STRUCTURES OF SU-RANK OMEGA WITH A DENSE
INDEPENDENT SUBSET OF GENERICS

ALEXANDER BERENSTEIN, JUAN FELIPE CARMONA, AND EVGUENI VASSILIEV

ABsTrACT. Extending the work done in [3, 9] in the o-minimal and geometric
settings, we study expansions of models of a supersimple theory of SU-rank w
with a "dense codense" independent collection H of elements of SU-rank w,
where density of H means it intersects any definable set of SU-rank omega. We
show that under some technical conditions, the class of such structures is first
order. We prove that the expansion is supersimple and characterize forking
and canonical bases of types in the expansion. We also analyze the effect these
expansions have on one-basedness and CM-triviality. In the one-based case,
we describe a natural "geometry of generics modulo H" associated with such
expansions and show it is modular.

1. INTRODUCTION

There are several papers that deal with expansions of simple theories with a new
unary predicate. For example, there is the expansion with a random subset [8] that
gives a case where the new theory is again simple and forking remains the same, in
contrast to the case of lovely pairs [2, 15], where the pair is usually much richer and
the complexity of forking is related to the geometric properties of the underlying
theory [15].

In [5] the first and the third authors studied, in the setting of geometric struc-
tures, adding a predicate for an algebraically independent set H which is dense and
codense in a model M (meaning every non-algebraic formula in a single variable has
a realization in H and a realization generic over H and its parameters). The paper
generalized ideas developed in the framework of o-minimal theories in [9]. The key
tool used in [5] was that the closure operator acl has the exchange property and thus
gives a matroid that interacts well with the definable subsets. A special case under
consideration was SU-rank one theories, where forking independence agrees with
algebraic independence. In this stronger setting the authors characterized forking
and gave a description of canonical bases in the expansion. As in the lovely pair
case, the complexity of forking is related to the underlying geometry of the base
theory T'.

In this paper we start with a theory T that has SU-rank omega and we use
the closure operator associated to the weight of generic types, namely for M = T,
a€ M, AC M, we have a € cl(A) if SU(a/A) < w. This closure operator has the
exchange property and many of the results obtained in [5] can be proved in the new
framework: we expand M by a new predicate consisting in a cl-dense cl-codense
family of independent generics (see Definition 2.3). In particular, the extension is
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supersimple and we get a clear description of canonical bases in the expansion, up
to interalgebraicity (see Proposition 5.6).

In the special case where the theory of M is superstable with a unique type of
U-rank w, the predicate H is a Morley sequence of generics; this case is related to
the work done in [1]. Our work is also related to work of Fornasiero on lovely pairs
of closure operators [10].

Of special interest is the effect of our expansion on the geometric complexity,
namely the ampleness hierarchy. Following the ideas of [7], we show that the ex-
pansion preserves CM-triviality, but one-basedness is preserved only in the trivial
case.

We then use this expansion to study the underlying geometry of the closure
operator localized in H. We show that if T is a one-based supersimple theory
of SU-rank w, (N, H) a sufficiently (e.g. |T'|"-) saturated H-structure, then the
localized closure operator cl(— U H) is modular and its associated geometry is a
disjoint union of projective geometries over division rings and trivial geometries.

This paper is organized as follows. In section 2 we define H-structures associated
to models M of a theory 7. We show that two H-structures associated to the same
theory are elementary equivalent and call 7°*¢ this common theory. Finally we
prove that that under some technical conditions (elimination of the quantifier 3'*79¢
and the type definablity of the predicates @, ) the saturated models of T are
again H-structures.

In section 3 we study four different examples of theories of SU-rank w: dif-
ferentially closed fields, vector spaces with a generic automorphism, H-pairs and
lovely pairs of geometric theories. In each case we show the corresponding theory
of H-structures is first order.

In section 4 we analyze the definable sets in the expansion, we prove that every
definable set is a boolean combination of old formulas bounded by existential quan-
tifiers over the new predicate. In section 5 we characterize forking in the expansion
and characterize canonical bases. In section 6 we study the question of preservation
of one-basedness and CM-triviality under our expansion. Finally in section 7 we
study the geometry of cl(— U H).

