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Abstract

We examine fields in which model theoretic algebraic closure coincides with relative field

theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour.

For example, they are exactly the fields in which algebraic independence is an abstract

independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC

fields, model complete large fields and henselian valued fields of characteristic 0.

1 Introduction and definition

We consider fields, possibly with additional structure, that is we consider L-structures satisfying
the field axioms where L is a (possibly proper) extension of the ring language {0, 1,+,−, ·}.
Such a structure is called a pure field if every ∅-definable set is already ∅-definable in the ring
language.

By kalg or k̃, we denote the algebraic closure of k in the field theoretic sense, and by acl(k)
or aclK(k) the model theoretic algebraic closure of k in the structure K, that is the set of
elements of K which satisfy some formula with parameters from k that is only satisfied by
finitely many elements in K. The expressions “transcendental”, “algebraically independent”,
and “relative algebraic closure” always refer to the field theoretic meaning. “Algebraic formula”,
“a formula algebraises an element” always refer to the model theoretic meaning.

Parameters, realisations of types, etc. are usually taken in a monster model (or in a sufficiently
saturated elementary extension). In all cases, F0 stands for the prime field.

Definition 1.1 Let K be a (not necessarily pure) field.

(a) The thickness of a subfield k of K is defined to be tr.d.(aclK(k)/k).

(b) K is called slim1 if the model theoretic algebraic closure in K coincides with the relative
field theoretic algebraic closure, i.e. if the thickness of all subfields of K is zero.

(c) K is called very slim if all fields that are elementarily equivalent to K are slim.

The thickness of k in K and in K∗ < K is the same, it only depends on Th(K) or, more
precisely, on tp(k). Thus a slim field that realises all n-types over ∅ is very slim. In particular,

1in German: schlank
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to show that a field is very slim, it suffices to show that a sufficiently saturated model of its
theory is slim.

In any case, |acl(k)| ≤ |L|+ ℵ0 + |k|. Therefore, the thickness of a countable subfield in a field
with countable language (in particular in a pure field) is at most ℵ0. For short, we speak of
“thickness infinity”.

First examples Well known examples of very slim fields are:

• Finite fields.
• Algebraically closed fields.
• Real closed fields.
• p-adically closed fields and their finite extensions.
• Perfect PAC fields.

Proof: This is obvious for finite fields. In the next three cases, the well known quantifier elim-
ination results show that relatively algebraically closed subfields are elementary substructures.
Finally, it is shown in [CMD] that the model theoretic algebraic closure in any PAC field equals
the relative algebraic closure of the closure under λ-functions. �

Contents Section 2 contains mainly abstract model theory. We show that the property of
being very slim is equivalent to algebraic independence being an abstract independence relation
in the sense of Kim and Pillay, and also that topologically defined independence (via the Zariski
topology) coincides with algebraic independence. Moreover, we examine specific definability
properties for varieties, providing another equivalent formulation of “very slimness”. Section 3
introduces several classes of fields measuring their degree of “non-slimness”. In Section 4, we
examine the basic model theoretic and algebraic properties of slim fields: perfectness, behaviour
of finite extensions, definable subfields, questions of axiomatisability. Section 5 contains our
main algebraic results: Large model complete fields and henselian valued field of characteristic
0 are shown to be very slim. The paper finishes with some examples of fields that are not very
slim.

2 Independence relations

An abstract independence relation in the sense of Kim and Pillay [KP], following Harnik and Har-
rington [HH], is a ternary relation A |̂

C

B (“A is independent from B over C”) between parameter

sets satisfying the properties: invariance under automorphisms, finite character, monotonicity
and transitivity, symmetry, existence of free extensions2, and local character. Examples are
“non-forking” in stable and more generally in simple theories (where the independence relation
satisfies in addition the so-called independence theorem), independence in o-minimal theories,
“equational independence” in almost equational theories [JuK], and “non-thorn-forking” in rosy
theories [Ons].

Independence ā |̂
C

B in algebraically closed fields can be defined in two equivalent ways: as

algebraic independence |̂alg, i.e. the transcendence degree of ā over C is the same as over C∪B, or
as topological independence |̂top, i.e. the locus of ā over C∪B contains an irreducible component

2The axiom is called “extension” in [KP], and “existence” in [Ad].
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of the locus of ā over C. Non-forking in strongly minimal structures is a generalisation of
algebraic independence, equational independence in almost equational theories a generalisation
of topological independence. In arbitrary fields, topological independence satisfies all axioms of
an abstract independence relation except possibly “symmetry”, and algebraic independence all
except possibly “existence” (this is of course only for the “real world”, not for imaginaries).

Our first aim is to show the following result:

Theorem 2.1 Algebraic independence is an abstract independence relation in the above sense,
if and only if the field is very slim, if and only if algebraic independence coincides with topological
independence.

Proof: All axioms of an abstract independence relation except possibly“existence”always hold
for algebraic independence. The existence axiom states that for given A,B,C there is always an
A′ ≡C A with A |̂

C

B. This immediately implies slimness: Suppose a ∈ acl(k) is transcendental

over k. Let then A consist of a, B of all model theoretic conjugates of a over k, and C = k. Then
there is no realisation of tp(a/k) that is algebraically independent from B over k, i.e. existence
fails.

Conversely, we show that slimness implies the “existence axiom”: Let a,B,C be given. Ei-
ther tp(a/C) is algebraic. Then slimness implies a ∈ C̃ and hence a |̂alg

C

B. Or tp(a/C) is

non-algebraic. Then among the infinitely many realisations, there must be an element that
is transcendental over B. For finite tuples ā the result follows by induction on the length n

of the tuple: First we find (a′1, . . . , a
′
n) ≡C (a1, . . . , an) with a′1 |̂alg

C

B and then by induction

(a′′2 , . . . , a
′′
n) ≡a′

1C (a′2, . . . , a
′
n) with a′′2 , . . . , a

′′
n
|̂alg

Ca′
1

B. Together this yields (a′1, a
′′
2 , . . . , a

′′
n) ≡C

(a1, . . . , an) and a′1, a
′′
2 , . . . , a

′′
n
|̂alg
C

B. For arbitrary A, the existence axiom follows by compact-
ness.

For the second equivalence, if algebraic independence equals topological independence, then
in particular algebraic independence satisfies the existence axiom, hence the field is very slim.
Conversely, it is shown in [JuK], Example 3.8, that in very slim fields the two notions of
independence coincide. This was done under the assumption of “almost strictness of the family
of polynomial equations”. We are defining this property in the next section and we prove an
even stronger property for all fields in proposition 2.7. �

Question 1 Find necessary and sufficient conditions for topological independence to satisfy
“symmetry”. Is this just “very slimness”?

The following is a test case for the general conjectures about stable and simple fields:

Question 2 If algebraic/topological independence is an independence relation with respect to
which a field is stable (simple), is then the field (pseudo-)algebraically closed?

