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Abstract. Extending the work done in [5, 9] in the o-minimal and geometric
settings, we study expansions of models of a supersimple theory of SU-rank ω

with a "dense codense" independent collection H of elements of SU-rank ω,
where density of H means it intersects any de�nable set of SU-rank omega. We
show that under some technical conditions, the class of such structures is �rst
order. We prove that the expansion is supersimple and characterize forking
and canonical bases of types in the expansion. We also analyze the e�ect these
expansions have on one-basedness and CM-triviality. In the one-based case,
we describe a natural "geometry of generics modulo H" associated with such
expansions and show it is modular.

1. Introduction

There are several papers that deal with expansions of simple theories with a new
unary predicate. For example, there is the expansion with a random subset [8] that
gives a case where the new theory is again simple and forking remains the same, in
contrast to the case of lovely pairs [2, 15], where the pair is usually much richer and
the complexity of forking is related to the geometric properties of the underlying
theory [15].

In [5] the �rst and the third authors studied, in the setting of geometric struc-
tures, adding a predicate for an algebraically independent set H which is dense and
codense in a modelM (meaning every non-algebraic formula in a single variable has
a realization in H and a realization generic over H and its parameters). The paper
generalized ideas developed in the framework of o-minimal theories in [9]. The key
tool used in [5] was that the closure operator acl has the exchange property and thus
gives a matroid that interacts well with the de�nable subsets. A special case under
consideration was SU-rank one theories, where forking independence agrees with
algebraic independence. In this stronger setting the authors characterized forking
and gave a description of canonical bases in the expansion. As in the lovely pair
case, the complexity of forking is related to the underlying geometry of the base
theory T .

In this paper we start with a theory T that has SU -rank omega and we use
the closure operator associated to the weight of generic types, namely for M |= T ,
a ∈ M , A ⊂ M , we have a ∈ cl(A) if SU(a/A) < ω. This closure operator has the
exchange property and many of the results obtained in [5] can be proved in the new
framework: we expand M by a new predicate consisting in a cl-dense cl-codense
family of independent generics (see De�nition 2.3). In particular, the extension is
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supersimple and we get a clear description of canonical bases in the expansion, up
to interalgebraicity (see Proposition 5.6).

In the special case where the theory of M is superstable with a unique type of
U -rank ω, the predicate H is a Morley sequence of generics; this case is related to
the work done in [1]. Our work is also related to work of Fornasiero on lovely pairs
of closure operators [10].

Of special interest is the e�ect of our expansion on the geometric complexity,
namely the ampleness hierarchy. Following the ideas of [7], we show that the ex-
pansion preserves CM-triviality, but one-basedness is preserved only in the trivial
case.

We then use this expansion to study the underlying geometry of the closure
operator localized in H. We show that if T is a one-based supersimple theory
of SU-rank ω, (N,H) a su�ciently (e.g. |T |+-) saturated H-structure, then the
localized closure operator cl(− ∪ H) is modular and its associated geometry is a
disjoint union of projective geometries over division rings and trivial geometries.

This paper is organized as follows. In section 2 we de�ne H-structures associated
to modelsM of a theory T . We show that two H-structures associated to the same
theory are elementary equivalent and call T ind this common theory. Finally we
prove that that under some technical conditions (elimination of the quanti�er ∃large
and the type de�nablity of the predicates Qϕ,ψ) the saturated models of T ind are
again H-structures.

In section 3 we study four di�erent examples of theories of SU -rank ω: dif-
ferentially closed �elds, vector spaces with a generic automorphism, H-pairs and
lovely pairs of geometric theories. In each case we show the corresponding theory
of H-structures is �rst order.

In section 4 we analyze the de�nable sets in the expansion, we prove that every
de�nable set is a boolean combination of old formulas bounded by existential quan-
ti�ers over the new predicate. In section 5 we characterize forking in the expansion
and characterize canonical bases. In section 6 we study the question of preservation
of one-basedness and CM-triviality under our expansion. Finally in section 7 we
study the geometry of cl(− ∪H).

2. H-structures: definition and first properties

Let T be a simple theory of SU -rank ω. Let H be a new unary predicate and let
clH = cl∪{H}. Let T ′ be the LH -theory of all structures (M,H), where M |= T
and H(M) is an independent subset of generic elements of M , that is, all elements
have SU -rank ω. Note that saying that H(M) is an independent collection of
generics is a �rst order property, it is simply the conjunctions of formulas of the
form ¬ϕ(x1, . . . , xn), where SU(ϕ(x1, . . . , xn)) < ωn.

For M |= T , A ⊂M and b ∈M , we write b ∈ cl(A) and say that b is small over
A if SU(b/A) < ω. By the additivity properties of SU rank we have that L gives a
pregeometry on M . We write dimcl(ϕ(x1, . . . , xn)) = n and say that ϕ(x1, . . . , xn)
is large if SU(ϕ(x1, . . . , xn)) = ωn

We will assume that for every formula ϕ(x, ~y) there is a formula ψ(~y) such that
for any ~a ∈ M ϕ(x,~a) is large if and only if ψ(~a). We write ∃largeϕ(x, ~y) if ψ(~y)
holds.
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There is a strong analogy to what happens in geometric theories (see [3]), we
change the pregeometry acl for the pregeometry L and the quanti�er ∃∞ for the
quanti�er ∃large.

Notation 2.1. Let (M,H(M)) |= T ′ and let A ⊂M . We write H(A) for H(M)∩
A.

Notation 2.2. Throughout this paper independence means independence in the
sense of T and we use the familiar symbol |̂ . We write tp(~a) for the L-type of a
and dcl, acl for the de�nable closure and the algebraic closure in the language L.
Similarly we write dclH , aclH , tpH for the de�nable closure, the algebraic closure
and the type in the language LH .

De�nition 2.3. We say that (M,H(M)) is an H-structure if

(1) (M,H(M)) |= T ′

(2) (Density/coheir property) If A ⊂ M is �nite and q ∈ S1(A) is the type of
a generic element (of SU -rank ω), there is a ∈ H(M) such that a |= q.

(3) (Co-density/extension property) If A ⊂M is �nite and q ∈ S1(A), there is
a ∈M , a |= q and a |̂

A
H(M).

Lemma 2.4. Let (M,H(M)) |= T ′. Then (M,H(M)) is an H-structure if and
only if:

(2') (Generalized density/coheir property) If A ⊂M is �nite and q ∈ Sn(A) has
SU -rank ωn, then there is ~a ∈ H(M)n such that ~a |= q.

(3') (Generalized co-density/extension property) If A ⊂M is �nite dimensional
and q ∈ Sn(A), then there is ~a ∈Mn realizing q such that tp(~a/A∪H(M))
does not fork over A.

Proof. We prove (2') and leave (3') to the reader. Let ~b |= q, we may write ~b =
(b1, . . . , bn). Since (M,H(M)) is an H-structure, applying the density property we
can �nd a1 ∈ H(M) such that tp(a1/A) = tp(b1/A). Let q(x, b1, A) = tp(b2, b1, A)
and let A1 = A ∪ {a1}. Finally consider the type q(x, a1, A) over A1, which is the
type of a generic element. Applying the density property we can �nd a2 ∈ H(M)
such that tp(a2, a1/A) = tp(b2, b1/A). We continue inductively to �nd the desired
tuple (a1, a2, . . . , an). �

Note that if (M,H(M)) is an H-structure, the extension property implies that
M is ℵ0-saturated.

De�nition 2.5. Let A be a subset of an H-structure (M,H(M)). We say that A
is H-independent if A is independent from H(M) over H(A).

Lemma 2.6. Any model M of T with a distinguished independent subset H(M)
can be embedded in an H-structure in an H-independent way.

Proof. Given any modelM with a distinguished independent subsetH(M) of gener-
ics, we can always �nd an elementary extension N of M and a set H(N) extending
H(M) such that for every generic 1-type p(x, acl(~m)) (i.e. SU(p(x)) = ω), where
~m ∈M , there is d ∈ N such that d |= p(x, acl(~m)) and d |̂

H(M)
~m. Add a similar

statement for the extension property. Now apply a chain argument. �

In particular, for a SU -rank ω theory T , H-structures exist.
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Lemma 2.7. Let (M,H) and (N,H) be su�ciently saturated H-structures, ~a ∈M
and ~a′ ∈ N H-independent tuples such that tp(~a,H(~a)) = tp(~a′, H(~a′)). Then
tpH(~a) = tpH(~a′).

Proof. Write ~a = ~a0~a1~h, where ~a0 is independent over H(M), ~h = H(~a) ∈ H(M)

and ~a1 ∈ L(~a0~h). Similarly write ~a′ = ~a′0~a
′
1
~h′.

It su�ces to show that for any b ∈ M there are ~h1 ∈ H(M), ~h′1 ∈ H(N)

and b′ ∈ N such that ~a~h1b and ~a′~h′1b
′ are each H-independent, tp(~a0~a1~h~h1b) =

tp(~a′0~a
′
1
~h′~h′1b

′), and b ∈ H(M) i� b′ ∈ H(N).

Case 1: b ∈ cl(~a)∩H(M). By H-independence of ~a, we must have b ∈ cl(~h) and

since H forms an independent set we must have b ∈ ~h. Let b′ ∈ ~h′ be such that

tp(b′~a′) = tp(b~a) and the result follows. Here we can take ~h1 and ~h′1 to be empty
Case 2: b ∈ H(M) and is non small over ~a. Then tp(b/~a) is generic. By the

density property, we can �nd b′ ∈ H(N) such that tp(b′~a′) = tp(b~a). Here again

we can take ~h1 and ~h′1 to be empty.

Case 3: b ∈ cl(~a). We claim that b |̂
~a
H(M). Indeed let ~h1 (say of length k) in

H(M) \ ~h. Since ~a is H-independent, the elements in H(M) \ ~h are independent

over ~a and thus SU(~h1/~a) = SU(~h1/~h) = ωk. On the other hand SU(b/~a) < ω, so

the types tp(b/~a), tp(~h1/~a) are orthogonal and the claim follows.
Thus the tuple ~ab is H-independent. Let p(x,~a) = tp(b/~a). Now use the exten-

sion property to �nd b′ ∈ N ′ such that b′ |= p(x,~a′), b′ |̂
~a′
H(N), so by transitivity

~a′b′ is H-independent.

