] ⊃ (Si1 ∪ Si2)c ∩ [ai, ai+1]. �

Proposition 4.5. If X ⊂ M is LP -de�nable and small, then there is a partition
−∞ = b0 < b1 < · · · < bk+1 = ∞ of M such that for each i = 0, . . . , k, either
X∩(bi, bi+1) = ∅, or X∩(bi, bi+1) as well as (bi, bi+1)\X are dense in (bi, bi+1). If
X ⊂ M is LP -de�nable then there is a partition −∞ = b0 < b1 < · · · < bk+1 = ∞
of M such that for each i = 0, . . . , k, either X ∩ (bi, bi+1) = ∅, or X ∩ (bi, bi+1) =
(bi, bi+1) or X ∩ (bi, bi+1) as well as (bi, bi+1) \X are dense in (bi, bi+1).

Proof. Let X ⊂ P (M) be small. By Lemma 4.2 we can write X as a �nite union of
sets f(P (M)m ∩E) where E ⊂Mm is an open cell and f is L-de�nable continuous
function. If X is a single point there is nothing to prove, so we may assume that
f(E) is an interval possibly with endpoints. The set f(P (M)m ∩ E) is dense in
f(E) and by the extension property f(E) \ f(P (M)m ∩ E) is also dense in f(E).
The second part of the Proposition follows from the �rst part and from Proposition
4.4. �

5. þ-rank

In [4, Theorem 3'] it is shown that:

Theorem 5.1. Suppose that (R,+, . . . ) is an o-minimal expansion of a group in
the language L. Consider the expansion R = (R,P,+, . . . ) in the language LP =
L ∪ {P} where P is a unary predicate such that:
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(1) P (R) is small, and contained in some interval, (a,∞) ⊆ R, in which it is
dense.

(2) Each LP -formula ψ(x) is equivalent to a boolean combination of formulas
of the form ∃~y

(
P (y1) ∧ · · · ∧ P (yn) ∧ ϕ(x, ~y)

)
where ϕ is an L-formula.

(3) For each de�nable D ⊆ P (R)k there is an L-de�nable set E such that
D = E ∩ P (R)k

Then R is rosy of þ-rank less than or equal to ω and þ-rank of P (R) is 1. Moreover,
if R includes a �eld structure, þ-rank of R equals ω.

Our goal in this section is to prove that for (M,P (M)) |= Tp, þ-rank (x = x) = ω
and þ-rank(P (x)) = 1. Our approach follows the ideas of [4], but we need to modify
slightly the proofs as we do not have necessarily the structure of an ordered abelian
group.

Notation 5.2. For (M,P (M)) |= TP , a ∈ M , B ⊂ M we write tp(a/B) for the
L-type of a over B and tpP (a/B) for the LP -type of a over B.

We start by recalling some technical results from [7] on þ-rank:

Fact 5.3. Let T be a complete theory and let N |= T . If D ⊂ Nk is de�nable and
has þ-rank α, then Dn has þ-rank at least αn and equality holds if α = 1.

Fact 5.4. Let T be a complete theory and let N |= T . Let D ⊂ Nk, E ⊂ N l be
de�nable and assume there is a de�nable function f : D � E. Then if D has þ-rank
α, then E has þ-rank ≤ α. Furthermore, if the �bers are �nite , we have equality.

The following Lemma is a generalization of Lemma 44 in [4].

Lemma 5.5. If ϕ(x,~b) ϕ(x,~b) is an in�nite set de�nable in L, then ϕ(x,~b) does
not þ-divide over the empty set.

Proof. Assume, for a contradiction, that ϕ(x,~b) does þ-divide over the empty set.

So tpP (~b) is non-algebraic and there is some θ(~y,~c) ∈ tp(~b) and some k ∈ N such

that whenever ~b1, . . . ,~bk are distinct elements of θ(M
eq

~y ,~c), we have that ϕ(x,~b1)∧
· · · ∧ ϕ(x,~bk) is inconsistent. Since ϕ de�nes an in�nite L-de�nable set, by the
O-minimality of M |L, it de�nes a �nite collection of points and open intervals.