In particular, we may ask whether the following property of a field K∗ with enough automor-
phisms (e.g. saturated) implies PAC:

Whenever K is a (small) elementary substructure of K∗, Li a field extension of K
in K∗ for i = 1, 2, ai ∈ K∗ transcendental over Li such that K(a1) is isomorphic to
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K(a2) in K∗, then there exists an a ∈ K∗, transcendental over L1 · L2, such that
L1(a) is isomorphic to L2(a) in K∗.

We know that a field satisfying this property can’t be henselian valued w.r.t. a non-trivial
valuation with residue characteristic 0. If a conjecture of the second author is true, namely that
any valued field with a non separably closed henselisation has a valuation that is definable in
the ring language and induces the same topology, then all the henselisations of a field satisfying
the above property are separably closed.

Hans Adler calls an abstract independence relation strict if the condition a |̂
B

a =⇒ a ∈ acl(B)

is satisfied. (There is no connection with our notion of strictness to be defined in 2.2 below).
Algebraic independence is always strict, as a |̂alg

B

a implies a ∈ B̃. Adler has shown in [Ad],

Theorem 2.37, that if there is a strict independence relation at all on T eq, then the theory is
rosy. Hence a theory of very slim fields is “rosy restricted to the home sort”. Note that if a field
is rosy with respect to algebraic independence, then it is automatically superrosy, as there are
no infinite strictly descending forking chains then.

Definability of varieties and strictness

In this section we are going to prove the remaining ingredient for Theorem 2.1 and a new
characterisation of very slim fields. Though in this article we are only interested in fields and
polynomial equations, a more general approach helps to clarify the concepts. The terminology
here follows mainly [JuK] where strictness in the sense below was introduced.

Let Γ be a family of formulae ϕ(x̄; ȳ) in two sorts of variables: special variables x̄ and parameter
variables ȳ. A Γ-instance with parameters in A is a formula ϕ(x̄, ā) where ϕ ∈ Γ, ā is from A,
and the special variables remain free. A Γ-instance over A is a formula ϕ(x̄, b̄) where ϕ ∈ Γ, b̄
is arbitrary, and ϕ(x̄, b̄) is equivalent to a formula with parameters in A.

The closure of a family Γ under positive boolean combinations and under renaming of variables,
both respecting the sorts of the variables, will be denoted by 〈Γ〉. We use the notation .= for
the equality sign in formal languages. Note that if x .= y is in Γ, then the Γ-instances are closed
under adding mute parameters or variables. Otherwise this might not be the case. Usually, we
are interested in familes closed under the two operations above and containing equality. We
will call them normal. The following definition should be thought of being applied to normal
families.

Definition 2.2 Let cl be an operator on parameter sets. A family of formulae Γ is called cl-
strict if, for any parameter set A (in the monster), any Γ-instance which is over A is equivalent
to a Γ-instance with parameters in cl(A).

“Strict” is short for “ id-strict”, and “almost strict” for “ acl-strict”.

If cl(A) ⊆ cl′(A) for all A, then cl-strictness implies cl′-strictness.

Example 2.3 (1) The family of all formulae is strict (this is by general model theoretic non-
sense). The family of all Srour equations is strict ([Ju], Remark 2.2). The family of all stable
formulae is strict (similar proof as for equations).

(2) The quantifier-free formulae are in general not strict: Consider for example formally real
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closed fields and the set defined by x
.=
√

2 which is over ∅, but not quantifier-free definable
without parameters.

(3) 〈x .= y〉 is cl-strict if and only if acl(A) ⊆ cl(A) for all A.

Strictness of a family Γ means that the two concepts “to be defined by a Γ-instance” and “to
be over some parameter set” fit well together: Instead of working with Γ one can as well work
with the family of sets defined by Γ-instances.

The Γ1-algebraic closure Γ1-acl(A) is the set of all elements algebraized by Γ-instances with
parameters in A (that is, the Γ-instance has only one free variable). In general it differs from the
Γ-algebraic closure Γ-acl(A) which is defined to be the set of all coordinates of tuples algebraized
by Γ-instances with parameters in A.

Example 2.4 In a theory of an infinite field, let Π be the family of all positive boolean combi-
nations of polynomial equations with coefficients in the prime field (with all possible division of
the variables into the two sorts). It is a normal family. Note that Π1-acl(A) is just the relative
algebraic closure of the subfield generated by A.

Lemma 2.5 If Γ contains x .= y and is cl-strict, then acl ⊆ Γ1-acl ◦ cl.

Proof: Let a ∈ acl(B) have the conjugates a1, . . . , ak. Then x = a1 ∨ · · · ∨ x = ak is a Γ-
instance over B, hence equivalent to some γ(x, b̄) with γ ∈ Γ and b̄ ∈ cl(B). This shows a to be
in Γ1-acl(cl(B)). �

An operator cl is called transitive if cl◦cl = cl. The relative algebraic closure Π1-acl is transitive.

Corollary 2.6 If Γ contains x .= y and is strict, then acl = Γ1-acl.
If Γ contains x .= y and is Γ1-acl-strict, and if Γ1-acl is transitive, then acl = Γ1-acl.

In general, an arbitrary normal family is not strict in any sense. However, polynomial equations
in theories of fields are not far from being strict. For convenience, we will understand under
variety in the rest of this section a subset of Kn defined by a positive boolean combination of
polynomial equations with coefficients in K, i.e. a relatively Zariski-closed set. No irreducibility
is assumed.

The following is a variant of Weil’s well known proof of the existence of a field of definition:

Proposition 2.7 In any theory of fields, Π is dcl-strict.

Proof3: If V ⊆ Kn is a variety that is A-invariant, let M1(X), . . . ,Mm(X) be an enumeration
of the monomials in X = (X1, . . . , Xn) that occur in the polynomials used to define V . To V ,
we associate the subspace

U :=
{
k̄ ∈ Km

∣∣∣ m∑
i=1

kiMi(x̄) = 0 for all x̄ ∈ Kn
}
.

Then U is A-invariant. Let {e1, . . . , em} be the canonical basis of Km. Then we find in a
canonical way a basis {f1 + U, . . . , fl + U} of Km/U with fi ∈ {e1, . . . , em}: For example,

3We would like to thank Martin Ziegler for very helpful discussions.
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choose the smallest possible tuple of indices with respect to the lexicographical ordering. Thus
we have unique expressions ei =

∑
j αi,jfj + ui with ui ∈ U , and the ui are A-invariant, i.e.

ui ∈ dcl(A). Let U ′ = 〈u1, . . . , ul〉. Then all ei + U ∈ 〈f1 + U ′, . . . , fl + U ′〉, hence the fj + U ′

generate Km/U ′, whence U = U ′. Now, because the ui generate U , the polynomials coded by
the ui define V . �

Proposition 2.8 In a theory of fields, Π is strict iff the field is algebraically closed and has,
up to interdefinability, no additional structure.