Case 4: b ∈ cl(H(M)~a). Add a tuple ~h1 ∈ H(M) such that ~ab~h1 is H-
independent, and use Case 2 and Case 3.

Case 5: b 6∈ cl(H(M)~a). By the extension property, there is b′ ∈ N such that
b′ 6∈ cl(H(N)~a′) and tp(b′~a′) = tp(b~a). The tuples stay H-independent, so again

we can take ~h1 and ~h′1 to be empty.
�

The previous result has the following consequence:

Corollary 2.8. All H-structures are elementarily equivalent.

We write T ind for the common complete theory of all H-structures of models of
T .

De�nition 2.9. We say that T ind is �rst order if the |T |+-saturated models of
T ind are again H-structures.

To axiomatize T ind and to show that T ind is �rst oder, we follow the ideas of
[15, Prop 2.15], [3] and [2]. Here we use for the �rst time that T eliminates ∃large.
Recall that whenever T eliminates ∃large the expression the formula ϕ(x,~b) is large
is �rst order.

We also need the following de�nition from [2, De�nition 2.4]:

De�nition 2.10. Let ψ(~y, ~z) and ϕ(~x, ~y) be L-formulas. Qϕ,ψ is the predicate

which is de�ned to hold of a tuple ~c (inM) if for all ~b satisfying ψ(~y,~c), the formula

ϕ(~x,~b) does not divide over ~c.

The following result follows word by word from the proof of [2, Proposition 4.5],
changing the elementary substructure for the predicate H:
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Proposition 2.11. The following are equivalent:

(1) Qϕ,ψ is type-de�nable (in M ) for all L-formulas ϕ(~x, ~y),ψ(~y, ~z).
(2) The extension property is �rst order.
(3) Any |T |+-saturated model of T ind satis�es the extension property.

Corollary 2.12. Let T be a simple theory of SU -rank omega that satis�es wnfcp.
Then the extension property is �rst order.

Proposition 2.13. Assume T eliminates ∃large and that the predicates Qϕ,ψ are
L-type-de�nable for all L-formulas ϕ(~x, ~y),ψ(~y, ~z). Then T ind is �rst order.

Proof. The theory T ind is described by T ′, the density property and the extension
property.
T ′ is a �rst order property.
The density property can be described in �rst order by the scheme:
For all L-formulas ϕ(x, ~y)

∀~y(ϕ(x, ~y) large =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H)).
Thus all saturated models of the scheme satisfy the density property. Finally by

Proposition 2.11 any |T |+-saturated model of T ind satisfy the extension property.
�

Notation 2.14. Let (M,H(M)) be an H-structure and let A ⊂ M . We write
clH(A) for cl(AH(M)) and we call it the small closure of A over H.

3. examples

In this section we give a list of examples of simple theories of SU -rank ω that
eliminate ∃large and where the extension property is �rst order. We also list some
examples that eliminate the quanti�er ∃large but where it remains as an open
question if the extension property is �rst order.

3.1. Di�erentially closed �elds. Let T = DCF0, the theory of di�erentially
closed �elds. This theory is stable of U rank ω and also RM(DCF0) = ω.

Let p(x) be the unique generic type of the theory. This type is complete, station-
ary and de�nable over ∅. Let ϕ(x, ~y) be a formula and let ψ(~y) be its p-de�nition.
Then for (K, d) |= DCF0, ~a ∈ K, the formula ϕ(x,~a) is large i� ψ(~a). Thus this
theory eliminates the quanti�er ∃large.

Now let us study the extension property. Recall that DCF0 has quanti�er elimi-
nation [12, Theorem 2.4] and eliminates imaginaries [12, Theorem 3.7]. It is proved
in [12, Theorem 2.13] that DCF0 has uniform bounding (i.e. it eliminates ∃∞) and
thus it has nfcp. This is also explicitly explained in [12, page 52]. It follows by
Corollary 2.12 that the extension property is �rst order.

3.2. Free pseudoplane-in�nite branching tree. Let T be the theory of the
free pseudoplane, that is, a graph without cycles such that every vertex has in-
�nitely many edges. The theory of the free pseudoplane is stable of U -rank ω
and MR(T ) = ω. For every A, acl(A) = dcl(A) = A ∪ {x| there are points a, b ∈
A and a path connecting them passing trough x}. For A algebraically closed and a
a single element, U(a/A) = d(a,A) where d(a,A) is the minimum length of a path
from a to an element of A or ω if there is no path; in this last case we say that a is
at in�nite distance to A or that a is not connected to A. Note that there is a unique
generic type over A, namely the type of an element which is not connected to A.
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The generic type is de�nable over ∅ and thus by de�nability of types T eliminates
the quanti�er ∃large.

An H-structure (M,H) associated to T is an in�nite collection of trees with an
in�nite collection of selected points H(M) at in�nite distance one from the other
and with in�nite many trees not connected to them. If (N,H) |= Th(M,H), then
N has in�nitely many selected points H(N) at in�nite distance one from the other.

If (N,H) is ℵ0-saturated, then by saturation it also has in�nitely many trees
which are not connected to the points H(N). We will prove that in this case
(N,H) is an H-structure. The density property is clear. Now let A ⊂ N be �nite
and assume that A = dcl(A) and let c ∈ N . If U(c/A) = ω choose a point b in a
tree not connected to A ∪H, then tp(c/A) = tp(b/A) and b |̂

A
H. If U(c/A) = 0

there is nothing to prove. If U(c/A) = n > 0, let a be the nearest point from A to
c. Since there is at most one point of H connected to a and the trees are in�nitely
branching, we can choose a point b with d(b, a) = n and such that d(b, A∪H) = n;
then tp(c/A) = tp(b/A) and b |̂

A
H. This proves that (N,H) is an H-structure

and that that T ind is �rst order.

3.3. Vector space with a generic automorphism. Let T be the theory of
(in�nite-dimensional) vector spaces over a division ring F , and let Tσ by its (unique)
generic automorphism expansion.

This theory has a unique generic, which is de�nable over ∅. By de�nability of
types, Tσ eliminates the quanti�er ∃large.

Now we prove that the extension property is �rst order.
Let (M,H) be an H-structure associated to Tσ, let (N,H) |= Th(M,H) be

|T |+-saturated and let a,~b ∈ N .

Note that the type of the element a over a tuple ~b in Tσ is determined by

qftp−(σZ(a)/σZ(~b)),

where the superscript − refers to the language of T , and

σZ(~c) = . . . , σ−1(~c),~c, σ(~c), σ2(~c), . . . .

There are three possible situations for tp(a/~b):

(1) a ∈ span(σZ(~b))

(2) a, σ(a), . . . , σn−1(a) are independent over σZ(~b), but

σn(a) ∈ span(a, σ(a), . . . , σn−1(a)σZ(~b))

(3) σZ(a) is independent over σZ(~b)

For the �rst case, we have that a ∈ dcl(~b) and thus a |̂ ~bH.

For the second case, assume now that σn(a) ∈ span(a, σ(a), . . . , σn−1(a)σZ(~b)).

Since M is an ℵ0-saturated, we can �nd a′,~b′ ∈ M such that tp(a,~b) = tp(a′,~b′)
and since (M,H) is an H-structure we may assume that a′ |̂ ~b′ H. In particular,

the elements a′, σ(a′), . . . , σn−1(a′) do not satisfy any nontrivial linear combination

with elements in dcl(~b′H(M)). Since (N,H) |= Th((M,H)) is |T |+-saturated,
we can �nd (a′′,~b) |= tp(a′,~b′) such that a′′, σ(a′′), . . . , σn−1(a′′) do not satisfy

any nontrivial linear combination with elements in dcl(~bH(N)). This shows that
a′′ |̂ ~bH as we wanted.
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For the third case, since (N,H) |= (M,H), we have that H(N) is an in�nite
collection of independent generics. Let a0, . . . , an2−1 ∈ H(N) be distinct and con-
sider c0 = a0 + · · · + an−1, . . . , cn−1 = an2−n + · · · + an2−1. Then the elements
c0, . . . , cn−1 are independent generics and neither one can be written as a linear
combination of less that n elements in H. Since (N,H) is |T |+-saturated, we can
�nd in�nitely many independent generics that are independent over H(N). If σZ(a)

is independent over σZ(~b) we can choose a′ generic independent from ~bH(N) and
thus a′ |̂ ~bH.

3.4. Theories of Morley rank omega with de�nable Morley rank. Let T
be a ω-stable theory of rank ω and letM |= T be |T |+-saturated. Assume also that
the Morley rank is de�nable, that is, for every formula ϕ(x, ~y) without parameters
and every α ∈ {0, 1, . . . , ω} there is a formula ψα(~y) without parameters such that
for ~a ∈M , MR(ϕ(x,~a)) ≥ α if and only if ψα(~a). To simplify the notation, we will
write MR(ϕ(x,~a)) ≥ α instead of ψα(~a). We will prove that T ind is �rst order.

Elimination of ∃large. Consider �rst ϕ(x, ~y) and let ~b ∈M . Then ϕ(x,~b) is large

if and only if MR(ϕ(x,~b)) ≥ ω, so T eliminates the quanti�er ∃large.
Extension property. Now assume that (M,H) is anH-structure and let (N,H) |=

Th(M,H) be |T |+-saturated. Let a ∈ N and let ~b ∈ N . If MR(tp(a/~b)) = 0 there

is nothing to prove. Assume then that MR(tp(a/~b)) = n > 0.

Let ϕ(x, ~y) ∈ tp(a,~b) with MR(ϕ(x,~b)) = n and Md(ϕ(x,~b)) = Md(tp(a/~b)).