2. H-STRUCTURES: DEFINITION AND FIRST PROPERTIES

Let T be a simple theory of SU-rank w. Let H be a new unary predicate and let
clg = clU{H}. Let T” be the Ly-theory of all structures (M, H), where M =T
and H (M) is an independent subset of generic elements of M, that is, all elements
have SU-rank w. Note that saying that H(M) is an independent collection of
generics is a first order property, it is simply the conjunctions of formulas of the
form —p(xy,...,x,), where SU(p(x1,...,2,)) < wn.

For M T, AC M and b € M, we write b € cl(4) and say that b is small over
Aif SU(b/A) < w. By the additivity properties of SU rank we have that £ gives a
pregeometry on M. We write dim(o(x1,...,2,)) = n and say that p(z1,...,2,)
is large if SU(p(z1,...,2,)) =wn

We will assume that for every formula ¢(x, %) there is a formula ¥(7) such that
for any @ € M ¢(x,a) is large if and only if 1(a@). We write 3'979¢p(z, ) if ¥ (%)
holds.



There is a strong analogy to what happens in geometric theories (see [3]), we
change the pregeometry acl for the pregeometry £ and the quantifier 3°° for the
quantifier 3er9e,

Notation 2.1. Let (M,H(M)) =T’ and let AC M. We write H(A) for H(M)N
A.

Notation 2.2. Throughout this paper independence means independence in the
sense of T and we use the familiar symbol | . We write tp(a@) for the L-type of a
and dcl, acl for the definable closure and the algebraic closure in the language L.
Similarly we write dcly,acly,tpy for the definable closure, the algebraic closure
and the type in the language L.

Definition 2.3. We say that (M, H(M)) is an H-structure if
(1) (M, H(M)) =T
(2) (Density/coheir property) If A C M is finite and ¢ € S;(A) is the type of
a generic element (of SU-rank w), there is a € H(M) such that a |= g.
(3) (Co-density/extension property) If A C M is finite and ¢ € S1(A), there is
a€M,aFqanda |  H(M).

Lemma 2.4. Let (M,H(M)) = T'. Then (M,H(M)) is an H-structure if and
only if:
(2°) (Generalized density/coheir property) If A C M is finite and q € S,,(A) has
SU-rank wn, then there is @ € H(M)™ such that d |= q.
(3") (Generalized co-density/extension property) If A C M is finite dimensional
and g € Sy, (A), then there is @ € M™ realizing q such that tp(d/AU H(M))
does not fork over A.

Proof. We prove (2°) and leave (3) to the reader. Let b |= ¢, we may write b =
(b1,...,by). Since (M, H(M)) is an H-structure, applying the density property we
can find a; € H(M) such that tp(a;/A) = tp(b1/A). Let q(x, b1, A) = tp(bs, b1, A)
and let A; = AU {a;}. Finally consider the type g(x,a;, A) over Ay, which is the
type of a generic element. Applying the density property we can find as € H(M)
such that tp(as,a1/A) = tp(be,b1/A). We continue inductively to find the desired
tuple (a1, as,...,a,). O

Note that if (M, H(M)) is an H-structure, the extension property implies that
M is Np-saturated.

Definition 2.5. Let A be a subset of an H-structure (M, H(M)). We say that A
is H-independent if A is independent from H (M) over H(A).

Lemma 2.6. Any model M of T with a distinguished independent subset H (M)
can be embedded in an H-structure in an H-independent way.

Proof. Given any model M with a distinguished independent subset H (M) of gener-
ics, we can always find an elementary extension N of M and a set H(N) extending
H(M) such that for every generic 1-type p(z,acl(m)) (i.e. SU(p(x)) = w), where

m € M, there is d € N such that d |= p(z,acl(m)) and d LH(M) m. Add a similar

statement for the extension property. Now apply a chain argument. O

In particular, for a SU-rank w theory T', H-structures exist.
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Lemma 2.7. Let (M, H) and (N, H) be sufficiently saturated H-structures, @ € M
and @ € N H-independent tuples such that tp(@, H(a)) = tp(a’, H(d")). Then
tpu (@) = tpp (a@').

Proof. Write @ = d@odyh, where @, is independent over H(M), h = H(@) € H(M)
and @, € L(doh). Similarly write @ = @)a)h’.

It suffices to show that for any b € M there are hy € H(M), l_z"l € H(N)
and b € N such that @hib and @k} are each H-independent, tp(d@odhhib) =
tp(@@ h'hib), and b € H(M) iff o' € H(N).