We may assume that each ϕ(x,~b) de�nes a single interval, modifying ϕ and θ if
necessary. Since (M,<) is a linear order, after modifying ϕ and θ we may assume

that ϕ(x,~b) 2-þ-divides. Then ∃~y(θ(~y)∧ϕ(x, ~y)) de�nes an in�nite union of disjoint
open intervals, a contradiction with Proposition 4.5. �

Theorem 5.6. M = (M,P (M)) is rosy of þ-rank less than or equal to ω and
þ-rank of P (M) is 1.

Proof. First we wish to show that the þ-rank of P (M) is 1. For a contradiction,

suppose that some formula ϕ(x,~b) which de�nes a in�nite subset of P (M) þ-divides
over the empty set, where ~b may come from any sort in (M,P (M))eq. Say that

k, θ(~y,~c) are such that
∧

i<k ϕ(x,~bi) is inconsistent for any k distinct elements
~b1, . . . ,~bk satisfying θ(x,~c).

Then, by Proposition 3.2 ϕ(x,~b) is of the form ψ(x,~b) ∩ P (M), where ψ(x,~b)
is an L formula. Without loss of generality, we may assume that ψ(x,~b) de�nes

a single open interval. By the previous lemma, ψ(x,~b) does not þ-divide, so we
8



may �nd an in�nite set {~bi : i ∈ K} such that ~bi ∈ θ(M
eq

~y ,~c) and
∧

i∈K ψ(M,~bi) is
nonempty and, hence, contains an open set (d1, d2).

Then
∧

i∈K ϕ(M,~bi) =
∧

i∈K(ψ(M,~bi) ∩ P (M)) ⊃ P (M) ∩ (d1, d2) 6= ∅, so∧
i∈K ϕ(M,~bi) is non-empty, a contradiction.
Second, we wish to show that the þ-rank of x = x is no larger than ω. Suppose

that ϕ(x,~b) k-þ-divides over the empty set, where, again, ~b may come from any

sort in (M,P (M))eq. We observe that it su�ces to show that D~b := ϕ(M,~b) must
be a small set and by Fact 5.4 and Fact 5.3 we can conclude that it has �nite

þ-rank. Then we will have shown that any formula, ϕ(x,~b), which þ-divides has
�nite þ-rank, and, thus, þ-rank

(
x = x

)
≤ ω.

Now assume for a contradiction that ϕ(x,~b) is not a small set. By Proposition
4.4 there is some open interval I~b such that D~b is large in I~b. Suppose that θ(~y,~c)
is such that for any ~b1, . . . ,~bk di�erent realizations of θ(~y,~c), one has

D~b1
∩ · · · ∩D~bk

= ∅.

Claim J := I~b1 ∩ · · · ∩ I~bk
= ∅.

Otherwise J is an open interval (d1, d2). Let S~b be a small set such that D~b =
Ib \S~b. Then (D~b1

∩ · · ·∩D~bk
)∩ (d1, d2) = J \ (S~b1

∪ · · ·∪S~bk
) 6= ∅ by the extension

property.

Thus, if ψ(x,~b) de�nes I~b, we see that ψ(x,~b) also þ-divides. But since inter-
vals are L-de�nable, this contradicts the previous lemma. Thus we conclude that
þ-rank

(
x = x

)
is no greater than ω.

�

Note that we also proved the following result, that will prove useful later

Corollary 5.7. If ϕ(x,~b) þ-forks over A, then ϕ(x,~b) de�nes a small set.

6. þ-rank and the trichotomy Theorem

There is strong relationship between the pregeometry associated to an SU -rank
one theory and the rank of the associated lovely pair. It was shown by Buechler
in [2] that for a strongly minimal theory T , TP is totally transcendental and that
MR(TP ) = 1 if T is trivial, MR(TP ) = 2 is T is locally modular non-trivial and
that MR(TP ) = ω in all other cases. This result was generalized by Vassiliev in
[14], where he showed that for T a simple theory of SU -rank one, SU(TP ) = 1 if T
is trivial, SU(TP ) = 2 is T is locally modular non-trivial and that SU(TP ) = ω in
all other cases.

In [4] Berenstein, Ealy and Günaydin showed that for T = Th(R,+, 0, 1, <), þ-
rank(TP ) = 2 and for T = Th(R,+,×, 0, 1, <), þ-rank(TP ) = ω. When these results
were proved, the authors were interested in showing that there was an analogy
between the rank of the dense pairs of O-minimal theories and the ranks of lovely
pairs of simple theory of SU -rank one.