Let (a′,~b′) |= tp(a,~b) belong to M . Since (M,H) is an H-structure, we may

assume that a′ |̂ ~b′ H and thus for every formula θ(x, ~y, ~z) and every tuple ~h ∈
H, if MR(θ(x,~b′,~h)) < MR(ϕ(x,~b′)) = n then ¬θ(x,~b′,~h) ∈ tp(a′/~b′H). So

(M,H) |= ∀d′MR(ϕ(x, ~d′)) ≥ n =⇒ ∃cϕ(c, ~d′) ∧ ∀~h ∈ H(MR(θ(x, ~d′,~h)) <

n =⇒ ¬θ(c, ~d′,~h)).
Since (N,H) |= TH(M,H) is |T |+-saturated, we can �nd a′ such thatMR(ϕ(a′,~b)) ≥

n and whenever ~h ∈ H(N) and θ(x,~b,~h) is a formula with Morley rank smaller

than n we have ¬θ(a′,~b,~h). This shows thatMR(a′/~bH) =MR(a′/~b) =MR(a/~b),

Md(a′/~b) = Md(a/~b), both a and a′ are generics of the formula ϕ(x,~b) and thus

tp(a/~b) = tp(a′/~b). Finally by construction a′ |̂ ~bH. It follows that T ind is �rst
order.

3.5. H-triples. Recall from [3] that if T0 is supersimple SU -rank one theory whose
pregeometry is not trivial, then T = T ind0 has SU -rank omega. The models of T
are structures of the form (M,H1), where M |= T0 and H1 is a acl0-dense and
acl0-codense subset of M . We write L0 for the language associated to T0 and L for
the language associated to T . Similarly, we write acl0 for the algebraic closure in
the language L0 and for A ⊂M |= T0, we write S

0
n(A) for the space of L0-n-types

over A.
We will assume that T0 has a strong form of non-triviality, namely for all L0-

de�nable in�nite sets ϕ(x), there is an algebraic triangle inside ϕ(x). So there
is a set B and there are a |= ϕ(x) and there are b, c with each of a, b, c acl0-
independent from B and such that a ∈ acl0(bcB)\acl0(bB). With this assumption,
if (M,H) |= T , A ⊂M and a 6∈ acl0(AH1), then SU(tp(a/A)) = ω and the generics
in the sense of (M,H1) have SU as required for the present paper.
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In this subsection we change our notation and we let H2 be a new predicate
symbol that will be interpreted by a dense and codense T -generic subset of (M,H1).

The structures (M,H1, H2) were already studied in [3]. We recall the de�nitions
and the main result. The main tool for studying T ind is to take into account the
base theory T0 and use triples.

De�nition 3.1. We say that (M,H1(M), H2(M)) is an H-triple associated to T0
if:

(1) M |= T0, H1(M) is an acl0-independent subset of M , H2(M) is an acl0-
independent subset of M over H1.

(2) (Density property for H1) If A ⊂M is �nite dimensional and q ∈ S0
1(A) is

non-algebraic, there is a ∈ H1(M) such that a |= q.
(3) (Density property for H2/H1) If A ⊂M is �nite dimensional and q ∈ S0

1(A)
is non-algebraic, there is a ∈ H2(M) such that a |= q and a 6∈ acl0(A ∪
H1(M)).

(4) (Extension property) If A ⊂ M is �nite dimensional and q ∈ S0
1(A) is

non-algebraic, there is a ∈M , a |= q and a 6∈ acl0(A ∪H1(M) ∪H2(M)).

It is observed in [3] that if (M,H1(M), H2(M)), (N,H1(N), H2(N)) are H-
triples, then Th(M,H1(M), H2(M)) = Th(N,H1(N), H2(N)) and we denote the
common theory by T tri0 .

The folowing result is proved in [3] for geometric theories.

Proposition 3.2. Let T be an SU rank one strongly non-trivial supersimple the-
ory, let M |= T and let H1(M) ⊂ M , H2(M) ⊂ M be distinguished subsets. Then
(M,H1(M), H2(M)) is a H2-structure associated to T if and only if (M,H1(M), H2(M))
is an H-triple.

Thus, to show that the class of H2-structures associated to T is �rst order, it
su�ces to prove that this is the case for H-triples associated to T0. As pointed out
in [3] we have:

Proposition 3.3. The theory T tri is axiomatized by:

(1) T.
(2) M |= T0, H1(M) is an acl0-independent subset of M , H2(M) is an acl0-

independent subset of M over H1.
(3) For all L-formulas ϕ(x, ~y)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H1)).

(4) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H2) ∧
∀w1 . . . ∀wm ∈ H1¬ψ(x,w1, . . . , wm, ~y))

(5) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃xϕ(x, ~y) ∧
∀w1 . . . ∀wm ∈ H1 ∪H2¬ψ(x,w1, . . . , wm, ~y))

Furthermore, if (M,H,H2) |= T tri is |T |+-saturated, then (M,H,H2) is
an H-triple.
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Thus when T0 is a strongly non-trivial supersimple SU -rank one theory, T ind =
T tri is �rst order.

3.6. H structures of lovely pairs of SU-rank one theories. Let T be a geo-
metric theory, TP its lovely pairs expansion, and let

cl(−) = acl(− ∪ P (M))

be the small closure operator in a lovely pair (M,P ). Our goal is to expand TP to
a theory T indP in the language LPH = LP ∪ {H}, by adding a cl-independent dense
set to a model of TP .

The following de�nition is analogous to De�nition 3.1.

De�nition 3.4. We say that an LPH -structure (M,P,H) is a PH-structure of T
if

(1) P (M) is an elementary substructure of M ;
(2) H(M) is acl-independent over P (M);
(3) for any non-algebraic type q ∈ ST1 (A) over a �nite-dimensional set A ⊂M ,

q is realized in
(density of P over H) P (M)\ acl(H(M)A);
(density of H over P ) H(M)\ acl(P (M)A);
(extension) M\ acl(P (M)H(M)A).

Remark 3.5. (a) It su�ces to require P (M) to be dense in the usual sense, i.e. q
having a realization in P (M).

(b) We can get a PH-structure from an H-triple (M,H1, H2) (see previous ex-
ample), by letting P (M) = acl(H1).

(c) A usual elementary chain argument shows that any LPH structure (M,P,H)
satisfying (1,2) embeds in a PH-structure (N,P,H) so that H(N) |̂

H(M)
MP (N)

and P (N) |̂
P (M)

MH(N). In particular, PH-structures exist.

(d) Reducts (M,P ) and (M,H) of (M,P,H) are lovely pairs and H-structures,
respectively.

While in linear examples the SU -rank of TP is two instead of ω, the machinery
for this paper still goes through we our current assumptions for cl.

De�nition 3.6. We say that (M,P,H) is an cl-structure if

(1) (M,P ) is a lovely pair and H is an cl-independent set
(2) (Density/coheir property for cl) If A ⊂ M is �nite dimensional and q ∈

SP1 (A) is large, there is a ∈ H(M) such that a |= q.
(3) (Extension property) If A ⊂M is �nite dimensional and q ∈ SP1 (A) is large,

there is a ∈M , a |= q and a 6∈ cl(A ∪H(M)).

Proposition 3.7. (M,P,H) is an cl-structure if and only if (M,P,H) is a PH-
structure.

Proof. Assume �rst that (M,P,H) is a cl-structure. Then the pair (M,P ) is lovely
and thus (M,P,H) satis�es the density axiom for P . Now let A ⊂ M be �nite
dimensional and let q ∈ S1(A) be non-algebraic. Let q̂ ∈ SP1 (A) be an extension of
q that contains no small formula with parameters in A. Then by the Density/coheir
property for cl it follows that there is a ∈ H(M) such that a |= q̂. In particular,
a |= q and a 6∈ cl(A) and thus we get the density property for H over P . Finally,
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since the same q̂ is not small, there is c ∈ M , c |= q̂ and c 6∈ cl(A ∪ H(M)) =
acl(A ∪ P (M) ∪H(M)). Thus the extension property holds as well.

Now assume that (M,P,H) is an PH-structure. Then H is an cl-independent
set, and by the density property for P and the extension property it follows that
(M,P ) is a lovely pair. Now let A ⊂ M be �nite dimensional and let q̂ ∈ SP1 (A)
be non-small. We may enlarge A and assume that A is P -independent. Let q be
the restriction of q̂ to the language L. Note that q̂ is the unique extension of q
to a non-small type. By the density for H over P , there is a ∈ H(M) such that
a |= q, a 6∈ cl(A) and thus a |= q̂. Finally the extension property follows from the
extension property for PH-structures. �

We will now show that the class of PH-structures is "�rst order", that is, that
there is a set of axioms whose |T |+-saturated models are the PH-structures. The
axiomatization works as in H-triples.

Proposition 3.8. Assume T eliminates ∃∞. Then the theory TPH is axiomatized
by:

(1) T
(2) axioms saying that P distinguishes an elementary substructure.
(3) For all L-formulas ϕ(x, ~y)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ P )).

(4) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H) ∧
∀w1 . . . ∀wm ∈ P¬ψ(x,w1, . . . , wm, ~y))

(5) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)
such that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-
braic in x)
∀~y(ϕ(x, ~y) nonalgebraic =⇒ ∃x(ϕ(x, ~y) ∧ x 6∈ P ∧ x 6∈ H) ∧
∀w1 . . . ∀wm ∈ P ∪H¬ψ(x,w1, . . . , wm, ~y))

Furthermore, if (M,P,H) |= TPH is |T |+-saturated, then (M,P,H) is a
PH-structure.

Now we list a family of structures of SU -rank ω where we do know if the corre-
sponding theory of H-structures is axiomatizable. In both cases it is open whether
or not the extension property is �rst order.

3.7. ACFA. Let T = ACFA, (a completion) of the theory of algebraically closed
�elds with a generic automorphism. This theory is simple of SU rank ω and it is
unstable.

Let p(x) be the generic type of the theory, namely the type of a transformally
independent element. This type is complete, stationary and de�nable over ∅. Let
ϕ(x, ~y) be a formula and let ψ(~y) be its p-de�nition. Then for (K,σ) |= ACFA,
~a ∈ K, the formula ϕ(x,~a) is large i� ψ(~a). Thus this theory eliminates the
quanti�er ∃large.
Question Does the extension property hold for ACFA? Does T0 satisfy wnfcp?