Case 1: b € cl(@) N H(M). By H-independence of @, we must have b € cl(h) and
since H forms an independent set we must have b € h. Let b € K be such that
tp(b'@) = tp(b@) and the result follows. Here we can take hy and I, to be empty

Case 2: b € H(M) and is non small over @. Then tp(b/@) is generic. By the
density property, we can find ¥’ € H(N) such that tp(b'd@’) = tp(bad). Here again
we can take hy and ) to be empty.

Case 3: b € cl(@). We claim that b | _ H(M). Indeed let hy (say of length k) in
H(M)\ h. Since @ is H-independent, the elements in H (M) \ h are independent
over @ and thus SU(hy /@) = SU(hy/h) = wk. On the other hand SU(b/@) < w, s0
the types tp(b/@), tp(h1/d@) are orthogonal and the claim follows.

Thus the tuple @b is H-independent. Let p(z,a) = tp(b/@). Now use the exten-
sion property to find ¥’ € N’ such that ¥ = p(x,d’), v’ ¢a, H(N), so by transitivity
a'b’ is H-independent.

Case 4: b € cl(H(M)@). Add a tuple hy € H(M) such that @bhy is H-
independent, and use Case 2 and Case 3.

Case 5: b & cl(H(M)d). By the extension property, there is & € N such that
b & cl(H(N)d") and tp(b'a’) = tp(bd). The tuples stay H-independent, so again
we can take iy and 7 to be empty.

O

The previous result has the following consequence:
Corollary 2.8. All H-structures are elementarily equivalent.

We write 7% for the common complete theory of all H-structures of models of
T.

Definition 2.9. We say that 7% is first order if the |T|*-saturated models of
T4 are again H-structures.

To axiomatize T°*¢ and to show that T°"? is first oder, we follow the ideas of
[15, Prop 2.15], [3] and [2]. Here we use for the first time that 7" eliminates 3'79¢,
Recall that whenever T eliminates 3/%79¢ the expression the formula o(, l_;) is large
is first order.

We also need the following definition from [2, Definition 2.4]:

Definition 2.10. Let (¥, 2) and ¢(Z,y) be L-formulas. Q,  is the predicate
which is defined to hold of a tuple & (in M) if for all gsatisfying Y(y, €), the formula
©(Z,b) does not divide over ¢.
The following result follows word by word from the proof of [2, Proposition 4.5],
changing the elementary substructure for the predicate H:
4



Proposition 2.11. The following are equivalent:
(1) Qg is type-definable (in M ) for all L-formulas o(Z,¥), (Y, 2).
(2) The extension property is first order.
(3) Any |T|*-saturated model of T™? satisfies the extension property.

Corollary 2.12. Let T be a simple theory of SU-rank omega that satisfies wnfcp.
Then the extension property is first order.

Proposition 2.13. Assume T eliminates 3'%79¢ and that the predicates Q. are
L-type-definable for all L-formulas ©(Z,7),(7,Z). Then T is first order.

Proof. The theory T""? is described by T”, the density property and the extension
property.

T’ is a first order property.

The density property can be described in first order by the scheme:

For all £-formulas ¢(z, %)
Vi(p(x,y) large = Fx(p(z,§) ANz € H)).

Thus all saturated models of the scheme satisfy the density property. Finally by
Proposition 2.11 any |T'|T-saturated model of T""? satisfy the extension property.

O

Notation 2.14. Let (M,H(M)) be an H-structure and let A C M. We write
clg(A) for cl(AH(M)) and we call it the small closure of A over H.

3. EXAMPLES

In this section we give a list of examples of simple theories of SU-rank w that
eliminate 3'*79¢ and where the extension property is first order. We also list some
examples that eliminate the quantifier 3'%79¢ but where it remains as an open
question if the extension property is first order.

3.1. Differentially closed fields. Let 7' = DCFy, the theory of differentially
closed fields. This theory is stable of U rank w and also RM(DCFp) = w.

Let p(z) be the unique generic type of the theory. This type is complete, station-
ary and definable over ). Let ¢(x, ) be a formula and let ¢ (¢) be its p-definition.
Then for (K,d) = DCFy, @ € K, the formula ¢(z,d) is large iff (@). Thus this
theory eliminates the quantifier 3'¢79¢,

Now let us study the extension property. Recall that DCFy has quantifier elimi-
nation [12, Theorem 2.4] and eliminates imaginaries [12, Theorem 3.7]. It is proved
in [12, Theorem 2.13] that DCFy has uniform bounding (i.e. it eliminates 3°°) and
thus it has nfcp. This is also explicitly explained in [12, page 52]. It follows by
Corollary 2.12 that the extension property is first order.