Our goal in this subsection is to study, for (M,P (M)) a lovely pair and a ∈M ,
the relation between the rank of tpP (a) and the local L-structure that M induces
on a neighborhood of a. According to the Trichotomomy Theorem of Peterzil and
Stacherko [11, 12], for any a in M , either a is trivial (in which case we prove

that Uþ(tpP (a)) = 1 for a non-algebraic), or there is a convex neighborhood of a
where the structure is an ordered vector space over an ordered division ring (in

9



which case we show that Uþ(tpP (a)) = 2 for a su�ciently general), or there is a
neighborhood where the structure is that of an expansion of a real closed �eld (and

then Uþ(tpP (a)) = ω for generic a).
We start with some preliminary observations.

Proposition 6.1. Assume that the structure around a is that of an ordered vector
space over an ordered division ring R. Then for B ⊂ M a ∈ scl(B) if and only if
there is b ∈ dcl(B) and n ∈ R>0 such that a ∈ b+ P (M)/n.

Proof. Right to left is clear. Now assume that a ∈ scl(B). By Proposition 4.4, a
is contained in S, a basic small set de�ned over B. Let ∃~y ∈ P (M)k(ϕ(x, ~y)) be
a formula de�ning S. For each ~g, ϕ(M,~g) is a �nite union of points and intervals.
However, if for any ~g in P (M)k, ϕ(M,~g) contains a non-empty open interval, then
S is not small. Thus, we may reduce to the case where ϕ(x, ~y) is x = f(~y), where

f(~y) = b+
k∑

i=1

mi

ni
yi

for some b ∈ dcl(B), mi ∈ R and ni ∈ R>0. Let n be the least common multiple
of the ni. Thus f(Gk) is contained in b+ P (M)/n, and a ∈ b+ P (M)/n. �

We are ready to show our main Theorem for this section:

Main Theorem Let M be an O-minimal structure, let P (M) �M and assume
that (M,P (M)) is a lovely pair. Given a ∈M the following holds:

(1) If M is trivial in a neighborhood of a, then Uþ(tp(a)) ≤ 1 and equality
holds if a is not algebraic.

(2) If M induces the structure of an ordered vector space over an ordered

division ring in a neighborhood of a, then Uþ(tp(a)) ≤ 2 and equality holds
if a 6∈ scl(∅).

(3) If M induces the structure of an O-minimal expansion of a real closed �eld

in a neighborhood of a, then Uþ(tp(a)) ≤ ω and equality holds if a 6∈ scl(∅).

Proof. (1) Trivial case. If a ∈ scl(∅) then by triviality there is b ∈ P (M) such

that a ∈ dcl(b). Since þ-rk(P (M)) = 1, we get Uþ(tp(a)) ≤ 1. So assume that
a 6∈ scl(∅) and that B ⊂ M is such that tp(a/B) þ-forks over ∅. Then a ∈ scl(B),
so a ∈ dcl(B ∪P (M)). Since M is trivial in a neighborhood of a and a 6∈ P (M) we
get that a ∈ dcl(B) so Uþ(tp(a/B)) = 0 and Uþ(tp(a)) ≤ 1.

(2) Locally modular case. By Proposition 6.1, every small subset of M has þ-
rank at most one, and by Corollary 5.7, a þ-forking extension of tp(a) must include
a formula de�ning a small set. Thus Uþ(tp(a)) ≤ 2. We want to show that for

a 6∈ scl(∅) we have Uþ(tp(a)) = 2.
Let g ∈ P (M) be such that tp(g) is non-algebraic and g |̂ þ

a. Then we get

Uþ(tp(a)) = Uþ(tp(a/g)) = Uþ(tp(a+ g/g)).
Claim a+ g |̂ þ

g.
Otherwise, by Corollary 5.7 we would have a + g ∈ scl(g) = scl(∅), and thus

a ∈ scl(∅), a contradiction.

Thus Uþ(tpP (a)) = Uþ(tpP (a+ g/g)) = Uþ(tpP (a+ g)), and it su�ces to show

that Uþ(tpP (a+ g)) = 2.
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Consider the chain tpP (a + g/∅) ⊂ tpP (a + g/a) ⊂ tpP (a + g/a, g). First note
that tpP (a + g/a) contains the formula saying x ∈ P (M) + a. This formula is
true of a + g and þ-divides over the empty set. Thus, tpP (a + g/a) is a þ-forking
extension of tpP (a+ g). Second, note that tpP (a+ g/a, g) is algebraic, and thus it
is a þ-forking extension of tpP (a + g/a). We just proved that the chain described

above þ-forks at every step, so Uþ(tp(a)) = 2.