3.8. Hrushovski amalgamation without collapsing. In this subsection we fol-
low the presentation of Hrushovski amalgamations from [16], all the results we men-
tion can be found in [16]. Let L = {R} where R stands for a ternary relation. We
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let C be the class of L-structures where R is symmetric and not re�exive. For A ∈ C
a �nite structure we let δ(A) = |A| − |R(A)| and we let C0fin be the subclass of C
consisting of all �nite L-structures M where for A ⊂M we have δ(A) ≥ 0. Finally
M0 stands for the Fraïssé limit of the class C0fin. Let T0 be the theory of M0, then

MR(T0) = ω and Md(T0) = 1.
Now let M |= T0 and for A ⊂ M �nite we de�ne d(A) = inf{δ(B) : A ⊂ B}.

Then d is the dimension function of a pregeometry and that for an element a and
a set B, d(a/B) = 1 if and only if MR(a/B) = ω if and only if U(a/B) = ω. Thus
the pregeometry studied in [16] corresponds to the pregeometry associated to cl.
Since the theory T0 has a unique generic type, by de�nability of types the theory
T0 eliminates the quanti�er ∃large.
Question Does the extension property hold for T0? Does T0 satisfy nfcp?

4. Definable sets in H-structures

Fix T a SUrank ω theory and let (M,H(M)) |= T ind. Our next goal is to obtain
a description of de�nable subsets of M and H(M) in the language LH .

Notation 4.1. Let (M,H(M)) be an H-structure. Let ~a be a tuple in M . We de-
note by etpH(~a) the collection of formulas of the form ∃x1 ∈ H . . . ∃xm ∈ Hϕ(~x, ~y),
where ϕ(~x, ~y) is an L-formula such that there exists ~h ∈ H with M |= ϕ(~h,~a).

Lemma 4.2. Let (M,H(M)), (N,H(N)) be H-structures. Let ~a, ~b be tuples of
the same arity from M , N respectively. Then the following are equivalent:

(1) etpH(~a) = etpH(~b).

(2) ~a, ~b have the same LH-type.

Proof. Clearly (2) implies (1). Assume (1), then tp(~a) = tp(~b).

Claim dimcl(~b/H) = dimcl(~a/H).

Let ~h = (h1, . . . , hl) ∈ H(M) be such k := dimcl(~a/~h) = dimcl(~a/H(M)). We
may assume that ~a1 = (a1, . . . , ak) are independent overH and ~a2 = (ak+1, . . . , an) ∈
cl(a1, . . . , ak, h1, . . . , hl). Choose ψ(~x, ~y, ~z) such that for any~b ∈M , ~c ∈M ψ(~b,~c, ~z)

is always small in ~z and M |= ψ(~h,~a1,~a2). Since etpH(~a) = etpH(~b) we get that

dimcl(~b/H) ≤ k. A similar argument shows that dimcl(~a/H(M)) ≤ dimcl(~b/H(N)).

Claim tpH(~b) = tpH(~a).

As before, let ~h = (h1, . . . , hl) ∈ H(M) be such that k := dimcl(~a/~h) =

dimcl(~a/H(M)). Then ~a~h isH-independent. SinceN is saturated as an L-structure
there are ~h′ = (h′1, . . . , h

′
l) ∈ H such that tp(~a,~h) = tp(~b,~h′). By the claim above

~b~h′ is H-independent, so the result follows from Lemma 2.7. �

Now we are interested in the LH -de�nable subsets of H(M). This material is
very similar to the results presented in [5].

Lemma 4.3. Let (M0, H(M0)) � (M1, H(M1)) and assume that (M1, H(M1)) is
|M0|-saturated. The M0 (seen as a subset of M1) is a H-independent set.

Proof. Assume not. Then there are a1, . . . , an ∈ M0 \ H(M0) such that an ∈
cl(a1, . . . , an−1, H(M1)) and an 6∈ cl(a1, . . . , an−1, H(M0)). Let ϕ(x, ~y, ~z) be a for-

mula which is always small on x and~b ∈ H(M1)~z be a tuple such that ϕ(an, a1, . . . , an−1,~b)
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holds. Since (M0, H(M0)) � (M1, H(M1)) there is ~b
′ ∈ H(M0)~z such that

ϕ(an, a1, . . . , an−1,~b
′) ∧ ¬∃largexϕ(x, a1, . . . , an−1,~b′)

holds, so an ∈ acl(a1, . . . , an−1, H(M0)), a contradiction. �

Proposition 4.4. Let (M,H(M)) be an H-structure and let Y ⊂ H(M)n be LH-
de�nable. Then there is X ⊂Mn L-de�nable such that Y = X ∩H(M)n.

Proof. Let (M1, H(M1)) � (M,H(M)) be κ-saturated where κ > |M |+ |L| and let

~a,~b ∈ H(M1)
n be such that tp(~a/M) = tp(~b/M). We will prove that tpH(~a/M) =

tpH(~b/M) and the result will follow by compactness. Since ~a,~b ∈ H(M1)
n, we get

by Lemma 4.3 that M~a, M~b are H-independent sets and thus by Lemma 2.7 we

get tpH(~a/M) = tpH(~b/M). �

De�nition 4.5. Let (M,H) |= T ind be saturated. We say that an LH -formula
ψ(x,~c) de�nes a H-large subset of M if there is b |= ψ(x,~c) such that b 6∈ cl(H~c).
This is equivalent as requiring that there are in�nitely many realizations of ψ(x,~c)
that are not small over H(M)~c.

De�nition 4.6. Let (M,H) |= T ind be κ-saturated and let A ⊂ M be smaller

than κ. Let ~b ∈ M be a tuple. We say that ~b is in the H-small closure of A

if ~b ∈ cl(AH(M)). Let X ⊂ Mn be A-de�nable. We say that X is H-small if
X ⊂ cl(A ∪H(M)).

Proposition 4.7. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M .

Then there is a unique smallest tuple ~h ∈ H(M) such that ~a |̂ ~hH.

Proof. Since T is supersimple, there is a �nite tuple ~h ∈ H such that ~a |̂ ~hH.

Choose such a tuple so that |~h| (the length of the tuple) is minimal. We will now

show such a tuple ~h is unique (up to permutation).
We can write ~a = (~a1,~a2) so that ~a1 is independent tuple of generics which is

independent from H(M) and ~a2 ∈ cl(~a1). If ~a2 = ∅, then ~h = ∅ and the result
follows. So we may assume that ~a2 6= ∅.

Then ~a2 ∈ cl(~a1,~h). Let ~h
′ be another such tuple. Let ~h1 be the list of common

elements in both ~h and ~h′, so we can write ~h = (~h1,~h2) and ~h
′ = (~h1,~h

′
2).

Claim ~h2 = ~h′2 = ∅.
Assume otherwise. Then there is c ∈ ~a2 such that c ∈ cl(~a1,~h1,~h2) \ cl(~a1,~h1).

Since ~a |̂ ~h′ H, we must have that c ∈ cl(~a1,~h1,~h
′
2) \ cl(~a1,~h1). By the exchange

property dimcl(~h
′
2/~a1

~h1~h2) < dimcl(~h
′
2/~a1

~h1). Since ~a1 is a tuple of generic el-

ements that are independent over H we get that dimcl(~h
′
2/
~h1~h2) < dimcl(~h

′
2/
~h1)

and since H is independent, ~h2 has a common element with ~h′2, a contradiction. �

Remark 4.8. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M and
let C ⊂ M be such that C is H-independent. As before, there is a unique smallest

tuple ~h ∈ H(M) such that ~a |̂ ~hC H.

Notation 4.9. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈M . Let
~h ∈ H(M) be the smallest tuple such that ~a |̂ ~hH. We call ~h the H-basis of ~a and

we denote it as HB(~a). Given C ⊂M such that C is H-independent, let ~h ∈ H(M)

the smallest tuple such that ~a |̂
C~h

H. We call ~h the H-basis of ~a over C and we
12



denote it as HB(~a/C). Note that H-basis is unique up to permutation, therefore

we will view the H-basis ~h = (h1, . . . , hk) either as a �nite set {h1, . . . , hk} or as
the imaginary representing this �nite set. If we view it as a tuple, we will explicitly
say so.

Proposition 4.10. Let (M,H(M)) be an H-structure. Let a1, . . . , an, an+1 ∈ M
and let C ⊂M be such that C is H-independent. Then HB(a1, . . . , an, an+1/C) =
HB(a1, . . . , an/C) ∪ HB(an+1/Ca1, . . . , anHB(a1, . . . , an/C)), where all H-basis
are seen as sets.

Proof. Let ~h1 = HB(a1, . . . , an/C). First note that since a1, . . . , an |̂ C~h1
H, then

the set a1, . . . , anC~h1 isH-independent and we can de�ne ~h2 = HB(an+1/Ca1, . . . , an~h1).

Finally, let ~h = HB(a1, . . . , an, an+1/C).

Claim ~h ⊂ ~h1~h2.
We have a1, . . . , an |̂ C~h1

H and an+1 |̂ C~h1
~h2a1,...,an

H, so by transitivity,

a1, . . . , anan+1 |̂ C~h1
~h2
H and by the minimality of an H-basis, we have ~h ⊂

~h1~h2.
Claim ~h ⊃ ~h1~h2.
By de�nition, a1, . . . , anan+1 |̂ C~hH, so a1, . . . , an |̂ C~hH and by minimality

we have ~h1 ⊂ ~h. We also get by transitivity that an+1 |̂ Ca1,...,an~h1
~h
H and by the

minimality of H-basis we get ~h2 ⊂ ~h as desired. �

Proposition 4.11. Let (M,H(M)) be an H-structure. Let a1, . . . , an ∈ M and
let C ⊂ D ⊂ M be such that C, D are H-independent. Assume that there is
h ∈ HB(a1, . . . , an/C) \HB(a1, . . . , an/D). Then h ∈ D.

