
FIELDS WITH SEVERAL COMMUTING DERIVATIONS

DAVID PIERCE

Abstract. The existentially closed models of the theory of fields (of arbitrary characteristic) with a given
finite number of commuting derivations can be characterized geometrically, in several ways. In each case,
the existentially closed models are those models that contain points of certain differential varieties, which are
determined by certain ordinary varieties.

How can we tell whether a given system of partial differential equations has a solu-
tion? An answer given in this paper is that, if we differentiate the equations enough
times, and no contradiction arises, then it never will, and the system is soluble. Here,
the meaning of ‘enough times’ can be expressed uniformly; this is one way of showing
that the theory, m-DF, of fields with a finite number m of commuting derivations has a
model-companion. In fact, this theorem is worked out here (as Corollary 4.6, of Theo-
rem 4.5), not in terms of polynomials, but in terms of the varieties that they define, and
the function-fields of these: in a word, the treatment is geometric.

The model-companion of m-DF0 (in characteristic 0) has been axiomatized before,
explicitly in terms of differential polynomials: see § 3. I attempted in [11] to character-
ize its models (namely, the existentially closed models of m-DF0) in terms of differen-
tial forms, but I made a mistake. Here I correct the mistake, but also work in arbitrary
characteristic. The existence of a model-companion of m-DF (with no specified char-
acteristic) appears to be a new result when m > 1 (despite a remark by Saharon Shelah
[22, p. 315]: ‘I am quite sure that for characteristic p as well, [making m greater than 1]
does not make any essential difference’).

The theory of model-companions and model-completions was worked out decades
ago; perhaps for that very reason, it may be worthwhile to review the theory here, as
I do in § 1. I try to give the original references, when I have been able to consult
them. In § 2, I review the various known characterizations of existentially closed fields
with single derivations. Then §§ 3 and 4 consider how those characterizations can be
generalized to allow for several commuting derivations.

§1. Model-theoretic background. Let M be an arbitrary (first-order) structure; its
theory is Th(M). Let T be an arbitrary consistent (first-order) theory; its models com-
pose the class Mod(T ). Every class K of structures in some signature has a theory,
Th(K). Then K ⊆ Mod(Th(K)); in case of equality, K is elementary. Always,
Th(Mod(T )) = T .

The structureM has the universe M. The structure denoted byMM is the expansion
ofM that has a name for every element of M. ThenM embeds in N if and only ifMM
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embeds in an expansion ofN. However, although the class of structures in whichM em-
beds need not be elementary, the class of structures in whichMM embeds is elementary.
The theory of the latter class is the diagram ofM, or diag(M): it is axiomatized by the
quantifier-free sentences in Th(MM) [16, Thm 2.1.3, p. 24]. The class of structures in
whichMM embeds elementarily is also elementary, and its theory is just Th(MM). The
class of substructures of models of T is elementary, and its theory is denoted by T∀: this
is axiomatized by the universal sentences of T [16, Thm 3.3.2, p. 71].

By a system overM, I mean a finite conjunction of atomic and negated atomic for-
mulas in the signature of MM; likewise, a system over T is in the signature of T . A
structureM solves a system ϕ(x) if M |= ∃x ϕ(x). Note well here that x, in boldface,
is a tuple of variables, perhaps (x0, . . . , xn−1). By an extension of a model of T , I mean
another model of T of which the first is a substructure. Two systems over a modelM of
T are equivalent if they are soluble in the same extensions.

An existentially closed model of T is a model of T that solves every system over
itself that is soluble in some extension. So a modelM of T is existentially closed if and
only if T∪diag(M) ` Th(MM)∀, that is, every extension of a model of T is a substructure
of an elementary extension ([5, § 7] or [23, § 2]).

A theory is model-complete if its every model is existentially closed. An equivalent
formulation explains the name: T is model-complete if and only if T ∪ diag(M) is
complete wheneverM |= T [17, Ch. 2].

Suppose every model of T has an existentially closed extension. Such is the case
when T is inductive, that is, Mod(T ) is closed under unions of chains [5, Thm 7.12]:
equivalently, T = T∀∃ [8, 3]. Suppose further that we have a uniform first-order way to
tell when systems over models of T are soluble in extensions: more precisely, suppose
there is a function

ϕ(x,y) 7−→ ϕ̂(x,y), (1)

where ϕ(x,y) ranges over the systems over T (with variables analyzed as shown), such
that, for every model M of T and every tuple a of parameters from M, the system
ϕ(x,a) is soluble in some extension of M just in case ϕ̂(x,a) is soluble in M. Then
the existentially closed models of T compose an elementary class, whose theory T ∗ is
axiomatized by T together with the sentences

∀y (∃x ϕ̂(x,y)→ ∃x ϕ(x,y)). (2)

Immediately, T ∗ is model-complete, so T ∗ ∪ diag(M) is complete whenM |= T ∗. What
is more, T ∗ ∪ diag(M) is complete wheneverM |= T [16, Thm 5.5.1].

In general, T ∗ is a model-completion of T if T ∗∀ ⊆ T ⊆ T ∗ and T ∗ ∪ diag(M)
is complete whenever M |= T . Model-completions are unique [15, (2.8)]. We have
sketched the proof of part of the following (the rest is [15, (3.5)]):

L 1.1 (Robinson’s Criterion). Let T be inductive. Then T has a model-comple-
tion if and only if a function ϕ(x,y) 7→ ϕ̂(x,y) exists as in (1). In this case, the
model-completion is axiomatized modulo T by the sentences in (2).

If T∀ = T ∗∀ and T ∗ is model-complete, then T ∗ is a model-companion of T ([1,
§ 5]; cf. [5, § 2]). Model-completions are model-companions, and model-companions
are unique [1, Thm 5.3]. If T has a model-companion, then its models are just the
existentially closed models of T [5, Prop. 7.10]. Conversely, if T is inductive, and the
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class of existentially closed models of T is elementary, then the theory of this class is
the model-companion of T [5, Cor. 7.13].

§2. Fields with one derivation. Let DF be the theory of fields with a derivation,
and let DPF be the theory of models of DF that, for each prime `, satisfy also

∀x ∃y (1 + · · · + 1︸      ︷︷      ︸
`

= 0 ∧ Dx = 0→ y · · · y︸︷︷︸
`

= x).

So models of DPF are differentially perfect. A subscript on the name of one of these
theories will indicate a required characteristic for the field. In particular, we have DPF0,
which is the same as DF0.