Proof: “⇐”: If a variety V is defined over A, it can, by quantifier elimination, be written as
a union of locally closed sets Vi \Wi, where the Vi,Wi are varieties defined by equations with
coefficients from A. We may assume that the Vi are “A-irreducible” and that Wi ⊂ Vi. But then
Vi equals the closure of Vi \Wi, hence V equals the union of the Vi.

“⇒” Suppose K is a sufficiently saturated field which is not algebraically closed or which has
additional structure that is not definable in the field structure. Then there is an infinite, co-
infinite c̄-definable subset T of K. Let k = F0(c̄), choose elements a ∈ T , b /∈ T that are
algebraically independent over k, and let L = k(a+ b, ab). L is the fixed field of L(a) = k(a, b)
under the automorphism interchanging a and b, therefore a /∈ L and L(a)/L is a separable
quadratic extension. Let f be the minimal polynomial of a and b over L. Then the set {a} is
definable as a variety over K by x .= a, it is definable over L by f(x) .= 0 ∧ x ∈ T , but it is not
definable as an L-variety, since L-polynomials can’t distinguish between a and b. �

Proposition 2.9 A theory of fields is a theory of very slim fields if and only if Π is Π1-acl-
strict, if and only if Π is (Π1-acl ∩ dcl)-strict.

Proof: Π is dcl-strict by proposition 2.7, hence also almost strict, and if model theoretic
algebraic closure coincides with the relative algebraic closure, then dcl(A) ⊆ acl(A) = Π1-acl(A),
and dcl-strictness is the same as (Π1-acl ∩ dcl)-strictness. The latter implies Π1-acl-strictness
by monotonicity. Finally, Π1-acl is nothing else than relative algebraic closure and therefore
transitive, hence the second part of corollary 2.6 shows that under Π1-acl-strictness of Π, the
two notions of algebraic closure coincide. �

It might be interesting also to look at Π-acl. There are examples where it differs from the
relative algebraic closure Π1-acl. In the same way as above one sees that acl = Π-acl is a
necessary condition for Π to be Π-acl-strict in a theory of fields, and conversely that this
implies acl = Π-acl ◦ Π-acl. As there seems to be no reason for Π-acl to be transitive, a more
natural class of fields to consider might be those where acl = Π-acl∗, or equivalently where Π
is Π-acl∗-strict for the transitive closure Π-acl∗ of Π-acl. A priori, this is a larger class of fields
than the very slim fields.

3 Sizes of fields

Let K be a field. The body mass function bmK : N → N ∪ {∞} is defined to be

bmK(n) := sup
{
tr.d.(acl(a1, . . . , an)/a1, . . . , an)

∣∣ a1, . . . , an ∈ K∗ < K
}
.

By definition, bmK only depends on the elementary theory of K. We will often write bm for
short.
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Thickness is in general not a monotonous function (all subfields of the form aclK(k) have
thickness zero in K), but the body mass function is: Choose an element t that is transcendental
over acl(k), then tr.d.(acl(k, t)/k(t)) > tr.d.(acl(k)/k). It follows that in the definition of the
body mass function one could require a1, . . . , an to be algebraically independent.

We use the body mass function to distinguish several types of theories of fields:

• Fields of size XS (or very slim fields): bm is the zero function.
• Fields of size S: bm is not the zero function, but bounded.
• Fields of size M: bm is unbounded, but linearly bounded (that is, bm is in O(n): eventually

bounded by a linear function).
• Fields of size L: bm is not linearly bounded.

We consider the sizes as totally ordered in the usual sense: XS < S < M < L. A slim field
might well have size L, but the size can be seen from the thicknesses of subfields of a sufficiently
saturated model.

One is tempted to further divide the class L and for example introduce XL as those fields where
bm is eventually infinite, and XXL as those where the thickness of a subfield is actually infinite.
Some of our proofs give additional results if one does so. But it not clear whether there are
examples that would justify this distinction.

Remark 3.1 acl(A) = d̃cl(A)∩K holds for any parameter set A in any field K. In particular,
K is not slim if and only if there are definable transcendental elements over some finitely
generated subfield. More precisely, whenever the thickness of k ⊆ K is not zero, then there are
definable elements over k that are transcendental over k.

Proof: Let t ∈ aclK(k) \ k̃ for some finitely generated subfield k ⊆ K, and let t1, . . . , tk be
the model theoretic conjugates of t over k. Then t is in the field theoretic sense algebraic over
the elementary symmetric functions s(t1, . . . , tk) in the ti. The s(t1, . . . , tk) are invariant over
k, hence in dcl(k). The converse inclusion is trivial. �

Thus the thickness of a subfield k in K equals tr.d.(dcl(k)/k).

Lemma 3.2 Let K be a field. If in K there is over ā a definable transcendental which is
algebraically independent from ā over dcl(∅), then K has at least size M, that is, K has subfields
of arbitrarily big thickness.

Proof: Choose (ā, t) of minimal length such that t is definable over ā and algebraically inde-
pendent from ā over dcl(∅). By minimality, ā = (a1, . . . , ak) is algebraically independent over
dcl(∅), moreover ai /∈ acl(∅) and k 6= 0. Let p := tp(ā, t).

We are going to construct inductively a sequence (ān, tn)n∈ω of realisations of p in such a
way that tn is transcendental over ā0, . . . , ān, t0, . . . , tn−1. Suppose the (n + 1)th step is not
possible. This means that p(x̄, y) ` “y ∈ F0(x̄, ā0, . . . , ān, t0, . . . , tn)alg ”, which implies by com-
pactness that p(x̄, y) ` Q(y, x̄, ā0, . . . , ān, t0, . . . , tn) .= 0 for a polynomial Q that is not iden-
tical zero as polynomial in y over F0(x̄, ā0, . . . , ān, t0, . . . , tn). In particular, the zero set of
Q(y, x̄, ā0, . . . , ān, t0, . . . , tn) in Kk+1 has at most dimension k. It follows that, for the monster
model K,

p(x̄, y) `
∧

σ∈Aut(K)

Q(y, x̄, āσ
0 , . . . , ā

σ
n, t

σ
0 , . . . , t

σ
n) .= 0.
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By Proposition 2.7, the right part is equivalent to a positive boolean combination of polynomial
equations with coefficients in dcl(∅), and has (in the free variables y, x̄) at most dimension k.
Thus p implies that x̄ and y are algebraically dependent over dcl(∅): contradiction.

By standard techniques we can make the sequence (ān, tn)n∈ω indiscernible in such a way
that the property “ tn is transcendental over ā0, . . . , ān, t0, . . . , tn−1” is preserved. As all fields
are quantifier-free stable, any indiscernible sequence is an indiscernible set with respect to
quantifier-free formulae. Hence ti is trancendental over ā0, . . . , ān, t0, . . . , ti−1, ti+1, . . . , tn for
every i ∈ {0, . . . , n}. Thus the thickness of F0(ā0, . . . , ān) is at least n+ 1. �

Corollary 3.3 In fields of size M, the body mass function bm is in Θ(n), i.e. is eventually
bounded from below and from above by non-constant linear functions.