Proof. Write hD = HB(a1, . . . , an/D) and see it as a set. Then a1, . . . , anD |̂
hDH(D)

H

and a1, . . . , an |̂ hDCH(D)
H. By minimality of HB(a1, . . . , an/C) we get that

HB(a1, . . . , an/C) ⊂ hDH(D) and thus if h ∈ HB(a1, . . . , an/C) \ hD, we must
have h ∈ H(D). �

We will now apply the H-basis to characterize de�nable sets in terms of L-
de�nable sets.

Proposition 4.12. Let (M,H(M)) be an H-structure and let Y ⊂ M be LH-
de�nable. Then there is X ⊂M L-de�nable such that Y4X is H-small, where 4
stands for a boolean connective for the symmetric di�erence.

Proof. If Y is H-small or H-cosmall, the result is clear, so we may assume that both
Y andM \Y are H-large. Assume that Y is de�nable over ~a and that ~a = ~aHB(~a).
Let b ∈ Y be such that b 6∈ cl(~aH) and let c ∈ M \ Y be such that c 6∈ cl(~aH).
Then b~a, c~a are H-independent and thus there is Xbc an L-de�nable set such that
b ∈ Xbc and c 6∈ Xbc. By compactness, we may get a single L-de�nable set X such
that for b′ ∈ Y and c′ ∈M \X not in the H-small closure of ~a, we have b′ ∈ X and
c′ ∈M \ Z. This shows that Y4X is H-small. �

Our next goal is to characterize the algebraic closure in H-structures. The key
tool is the following result:

Lemma 4.13. Let (M,H(M)) be an H-structure, and let A ⊂M be acl-closed and
H-independent. Then A is aclH-closed.
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Proof. Suppose a ∈M , a 6∈ A. If a 6∈ cl(AH), then A ∪ {a} is H-independent, and
using the extension property, we can �nd ai, i ∈ ω, acl-independent over A∪H(M),
realizing tp(a/A). By Lemma 2.7, each ai realizes tpH(a/A), and thus a 6∈ aclH(A).

If a ∈ cl(AH), take a minimal tuple ~h ∈ H(M) such that a ∈ acl(A~h). Using

conjugates of ~h over A it is easy to see that tp(a/A) has ∞-many realizations. �

Corollary 4.14. Let (M,H(M)) be an H-structure, and let A ⊂ M . Then
aclH(A) = acl(A,HB(A)).

Proof. By Proposition 4.7, it is clear thatHB(A) ∈ acl(A), so aclH(A) ⊃ acl(A,HB(A)).
On the other hand, A ∪ HB(A) is H-closed, so by the previous Proposition,
acl(A ∪HB(A)) = aclH(A ∪HB(A)) and thus aclH(A) ⊂ acl(A,HB(A)) �

5. Supersimplicity

In this section we prove that T ind is supersimple and characterize forking in
T ind.

Theorem 5.1. The theory T ind is supersimple.

Proof. We will prove that non-dividing has local character.
Let (M,H(M)) |= T ind be saturated. Let C ⊂ D ⊂ M and assume that

C = aclH(C) and D = aclH(D). Note that both C and D are H-independent.
Let ~a ∈ M . We will �nd a collection of conditions for the type of ~a over C that
guarantee that tpH(~a/D) does not divide over C.

We may write ~a = (~a1,~a2) ∈ M so that ~a1 is an independent tuple of generics
over DH, ~a2 is a tuple such that ~a2 ∈ cl(~a1DH).

Assume that the following conditions hold for C:

(1) HB(~a/D) = HB(~a/C).
(2) SU(~a2/C~a1H) = SU(~a2/D~a1H)

Claim tpH(~a/D) does not divide over C.
Let p(~x,D) = tp(~a1, D). Let {Di : i ∈ ω} be an LH -indiscernible sequence

over C. Since ~a1 is an independent tuple of generics over D, tp(~a1/D) does not
divide over C and ∪i∈ωp(~x,Di) is consistent. We can �nd ~a′1 |= ∪i∈ωp(~x,Di) such
that {~a′1Di : i ∈ ω} is indiscernible and ~a′1 is an independent tuple of generics
over ∪i∈ωDi. By the generalized extension property, we may assume that ~a′1 is
independent over ∪i∈ωDiH. Note that ~a1D is H-independent, ~a′1Di is also H-
independent for any i ∈ ω. So by Lemma 2.7 tpH(~a1D) = tpH(~a′1Di) for any
i ∈ ω.

Now let ~h = HB(~a/C) (viewed as a tuple) and let q(~y,~a1, D) = tp(~h,~a1, D).

Note that ~h is an independent tuple of generics over ~a1D (as well as an independent
tuple over ~a1C). Since {Di~a

′
1 : i ∈ ω} is an L-indiscernible sequence, there is

~h′ |= ∪i∈ωq(~y,~a′1, Di). We may assume that ~h′ is independent from ∪i∈ωDi~a
′
1 and

thus it is a tuple of generics over ∪i∈ωDi~a
′
1. Furthermore we may assume that the

sequence {Di~a
′
1 : i ∈ ω} is indiscernible over ~h′.

By the generalized coheir/density property, we may assume that ~h′ ∈ H. Note

that since each ~a′1Di is H-independent, then ~h′~a′1Di is also H-independent. On

the other hand, tp(~h,~a1, D) = tp(~h′,~a′1, Di) for each i, so by Lemma 2.7 we have

tpH(~h,~a1, D) = tpH(~h′,~a′1, Di). This shows that tp(~a1,~h/D) does not divide over
C.
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Now consider t(~z,~a1,~h,D) = tp(~a2,~a1,~h,D). By the assumption SU(~a2/C~a1~h) =

SU(~a2/D~a1~h), so tp(~a2/~a1~hD) does not divide over ~a1~hC. Since tp(~a1~hD) =

tp(~a′1
~h′D0), then t(~z,~a

′
1,
~h′, D0) does not divide over ~a

′
1
~h′C.

Since {Di : i ∈ ω} is an L-indiscernible sequence over C~a′1
~h′, there is ~a′2 |=

∪i∈ωt(~z,~a′1,~h′, Di). We may assume as before that ~a′2 |̂ ~a′1~h′C ∪iDi.

By the extension property, we may assume that ~a′2 |̂ ~a′1~h′∪iDi
H. Using transi-

tivity we also have ~a′2 |̂ ~a′1~h′C H ∪iDi and it follows that ~a′2 |̂ ~a′1~h′Di
H, so we have

~a′1~a
′
2 |̂ ~h′Di

H, and thus, also ~a′1~a
′
2Di |̂ ~h′H(Di)

H for each index i.

Since both ~a1~a2~hD, ~a′1~a
′
2
~h′Di areH-independent and tp(~a′1~a

′
2
~h′Di) = tp(~a1~a2~hD)

by Lemma 2.7 tpH(~a′1~a
′
2
~h′Di) = tpH(~a1~a2~hD) .

This shows that tp(~a/D) does not divide over C.
Since T is supersimple, for any D and ~a we can always choose a �nite subset C0

of D such that C = aclH(C0) satis�es the conditions (1) and (2) above. This shows
that T ind is supersimple. �

Proposition 5.2. Let (M,H) |= T ind be saturated, let C ⊂ D ⊂ M be such that
C = aclH(C), D = aclH(D) and let a ∈M . Then tp(a/D) forks over C i� a ∈ D\C
or a ∈ cl(HD) \ cl(HC) or HB(a/C) ) HB(a/D) or, HB(a/C) = HB(a/D) and
SU(a/CH) 6= SU(a/DH) .

Proof. In the proof of Theorem 5.1 we showed that if a ∈ C or if, HB(a/C) =
HB(a/D) and SU(a/CH) = SU(a/DH) then tp(a/D) does not fork over C. So
it remains to show the other direction, which we do case by case.
Case 1: Assume that a ∈ D \C, then a becomes algebraic over D and tp(a/D)

forks over C.
Case 2: Assume that a ∈ cl(DH) \ cl(CH). Then SU(tp(a/DH)) < ω and

SU(tp(a/CH)) = ω. We will prove that tpH(a/D) divides over C.

Let ~d ∈ D and let ~c ∈ C be such that a ∈ cl(~c~dH), so SU(tp(a/~d~cH)) < ω. By

additivity of Lascar rank, we can choose ~d to be independent generics over HC.

Let ~h ∈ H be such that a ∈ cl(~c~d~h). Let p(x, ~y) = tpH(a, ~d/C).

Let {~di : i ∈ ω} be an L -indiscernible sequence in tp(~d/C) over C such that

{~di : i ∈ ω} is independent over C. By the generalized extension property, we

may assume that {~di : i ∈ ω} is independent over HC. Note that by Lemma 2.7

{~di : i ∈ ω} is an LH -indiscernible sequence of generics over C. Assume, in order to

get a contradiction, that there is a′ |= ∪i∈ωp(x, ~di). Then there are {~hi : i ∈ ω} such
that a′ ∈ cl(~di,~c,~hi) for every i, that is, SU(a′/~di,~c,~hi) < ω. But a′ 6∈ cl(CH), so
~d0 6 |̂ CH

~d1, a contradiction.

Case 3: Assume that HB(a/D) 6= HB(a/C) and a ∈ cl(CH). Then HB(a/D)

is a proper subset of HB(a/C). Write ~hC = HB(a/C), ~hD = HB(a/D) and let
~hE ∈ H be such that ~hC = ~hD~hE . Note that ~hE 6= ∅ and that ~hE is an independent
tuple over C.

Let p(x, ~y) = tpH(a,~hE/C). Let {~hiE : i ∈ ω} be an L-indiscernible sequence in
tp(~hE/C) such that {~hiE : i ∈ ω} is independent over C. Then by the generalized

density property, we may assume that the sequence {~hiE : i ∈ ω} belongs to H.

Note that by Lemma 2.7, the sequence {~hiE : i ∈ ω} is LH -indiscernible over C.

We will show that ∪i∈ωp(x,~hiE) is inconsistent.
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Assume, not, so there is a′ |= ∪i∈ωp(x,~hiE). Then we can �nd ~hDi
in H such

that HB(a′/C) = ~hDi
~hiE . Since the

~hiE are independent, we get that the HB basis
of a′ over C is not unique, a contradiction.
Case 4: Assume that a ∈ cl(HC), thatHB(a/D) = HB(a/C) and SU(a/CH) <

SU(a/DH).