Abraham Seidenberg [21] shows the existence of the function in Lemma 1.1 in case
T is DPFp, where p is prime or 0. Consequently:

T 2.1 (Robinson). DF0 has a model-completion, called DCF0.
T 2.2 (Wood [26]). If p is prime, then DFp has a model-companion, DCFp,

which is the model-completion of DPFp.
2.1. Single variables. Since it involves all systems over a given theory, Robinson’s

criterion yields the crudest possible axiomatization for a model-completion. By con-
trast, though the theory ACF of algebraically closed fields is the model-completion of
the theory of fields, its axioms (modulo the latter theory) can involve only systems in one
variable (indeed, single equations in one variable). A generalization of this observation
is the following, which can be extracted from the proof of [19, Thm 17.2, pp. 89–91]
(see also [2]):

L 2.3 (Blum’s Criterion). Say T ∗∀ ⊆ T ⊆ T ∗.
(i) The theory T ∗ is the model-completion of T if and only if the commutative diagram

M

A

OO

// B

``

of structures and embeddings can be completed as indicated when A and B are
models of T andM is a |B|+-saturated model of T ∗.

(ii) If T = T∀, it is enough to assume that B is generated over A by a single element.
This allows a refinement of Lemma 1.1 in a special case:

L 2.4. Suppose T = T∀. Then Lemma 1.1 still holds when ϕ(x,y) is replaced
with ϕ(x,y) (where x is a single variable).

From Lemma 2.3, Lenore Blum obtains Theorem 2.5 below in characteristic 0, in
which case the first two numbered conditions amount to K |= ACF ([19, pp. 298 ff.]
or [2]). If p > 0, then DFp is not universal, so part (ii) of Blum’s criterion does not apply;
Carol Wood instead uses a primitive-element theorem of Seidenberg [20] to obtain new
axioms for DCFp [27]. These can be combined with Blum’s axioms for DCF0 to yield
the following. (Here SCF is the theory of separably closed fields.)

T 2.5 (Blum, Wood). A model (K,D) of DF is existentially closed if and only
if
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(i) K |= SCF;
(ii) (K,D) |= DPF;

(iii) (K,D) |= ∃x ( f (x,Dx, . . . ,Dn+1x) = 0 ∧ g(x,Dx, . . . ,Dnx) , 0) whenever f and g
are ordinary polynomials over K in tuples (x0, . . . , xn+1) and (x0, . . . , xn) of vari-
ables respectively such that g , 0 and ∂ f /∂xn+1

, 0.
Hence DF has a model-companion, DCF.

There is a similar characterization of the existentially closed ordered differential
fields [24].

2.2. First derivatives. Alternative simplified axioms for DCF are parallel to those
found for the model-companion ACFA of the theory of fields with an automorphism
[9, 4]. Suppose (K,D) |= DPF and K |= SCF. Every system over (K,D) can be written
as

∧

f
f (x,Dx, . . . ,Dnx) = 0 ∧ g(x,Dx, . . . ,Dnx) , 0, (3)

where g and the f are ordinary polynomials over K. This system is equivalent to one
that involves only first derivatives, namely
∧

f
f (x0, . . . ,xn−1,yn−1) = 0 ∧ g(x0, . . . ,xn−1,yn−1) , 0 ∧

∧
∧

i+1<n
xi+1 = yi ∧

∧

i<n
Dxi = yi.

This system, in form, is a special case of the system
∧

f
f (x,y) = 0 ∧ g(x,y) , 0 ∧ Dx = y.

Suppose the latter system has the solution (a, b). Then K(a, b)/K is separable [12,
Lem. 1.5, p. 1328]. Let V and W be the varieties over K with generic points a and
(a, b) respectively, let TD(V) be the twisted tangent bundle of V, and let U be the open
subset of W determined by the inequation g , 0; then the situation can be depicted thus:

U // //

�� ��
@

@
@

@ W // //

����
�

�

�
TD(V)

(x,y)7→x
||||y

y
y

y
y

V

In characteristic 0, the model (K,D) of DF is existentially closed if and only if, in every
such geometric situation, U contains a K-rational point (c,Dc); this yields the so-called
geometric axioms for DCF0 found with Anand Pillay [13]. In positive characteristic, it
is still true that, if (a, b) is a generic point of V, then D extends to K(a) so that Da = b.
However, an additional condition is needed to ensure that D extends to all of K(a, b); it
is enough to require that the projection of TD(W) onto TD(V) contain a generic point of
W; this yields Piotr Kowalski’s geometric axioms for DCFp [7].

In an alternative geometric approach to DCF, instead of (3), it is enough to look at
an arbitrary system of equations, ∧ f f (x,Dx, . . . ,Dnx) = 0. We can take all of the
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derivations out of the polynomials, getting the equivalent system
∧

f
f (x0, . . . ,xn) = 0 ∧

∧

i<n
Dxi = xi+1.

This is a special case of
∧

f
f (x0, . . . , xn−1) = 0 ∧

∧

i<k
Dxi = gi(x0, . . . , xn−1), (4)

where k 6 n and the gi are rational functions over K. Suppose this has solution a,
which is a generic point of V. It is enough to assume that (a0, . . . , ak−1) is a separating
transcendence-basis of K(a)/K. Then we have a dominant, separable rational map x 7→

(x0, . . . , xk−1) or ϕ from V onto Ak, and another rational map x 7→ (g0(x), . . . , gk−1(x))
or ψ from V to Ak. So (K,D) is existentially closed if and only if V always has a
K-rational point P such that D(ϕ(P)) = ψ(P) [12, Thm 1.6, p. 1328].

§3. Fields with several derivations. Let m-DF be the theory of fields with m com-
muting derivations. Tracey McGrail [10] axiomatizes the model-completion, m-DCF0,
of m-DF0. Alternative axiomatizations arise as special cases in work of Yoav Yaffe [28]
and Marcus Tressl [25]. There is a common theme: A differential ideal has a generating
set of a special form; in the terminology of Joseph Ritt [14, § I.5, p. 5] (when m = 1) and
Ellis Kolchin [6, § I.10, pp. 81 ff.], this is a characteristic set. There is a first-order way
to tell, uniformly in the parameters, whether a given set of differential polynomials is a
characteristic set of some differential ideal, and then to tell, if it is a characteristic set,
whether it has a root. In short, the function ϕ 7→ ϕ̂ in Robinson’s criterion (Lemma 1.1)
is defined for sufficiently many systems ϕ. (Applying Blum’s criterion, McGrail and
Yaffe consider only systems in one variable, so they must include inequations in these
systems; Tressl uses only equations, in arbitrarily many variables.)

I do not give the definition of a characteristic set, as not all ingredients of the defini-
tion are needed for the arguments presented in § 4. However, some of the ingredients
are needed; these are in 4.2.

3.1. Differential forms. In [11] I attempted to apply the geometric approach de-
scribed in 2.2 to m-DF0. I worked more generally with DFm

0 , where DFm is the theory of
structures (K,D0, . . . ,Dm−1) such that (K,Di) |= DF for each i, and each bracket [D j,Dk]
is a K-linear combination of the Di. (This is roughly what Yaffe did too.) In [12, § 2] I
made some minor corrections and otherwise adapted the argument to arbitrary charac-
teristic. Nonetheless, in May, 2006, Ehud Hrushovski showed me a counterexample to
[11, Thm A, p. 926], a theorem that was an introductory formulation of [11, Thm 5.7,
p. 942]. Then I found an error at the end of the proof of the latter theorem. Before
offering a resolution of the problem, let me review the general situation.