Proof: bm is at most growing linearly by definition, and at least like n 7→ dn
k e for some k ≥ 1

according to the proof of Lemma 3.2. �

Proposition 3.4 The body mass function is constant in fields of size at most S. Moreover,
acl(ā) = F0(ā,dcl(∅))alg holds for all ā. In particular, in fields of size S there are ∅-definable
transcendentals.

Proof: Let K be of size S. Thus there are ā and t ∈ acl(ā) \F0(ā)alg. According to Lemma 3.2,
t is algebraically dependent from ā over dcl(∅). If there are no ∅-definable transcendentals, then
dcl(∅) ⊆ F0

alg, hence t ∈ F0(ā,dcl(∅))alg ⊆ F0(ā)
alg: contradiction.

Now let k be a finitely generated subfield ofK. By Lemma 3.2, dcl(k) is an algebraic extension of
F0(k,dcl(∅))alg. Hence acl(k) = dcl(k)alg ∩K ⊆ F0(k,dcl(∅))alg. It follows that tr.d.(acl(k)/k) 6

tr.d.(dcl(∅)/k) 6 tr.d.(acl(∅)) = bmK(0). �

Proposition 3.4 implies that Theorem 2.1 can be modified for fields of size S: If we define
algebraic independence over dcl(∅) and topological independence over dcl(∅) by “ ā |̂

C

B in the

new sense if and only if ā |̂
C∪dcl(∅)

B in the old sense”, then algebraic independence over dcl(∅) is

an abstract independence relation if and only if it equals topological independence over dcl(∅)
if and only if the field has size S.

Example 3.5 (1) An algebraically closed field with constants for n algebraically independent
elements is an example of a (non pure) field of size S: bm is constant n.

(2) (C, x 7→ x) is an example of a field of size M: Choose algebraically independent elements
r1, . . . , r2n in R and put tj := rj +irj+n. Then rj , rj+n ∈ dcl(tj , tj) = dcl(tj). Thus the thickness
of the subfield generated by t1, . . . , tn is at least n. It is not difficult to see on the other hand
that bm(n) 6 n. (Or use Lemma 4.5 to see that this field has at most size M).

Question 3 Are there pure fields of size S? of size M?

4 Properties of slim fields

Definable subfields and perfectness

Proposition 4.1 Very slim fields are perfect and do not have proper infinite definable subfields.
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Finite fields are perfect, and as infinite fields have elementary extensions of arbitrarily high
transcendence degree, the proposition follows from the following lemma:

Lemma 4.2 If K has a proper ā-definable subfield k for ā ∈ Kn, and if either k has transcen-
dence degree at least n + 2 and K is a non-algebraic extension of k, or k has transcendence
degree at least n+ 3, then K is not slim.

Proof: Choose t ∈ K \ k and b0, b1 ∈ k such that t, b0, b1 are algebraically independent over
ā, and put c := b0 + b1t. Then b0, b1 are definable over (ā, c, t) as the unique coefficients in k

of c as a linear term in t, but the transcendence degree of (b0, b1) over (ā, c, t) is at least 1,
contradicting slimness. �

Corollary 4.3 If K is slim and has transcendence degree at least 3, then K is perfect.

This is best possible: Corollary 6.2 shows that Fp(X,Y )sep is slim.

The example of PAC fields shows that the adequate notion of slimness for non-perfect fields
should be the following:

Definition 4.4 K is λ-slim if the model theoretic algebraic closure in K equals the relative
algebraic closure of the closure under λ-functions.

Non-forking in separably closed fields can be described as algebraic independence of λ-closures.
In analogy to Theorem 2.1 we get that algebraic independence of λ-closures is an abstract
independence relation if and only if we are in a theory of λ-slim fields.

Finite extensions

Our list of examples of very slim pure fields is closed under finite extensions. This raises the
question whether a finite extension of a very slim field is again very slim. On the other hand,
the structure (C, x 7→ x) of size M and with bm(x) = 2x is interpretable in the very slim field
R. We will show now that this is the worst case: No finite field extension of a very slim field
can have size L. For this, we will understand the following under a finite field extension L/K

for fields with possibly additional structure: The extra structure on L should be induced by the
structure on K via the standard interpretations of the pure field L in the pure field K.

Lemma 4.5 Let L/K be a finite field extension of degree n. Then

bmK

(
n(m+ 1)

)
> bmL(m) +m−mn− n.

Proof: Let L = K(α) and let b̄ be the n coefficients of the minimal polynomial of α over K.
Then there is a b̄-definable field structure isomorphic to L on Kn, and by the assumption on
the additional structure, we may assume that the whole structure on L lives b̄-definably on Kn.
Let χ : L→ Kn be the corresponding isomorphism, and let χ̄ : P(L) → P(K) be the map that
sends X ⊆ L to the set of all coordinates of χ(x) for all x ∈ X. Since the primitive element α
is in F0(b̄)alg, any subfield l of L is algebraic over χ̄[l] and b̄ in the field theoretic sense.

Consider now a subfield l of L generated by m elements g1, . . . , gm and of thickness bmL(m), or
of arbitrarily high thickness if bmL(m) = ∞. We may assume that l has transcendence degree
m. We want to compute the thickness of k := F0(χ̄[l], b̄).
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On the one hand, one sees that χ̄[l] lies in the field generated by χ̄[{g1, . . . , gm}] and b̄, hence
tr.d.(k) ≤ mn+n. On the other hand, note that χ̄[aclL(l)] ⊆ aclK(χ̄[l], b̄) = aclK(k) because L
is interpretable in K over b̄. Therefore

tr.d.
(
aclK(k)

)
≥ tr.d.

(
χ̄[aclL(l)] ∪ b̄

)
≥ tr.d.

(
aclL(l)

)
= bmL(m) +m.

Put together, the thickness of k is at least bmL(m) + m − mn − n. Because the body mass
function is monotonous, the lemma follows. �

Proposition 4.6 Let L/K be a finite extensions of fields of degree n. If K has size at most M,
then also L. More precisely: If bmk is eventually bounded by m 7→ αm, then bmL is eventually
bounded by m 7→ (nα+ n)m.

Proof: Use Lemma 4.5 and a little computation for (b). �

The example of R and (C, x 7→ x̄) shows that this is at least not far from being best possible for
fields with additional structure. We have no example of a pure finite field extension of a very
slim field that is not very slim, but a priori there is no reason why a similar situation should
not occur definably in some pure field. (But compare with Proposition 4.1.)

Question 4 Is a finite pure field extension of a very slim field again very slim?
Is a field very slim if some finite extension of it is very slim?

Al least, we can show that a finite extension of a very slim field K is “K-slim”:

Proposition 4.7 Let L/K be a finite extension, K a very slim field. Then no formula in L

with parameters in K can algebraize elements that are transcendental over these parameters.