Let ~h = HB(a/D) = HB(a/C), so SU(a/C~h) < SU(a/D~h) and a 6 |̂
C~h

D.

Write ~hD = H(D) \ H(C). Note that ~h is independent over D. Let p(x,~h,D) =

tp(a,~h,D) and let {Di : i ∈ ω} be an L-Morley sequence in tp(D/C~h) such

that {p(x,~h,Di) : i ∈ ω} is k-inconsistent. Let ~hDi be such that tp(D,~hD) =

tp(Di,~hDi
), then {~hDi

: i ∈ ω} is a L-Morley sequence in tp(~hD/C~h). By the
density property, we may choose the elements in H. By the extension property,

we can realize tp((Di : i ∈ ω)/C ∪i∈ω ~hDi
) independent from H over C ∪i∈ω

~hDi
. Then tp(D,~hD/C~h) = tp(Di,~hDi

/C~h) so by Lemma 2.7, tpH(D,~hD/C~h) =

tpH(Di,~hDi/C
~h) so we get that {Di : i ∈ ω} is a sequence in tpH(D/C~h) such

that {p(x,~h,Di) : i ∈ ω} is k-inconsistent. Using Erdö-Rado, we can change

{Di : i ∈ ω} for an indiscernible sequence in tpH(D/C~h) with the property that

{p(x,~h,Di) : i ∈ ω} is k-inconsistent. This proves that tpH(a/D~h) divides over

C~h. But since ~h ∈ aclH(Ca) we also get that tpH(a/D) divides over C.
�

Corollary 5.3. Let (M,H) |= T ind be saturated, let C ⊂ D ⊂ M be such that C
and D are H-independent and let a1, . . . , an ∈ M . We may reorder the tuple and
assume that there is k ≤ n such that a1, . . . , ak are independent generics over CH
and ak+1, . . . , an ∈ cl(a1, . . . , ak, C,H). Then tpH(a1, . . . , an/D) forks over C i�

(1) dimcl(a1, . . . , an/ cl(HD)) < dimcl(a1, . . . , an/ cl(HD)) or
(2) dimcl(a1, . . . , an/ cl(HD)) = dimcl(a1, . . . , an/ cl(HD)) and HB(a1, . . . , an/C) )

HB(a1, . . . , an/D) or,
(3) dimcl(a1, . . . , an/ cl(HD)) = dimcl(a1, . . . , an/ cl(HD)), HB(a1, . . . , an/C) =

HB(a1, . . . , an/D) and

SU(ak+1, . . . , an/a1, . . . , akCH) > SU(ak+1, . . . , an/a1, . . . , akDH).

Proof. The proof is by induction on n. For n = 1 the result follows from Proposition
5.2 noticing that the arguments in the proposition work with the weaker assumption
that the base sets C,D are H-independent sets.

Assume the result holds for n and consider a1, . . . , an+1 ∈M .
Assume that tp(a1, . . . , an/D) forks over C or that tp(an+1/a1, . . . , anD) forks

over a1, . . . , anC. We apply the induction hypothesis and Proposition 5.2.
If dimcl(a1, . . . , an/HD) < dimcl(a1, . . . , an/HC) or if dimcl(an+1/a1, . . . , anHD) <

dimcl(an+1/a1, . . . , anHC), then dimcl(a1, . . . , an+1/HD) < dimcl(a1, . . . , an+1/HC)
as we wanted.

Assume now that dimcl(a1, . . . , an/HC) = dimcl(a1, . . . , an/HD) and that

dimcl(a1, . . . , an+1/HC) = dimcl(a1, . . . , an+1/HD).

If HB(a1, . . . , an/C) ) HB(a1, . . . , an/D), then there is h ∈ HB(a1, . . . , an/C)
with h ∈ D. If an+1 |̂ HDa1, . . . , an, thenHB(a1, . . . , an+1/D) = HB(a1, . . . , an/D)
and HB(a1, . . . , an+1/C) = HB(a1, . . . , an/C).

So HB(a1, . . . , an+1/C) ) HB(a1, . . . , an+1/D) as needed.
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If an+1 ∈ cl(HDa1, . . . , an) then by the condition on dimcl we must also have
that an+1 ∈ cl(HCa1, . . . , an) and thus

HB(an+1/Da1, . . . , an) ⊂ HB(an+1/Ca1, . . . , an).

Thus we get again HB(a1, . . . , an+1/D) ( HB(a1, . . . , an+1/D).
If HB(a1, . . . , an/C) = HB(a1, . . . , an/D) and

HB(an+1/Da1, . . . , an) ( HB(an+1/Ca1, . . . , an)

then there is h ∈ HB(an+1/Ca1, . . . , an) with h ∈ D. Then HB(a1, . . . , an+1/C) (
HB(a1, . . . , an+1/D).

Assume now that dimcl(a1, . . . , an+1/ cl(HD)) = dimcl(a1, . . . , an+1/ cl(HD)),
HB(a1, . . . , an+1/C) = HB(a1, . . . , an+1/D).

Case 1. SU(ak+1, . . . , an/a1, . . . , akCH) > SU(ak+1, . . . , an/a1, . . . , akDH).
Then if an+1 ∈ cl(a1, . . . , ak, C,H) we also get by additivity of SU -rank that
SU(ak+1, . . . , an+1/a1, . . . , akCH) > SU(ak+1, . . . , an+1/a1, . . . , akDH) as desired.

If an+1 6∈ cl(a1, . . . , ak, C,H), then by the assumptions on dimcl we also have
an+1 6∈ cl(a1, . . . , ak, D,H) and tp(an+1/DHa1, . . . , ak) is orthogonal to

tp(ak+1, . . . , an/DHa1, . . . , ak)

and

SU(ak+1, . . . , an/a1, . . . , akan+1CH) > SU(ak+1, . . . , an/a1, . . . , akan+1DH),

as desired.
Case 2. SU(ak+1, . . . , an/a1, . . . , akCH) = SU(ak+1, . . . , an/a1, . . . , akDH) and

SU(an+1/a1 . . . , anCH) > SU(an+1/a1 . . . , anDH). Then by additivity of SU -
rank we have SU(ak+1, . . . , an+1/a1, . . . , akCH) > SU(ak+1, . . . , an+1/a1, . . . , akDH)
as desired.

The other direction is proved in a similar way. �

We use the above result to give a di�erent perspective on H-basis.

Lemma 5.4. Let (M,H(M)) be an H-structure. Let ~a = (a1, . . . , an) ∈ M and

let C ⊂ M be such that C is H-independent. Let ~h be a minimal tuple such that

dimcl(~a/C~h) = dimcl(~a/CH), then ~h = HB(~a/C).

Proof. Write ~a = ~a1~a2, where ~a1 are independent generics over CH and ~a2 ∈
cl(~a1CH). Choose ~h minimal so that ~a2 ∈ cl(~a1C~h). Then ~a1 are independent

generics over CH and SU(~a2/~a1C~h) < ω. Then tp(~a1/C) is independent from H

and tp(~a2/~a1C~h) is orthogonal to H. We get ~a |̂
C~h

H and HB(~a/C) ⊂ ~h. For the
other direction, ~a |̂

CHB(~a/C)
H implies that dimcl(~a/CHB(~a/C)) = dimcl(~a/CH)

and by minimality of ~h we get HB(~a/C) ⊂ ~h. �

We are interested in characterizing canonical bases. We start with the following
result which holds also in the geometric setting:

Lemma 5.5. Let (M,H) be a su�ciently saturated H-structure of T , B ⊂ M an
H-independent set, and ~a ∈M , h = HB(~a/B) (viewed as an imaginary represent-
ing a �nite set). Suppose e ∈ acleq(B) (in the original theory) is such that ~ah |̂

e
B.

Then ~a |̂ ind
e

B.
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Proof. We may assume that ~a = ~a1~a2, where ~a1 are generics over B ∪ H(M),
~a2 ∈ cl(H(M)B~a1). Note that ~a2 ∈ cl(~a1Bh), so ~ah |̂

e
B implies that ~a2 ∈

cl(~a1eh), SU(tp(~a2/B~a1h)) = SU(tp(~a2/e~a1h)) and also HB(~a/B) = HB(~a/e).
Since HB(~a/B) = HB(~a/e) and ~ah |̂

e
B by our characterization of forking in

T ind we get ~a |̂ ind
e

B. �

Finally, the following result on canonical bases can be proved doing very small
modi�cations to the argument presented in [5]:

Proposition 5.6. Let (M,H) be a su�ciently saturated H-structure of T , B ⊂M
an H-independent set, and ~a ∈ M . Then CbH(~a/B) and Cb(~aHB(~a/B)/B)) are
interalgebraic.

Proof. Let e = Cb(~aHB(~a/B)/B)). We saw in the previous lemma that ~a |̂ ind
e

B

and thus CbH(~a/B) ∈ acleq(e).
We will now prove that e is in the algebraic closure of any Morley sequence in

stpH(~a/B).
Let {~ai : i < ω} be an LH -Morley sequence in tpH(~a/ acleqH (B)). Let hj =

HB(~aj/B) (viewed as an imaginary representing a �nite set), so we have hj ∈
dclH(~ajB). Thus {~aihi : i < ω} is also an LH -Morley sequence over B. This implies
hj = HB(~aj/B~a<jh<j). We can write ~aj = ~aj1~aj2 and hence by our characteriza-
tion of forking in T eq we have that ~aj1hj is an independent tuple of L generics over
B~a<jh<j) and SU(~aj2/B~a<jh<j~aj1hj) = SU(~aj2/B~aj1hj). Then it follows that
tp(~ajhj/B~a<jh<j) does not fork (in the sense of L) over B. Thus, {~aihi : i < ω}
is also an L-Morley sequence over B in tp(~ah/B). Since tp(~a0h0/{~aihi : 0 <
i < ω}B) is a free extension of tp(~a0h0/{~aihi : 0 < i < ω}) we also get that
e = Cb(~a0h0/{~aihi : 0 < i < ω}). It follows that e ∈ acleq({~aihi : i < ω}).