Let (K,D0, . . . ,Dm−1) |= DFm, and let E be the K-linear span of the Di. Then E is
a Lie-ring, as well as a vector-space over K. As a vector-space, E has a dual, E∗; and
there is a derivation d from K into E∗ given by

D(d x) = Dx. (5)

Then E∗ has a basis (d ti : i < `) for some ti in K and some ` no greater than m [11,
Lem. 4.4, p. 932], and this basis is dual to a basis (∂i : i < `) of E, where [∂i, ∂ j] = 0 in
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each case, and d is then given by

d x =
∑

i<`
d ti · ∂ix (6)

[11, Lem. 4.7, p. 934]. We can use these ideas to find an extension of (K,D0, . . . ,Dm−1)
in which the named derivations are linearly independent over the field. Indeed, if ` < m,
then let L = K(α`, . . . , αm−1), where (α`, . . . , αm−1) is algebraically independent over K.
Extend the original ∂i to L so that they are 0 at the α j; then, if ` 6 k < m, define ∂k
to be 0 on K and to be δ j

k at α j. Then (∂i : i < m) is a linearly independent m-tuple of
commuting derivations on L; from this, we obtain linearly independent extensions of
the Di to L such that the brackets [D j,Dk] are the same linear combinations of the Di as
before ([11, Lem. 5.2, p. 937]—or [24, Lem. 2.1, p. 1930], by a different method—in
characteristic 0; generally, [12, Lem. 2.4, p. 1334]).

Consequently, a model-companion DCFm for DFm can be obtained from a model-
companion m-DCF for m-DF ([11, Thm 5.3 and proof] or [24, § 3]). This much stands,
and differential forms are convenient for establishing it.

But I tried also to obtain DCFm independently as follows. Suppose now we have
a separably closed field K, along with a Lie-ring and finite-dimensional space E of
derivations of K; as a space, E has a basis (∂i : i < m), whose dual is (d ti : i < m),
so that the ∂i commute. We may assume that (K, ∂0, . . . , ∂m−1) is differentiably perfect
[12, Lem. 2.4]. Every system over (K, ∂0, . . . , ∂m−1) is equivalent to a system of the
form of (4), generalized to

∧

f
f (x0, . . . , xn−1) = 0 ∧

∧

j<k

∧

i<m
∂ix j = g j

i (x). (7)

By means of (6), we can also write this as
∧

f
f (x0, . . . , xn−1) = 0 ∧

∧

j<k
d x j =

∑

i<m
d ti · g j

i (x). (8)

If a is a solution (from some extension), it is enough to assume that (a0, . . . , a`) is a sep-
arating transcendence-basis of K(a)/K for some ` such that k 6 ` < m. That we cannot
generally assume k = ` is an important difference from the case of one derivation; it is
what causes the difficulties in the case of several derivations. The solution a to (8) can
be understood as follows. First we have the field K(a), and then (8) can be be written
as

∧

j<k
d a j =

∑

i<m
d ti · g j

i (a). (9)

A solution of this can be understood as a model (L, ∂̃0, . . . , ∂̃m−1) of m-DF extending
(K, ∂0, . . . , ∂m−1) such that K(a) ⊆ L and (9) holds when d a j =

∑
i<m d ti · ∂̃ia j, that is,

∧

j<k

∧

i<m
∂̃ia j = g j

i (a). (10)

Since the ∂̃i commute, it is necessary that
∧

j<k

∧

h<i<m
∂̃h(g j

i (a)) = ∂̃i(g j
h(a)) (11)
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[11, § 1, p. 926]. Any derivative with respect to ∂̃i of an element of K(a) is a constant
plus a linear combination of the derivatives ∂̃ia j, where j < ` (by [12, Fact 1.1 (0, 2)],
for example); we know what these derivatives ∂̃ia j are when j < k, by (10); so (11)
becomes a linear system in the unknowns ∂̃ia j where k 6 j < `.

If k = `, then this linear system has no variables, so it is true or false; its truth is a
sufficient condition for (9) to have a solution. If k < `, then the linear system is soluble
or not. If it is soluble, then it is possible to extend the ∂i to derivations ∂̃i as required
by (10) that commute on K(a0, . . . , ak−1); but these derivations need not commute on all
of K(a). In [11] I claimed that they could commute, and that the solubility of (11) was
sufficient for solubility of (9) in the sense above. I was wrong.

3.2. A counterexample. In the counterexample supplied by Hrushovski, the con-
stants (m, k, `) of § 3.1 are (2, 2, 3). Let (a, b, c) be an algebraically independent triple,
and consider the system

d a = d t0 · c · c + d t1 · c, d b = d t0 · 2a + d t1 · c; (12)

equivalently, by (6), the system comprises the equations ∂0a = c · c, ∂1a = c, ∂0b = 2a,
and ∂1b = c. From these, we compute

∂1∂0a = 2c · ∂1c, ∂0∂1a = ∂0c, ∂1∂0b = 2 · ∂1a = 2c, ∂0∂1b = ∂0c.

Equating ∂0∂1 and ∂1∂0 yields the linear system

∂0c − 2c · ∂1c = 0, ∂0c = 2c,

which has the solution ∂0c = 2c, ∂1c = 1. But then we must have ∂1∂0c = 2 · ∂1c = 2,
while ∂0∂1c = ∂01 = 0, which means (12) has no solution, contrary to my claim in [11].

For the record, the mistake is at the end of the proof of [11, Thm 5.7, p. 942] and can
be seen as follows. Write the system (12) as d a = α, d b = β; then

dα = d(d t0 · c · c + d t1 · c)
= d c ∧ d t0 · 2c + d c ∧ d t1

= d c ∧ (d t0 · 2c + d t1),

d β = d(d t0 · 2a + d t1 · c)
= d a ∧ d t0 · 2 + d c ∧ d t1

= (d t0 · c · c + d t1 · c) ∧ d t0 · 2 + d c ∧ d t1

= − d t0 ∧ d t1 · 2c + d c ∧ d t1

= (d c − d t0 · 2c) ∧ d t1.
(13)

Since also d β = d2 b = 0, (13) imposes a condition on d c ∧ d t1, hence on ∂0c; in
particular, ∂0c = 2c, which is what we found above. But there is no apparent condition
on ∂1c, so I try introducing a new transcendental, d, for this. Then d c = d t0 ·2c+d t1 ·d.
But this causes a problem, since it allows a substitution in (13), yielding

dα = (d t0 · 2c + d t1 · d) ∧ (d t0 · 2c + d t1)
= d t0 ∧ d t1 · 2c(1 − d),

which means d = 1, contrary to assumption. In short, the next to last sentence of
the proof of [11, Thm 5.7] (beginning “This ideal is linearly disjoint from”) is simply
wrong. (I had given no argument that it was correct.)
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§4. Resolution. To resolve the problem, it is better not to introduce differential
forms from the beginning, but to allow equations to involve any number of applica-
tions of the derivations. Examples (as in 4.1) may involve only one variable; but in
contrast to 2.1, there does not seem to be an advantage in restricting attention to this
case.