3.2. Free pseudoplane-infinite branching tree. Let T be the theory of the
free pseudoplane, that is, a graph without cycles such that every vertex has in-
finitely many edges. The theory of the free pseudoplane is stable of U-rank w
and MR(T) = w. For every A, acl(A) = dcl(A) = AU {z]| there are points a,b €
A and a path connecting them passing trough x}. For A algebraically closed and a
a single element, U(a/A) = d(a, A) where d(a, A) is the minimum length of a path
from a to an element of A or w if there is no path; in this last case we say that a is
at infinite distance to A or that a is not connected to A. Note that there is a unique
generic type over A, namely the type of an element which is not connected to A.
5



The generic type is definable over () and thus by definability of types T eliminates
the quantifier 3'@r9e,

An H-structure (M, H) associated to T' is an infinite collection of trees with an
infinite collection of selected points H (M) at infinite distance one from the other
and with infinite many trees not connected to them. If (N, H) = Th(M, H), then
N has infinitely many selected points H(N) at infinite distance one from the other.

If (N, H) is Nyp-saturated, then by saturation it also has infinitely many trees
which are not connected to the points H(N). We will prove that in this case
(N, H) is an H-structure. The density property is clear. Now let A C N be finite
and assume that A = dcl(A) and let ¢ € N. If U(c/A) = w choose a point b in a
tree not connected to AU H, then tp(c/A) = tp(b/A) and b | , H. If U(c/A) =0
there is nothing to prove. If U(c/A) =n > 0, let a be the nearest point from A to
c. Since there is at most one point of H connected to a and the trees are infinitely
branching, we can choose a point b with d(b,a) = n and such that d(b, AU H) = n;
then tp(c/A) = tp(b/A) and b | , H. This proves that (N, H) is an H-structure
and that that 7" is first order.

3.3. Vector space with a generic automorphism. Let T be the theory of
(infinite-dimensional) vector spaces over a division ring F', and let T, by its (unique)
generic automorphism expansion.

This theory has a unique generic, which is definable over (). By definability of
types, T, eliminates the quantifier 3‘¢79¢,

Now we prove that the extension property is first order.

Let (M, H) be an H-structure associated to T, let (N,H) = Th(M,H) be
|T|*-saturated and let a,b € N.

Note that the type of the element a over a tuple b in T, is determined by

aftp~ (c"(a) /" (b)),

where the superscript — refers to the language of T', and

ol@ =...,0674@),¢0(e),0%(@),....

There are three possible situations for tp(a/b):
(1) a € span(a”(b))
(2) a,0(a),...,0" '(a) are independent over oZ(b), but
o™(a) € span(a,o(a),...,o" (a)a?(b))
(3) o%(a) is independent over % (b)

For the first case, we have that a € dcl(b) and thus a LzH.

For the second case, assume now that ¢™(a) € span(a,o(a),...,oc" (a)o%(b)).
Since M is an Ny-saturated, we can find o', € M such that tp(a,b) = tp(a’, ')
and since (M, H) is an H-structure we may assume that a’ J/E’ H. In particular,
the elements a’,o(a’),...,0" !(a’) do not satisfy any nontrivial linear combination
with elements in dcl(b'H(M)). Since (N,H) E Th((M,H)) is |T|"-saturated,
we can find (a”,b) = tp(a’,b') such that a”,o(a”),...,0" 1(a”) do not satisfy
any nontrivial linear combination with elements in dcl(bH(N)). This shows that
a” |z H as we wanted.



For the third case, since (N, H) = (M, H), we have that H(N) is an infinite
collection of independent generics. Let ag,...,a,2_1 € H(N) be distinct and con-
sider co = a9+ -+ ap_1,--+,Cn_1 = Ap2_p, + --- + a,2_1. Then the elements
Co,-..,Cn—1 are independent generics and neither one can be written as a linear
combination of less that n elements in H. Since (N, H) is |T|"-saturated, we can
find infinitely many independent generics that are independent over H(N). If 0%(a)
is independent over oZ(b) we can choose a’ generic independent from bH(N) and
thus o’ | ; H.