Since T ind is supersimple there is N ∈ ω such that for all n ≥ N , ~an |̂ ind~a<N
B.

By Proposition 4.7 aclH(~a<N ) is H-independent. By our characterization of non-
forking, HB(~an/B) = HB(~an/B~a<N ) = HB(~an/ aclH(~a<N )) and in particular
hn ∈ aclH(~ai : i < ω) for every n ≥ N . We then get e ∈ acleqH ({~ai : N ≤ i < ω}).
Now, since {~ai : i < ω} is a Morley sequence in tpH(~a/ acleqH (B)), we have

{~ai : N ≤ i < ω}
ind

|̂
CbH(~a/B)

B,

and thus also

{~ai : N ≤ i < ω}
ind

|̂
CbH(~a/B)

e.

It follows that e ∈ acleqH (CbH(~a/B)), as needed. �

6. Ampleness

In this section we examine the relation between the ampleness of T and T ind.
In [4] it is shown an example of an one-based geometric theory T such that T ind is
not one-based. We follow the ideas on [7] to understand exactly when one-based is
preserved and to show that non 2-ampleness is also preserved. In this section we
will assume that T eliminates imaginaries.
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Remark 6.1. If T eliminates imaginaries then canonical bases are interalgebraic
with real tuples. By Proposition 5.6 canonical bases in T ind are also interalgebraic
with real tuples. Hence T ind has geometric elimination of imaginaries.

Example 6.2. Let G be an one-based stable group of U -rank ω and T = Th(G).
Notice that T ind is again a stable theory so (M,H) is a stable group but clearly H
is not a boolean combination of cosets of subgroups, so T ind is not one-based.

De�nition 6.3. A pregeometry (X, cl) is trivial if for every A ⊂ X, cl(A) =⋃
a∈A cl(a) .

Notice that if G is a group of U -rank ω then cl is not trivial (take a |̂ b both of
rank ω and c = a+ b, then c ∈ cl(a, b) \ cl(a) ∪ cl(b)).

Remark 6.4. In the theory of the free pseudoplane (see example 3.2 ) the prege-
ometry generated by cl is trivial: for A algebraically closed and a a single element,
U(a/A) = d(a,A) where d(a,A) is the minimum length of a path from a to an
element of A (or ω if there is no path). If b ∈ cl(A) it means that there is a path
to some element a ∈ A so cl(A) =

⋃
a∈A cl(a).

We will now prove that one-basedness is only preserved in T ind when the prege-
ometry cl is trivial. It is worth to notice that, unlike the U -rank 1 case, the triviality
of cl does not imply that T is one-based. In fact, the theory of the free pseudoplane
is the canonical example of a CM-trivial theory which is not one-based. This is the
reason why the statement of the following proposition is a little bit di�erent from
[7].

Lemma 6.5. If cl is trivial in T then for every ~a and for every B = aclH(B),

HB(~a/B) ⊂ HB(~a).

Proof. Let h = HB(~a/B) = {hi|i ∈ I}. By minimality of H-bases for every i ∈ I
~a 6 |̂

Bh\hi
hi, then hi ∈ cl(~aBh \ hi). As B is H-independent and hi /∈ B then

hi |̂ Bh \ hi, hence hi /∈ cl(Bh \ hi). By triviality it means that hi ∈ cl(ai)
for some ai ∈ ~a. By exchange property ai ∈ cl(hi), this implies ai 6 |̂ hi and
ai |̂ hi

H because tp(ai/hi) is orthogonal to H. We conclude that hi = HB(ai)

and HB(~a/B) = {hi|i ∈ I} =
⋃
ai∈AHB(ai) ⊂ HB(~a). �

Proposition 6.6. Assume T is one-based, then T ind is one-based if and only if cl
is trivial in T .

Proof of Proposition 6.6. (⇐) Assume cl is trivial, let ~a be a tuple, B an algebraic

closed set in (M,H) and ~h = HB(~a/B). By the characterization of canonical bases,

aclH(cbH(~a/B)) = aclH(cb(~a~h/B)), as T is one-based, cb(~a~h/B) ⊂ acl(~a~h). By the

previous lemma, ~h ⊂ HB(~a) then cbH(~a/B) ⊂ aclH(~aHB(~a)) = aclH(~a), i.e. T ind

is one-based.
(⇒) Assume T ind is one-based and cl is not trivial, then there are a tuple ~a

and elements b and h such that b ∈ cl(~ah) and b /∈ cl(~a) ∪ cl(h). We can take ~a
cl independent tuple minimal with this property and, by the generalized extension
property, we may assume that ~a |̂ H . Moreover, as h /∈ cl(~a), we may assume also
that h belongs to H by the generalized density property.

As b ∈ cl(~ah) and ~ah is H-independent, tp(b/~ah) is orthogonal to H, i.e.
b |̂

h~a
H. Recall that b 6 |̂

~a
h and h is a single element, then h = HB(b/~a). By
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hypothesis T ind is one-based, then aclH(cbH(b/~a)) = aclH(b) ∩ aclH(~a). Now,
aclH(~a) = acl(~a) as ~a |̂ H. On the other hand, as ~a |̂ H, and b |̂

h~a
H we have

b |̂
h

H. By hypothesis b /∈ cl(h), hence b |̂ h (recall that b is a single element)

and by transitivity b |̂ H. So HB(b) = ∅ and aclH(b) = acl(b). This means
aclH(cbH(b/~a)) = acl(b) ∩ acl(~a).

Recall that aclH(cbH(b/~a)) = aclH(cb(bh/~a)). So a maximal cl-independent

subset ~d of cb(bh/~a) satis�es that b ∈ cl(~dh) and b /∈ cl(~d) ∪ cl(h). The minimality
of the length of ~a yields cl(cb(bh/~a)) = cl(~a), hence cl(~a) = cl(acl(a) ∩ acl(b)) ⊂
cl(~a) ∩ cl(b), then ~a ∈ cl(b) and h ∈ cl(~ab) ⊂ cl(b). This is a contradiction. �

The notion of ampleness, de�ned by Pillay, captures forking complexity. He
proved in [13] that a theory T is one-based if and only if is not 1-ample, a theory
T is CM-trivial if and only if is not 2-ample. Moreover if T interprets a �eld then
it is n-ample for every n.

De�nition 6.7. A supersimple theory T is CM-trivial if for every tuple c and for
every A ⊂ B, if acleq(cA) ∩ acleq(B) = acleq(A) then cb(c/A) ⊂ acleq(cb(c/B))

De�nition 6.8. A supersimple theory T is n-ample if (possibly after naming some
parameters) there exist tuples a0, ..., an in Meq satisfying the following conditions:

For all 1 ≤ i ≤ n− 1.

(1) ai+1 |̂
ai

ai−1...a0,

(2) acleq(a0...ai−1ai+1) ∩ acleq(a0...ai−1ai) = acleq(a0...ai−1).

(3) an 6 |̂
acleq(a1)∩acleq(a0)

a0.

Following [7] we prove that CM-triviality is preserved in T ind. First we need the
following lemma.

Lemma 6.9. Let A ⊂ B, A = aclH(A) y B = aclH(B). If aclH(cA)∩B = A then
HB(c/A) ⊂ HB(c/B).

Proof. It is clear that

HB(cA) ⊂ HB(cB).

By transitivity

HB(cA) = HB(c/A) ∪HB(A),

and the same with HB(cB), hence

HB(c/A) ∪HB(A) ⊂ HB(c/B) ∪HB(B),

in particular HB(c/A) ⊂ HB(c/B) ∪HB(B).
Now, if HB(c/A) ∩H(B) = ∅ we are done, but

HB(c/A) ∩HB(B) ⊂ aclH(cA) ∩B = A

and HB(c/A) ∩A = ∅. �

Proposition 6.10. Let T be a SU -rank ω theory eliminating imaginaries, then T
is CM-trivial if and only if T ind is CM-trivial.
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Proof. Assume T is 2-ample. Let a0, a1, a2 be tuples such that:
(1) a2 |̂

a1

a0,

(2) acl(a0a2) ∩ acl(a0a1) = acl(a0),
(3) a2 6 |̂

acl(a1)∩acl(a0)
a0.

By the generalized extension property, there are a′0, a
′
1, a
′
2 such that tp(a′0a

′
1a
′
2) =

tp(a0a1a2) and a
′
0a
′
1a
′
2 |̂ H.

As the H-bases of any subset of {a′0a′1a′2} are empty, the algebraic closure in
T ind of any of these sets is the same as in T . So condition (2) holds in T ind.

By the characterization of canonical bases, since H-bases are empty then condi-
tion (1) holds also in T ind. But if

a′2
H

|̂
aclH(a′1)∩aclH(a′0)

a′0

then

a′2 |̂
acl(a′1)∩acl(a′0)

a′0.

This is a contradiction.
Assume T is not 2-ample, so it is CM-trivial. Let us see that T ind is CM -trivial.
Let c be a tuple and A ⊂ B be algebraically closed sets (in T ind) such that

aclH(cA) ∩ B = A. De�ne h = HB(c/A), h′ = HB(c/B) and c′ = ch. By
Proposition 5.6 we have aclH(cbH(c/A)) = aclH(cb(ch/A)) and by Lemma 6.9 h ⊂
h′. Note that acl(c′A) ∩ acl(B) = acl(A) because acl(c′A) ⊂ aclH(cA), A = acl(A)
and B = acl(B). So, by CM-triviality of T , cb(c′/A) ⊂ acl(cb(c′/B)). Recall that
c′ = ch. Hence

aclH(cbH(c/A)) = aclH(cb(ch/A))

⊂ aclH(cb(ch/B))

⊂ aclH(cb(ch′/B))

= aclH(cbH(c/B)).

�

We can adapt the previous proof in order to prove that if T ind is n-ample then T
is n-ample for every n. In [7] the converse has been proved for SU-rank 1 theories
with a predicate, but we could not adapt that proof to this context.