4.1. Another example. Over a differential field (K, ∂0, ∂1), consider the system

∂0
n∂1

nx − x = 0, ∂0
n∂1x − ∂1

n x = 0, (14)

where n > 2. Think of the derivatives ∂0
i∂1

jx as matrix entries:
x ∂1x ∂1

2x . . .

∂0x ∂0∂1x ∂0∂1
2x . . .

∂0
2x ∂0

2∂1x ∂0
2∂1

2x . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treat each derivative ∂0
i∂1

jx as a new variable, x(i, j). In case n = 3, the system (14)
determines a 4 × 4 matrix (a(i, j))i<4

j<4 in which a(3,3) = a(0,0) and a(3,1) = a(0,3); we can
depict this as follows:

a ∗ ∗ b
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ b ∗ a

(15)

We first ask whether the derivations can be extended to commuting derivations on the
field K(a(i, j) : (i, j) 6 (3, 3)), where 6 is the product order on ω2, so that ∂0a(i, j) = a(i+1, j)

when (i + 1, j) 6 (3, 3) and ∂1a(i, j) = a(i, j+1) when (i, j + 1) 6 (3, 3). That is, writing
a(4, j) for ∂0a(3, j), and a(i,4) for ∂1a(i,3), we ask whether ∂0 and ∂1 can map K(a(i, j) : (i, j) 6
(3, 3)) into K(a(i, j) : (i, j) 6 (4, 3)) and K(a(i, j) : (i, j) 6 (3, 4)) respectively, in the manner
suggested by the notation; and we ask further whether ∂0 and ∂1 can still commute,
which means there should be a(4,4) so that ∂0 maps K(a(i, j) : (i, j) 6 (3, 4)), and ∂1 maps
K(a(i, j) : (i, j) 6 (4, 3)), into K(a(i, j) : (i, j) 6 (4, 4)). In short, can the matrix (15) be
extended by one row and column? Since a(3,3) = a(0,0), we must have a(4,3) = a(1,0), and
so forth; none of this causes any problem, and the new matrix can be depicted:

a d ∗ b g
c e ∗ f h
∗ ∗ ∗ ∗ ∗

∗ b g a d
∗ f h c e

(16)

To extend the derivations further to K(a(i, j) : (i, j) 6 (4, 4)), we require a new condition
on the original matrix (a(i, j))i<4

j<4, namely, a(3,0) = a(0,2); this comes out when we try to
extend (16) by one column:

a d j b g a
c e ∗ f h c
i ∗ ∗ ∗ ∗ i
j b g a d j
∗ f h c e ∗

(17)
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Indeed, as a(0,4) = a(3,2), so a(0,5) = a(3,3) = a(0,0), so column 5 must be the same
as column 0; also a(0,1) = a(3,4), whence a(0,2) = a(3,5) = a(3,0). This does not mean
that (14) is insoluble; it is. But the additional condition found in (17) does mean that
the associated non-homogeneous system

∂0
n∂1

nx − x = 0, ∂0
n∂1x − ∂1

nx = 1 (18)

is insoluble, although this is not clear from (15) or (16). Alternatively, we can work
with the differential ideal, looking for a characteristic set as mentioned at the beginning
of this section:

[∂0
n∂1

nx − x, ∂0
n∂1x − ∂1

nx − 1]
= [∂1

2n−1x − x, ∂0
n∂1x − ∂1

nx − 1]
= [∂1

2n−1x − x, ∂0
n∂1x − ∂1

nx − 1, ∂1
3n−2x − ∂0

nx]
= [∂1

2n−1x − x, ∂0
n∂1x − ∂1

nx − 1, ∂0
nx − ∂1

n−1 x]
= [∂1

2n−1x − x, 1, ∂0
nx − ∂1

n−1x] = [1],

so (18) is insoluble; but higher-order derivatives were needed to discover this.
By the same computation, the differential ideal [∂0

n∂1
n x − x, ∂0

n∂1x − ∂1
n x] has the

characteristic set {∂1
2n−1 x − x, ∂0

nx − ∂1
n−1x}, which, in the manner described above,

determines the following matrix in case n = 2:

a b ∗ a
∗ ∗ ∗ ∗

b ∗ ∗ ∗

(19)

Therefore (15) has a solution, simply because the ordinary ideal (x(0,2n−1) − x, x(n,0) −
x(0,n−1)) has a zero. One way of justifying this conclusion is [10, Lem. 3.1.2]; another
way will be Theorem 4.7, according to which it is enough to observe that the dependen-
cies in (19) extend in a ‘nice’ way to a triangle:

a b c a b c
d e f d e
b c a b
e f d
c a
f

(20)

4.2. Terminology. I shall now avoid working with differential polynomials as such,
but shall work instead with the algebraic dependencies that they determine.

Let (K, ∂0, . . . , ∂m−1) |= m-DF. Higher-order derivatives with respect to the ∂i can
be indexed by elements of ωm: so, for ∂0

σ(0) · · · ∂m−1
σ(m−1) x, we may write ∂σx. Let 6

be the product ordering of ωm. Then the derivative ∂σx is below ∂τx (and the latter is
above the former) if σ 6 τ. If n ∈ ω, then 6may also be the product ordering ofωm×n.

If σ ∈ ωm, let the sum ∑i<m σ(i) be denoted by |σ|: this is the height of σ or of ∂σx.
(Kolchin [6, § I.1, p. 59] uses the word order.) If n is a positive integer, let ωm × n be
(totally) ordered by P, which is taken from the left lexicographic ordering of ωm+1 by
means of the embedding

(ξ, k) 7−→ (|ξ|, k, ξ(0), . . . , ξ(m − 2))
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of ωm × n in ωm+1. Then (ωm × n,P) is isomorphic to (ω,6). In case n = 1, and m is 2
or 3, the picture is thus:

(0, 0) (0, 1)

(1, 0)

(0, 2)

(1, 1)

(2, 0)

(0, 0, 2)

(0, 1, 1)

(0, 2, 0)

(1, 0, 1)

(1, 1, 0)
(2, 0, 0)

We may write (σ, k) C ∞ for all (σ, k) in ωm × n. Suppose (xh : h < n) is a tuple
of indeterminates. By ordering the formal derivatives ∂σxk in terms of (σ, k) and P,
we have Kolchin’s example of an orderly ranking of derivatives [6, § I.8, p. 75]. If
(σ, k) C (τ, `), I shall say that the derivative ∂σxk is less than ∂τx` or is a predecessor of
∂τx`, and ∂τx` is greater than ∂σxk; likewise for the expressions aσk and aτ

`
, introduced

in (22) below. (So, the terms just defined refer to the total ordering C, while ‘below’
and ‘above’ refer to the partial ordering 6.)