(3) Field case. Assume that in an open neighborhood V of a, M induces a
�eld structure. By Corollary 5.7 for any set B, if tp(a/B) þ-forks over ∅ we
get that a ∈ scl(B). In particular, there are g1, . . . , gn ∈ P (M) such that a ∈
dcl(g1, . . . , gn, B). By Lascar's inequality this implies Uþ(tpP (a/B)) ≤ n and we

get that Uþ(tpP (a)) ≤ ω.
To show the other direction, let us assume that a 6∈ scl(∅) and we show that

for every n ≥ 0, there exists B such that Uþ(tpP (a/B)) = n. Let c1, . . . , cn ∈ V
be such that c1 6∈ scl(a), c2 6∈ scl(a, c1), . . . , cn 6∈ scl(a, c1, . . . , cn1) (these elements
exist by the extension property). Now let g1, . . . , gn ∈ P (M) be independent from
each other and independent from c1, . . . , cn, a.
Claim gi ∈ dcl(c1g1 + . . . cngn, c1, . . . , cn) for i ≤ n.
Consider the equation c1x1 + · · ·+ cnxn = c1g1 + . . . cngn. If there is a solution

(g′1, . . . , g
′
n) in P (M)n di�erent from (g1, . . . , gn) we get c1(g1 − g′1) + · · ·+ cn(gn −

g′n) = 0 and gj − g′j 6= 0 for some j ≤ n. Then cj ∈ scl(c1, . . . , cj−1, cj+1, . . . , cn)
and this is a contradiction.

Let d = a+ c1g1 + . . . cngn and B = {d, c1, . . . , cn}. Then a and c1g1 + . . . cngn

are interde�nable over B and by the claim both this sets are interde�nable with
{g1, . . . , gn} over B. Thus Uþ(tp(a/B)) = Uþ(tp(g1, . . . , gn/B)). On the other

hand, a 6∈ scl{c1, . . . , cn}, so d 6∈ scl{c1, . . . , cn} and d |̂ þ{c1, . . . , cn, g1, . . . , gn}.
This implies that Uþ(tp(g1, . . . , gn/B)) = Uþ(tp(g1, . . . , gn/{c1, . . . , cn})) = n and

thus Uþ(tp(a/B)) = n as we wanted. �

We end this section with an example of a trivial dense pair.

Lemma 6.2. The structure (R, <,Q) is a lovely pair.

Proof. We �rst show that the Density property holds. Let A ⊂ R be �nite, say
A = {a1, . . . , ak} with a1 < a2 < · · · < ak and let q ∈ S1(A) be non-algebraic.
Then q is describing an open interval, either (−∞, a1), (ai, ai+1) for some i, or
(ak,∞). Since Q is dense in R there is c ∈ P (R) = Q such that c |= q.

Now we show that the Extension property holds. Let A ⊂ R be �nite, say
A = {a1, . . . , ak} with a1 < a2 < · · · < ak and let q ∈ S1(A) be non-algebraic.
Then q describes an open interval with endpoints in the set A. Since R \ (A ∪ Q)
is dense in R, we can �nd a realization of q in R \ (A ∪Q). �

It is easy to check that the pair (R, <,Q) is an expansion of (R, <) with a generic
predicate (in the sense of Chatzidakis, Pillay [5]). It is proved in [5, Corollary 2.6
part 3] that for such expansions, the algebraic closure in the extended language
Lp coincides with the algebraic closure in the language L. In particular, algebraic
independence inside the structure (R, <,Q) satis�es the usual properties of an inde-
pendence relation for real elements. On the other side, Sergio Fratarcangeli showed
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[8] that expansions of O-minimal structures with a generic predicate eliminate imag-
inaries. Thus algebraic independence inside the structure (R, <,Q) de�nes an in-
dependence relation that extends to an independence relation for all elements in
(R, <,Q)eq and thus TP is rosy and aclL-independence oincides with thorn-forking
independence in the sense of TP . Furthermore þ-rank(Th((R, <,Q))) = 1, as we
expected from the Main Theorem.
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