3.4. Theories of Morley rank omega with definable Morley rank. Let T
be a w-stable theory of rank w and let M = T be |T|"-saturated. Assume also that
the Morley rank is definable, that is, for every formula ¢(x, ) without parameters
and every « € {0,1,...,w} there is a formula v, (¥) without parameters such that
ford € M, MR(¢(x, )) > o if and only if ¥, (@). To simplify the notation, we will
write M R(p(z,@)) > « instead of v,(@). We will prove that T is first order.

Elimination of 3'*79¢, Consider first (z,7) and let b € M. Then ¢(z, b) is large
if and only if MR(p(x,b)) > w, so T eliminates the quantifier 3'a79¢.

Extension property. Now assume that (M, H) is an H-structure and let (N, H) =
Th(M, H) be |T|*-saturated. Let a € N and let b € N. If MR(tp(a/b)) = 0 there
is nothing to prove. Assume then that MR(tp(a/b)) = n > 0.

Let ¢(x,§) € tp(a,b) with MR(p(z,5)) = n and Md(p(x,b)) = Md(tp(a/b)).
Let (a/,b') = tp(a,b) belong to M. Since (M,H) is an H-structure, we may
assume that o’ | 7 H and thus for every formula 0(z,9,?) and every tuple h e

H, if MR(0(z,b',k)) < MR(p(x,b')) = n then —0(x,b,h) € tp(a’/V'H). So
(M,H) | Vd' MR(¢(z, d)) >n = 3eple,d) ANVh € HMR(O(z,d k) <
n = —0(c,d h)).

Since (N, H) |: TH(M,H)is |T|+—saturated we can find o’ such that MR(o(a’, b)) >
n and whenever A € H(N) and 6(z,b, k) is a formula with Morley rank smaller
than n we have —6(a’, b, h). This shows that M R(a’ /bH) = MR(d'/b) = M R(a/b),
Md(d'/b) = Md(a/b), both a and o are generics of the formula o(x,b) and thus
tp(a/b) = tp(a’/b). Finally by construction a’ LzH. It follows that T is first
order.

3.5. H-triples. Recall from [3] that if Tj is supersimple SU-rank one theory whose
pregeometry is not trivial, then 7" = Ti"¢ has SU-rank omega. The models of T
are structures of the form (M, Hy), where M = Ty and H; is a aclp-dense and
aclp-codense subset of M. We write Ly for the language associated to Ty and £ for
the language associated to 7. Similarly, we write acly for the algebraic closure in
the language Lo and for A C M |= Ty, we write SO(A) for the space of Lo-n-types
over A.

We will assume that Ty has a strong form of non-triviality, namely for all Lg-
definable infinite sets (x), there is an algebraic triangle inside ¢(x). So there
is a set B and there are a = ¢(x) and there are b,c¢ with each of a,b,c acly-
independent from B and such that a € aclg(beB) \ aclg(bB). With this assumption,
if(M,H) =T, A C M and a & aclo(AH;), then SU(tp(a/A)) = w and the generics
in the sense of (M, Hy) have SU as required for the present paper.
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In this subsection we change our notation and we let Hs be a new predicate
symbol that will be interpreted by a dense and codense T-generic subset of (M, Hy).

The structures (M, Hy, Hy) were already studied in [3]. We recall the definitions
and the main result. The main tool for studying T%"¢ is to take into account the
base theory T and use triples.

Definition 3.1. We say that (M, H;(M), Hy(M)) is an H-triple associated to Ty
if:
(1) M E Ty, Hi(M) is an aclp-independent subset of M, Hy(M) is an acly-
independent subset of M over Hj.
(2) (Density property for Hy) If A C M is finite dimensional and ¢ € S{(A) is
non-algebraic, there is a € Hy (M) such that a | g.
(3) (Density property for Hy/H;) If A C M is finite dimensional and q € Sy (A)
is non-algebraic, there is a € Hy(M) such that a = ¢ and a & aclp(A U
H, (M)).
(4) (Extension property) If A C M is finite dimensional and ¢ € SY(A) is
non-algebraic, there is a € M, a |= q and a € aclo(AU Hy (M) U Hy(M)).

It is observed in [3] that if (M, Hy(M), H2(M)), (N,H1(N), H2(N)) are H-
triples, then Th(M, Hy(M), Hy(M)) = Th(N,H,(N), Ho(N)) and we denote the
common theory by Tg".

The folowing result is proved in [3] for geometric theories.