Addition and subtraction on ω induce corresponding operations on ωm. Then

τ 6 σ + τ,

∂σ∂τxk = ∂
σ+τxk,

(σ, k) P (σ + τ, k), (21)
(σ, k) P (τ, `) ⇐⇒ (σ + ρ, k) P (τ + ρ, `).

If i < m, let i denote the characteristic function of {i} in ωm, so that ∂i = ∂i, and more
generally ∂i∂

σ = ∂σ+i, and ∂i∂
σ−i = ∂σ.

Let L be an extension of K with generators that are indexed by an initial segment of
(ωm × n,P); that is,

L = K(aξh : (ξ, h) C (τ, `)), (22)

where (τ, `) ∈ ωm × n, or possibly (τ, `) = ∞, in which case L = K(aξh : (ξ, h) ∈ ωm × n).
By (21), if aσ+ik is one of the generators of L/K, then so is aσk . Let us say that L, with the
given generators, meets the differential condition if there is no obstacle to extending
each derivation ∂i to a derivation Di on K(aξh : (ξ + i, h) C (τ, `)) such that

Diaσk = aσ+ik (23)

whenever (σ + i, k) C (τ, `). (So, if the right-hand member of (23) is not defined, then
the left need not be defined.) Formally, the differential condition is that, if f is a rational
function over K in variables (xξh : (ξ, h) P (σ, k)), where (σ + i, k) C (τ, `) for some i in
m, and if

f (aξh : (ξ, h) P (σ, k)) = 0, (24)

then we may apply Di to this, assuming (23), to get
∑

(η,g)P(σ,k)

∂ f
∂xηg

(aξh : (ξ, h) P (σ, k)) · aη+ig + f ∂i (aξh : (ξ, h) P (σ, k)) = 0. (25)
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(Note well the assumption that (σ + i, k) C (τ, `). In (25), each of the aη+ig must exist,
even though the coefficient (∂ f /∂xηg)(aξh : (ξ, h) P (σ, k)) might be 0 in some cases when
char(K) > 0.) So the differential condition is necessary for the extensibility of the ∂i as
desired (see for example [12, Fact 1.1 (0)]); sufficiency is part of Lemma 4.1 below.

An extension (M,D0, . . . ,Dm−1) of (K, ∂0, . . . , ∂m−1) is compatible with the extension
L of K given in (22) if L ⊆ M, and (23) holds whenever (σ + i, k) C (τ, `).

Borrowing some terminology used for differential polynomials [14, § IX.1, p. 163],
let us say that a generator aσk of L/K is a leader if it is algebraically dependent over K
on its predecessors, that is,

aσk ∈ K(aξh : (ξ, h) C (σ, k))alg.

Then aσk is a separable leader if it is separably algebraic over K(aξh : (ξ, h) C (σ, k)).
A separable leader aσk is minimal if there is no separable leader strictly below it—no
separable leader aρk such that ρ < σ.

For example, in the field K(a(i, j) : (i, j) 6 (3, 3)) depicted in (15) above, the generator
a(3,3) is a (non-minimal) separable leader, and a(3,1) is a minimal separable leader. But
here we wanted a(3,3) ultimately to be a derivative of a(3,1), namely ∂1

2a(3,1). Passing to
a larger field in (17), we found the condition a(3,0) = a(0,2); then a(3,0) became a new
separable leader, strictly below than the formerly minimal separable leader a(3,1).

L 4.1. Suppose (K, ∂0, . . . , ∂m−1) |= m-DF, and L is an extension K(aξh : (ξ, h) C
(τ, `)) of K meeting the differential condition. Then the derivations ∂i extend to deriva-
tions Di from K(aξh : (ξ+i, h) C (τ, `)) into L such that (23) holds when (σ+i, k) C (τ, `).
If aσk is a separable leader, and (σ + i, k) C (τ, `), then

aσ+ik ∈ K(aξh : (ξ, h) C (σ + i, k)) (26)

(that is, aσ+ik is a rational function over K of its predecessors); in particular, aσ+ik is
a separable leader. Therefore generators of L/K that are above separable leaders are
themselves separable leaders.

P. Equation (23) shows how to define Di at the generators over K of K(aξh : (ξ +
i, h) C (τ, `)). Then Di extends to the whole field by the rules of derivations: this
extension is unambiguous, hence well-defined, if the differential condition is met.

If aσk is a separable leader, then we may suppose that (24) expresses this; then (25)
can be solved for aσ+ik , yielding (26). (Or just use, for example, [12, Fact 1.1 (2)].)
In particular, if aρ−ik is a separable leader, then so is aρk . Repeating this observation as
needed completes the proof. a

4.3. An example. It is an exercise to check that the differential ideal

[∂(1,1)x − ∂(0,2)x, ∂(1,2)x − ∂(2,0)x],

with two generators, is equal to [ f , g, h], where

f = ∂(1,1)x − ∂(0,2)x, g = ∂(0,3)x − ∂(2,0)x, h = ∂(3,0)x − ∂(2,1)x.

The algebraic relations imposed by f , g, and h are given in the following triangle, where
the minimal separable leaders in the present sense are underlined (though we have not
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yet checked the corresponding field meets the differential condition):

∗ ∗ a b
∗ a ∗

b c
c

(27)

These leaders have common derivatives, which however impose no new conditions. (In
the terminology introduced by Azriel Rosenfeld [18, § I.2, p. 397] in characteristic 0,
the set { f , g, h} is coherent.) For example,

∂(3,0)g − ∂(0,3)h = ∂(3,0)(∂(0,3)x − ∂(2,0)x) − ∂(0,3)(∂(3,0)x − ∂(2,1)x)
= ∂(3,3)x − ∂(5,0)x − ∂(3,3)x + ∂(2,4)x
= ∂(2,4)x − ∂(5,0)x

where we used derivatives as great as ∂(3,3)x; but we already had

∂(2,1)g − ∂(2,0)h = ∂(2,1)(∂(0,3)x − ∂(2,0)x) − ∂(2,0)(∂(3,0)x − ∂(2,1)x)
= ∂(2,4)x − ∂(4,1)x − ∂(5,0)x − ∂(4,1)x
= ∂(2,4) − ∂(5,0)x,

where no derivative is as great as ∂(3,3)x. This checking did require some derivatives
that were not below ∂(3,3)x; but they do all belong to the following larger triangle, whose
corresponding field meets the differential condition (though note how the c from (27)
changes to b):

∗ ∗ a b b b b
∗ a b b b b
b b b b b
b b b b
b b b
b b
b

(28)

We shall see that extensibility to triangles as in (28), without introduction of new
minimal separable leaders, is sufficient to guarantee solutions.