7. Geometry modulo H in the one-based case

In this section we consider the case when T is one-based, and follow the proofs
of Theorem 5.13 [15] and the results of Section 6 of [15], and Section 4 of [4], to
study the geometry induced by cl localized at H(M). Many of the proofs are nearly
identical to the ones from [15] and [4], we include them for completeness.

Let (M,H) be a su�ciently saturated model of T ind. Let clH be the localization
of the operator cl at H(M), i.e. clH(A) = cl(A∪H(M)). Thus, a ∈ clH(B) means
SU(a/B ∪H(M)) < ω.

Proposition 7.1. Suppose T is one-based. Then the pregeometry (M, clH) is mod-
ular.
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Proof. It su�ces to show that for any a, b ∈ M and a small set C ⊂ M , if
a ∈ clH(bC) then there exists d ∈ clH(C) such that a ∈ clH(bd). We may as-

sume that a, b 6∈ clH(C). Let ~h ∈ H(M) be �nite such that a ∈ cl(bC~h). Let

e = Cb(ab/C~h). Thus, by one-basedness of T , e ∈ acleq(ab) ∩ acleq(C~h). By

the density property, there is b′ |= tp(b/ acleq(C~h)), b′ ∈ H(M). Take a′ ∈ M

such that tp(a′b′/ acleq(C~h)) = tp(ab/ acleq(C~h)). Then e ∈ acleq(a′b′). Clearly,

a′ ∈ cl(b′C~h) ⊂ clH(C). Also, ab |̂
e
C~h implies SU(a/be) = SU(a/bC~h) < ω.

Since e ∈ acleq(a′b′), we have SU(a/ba′b′) ≤ SU(a/be) < ω. Since b′ ∈ H(M), this
implies a ∈ clH(ba′). Hence, taking d = a′, we have d ∈ clH(C) and a ∈ clH(bd),
as needed. �

Let (M∗, cl∗) be the geometry associated with (M, clH) (i.e. M∗ is the set
M\ clH(∅) modulo the relation clH(x) = clH(y)) . For any a 6∈ clH(∅), let a∗ be
the class of a modulo the relation clH(x) = clH(y). De�ne the relation ∼ by

a∗ ∼ b∗ ⇐⇒ | cl∗(a∗, b∗)| ≥ 3 or a∗ = b∗.

Lemma 7.2. For any a, b ∈ M , a∗ ∼ b∗ if and only if there exist d1, . . . , dn ∈ M
such that

a∗ ∈ cl∗(b∗d∗1 . . . d
∗
n)\ cl

∗(d∗1 . . . d
∗
n).

Proof. The "only if" direction is clear. For the "if" direction, suppose a∗ 6= b∗ and
a∗ ∈ cl∗(b∗d∗1 . . . d

∗
n)\ cl

∗(d∗1 . . . d
∗
n). We may assume that n ≥ 1 is minimal such.

Then a ∈ cl∗(bd1 . . . dnh1 . . . hk) for some h1, . . . , hk ∈ H(M). We may assume that
k is minimal such. Then the tuple abd2 . . . dnh1 . . . hk is cl-independent. By the

density property, we can �nd d′2, . . . , d
′
n ∈ H(M) such that tp(d′2, . . . , d

′
n/ab

~h) =

tp(d2, . . . , dn/ab~h). Let d
′
1 ∈M be such that

tp(d′1, d
′
2, . . . , d

′
n/ab

~h) = tp(d1, d2, . . . , dn/ab~h).

Then d′1 6∈ clH(∅) and (d′1)
∗ ∈ cl∗(a∗, b∗), while (d′1)

∗ 6= a∗, b∗. Thus, | cl∗(a∗, b∗)| ≥
3, as needed.

�

Lemma 7.3. The relation ∼ is an equivalence on M∗.

Proof. Re�exivity and symmetry are clear. For transitivity, assume a∗ ∼ b∗ ∼
c∗, with all three distinct. Then there exist d∗1 ∈ cl∗(a∗b∗)\{a∗, b∗} and d∗2 ∈
cl∗(b∗, c∗)\{b∗, c∗}. If d∗1 = d∗2, then c

∗ ∈ cl∗(b∗, d∗2) = cl∗(b∗, d∗1) = cl∗(a∗, d∗1), and
therefore d∗1 = d∗2 ∈ cl∗(a∗, c∗)\{a∗, c∗}, hence a∗ ∼ c∗.

Now, assume that d∗1 6= d∗2 and a∗ ∈ cl∗(d∗1, d
∗
2). If a∗ = d∗2, then b∗ witnesses

a∗ ∼ c∗. If a∗ 6= d∗2, then d∗2 ∈ cl∗(a∗, d∗1). We also have b∗ ∈ cl∗(a∗, d∗1), c
∗ ∈

cl∗(b∗, d∗2). Thus, c
∗ ∈ cl∗(a∗, d∗1). If c

∗ = d∗1, b
∗ witnesses a∗ ∼ c∗. If c∗ 6= d∗1, then

d∗1 witnesses a∗ ∼ c∗. Finally, assume that d∗1 6= d∗2 and neither a∗ 6∈ cl∗(d∗1, d
∗
2).

Then

a∗ ∈ cl∗(c∗d1d
∗
2)\ cl

∗(d∗1d
∗
2).

Thus, by Lemma 7.2, a∗ ∼ c∗.
�

For any a∗ ∈M∗ let [a∗] denote the ∼-class of a∗.
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Lemma 7.4. The ∼-classes are closed in the sense of cl∗, i.e. for any a∗ ∈ M∗,
we have cl∗([a∗]) = [a∗].

Proof. Assume c∗ ∈ cl∗(b∗1, . . . , b
∗
n),

~b∗ = (b∗1, . . . , b
∗
n) ∈ [a∗] minimal such tuple, and

n > 1 (if n = 1, we have c∗ = b∗1). Then b∗1 . . . b
∗
n−1 witnesses c∗ ∼ b∗n, by Lemma

7.2. �

For any geometry (X,Cl), a non-empty subset of X, with the closure operator
induced by Cl, is referred to as a subgeometry of (X,Cl). Clearly, a subgeome-
try is itself a geometry. Next lemma shows that ∼ splits (M∗, cl∗) into disjoint
subgeometries of the form ([a∗], cl∗), with no "interaction" between them.

Lemma 7.5. For any A ⊂M∗, cl∗(A) =
⋃

[a∗]∈M∗/∼ cl∗(A ∩ [a∗]).

Proof. Suppose c∗ ∈ cl∗(A), and a∗1, . . . , a
∗
n ∈ A is a tuple such that c ∈ cl∗(a∗1, . . . , a

∗
n),

and n is minimal such. It su�ces to show that a∗i all come from the same ∼-class.
If n = 1, we are done. Suppose n > 1. Then c∗a∗3 . . . a

∗
n witnesses a∗1 ∼ a∗2 by

Lemma 7.2. Similarly, a∗1 ∼ a∗i for all 2 < i ≤ n. Thus, all a∗i belong to the same
∼-class. �

Next, we will show that the ∼-classes are either singletons or in�nite dimensional
(as geometries).

Lemma 7.6. If |[a∗]| > 1, then dim([a∗]) is in�nite.

Proof. Suppose there exists b∗ ∼ a∗, b∗ 6= a∗. Let c∗ ∈ cl∗(a∗, b∗)\{a∗, b∗}. Let
a, b, c ∈ M be representatives of the classes a∗, b∗ and c∗ modulo the relation
clH(x) = clH(y), respectively.

Then SU(a/H(M)) = SU(b/aH(M)) = ω. By the extension property, we
can �nd bi |= tp(b/a), i ∈ ω, independent over aH(M). Then, by Lemma 2.7,
tpH(bi/a) = tpH(b/a) for all i ∈ ω. Also, bi are clH -independent over a. Let ci be
such that tpH(bici/a) = tpH(bc/a) for i ∈ ω. Passing to the geometry (M∗, cl∗),
we get b∗i ∼ a∗ witnessed by c∗i , i ∈ ω, with bi cl

∗-independent over a∗. This shows
that that ([a∗], cl∗) is in�nite dimensional. �

Recall the following classical fact (see [11]) about projective geometries.

Fact 7.7. A non-trivial modular geometry of dimension ≥ 4 in which any closed
set of dimension 2 has size ≥ 3 is a projective geometry over some division ring.

Lemma 7.8. If T is one-based and |[a∗]| > 1 , the geometry ([a∗], cl) is an in�nite
dimensional projective geometry over some division ring.

Proof. By Proposition 7.1, (M∗, cl∗) is modular. By Lemma 7.5, [a∗] is closed in
(M∗, cl∗), and hence ([a∗], cl∗) is also modular. Since |[a∗]| > 1, ([a∗], cl∗) is non-
trivial (there are two distinct point having a third one in its closure). Thus, the
statement follows by Fact 7.7 and the de�nition of ∼. �

We are now ready to prove the characterization of the geometry of clH , as well
as the original geometry of cl in the case when T is one-based.

Proposition 7.9. Suppose T is a one-based supersimple theory of SU-rank ω,
(N,H) a su�ciently (e.g. |T |+-) saturated models of T ind, and M a small model
of T (e.g. of size |T |). Then
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(1) The geometry (N∗, cl∗) of clH in (N,H) is a disjoint union of in�nite dimen-
sional projective geometries over division rings and/or a trivial geometry.
(2) The geometry of the closure operator cl inM is a disjoint union of subgeometries
of projective geometries over division rings.

Proof. (1) Follows by Lemmas 7.5, 7.6 and 7.8.
(2) By Lemma 2.6, any structure of the form (M,H) where M |= T , and H(M) is
an independent set of generics, can be embedded, in an H-independent way, in a
su�ciently saturated H-structure. Thus we may assume that (M, ∅) ⊂ (N,H) with
M |̂ ∅H(N). Then cl-independence over ∅ in M coincides with cl-independence in

N over H(N), i.e. clH -independence. Thus, we have a natural embedding of the
associated geometry of (M, cl) into (N∗, cl∗). The result now follows by (1). �

Remark 7.10. The previous proposition also holds with the weaker assumption
that the pregeometry (N, clH) is modular instead of asking that is one-based. All
the proofs depend on the properties of the closure operator, not the properties of
forking in the full structure.
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