Proof: Assume c ∈ aclL(ā) for ā in K. If K is finite, c is in F0(ā)alg. If K is infinite, we may
assume K to be sufficiently saturated. We can find a primitive element α of L/K such that
the set αK of non-leading coefficients of the minimal polynomial of α over K is algebraically
independent over F0(c, ā), see Lemma 4.8. Let cα be the set of coefficients of c w.r.t. the basis
{1, α, α2, . . . } of L over K. Then cα ⊆ aclK(ā, αK). Because K is very slim, cα ⊆ F0(ā, αK)alg,
and then also c ∈ F0(ā, αK)alg. Now the independence of αK over F0(c, ā) implies c ∈ F0(ā)alg.

�

The lemma we need to complete the proof might be well-known to algebraists:

Lemma 4.8 Let K be a field of infinite transcendence degree over its prime field F0, let L/K
be a finite separable extension and let C be a finite subset of the algebraic closure K̃ of K.
Denote the set of coefficients of the minimal polynomials of the elements of C over K by CK .

Then there is a primitive element α for L/K such that the non-leading coefficients of the
minimal polynomial of α over K are algebraically independent over F0(CK), and hence also
over F0(C).

Proof: Pick some primitive element π for L/K, let n := [L : K] and let πK be the set
of coefficients of the minimal polynomial of π over K. Choose a0, . . . , an−1 ∈ K algebraically
independent over F0(CK∪πK), let A := {a0, . . . , an−1} and define α := a0+a1π+· · ·+an−1π

n−1.
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Let σ1, . . . , σn be the distinct embeddings of L into K̃ over K, let

f(X) :=
n∏

i=1

(X − σi(α)) =: Xn + bn−1X
n−1 + · · ·+ b0 ∈ K[X]

and let B := {b0, . . . , bn−1}. Then f is irreducible over K, since σi(α) 6= σj(α) for i 6= j:
otherwise

a1(σj(π)− σi(π)) + a2(σj(π2)− σi(π2)) + · · ·+ an−1(σj(πn−1)− σi(πn−1)) = 0

and hence a1, . . . , an−1 are linearly dependent over F0(σ1(π), . . . σn(π)) and therefore algebrai-
cally dependent over F0(πK) — a contradiction.

The equation f(α) = 0 translates into n polynomial equations over F0(B, πK) for the coefficients
a0, . . . , an−1 of α w.r.t. the base 1, π, . . . , πn−1 of L over K. This way A can be seen to be
algebraic over F0(B ∪ πK). By the choice of A,

tr.d.
(
F0(A ∪ CK ∪ πK)

/
F0(CK ∪ πK)

)
= n = |A| = |B|.

Hence
tr.d.

(
F0(B ∪ CK ∪ πK)

/
F0(CK ∪ πK)

)
= n,

i.e. B is algebraically independent over F0(CK ∪ πK), and so, in particular, over F0(CK). �

One can show for arbitrary fields that finite extensions do not add “new” ∅-definable transcen-
dentals:

Lemma 4.9 Let L/K be a finite extension of pure fields. Then dclL(∅) ·dclK(∅) is an algebraic
extension of dclK(∅).

Proof: Let c ∈ L be ∅-definable, and let M be the normal hull of L in a fixed algebraic closure
L̃. We may suppose K to be a saturated model. Then L and M are saturated, too. As L has
only finitely many embeddings into M ; the orbit of c under Aut(M) is finite. As M is saturated,
c is model theoretically algebraic in M . By remark 3.1, we may assume c to be ∅-definable in
M . Now every automorphism of K lifts to an automorphism of M and thus fixes c. It follows
that every automorphism fixes the minimal polynomial of c over K. Again by saturation, the
coefficients are in dclK(∅), that is, c is in the relative algebraic closure of dclK(∅) in L. �

Corollary 4.10 If a pure finite field extension of a very slim field is not very slim, then it has
size M.

The finite extension property is false for slim fields: Q(X) is slim (Example 6.3), but functions
fields over Q of curves of genus higher than 1 are not slim (Example 6.6).

Interpretations

Reducts of slim fields (with extra structure) are slim. More generally, the size of a reduct is at
most the size of the original structure. Naming constants can increase the size of very slim fields
to size S if the constants are transcendental. In all other cases, the size remains unchanged.

Lemma 4.11 Elementary substructures of slim fields are slim.
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Proof: Assume K is not slim, say t ∈ aclK(k) \ k̃ for some subfield k of K. Then for K∗ < K

we get on the one hand t ∈ aclK(k) = aclK∗(k), on the other hand t /∈ k̃ ∩K∗ = k̃ ∩K as K is
relatively algebraically closed in K∗. Thus K∗ is not slim. �

Lemma 4.12 Let K be a field with a proper infinite c̄-definable subfield L. (Thus K is not very
slim by Proposition 4.1.)

(a) bmL(x) 6 bmK

(
x+ lg(c̄)

)
+ tr.d.(c̄). Hence L has at most the size of K.

(b) If K is a non-algebraic extension of L, then K has size L.

(c) If K is an algebraic extension of L, then K has at least size M.

A stupid counterexample to a stronger version: Let K be very slim and L the expansion of K
by constants for algebraically independent elements c̄.

Proof: Going up to elementary extensiosn, we may suppose L and K to be sufficiently satu-
rated, in particular to have infinite transcendence degree.

(a) Let L be definable in K. If there is a formula that in L algebraises a transcendental element
t over l ⊆ L, then in K the same formula with quantifiers relativised to L algebraises t over l
and c̄. That is, aclL(l) ⊆ aclK(l, c̄). It follows that

tr.d.(aclK(l, c̄)/l, c̄) > tr.d.(aclK(l, c̄)/l)− tr.d.(c̄) > tr.d.(aclL(l)/l)− tr.d.(c̄).

We can then choose for any m an l such that the thickness of l equals bmL(m).

(b) Choose elements bi ∈ L and t ∈ K \L that are algebraically independent over c̄, and put
cm := b0 + b1t + · · · + bmt

m. Then the thickness of F0(ā, cm, t) is at least m + 1 as b0, . . . , bm
are definable over ā, cm, t.

(c) Choose elements ai, bi in L, algebraically independent over c̄, and t ∈ K \L. Then the
thickness of F0(c̄, a0t+ b0, . . . , ant+ bn) is at least n+ 1. �

Essentially the same proof shows that a field is not slim if a non-slim field is ∅-definable in it.

Corollary 4.13 If K is a field of characteristic 0 in which Q is definable, then K has size L.

This comes from the fact that Q has size L, see Example 6.4. Therefore number fields, Q(X)
and R(X) have size L by well-known results of Julia Robinson, see [Rob1] and [Rob2].

In general, nothing can be said about the size of a field K compared to the size of a field
interpretable in K because the interpretation does not need to be compatible with the field
structure.