4.4. A solubility condition. If (K, ∂0, . . . , ∂m−1) |= m-DF, then this model has an
extension whose underlying field is the separable closure of K (as by [11, Lem. 3.4,
p. 930] and [12, Lem. 2.4, p. 1334]). We shall need this in a more general form:

L 4.2. Suppose a field M has two subfields L0 and L1, which in turn have a
common subfield K. For each i in 2, suppose there is a derivation Di mapping K into Li
and L1−i into M. Then the bracket [D0,D1] is a well-defined derivation on K. Suppose
it is the 0-derivation, that is, the following diagram commutes.

K D1
−−−−−→ L0

D0

y
yD0

L1 −−−−−→D1
M
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Suppose also that a is an element of M that is separably algebraic over K. Then each
Di extends uniquely to K(a), and Dia ∈ L1−i(a), so D1−iDia is well-defined. Moreover,
[D0,D1]a = 0.

P. The claim follows from standard facts, at least if L0 = K = L1; but the proof
is the same in the general case. Indeed, though the derivations D0 and D1 are defined on
K, their bracket [D0,D1] need not be so, since the compositions D0D1 and D1D0 need
not be so; but if they are, then [D0,D1] is a derivation on K. A derivation on K extends
uniquely to Ksep; if the derivation is 0 on K, then it is 0 on Ksep [12, Fact 1.1 (2)]. In the
present case, as a ∈ Ksep, so Dia ∈ L1−i(a), and therefore Dia ∈ L1−i

sep; hence D1−iDia
is defined. Thus [D0,D1] is defined on K(a), where a ∈ Ksep; and if the bracket is 0 on
K, then is 0 at a. a

Another example illustrates the following theorem in positive characteristic. Over a
differential field (K, ∂0, ∂1), where char(K) = p > 0, the differential equation

(∂0x)p + x = ∂1x

determines an extension K(aξ : |ξ| 6 2) of K that meets the differential condition: the
generators form a triangle thus:

a bp + a bp + a
b b
c

where (a, b, c) is algebraically independent over K. In particular, a(1,0) (which has the
value b) is an inseparable leader, but none of the generators of height 2 (namely, a(0,2),
a(1,1) and a(2,0)) is an inseparable leader.

T 4.3. Suppose (K, ∂0, . . . , ∂m−1) |= m-DF, and K has an extension K(aξh : |ξ| 6
2r ∧ h < n) meeting the differential condition for some positive integers r and n. Sup-
pose further that, whenever aσk is a minimal separable leader, then |σ| 6 r. Then
(K, ∂0, . . . , ∂m−1) has an extension (M,D0, . . . ,Dm−1) compatible with K(aξh : |ξ| < 2r ∧
h < n).

P. The claim can be compared to and perhaps derived from a differential-alge-
braic lemma of Rosenfeld [18, § I.2], at least in characteristic 0. Here I give an in-
dependent argument, for arbitrary characteristic. We shall obtain M recursively as
K(aξh : (ξ, h) ∈ ωm × n), at the same time proving inductively that the ∂i can be extended
to Di so that (23) holds in all cases.

Let L = K(aξh : |ξ| < 2r ∧ h < n); this is K(aξh : (ξ, h) P ((2r − 1, 0, . . . , 0), n − 1)).
Then by (25), the differential condition requires of the tuple (aξh : |ξ| = 2r ∧ h < n) only
that it solve some linear equations over L. The hypothesis of our claim is that there is
a solution, namely (aξh : |ξ| = 2r ∧ h < n). We may therefore assume that this tuple is a
generic solution of these equations. In particular, no entry of this tuple is an inseparable
leader. (Alternatively, one might try choosing the entries of (aξh : |ξ| = 2r ∧ h < n) from
the field L; then this field would be closed under the desired extensions Di of ∂i, and
the derivations Di would commute on the subfield K(aξh : |ξ| + 1 < 2r ∧ h < n); but they
might not commute on all of L.)
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Now, as an inductive hypothesis, suppose we have the extension K(aξh : (ξ, h) C (τ, `))
of K meeting the differential condition, so that there are derivations Di as given by
Lemma 4.1; suppose also that

(i) if aσk is a minimal separable leader, then |σ| 6 r;
(ii) if aσk is an inseparable leader, then |σ| < 2r.

We need to choose aτ
`

in such a way that these conditions still hold for K(aξh : (ξ, h) P

(τ, `)). The inductive hypothesis is correct when |τ| 6 2r; so we may assume |τ| > 2r.
Hence, if τ(i) > 0, so that τ− i is defined, then |τ− i| > 2r, so aτ−i

`
is not an inseparable

leader.
If aτ−i

`
is not a leader at all, for any i in m, then we may let aτ

`
be a new transcendental,

and we may define each derivative Diaτ−i`
as this [12, Fact 1.1 (1)].

In the other case, aτ−i
`

is a separable leader for some i. Then Diaτ−i`
is determined

(Lemma 4.1). We want to let aτ
`

be this derivative. However, possibly also aτ−j
`

is a
separable leader, where i , j. In this case, we must check that

D jaτ−j`
= Diaτ−i` , (29)

that is, [Di,D j]aτ−i−j`
= 0.

There are minimal separable leaders aπ
`

and aρ
`

below aτ−i
`

and aτ−j
`

respectively. Let
ν be π ∧ ρ, the least upper bound of {π, ρ} with respect to 6. Then ν 6 τ. But |ν| 6
|π|+ |ρ| 6 2r < |τ|; so ν < τ. Hence ν 6 τ − k for some k in m, which means aν

`
is below

aτ−k
`

. Consequently,

(i) aπ
`

is below both aτ−i
`

and aτ−k
`

;
(ii) aρ

`
is below both aτ−j

`
and aτ−k

`
.

If k = j, then aπ
`

is below aτ−i−j
`

, so this is a separable leader. As Di and D j commute
on K(aξh : (ξ, h) C (τ − i − j, `)) by the differential condition, they must commute also
at aτ−i−j

`
(Lemma 4.2), so (29) is established. The argument is the same if k = i. If

k is different from i and j, then again the same argument yields D jaτ−j`
= Dkaτ−k

`
and

Dkaτ−k
`
= Diaτ−i`

, so (29) holds.
In no case did we introduce a new minimal separable leader or an inseparable leader.

This completes the induction and the proof. a

The claim at the end of the last subsection (4.3) is now justified.
In terms of differential polynomials and ideals, the theorem can be understood as

follows. Given the hypothesis of the theorem, let S be the set of differential polynomials
f (∂ξxh : |ξ| < 2r∧h < n), where f is an ordinary polynomial over K such that f (aξh : |ξ| <
2r ∧ h < n) = 0. Then S includes a characteristic set for the differential ideal that it
generates.

We can now characterize the existentially closed models of m-DF by means of the
following lemma. The lemma follows from unproved statements in [6, § 0.17, p. 49];
let’s just prove it here.

L 4.4. For every m in ω and positive integer n, every antichain of (ωm × n,6) is
finite.
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P. The general case follows from the case when n = 1, since if S is an antichain
of (ωm × n,6), then

S =
⋃

j<n
{(ξ, h) ∈ S : h = j},

and each component of the union is in bijection with an antichain of (ωm,6). As an
inductive hypothesis, suppose every antichain of (ω`,6) is finite; but suppose also, if
possible, that there is an infinite antichain S of (ω`+1,6). Then S contains some σ. By
inductive hypothesis, the set

⋃

j6`

⋃

i6σ( j)
{ξ ∈ S : ξ( j) = i}

is a finite union of finite sets, so its complement with respect to S has infinitely many
elements τ; but then σ < τ, so S was not an antichain. a

T 4.5. Suppose (K, ∂0, . . . , ∂m−1) |= m-DF. Then the following are equivalent:
(i) The model (K, ∂0, . . . , ∂m−1) of m-DF is existentially closed.

(ii) For all positive integers r and n, if K has an extension K(aξh : |ξ| 6 2r ∧ h < n)
meeting the differential condition such that |σ| 6 r whenever aσk is a minimal
separable leader, then the tuple (aξh : |ξ| < 2r ∧ h < n) has a specialization
(∂ξbh : |ξ| < 2r ∧ h < n) for some tuple (bh : h < n) of elements of K.

P. Assume (i) and the hypothesis of (ii). Let S be a (finite) generating set of the
ideal of (aξh : |ξ| < 2r ∧ h < n) over K. By Theorem 4.3, the system

∧

f∈S
f (∂ξxh : |ξ| < 2r ∧ h < n) = 0

has a solution in some extension, hence it has a solution in K itself, which means the
conclusion of (ii) holds. So (ii) is necessary for (i).

Every system over (K, ∂0, . . . , ∂m−1) is equivalent to a system of equations. Sup-
pose such a system has a solution (ah : h < n) in some extension. Then the extension
K(∂ξah : (ξ, h) ∈ (ωm × n)) has a finite set of minimal separable leaders, by Lemma 4.4,
since this set is indexed by an antichain of (ωm × n,6). Hence there is r large enough
that all of these minimal separable leaders are also generators of K(aξh : |ξ| 6 r ∧ h < n).
We may assume also that r is large enough that |σ| 6 r for every derivative ∂σxk that
appears in the original system. The hypothesis of (ii) is now satisfied when each aσk is
taken as ∂σak. If the conclusion of (ii) follows, then (bh : h < n) is a solution of the
original system. Thus, (ii) is sufficient for (i). a

C 4.6. The theory m-DF has a model-companion, m-DCF.

P. We consider all possible situations in which the hypothesis of (ii) in the the-
orem is satisfied. In each case, there is a finite tuple c of parameters from K, there is a
universal formula ϕ(y), and there is a system ψ(x,y) such that:

(i) (K, ∂0, . . . , ∂m−1) |= ϕ(c);
(ii) (K, ∂0, . . . , ∂m−1) |= ψ(b, c) if and only if b is a tuple (bh : h < n) as in the conclu-

sion of (ii);
(iii) for all modelsM of m-DF and all d from M, ifM |= ϕ(d), then the system ψ(x,d)

is soluble in some extension ofM.
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Then m-DCF is axiomatized modulo m-DF by all of the sentences
∀x (ϕ(x)→ ∃y ψ(x,y))

that can arise in this way. To check this in detail, we note that ϕ(c) and ψ(x, c) can be
such that:

(i) the system ψ(x, c) includes equations
f (∂ξxh : |ξ| < 2r ∧ h < n) = 0, (30)

where the (ordinary) polynomials f generate the ideal of (aξh : |ξ| < 2r ∧ h < n)
over K;

(ii) for each leader of K(aξh : |ξ| < 2r∧h < n), there is an equation (30) in ψ(x, c) such
that the variables appearing in f correspond only to that leader and its predecessors
that are not leaders, so that (since these non-leading predecessors are algebraically
independent) f is in effect a constant multiple of the minimal polynomial of the
leader over (the extension of K generated by) those predecessors;

(iii) then ϕ(c) says that those f are irreducible (this is why ϕ is universal);
(iv) also, ϕ(c) shows explicitly how nothing new results when the equations (30) are

differentiated: if this differentiation does not introduce a new derivative (namely,
some ∂σxk where |σ| = 2r), then the new equation is an explicit linear combination
of the original equations; in the cases where new derivatives are introduced, the
resulting linear system has an explicit solution.

This can all have been done so that c can be extracted to yield ϕ(y) and ψ(x,y) as
desired. a

4.5. Differential forms again. The condition in Theorem 4.3 can be adjusted to
yield the following:

T 4.7. Suppose (K, ∂0, . . . , ∂m−1) |= m-DF, and K has an extension K(aξh : |ξ| 6
|µ| ∧ h < n) meeting the differential condition for some µ in ωm and some positive in-
teger n. Suppose further that, if aσk is a minimal separable leader, then σ 6 µ. Then
(K, ∂0, . . . , ∂m−1) has an extension compatible with K(aξh : |ξ| < |µ| ∧ h < n).

P. The proof is as for Theorem 4.3, mutatis mutandis. What needs adjusting is
the choosing of aτ

`
in case both aτ−i

`
and aτ−j

`
are separable leaders. Again we have

minimal separable leaders aπ
`

and aρ
`

below aτ−i
`

and aτ−j
`

respectively. Since |µ| < |τ|,
there is some k in m such that µ(k) < τ(k). If k = j, then π( j) 6 µ( j) < τ( j), so
π( j) 6 (τ − j)( j) = (τ − i − j)( j). Then π 6 τ − i − j, so aπ

`
is below aτ−i−j

`
. Now we

can proceed as before. a

As Theorem 4.3 yields Theorem 4.5, so Theorem 4.7 yields a characterization of the
existentially closed models of m-DF. Moreover, Theorems 4.3 and 4.7 can be combined
in the following way:

T 4.8. Suppose (K, ∂0, . . . , ∂m−1) |= m-DF, and K has an extension K(aξh : |ξ| 6
2r ∧ h < n) meeting the differential condition for some positive integers n and r. Sup-
pose further that, for each k in m, either σ 6 r whenever aσk is a minimal separable
leader, or else there is some τ in ωm such that |τ| = 2r, and |σ| 6 |τ| whenever aσk is
a minimal separable leader. Then (K, ∂0, . . . , ∂m−1) has an extension compatible with
K(aξh : |ξ| < 2r ∧ h < n).
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P. Combine the proofs of Theorems 4.3 and 4.7. a

Again there is a corresponding characterization of the models of m-DCF.
Suppose K(aξh : |ξ| 6 |µ| ∧ h < n) is as in the hypothesis of Theorem 4.7, and |µ| > 2.