Axiomatisability

Lemma 4.14 “Very slim” is a ∀∃-property. That means, if K is very slim, and L ≡∀∃ K, then
L is very slim.

Proof: Let K be slim. Then for each formula ϕ, all parameters c̄ and each n, there is an m

such that

K � ∀x
((
∃=nz ϕ(z, c̄) ∧ ϕ(x, c̄)

)
→ ∃z0 . . . zm

( m∧
i=0

zi ∈ F0(c̄) ∧ zm 6= 0 ∧
m∑

i=0

zix
i = 0

))
.
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If K realises all k-types, then for fixed ϕ and n, the number m as well as the complexity of
the zi as terms in c̄ is bounded, because otherwise one could realise the type of (a, c̄) with a

transcendental over F0(c̄), but ϕ(a, c̄) and |ϕ(x, c̄)| = n hold. Hence there is an m and finite
sets T i

0 of termes such that

K � ∀ȳ∀x
((
∃=nz ϕ(z, ȳ) ∧ ϕ(x, ȳ)

)
→ ∃z0 . . . zm

( m∧
i=0

∨
τ∈T i

0

zi = τ(ȳ) ∧
m∑

i=0

zix
i = 0

))
.

This is a ∀∃-formula since ∃=nz is a ∆2-quantifier. �

Remark 4.15 (1) The lemma does not imply that “very slim” is an elementary property,
because the bounds for the complexity could be arbitrarily big for different very slim fields.
And for the same reason, the lemma doesn’t show that unions of increasing chains of very slim
fields are very slim. This holds however if the fields in the chain are elementarily equivalent to
each other.

(2) “Very slim” is not ∆2, because a non-perfect separably closed field K is not very slim, but
its algebraic closure, which is very slim, can be written as a union of an increasing chain of
isomorphic copies of K and thus has the same ∆2-theory as K.

It is even so that for every field K there is a function field in one variable F over K such that
K is not algebraically closed in F in the model theoretic sense, see [Koe].

Question 5 Is “very slim” an elementary property?

Clearly, it is not finitely axiomatisable, because “not very slim” is not an elementary property:
An ultraproduct of non-perfect separably closed fields of varying characteristic is algebraically
closed, hence very slim.

5 Classes of very slim fields

Quantifier elimination and model completeness

For a field in the ring language, to be very slim is a kind of quantifier elimination condition
for algebraic formulae: The field is very slim if and only if each algebraic formula implies a
quantifier-free algebraic formula with same parameters. (Look at x2 .= 2∧∃y y2 .= x in R to see
that “implies” can’t be replaced by “equals” and that it is necessary to stick to the pure ring
language here).

Remark 5.1 Every field is quantifier-free slim, i.e. it is not possible that transcendental ele-
ments are algebraised by quantifier-free formulae.

This is clear for finite fields as they are very slim. For infinite fields, a slightly generalised proof
shows:

Proposition 5.2 Assume K elimininates quantifiers in an extension L of the ring language
by relation symbols, and that for all relation symbols Ri in L and all polynomials Pi ∈ K[X],
each consistent expression4

(¬)Ri1

(
P1(x), ā1

)
∧ · · · ∧ (¬)Rin

(
Pn(x), ān

)
4The negation symbols in parentheses stands for two possibilities: either a negation symbol or nothing.
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defines an infinite set in K. Then K is slim.

Proof: Let ϕ(x, ā) be a quantifier-free algebraic formula. We may assume that it is a conjunc-
tion of atomic and negated atomic formulae. If among the atomic ones there is a polynomial
equation, then this equation shows every realisation of ϕ(x, ā) to be field theoretically algebraic
over ā. Otherwise the formula has the form∧

j

Qj(x, ā) 6= 0 ∧ (¬)Ri1(P1(x), ā1) ∧ · · · ∧ (¬)Rin
(Pn(x), ān)

for polynomials Qj ∈ F0[X]. Now the first conjunct defines a co-finite set, therefore the whole
formula defines an infinite set by our hypothesis. �

Example 5.3 Proposition 5.2 applies immediately to algebaically closed fields and to real
closed fields. By results of Kuhlmann, it will apply to K((X)) for an algebraically closed field
K of characteristic 0, but these fields are shown to be very slim in Theorem 5.5.

Large fields

A field K is large if K is existentially closed in the formal power series field K((X)), or equiv-
alently, if every smooth curve with a K-rational point has infinitely many K-rational points,
cf. [Pop]. Slimness is a similarly defined condition: A consistent formula in one variable which
does not imply a non-trivial polynomial equation has infinitely many solutions.

Theorem 5.4 Pure fields that are large and model complete are very slim.

Proof: Let K be model complete and large.

1. By model completeness, K is perfect: K ∼= Kp ⊆ K, hence Kp 4 K, hence Kp = K.

2. The setting: Let k ⊆ K be a subfield and let ϕ(x) be a formula with parameters from k and
with one free variable x such that {c ∈ K | K � ϕ(c)} = {c1, . . . , cn} is non-empty and finite.
We have to show that c1, . . . , cn ∈ k̃. Assume the contrary, say, that c := c1 is transcendental
over k. This assumption will lead to a contradiction.

3. Standard reductions: Since K is model complete, ϕ(x) is equivalent to an existential formula
∃y1 · · · ∃yr ψ(x, y1, . . . , yr) in K, where ψ is quantifier free with parameters from k, i.e. of the
shape

ψ(x, y1, . . . , yr) =
∨
i

∧
ji

(¬)fiji
(x, y1, . . . , yr)

.= 0

for some polynomials fiji ∈ k[X,Y1, . . . , Yr].

By assumption, ϕ(c) holds inK, so we can choose d1, . . . , dr ∈ K such that ψ(c, d1, . . . , dr) holds
and we can choose an index i for which

∧
j(¬)fiji(c, d1, . . . , dr) = 0, thus assuming w.l.o.g. that

ψ is of the shape
∧

j(¬)fj(x, y1, . . . , yr)
.= 0.

At the cost of extra existential quantifiers, we can also get rid of inequalities: For any polynomial
f(x̄) over any field F one has

f(x̄) 6= 0 ⇐⇒ ∃z (z · f(x̄) = 1).

Finally, we can reduce ψ to just one polynomial equation: By our assumption, K is not very
slim and hence not algebraically closed, so there is some irreducible monic polynomial g =
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T d + ad−1T
d−1 + . . . + a0 ∈ K[T ] of degree d > 1. Passing (if necessary) to some saturated

extension of K we may choose g such that c remains transcendental over the subfield of K
generated over k by the coefficients of g. In other words, we may assume g ∈ k[T ]. Note that
a0 6= 0, since g has no zero in K, and that the polynomial

Zd · g(1/Z) = a0Z
d + a1Z

d−1 + . . .+ ad−1Z + 1

also has no zero in K. Now let ĝ(T,Z) := T d + ad−1T
d−1Z + . . .+ a0Z

d be the homogenization
of g. Then for any t, z ∈ K one has

ĝ(t, z) = 0 ⇐⇒ t = z = 0,

thus encoding two equations (t = 0 and z = 0) in one. This allows to inductively reduce ϕ(x)
to a formula of the shape

∃y1 · · · ∃yr f(x, y1, . . . , yr)
.= 0

for some f ∈ k[x, y1, . . . , yr] for which f(c, d1, . . . , dr) = 0. (This last reduction to one polyno-
mial is not really needed for the proof, it’s just for beauty and for the fun of it.)