If |τ| 6 2 and |σ + τ| 6 |µ|, let aτ(σ,k) denote aσ+τk . Then the extension of K can be written
as

K(aη(ξ,h) : |η| 6 2 ∧ (ξ, h) C ((0, . . . , 0, |µ| − 1), 0)), (31)

but this no longer need satisfy the conditions in Theorem 4.8. For example, in case
m = 2 and n = 1 and µ = (3, 0), the original extension might determine the following
triangle, with the single leader underlined:

a b d g
c e h
f k
a

(32)

Then the derived extension in (31) determines three triangles thus, with minimal sepa-
rable leaders underlined:

a b d
c e
f

b d g
e h
k

c e h
f k
a

We know that the two minimal separable leaders in the last triangle will not cause a
problem; but we don’t know this directly from the tree small triangles. In the present
context, the system (9) is

d a = d t0 · c + d t1 · b, d b = d t0 · e + d t1 · d, d c = d t0 · f + d t1 · e,
d d = d t0 · h + d t1 · g, d e = d t0 · k + d t1 · h, d f = d t0 · a + d t1 · k,

and then (10) consists of ∂0g = ∂1h, ∂0h = ∂1k, and ∂0k = b. As linear equations,
these are soluble, but they don’t carry the information in (32) that lets us know that the
corresponding differential system is soluble.

4.6. Another sufficient condition. If (K, ∂0, . . . , ∂m−1) |= m-DF, and K(aξh : |ξ| 6
|π| ∧ h < n) is an extension of K meeting the differential condition, this by itself is not
enough to ensure that (K, ∂0, . . . , ∂m−1) has an extension compatible with K(aξh : |ξ| <
|π| ∧ h < n). However, if such an extension does exist, then this can be shown by means
of the Theorem 4.3, provided |π| can be made large enough: this is Theorem 4.10 below,
which relies on the existence of bounds as in the following.

L 4.9. For all positive integers m and n, for all sequences (ai : i ∈ ω) of positive
integers, there is a bound on the length of strictly increasing chains

S 0 ⊂ S 1 ⊂ S 2 ⊂ · · · (33)

of antichains S k of (ωm × n,6), where also S k ⊆ {(ξ, h) : |ξ| 6 ak}.

P. Divide and conquer. First reduce to the case when n = 1. Indeed, suppose the
claim does hold in this case. Suppose also, as an inductive hypothesis, that the claim
holds when n = `. Now fix m and the sequence (ai : i ∈ ω) or rather (a(i) : i ∈ ω), and
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consider arbitrary chains as in (33), where n = `+1. Analyze each S k as S ′k∪S ′′k , where

S ′k = {(ξ, h) ∈ S k : h < `},
S ′′k = {(ξ, h) ∈ S k : h = `}.

For each k such that S k+1 exists, at least one of the inclusions S ′k ⊆ S ′k+1 and S ′′k ⊆ S ′′k+1
is strict; also, by our assumption, there is an upper bound f (k) on those r such that

S ′′k ⊂ S ′′k+1 ⊂ · · · ⊂ S ′′r−1. (34)

The function f depends only on m, n, and (ai : i ∈ ω)), not on the choice of chain in (33).
Let k(0) = 0, and if k(i) has been chosen, let k(i + 1) be the least r, if it exists, such

that S ′k(i) ⊂ S ′r. Here k does depend on the chain. But if r is maximal in (34), and S ′r
exists, then S ′k ⊂ S ′r. Hence k(i + 1) 6 f (k(i)). Since the function f is not necessarily
increasing, we derive from it the increasing function g, where g(k) = maxi6k f (i). Then

k(r) 6 f (k(r − 1)) 6 g(k(r − 1)) 6 g ◦ g(k(r − 2)) 6 · · · 6
r︷     ︸︸     ︷

g ◦ · · · ◦ g(0) = gr(0). (35)

In particular, S k(r) ⊆ {(ξ, h) : |ξ| 6 a(gr(0))}. The sequence (a(gi(0)) : i ∈ ω) does not
depend on the original chain. Hence the inductive hypothesis applies to the chain

S ′k(0) ⊂ S ′k(1) ⊂ · · · , (36)

showing that there is s (independent of the original chain) such that k(s) is defined, and
r 6 s for all entries S ′k(r) in (36). Hence also, by (35), if S r is an entry in (36), then
r 6 k(s) 6 gs(0).

Now suppose S ′r is the final entry in (36). Then S ′′r ⊂ S ′′r+1 ⊂ · · · ; but if S ′′t is an
entry of this chain, then t < f (r) 6 g(r) 6 g(gs(0)) = gs+1(0).

Therefore the original chain in (33) has a final entry S t, where t < gs+1(0). Thus the
claim holds when n = ` + 1. By induction, the claim holds for all positive n, provided it
holds when n = 1.

It remains to show that, for all positive m, for all sequences (ai : i ∈ ω), there is a
bound on the length of chains

S 0 ⊂ S 1 ⊂ S 2 ⊂ · · · (37)

of antichains S k of (ωm,6), where S k ⊆ {ξ : |ξ| 6 ak}. The claim is trivially true when
m = 1. Suppose it is true when m = `. Now let m = ` + 1, and suppose we have a chain
as in (37). We may assume that S 0 contains some σ. If i < m and j ∈ ω, let

S i, j
k = {ξ ∈ S k : ξ(i) = j}.

Then the inductive hypothesis applies to chains of the form

S i, j
k(0) ⊂ S i, j

k(1) ⊂ S i, j
k(2) ⊂ · · · .

Moreover, if τ ∈ S k, then τ(i) 6 σ(i) for some i in m (since σ is also in S k, and this is
an antichain). Hence

S k =
⋃

i<m

⋃

j6σ(i)
S i, j

k ,

a union of no more than |σ|-many sets, hence no more than a0-many sets. So the proof
can proceed as in the reduction to n = 1. a
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T 4.10. Suppose (K, ∂0, . . . , ∂m−1) |= m-DF, and r and n are positive integers.
Then there is a positive integer s such that r 6 s, and if K(aξh : |ξ| 6 s∧ h < n) meets the
differential condition, then (K, ∂0, . . . , ∂m−1) has an extension that is compatible with
K(aξh : |ξ| 6 r ∧ h < n).

P. Suppose K(aξh : |ξ| 6 2tr ∧ h < n) meets the differential condition for some t.
When u 6 t, let Ku = K(aξh : |ξ| 6 2ur ∧ h < n), and let S u be the set of minimal
separable leaders of Ku. Then we have an increasing chain S 0 ⊆ S 1 ⊆ . . . ⊆ S t. By
the preceding lemma, there is a value of t, depending only on m, r, and n, large enough
that this chain cannot be strictly increasing. Then S u = S u+1 for some u less than this t.
Then Ku+1 satisfies the hypothesis of Theorem 4.3. So (K, ∂0, . . . , ∂m−1) has an extension
compatible with K(aξh : |ξ| < 2u+1r ∧ h < n), and a fortiori with K(aξh : |ξ| 6 r ∧ h < n).
In short, the desired s is 2tr. a

This theorem yields another yet characterization of the models of m-DCF.
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