4. Basic algebra: Since ϕ(x) holds only for finitely many elements in K, the variable x occurs
in f(x, y1, . . . , yr) and c is in k(d1, . . . , dr)alg. Since c is transcendental over k some of the di

are also transcendental over k. After rearranging the d’s we may assume that, for some s 6 r,
ds, ds+1, . . . , dr is a transcendence base of F := k(c, d1, . . . , dr) over k.

Now let E := k(ds, . . . , dr) — so F/E is finite and E/k purely transcendental —, and let
α ∈ F be a primitive element for the maximal separable subextension of F/E — so E(α)/E is
separable and F/E(α) is purely inseparable. Let h ∈ E[Z] be the irreducible polynomial of α
over E, and let l > 0 be a sufficiently large integer such that cp

l

, dpl

1 , . . . , d
pl

s−1 ∈ E(α), where
p := max{1, charK}.

5. The trick: Now let K((tp
l

)) be the field of formal Laurent series in tp
l

and choose elements
ts, ts+1, . . . , tr ∈ tp

l

K[[tp
l

]] which are algebraically independent over K, and let d̃i := di + ti

for s 6 i 6 r. Then d̃s, . . . , d̃r are algebraically independent over K, and hence also over
k(d1, . . . , dr) and over k. Let

χ0 : E = k(ds, . . . , dr) −→ Ẽ := k(d̃s, . . . , d̃r)

be the isomorphism with χ0 |k= idk and χ0(di) = d̃i for s 6 i 6 r. Then χ−1
0 is the restriction of

the tp
l

-adic place % on K((tp
l

)) to Ẽ. Let h̃ be the image of h under the canonical prolongation
of χ0 to an isomorphism E[Z] → Ẽ[Z]. Then h̃ ∈

(
K[[tp

l

]]
)
[Z] and %(h̃) = h.

Since α is a simple zero of h in K, there is, by Hensel’s Lemma, a unique zero α̃ ∈ K[[tp
l

]] of h̃
above α. By construction, the isomorphism χ0 extends to an isomorphism χ1 : E(α) → Ẽ(α̃)
with χ1(α) = α̃, and further to an isomorphism

χ : F → F̃ := Ẽ(α̃, c̃, d̃1, . . . , d̃s−1)

with χ(c) = c̃ and χ(di) = d̃i, where c̃ := pl
√
χ1(c

pl

) and d̃i := pl
√
χ1(d

pl

i ) for i = 1, . . . , s − 1.

Note that Ẽ(α̃) ⊆ K((tp
l

)) and that, by K being perfect, K((tp
l

)) =
(
K((t))

)pl

. Hence F̃ ⊆
K((t)).

6. The harvest: Since χ is the identity on k and since the polynomial f constructed at the end
of step 4 is defined over k,

f(c̃, d̃1, . . . , d̃r) = f(χ(c), χ(d1), . . . , χ(dr)) = χ(f(c, d1, . . . , dr)) = χ(0) = 0,
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so ϕ(c̃) holds in K((t)). On the other hand, by the choice of d̃s, . . . , d̃r,

tr.d. F̃K/K = tr.d. F̃ /k = r − s+ 1

and c̃ = χ(c) ∈ F̃ is transcendental over k, so c̃ is also transcendental over K. In particular,
c̃ 6= c1, . . . , c̃ 6= cn (cf. 2.). Hence

K((t)) � ∃x
(
ϕ(x) ∧

n∧
j=1

x 6= cj
)
.

Since K is large, it is existentially closed in K((t)), and the same formula holds in K. But this
contradicts the original setting where {x ∈ K | K � ϕ(x)} = {c1, . . . , cn}. �

There are large and very slim fields which are not model complete in the ring language, for
example C((X)). Other examples are non model-complete perfect PAC fields, see [Ax], [JWh],
[Wh].

Question 6 Are there fields that are / Find fields that are:
(1) perfect and large, but not very slim;
(2) model complete (in the ring language), but not very slim;
(3) very slim, but neither large nor model complete;
(4) very slim and model complete (in the ring language), but not large.

A good candidate for a perfect large field that might not be very slim is the fixed field of a
p-Sylow-subgroup of the absolute Galois group of Q.

In this context, one should note a question by Macintyre: If K is a model complete field, is then
the absolute Galois group of K small and does Kalg = F0

alg · K hold? Moreover, the second
author thinks that a field with small absolute Galois group should be large. Together this would
imply a model complete field to be large and would simplify Theorem 5.4 to: A model complete
pure field is very slim. Also, this would provide a negative answer to (2) and (4) of the question
above.

Henselian fields

Theorem 5.5 Any pure field of characteristic 0 with a non-trivial henselian valuation is very
slim.

Recall that henselian valued fields are large!

Proof5: Let K be a field of characteristic 0 admitting a non-trivial henselian valuation. We
have to show that K is very slim (in the pure ring language). So we take an arbitrary field K ′

which is elementarily equivalent to K and we show that K ′ is slim.

1. We first observe that K ′ has an ℵ1-saturated elementary extension K? with a non-trivial
henselian valuation v of residue characteristic 0:

Either K is algebraically closed — then so is K ′ and any ℵ1-saturated elementary extension
K? of K ′ has non-trivial valuations with residue characteristic 0 (since K? is not algebraic over
Q) and all of them are henselian because K? is algebraically closed.

5We would like to thank Angus Macintyre for very helpful discussions from which the main argument in the

proof emerged.
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Or K is not algebraically closed — then K is not separably closed and hence allows a field
theoretically definable henselian topology (by [PZ], section 7), a property which carries over
to K ′: The henselian topology on K is uniformly definable on K using as parameters from
K the coefficients of a separable irreducible polynomial over K. However, any other separable
irreducible polynomial over K induces the same topology. Hence the topology is ∅-definable in
the language of rings and so K ′ is elementarily equivalent to K even as topological field. So K ′

also carries a henselian topology. Then, again by [PZ] (Theorem 7.2), any ℵ1-saturated elemen-
tary extension K? of K ′ admits a non-trivial henselian valuation v. Passing, if necessary, to an
ℵ1-saturated elementary extension of (K?, v) in the language of valued fields and replacing the
valuation there by the finest (by saturation non-trivial) coarsening with residue characteristic 0,
we may assume that (K?, v) has residue characteristic 0. (Cf. for example [EP] for the notions
of coarsenings and refinements of valuations).

By Lemma 4.11 it suffices to show that K? is slim.

So replacing K by K?, we may assume that K is ℵ1-saturated and that K has a non-trivial
henselian valuation v with residue characteristic 0. We have to show that, under these hypothe-
ses, K is slim.

2. Following [Pas], these hypotheses make sure that (K, v) admits an angular component, i.e. a
group homomorphism

ac : K× → k×

coinciding on O×
v with the residue map, where k is the residue field and Ov the valuation ring

of (K, v). We consider (K, v) as 3-sorted structure K = (K, k,Γ) in the language Lvfc of valued
fields with angular components which contains the associated maps v : K× → Γ (Γ is the
value group of v) and ac : K× → k×. Then, by [Pas], Theorem 4.1, K admits K-quantifier
elimination, i.e. every Lvfc-formula is equivalent to a formula where quantification occurs only
w.r.t. the k- and Γ-sort.

3. Now assume that K is not slim. Then there is a Lring-formula ϕ(t̄, x) and parameters ā from
K such that ϕ(ā, x) defines a finite set in K which is not in the algebraic closure of F0(ā). By
K-quantifier elimination we may take ϕ(t̄, x) to be of the form

Q(ȳ, γ̄)
∨
k

∧
l

ψkl(ȳ, γ̄, t̄, x),

where Q(ȳ, γ̄) is a block of quantifiers over the tupel ȳ of free variables in the k-sort and the
tupel γ̄ = (γ1, . . . , γn) of free variables in the Γ-sort, and where the formula ψkl(ȳ, γ̄, t̄, x) is

Pkl(t̄, x) = 0 ∧ Rkl(t̄, x) 6= 0
∧ fkl(ac(F 1

kl(t̄, x)), . . . , ac(F rkl

kl (t̄, x)), ȳ) = 0
∧ gkl(ac(G1

kl(t̄, x)), . . . , ac(Gskl

kl (t̄, x)), ȳ) 6= 0
∧

∑
ikl
αikl

v(Aikl
(t̄, x)) +

∑n
j=1 α

′
jklγj = 0

∧
∑

ikl
βikl

v(Bikl
(t̄, x)) +

∑n
j=1 β

′
jklγj > 0.

Here the various P , R, F , G, A and B are polynomials in Z[t̄, x] (evaluated in K), the f ’s and
g’s are polynomials over Z (evaluated in k) and the α, α′, β, β′ are integers (occuring as scalars
of the Z-module Γ).

4. By assumption, we may pick some x ∈ K satisfying ϕ(ā, x), where x is transcendental over
F0(ā). Then none of the polynomials P , R, F , G, A or B becomes zero at (ā, x), unless it is the
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zero-polynomial (in x). Hence we can choose a neighbourhood U of x such that replacing x by
any x′ ∈ U changes the values of these polynomials by 1-units, i.e. by factors from 1 +Mv. So

∀x′ ∈ U ∃zPkl
∈Mv such that Pkl(ā, x′) = Pkl(ā, x) · (1 + zPkl

) etc.

However, a 1-unit factor does not affect the angular component or the value of an element.
Hence, for all k, l

K � ψkl(ȳ, γ̄, ā, x) ↔ ψkl(ȳ, γ̄, ā, x′),

and so ϕ(ā, x′) holds in K as well. But then ϕ(ā, x) does not define a finite set (U is infinite),
a contradiction resulting from our assumption that K is not slim. Hence K is slim, after all. �

Corollary 5.6 A (pure) henselian field of characteristic 0 has no proper definable subfields.

Proof: Theorem 5.5 and Proposition 4.1. �

Example 5.7 If K is a field of characteristic 0, then the formal power series field K((X)) is
very slim in the ring language.

Question 7 Are all perfect henselian valued fields of positive characteristic very slim?

Question 8 Is Fp((X))perf very slim?

6 Examples

Slim, but not necessarily very slim fields

Of course, all algebraic fields (that is, no transcendental elements at all) are slim, but in general
not very slim.

Lemma 6.1 A PAC field is slim if it is a separable extension of all its relatively algebraically
closed subfields.

Proof: Let k ⊆ K be relatively algebraically closed. From [CMD] we know that aclK(k) is the
relative algebraic closure of the closure of k unter the λ-functions of K. But K is seperable over
k by assumption, hence k is closed under the λ-functions. �

Corollary 6.2 Fp(X)sep and Fp(X,Y )sep are slim.

Proof: The only relatively algebraically closed subfields of Fp(X)sep are the field itself and F̃p.

The relatively algebraically closed subfields of K := Fp(X,Y )sep are K, F̃p and subfields k of
transcendence degree 1. The latter are relative algebraic closures of functions fields Fp(R(X,Y ))
for some rational function R in X and Y , without p-th root in K. Now, if neither X nor Y
constitutes a separating transcendence basis, then both have to appear only in p-th power in
R. But then the p-th root of R(X,Y ) would be in K. �

Alternative proof for K := Fp(X)sep: Let k ⊆ K be relatively algebraically closed. If k has
transcendence degree 1, then k = K. Otherwise k = F̃p. Every transcendental element z ∈ K

has infinite orbit in the rational function field k(z−pn

) ⊆ K, where z−pn

is no p-th power, and
every automorphism of k(z−pn

) has an extension to its separable clousre K. �
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Example 6.3 If K is infinite and algebraic over the prime field, then K(X) is slim.

Proof: Let k ⊆ K(X). If k has transcendence degree 0, then k̃ ∩ K(X) = K, and K has
thickness 0 in K(X) as every element of K(X) \K has infinite orbit under AutK(K(X)). If k
has transcendence degree 1, then k̃ ∩K(X) = K(X). �

Big sizes

Example 6.4 Q is slim, but not very slim, and has size L with bmQ(0) = 0 and bmQ(1) = ∞.

Proof: Q is slim, because there are no transcendental elements, but not very slim: The natural
numbers and their exponentiation is definable in Q (Julia Robinson, Matyasevich). For a non-
standard integer x, the numbers px for prime numbers p are algebraically independent elements
that are definable over x. �

We have already seen that this implies that number fields, Q(X) and R(X) for real closed fields
R have also size L.

Lemma 6.5 If K is large and of transcendence degree at least 2, then K(X) is not slim. If K
is in addition of infinite transcendence degree, then K(X) has size L.

Proof: If K is large, then K is ∅-definable in K(X), see [Koe]. Then use Proposition 4.1 and
Lemma 4.12 (b). �

In particular, C(X) is not slim (and has size L with bmC(X)(2) = ∞).

Example 6.6 The following fields are not slim:
(a) Function fields over Fp in one variable (Theorem 1 in [Koe]).
(b) Function fields over Q in one variable and of genus greater than 1 (according to Falting’s
Theorem).
(c) Most function fields in one variable over an arbitrary field, namely if the conditions specified
in Theorem 1 in [Koe] are satisfied.
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