Proposition 3.2. Let T be an SU rank one strongly non-trivial supersimple the-
ory, let M =T and let H1 (M) C M, Hy(M) C M be distinguished subsets. Then
(M, H, (M), Hy(M)) is a Hy-structure associated to T if and only if (M, Hy (M), Hy(M))
is an H-triple.

Thus, to show that the class of Hs-structures associated to T is first order, it
suffices to prove that this is the case for H-triples associated to Ty. As pointed out
in [3] we have:

Proposition 3.3. The theory T'" is aziomatized by:

(1) T.

(2) M E Ty, Hi(M) is an acly-independent subset of M, Ha(M) is an acly-
independent subset of M over H;.

(3) For all L-formulas o(x, )

Yy (p(z, ) nonalgebraic = Jx(p(z,§) Ax € Hy)).

(4) For all L-formulas p(z,), m € w, and all L-formulas ¥ (x,21,...,2m,T)
such that for some n € w VNGIAS"x)(z, Z,7) (so ¥(x,¥,7) is always alge-
braic in x)

Vy(p(z,§) nonalgebraic — Jx(p(z,¥) Ax € Ha) A
Ywy ... Vwy, € Hi—p(x, w1, ..., Wy, Y))

(5) For all L-formulas p(x,¥), m € w, and all L-formulas Y (x,21,...,2m,T)
such that for some n € w VNGAS"x)(x, Z,7) (so Y (x,¥,7) is always alge-
braic in x)

Vi (p(z,§) nonalgebraic — Jzp(x,§) A
Yws ...Yw, € H1 U HQ—\i/)(J,‘,wl, ey wm,gj))

Furthermore, if (M, H, Hy) |= T is |T|" -saturated, then (M, H, Hy) is
an H-triple.



Thus when Ty is a strongly non-trivial supersimple SU-rank one theory, 7" =
T is first order.

3.6. H structures of lovely pairs of SU-rank one theories. Let T be a geo-
metric theory, Tp its lovely pairs expansion, and let

cl(—) = acl(— U P(M))

be the small closure operator in a lovely pair (M, P). Our goal is to expand Tp to
a theory T};”d in the language Lpy = Lp U{H}, by adding a cl-independent dense
set to a model of Tp.

The following definition is analogous to Definition 3.1.

Definition 3.4. We say that an Lpg-structure (M, P, H) is a PH-structure of T
if
(1) P(M) is an elementary substructure of M;
(2) H(M) is acl-independent over P(M);
(3) for any non-algebraic type ¢ € ST (A) over a finite-dimensional set A C M,
q is realized in
(density of P over H) P(M)\ acl(H(M)A);
(density of H over P) H(M)\ acl(P(M)A);
(extension) M\ acl(P(M)H (M)A).
)

Remark 3.5. (a) It suffices to require P(M) to be dense in the usual sense, i.e. q
having a realization in P(M).

(b) We can get a PH -structure from an H-triple (M, Hy, Hy) (see previous ez-
ample), by letting P(M) = acl(H1).

(¢) A usual elementary chain argument shows that any Lpy structure (M, P, H)
satisfying (1,2) embeds in a PH-structure (N, P, H) so that H(N) J/H(M) MP(N)
and P(N) \J/P(M) MH(N). In particular, PH -structures exist.

(d) Reducts (M, P) and (M, H) of (M, P, H) are lovely pairs and H -structures,
respectively.

While in linear examples the SU-rank of Tp is two instead of w, the machinery
for this paper still goes through we our current assumptions for cl.

Definition 3.6. We say that (M, P, H) is an cl-structure if

(1) (M, P) is alovely pair and H is an cl-independent set

(2) (Density/coheir property for cl) If A C M is finite dimensional and ¢ €
SFP(A) is large, there is a € H(M) such that a |= q.

(3) (Extension property) If A C M is finite dimensional and g € ST (A) is large,
thereis a € M, a |=q and a & cl(AU H(M)).

Proposition 3.7. (M, P, H) is an cl-structure if and only if (M, P,H) is a PH-
structure.

Proof. Assume first that (M, P, H) is a cl-structure. Then the pair (M, P) is lovely

and thus (M, P, H) satisfies the density axiom for P. Now let A C M be finite

dimensional and let ¢ € S;(A) be non-algebraic. Let § € ST (A) be an extension of

¢ that contains no small formula with parameters in A. Then by the Density/coheir

property for cl it follows that there is a € H(M) such that a = ¢. In particular,

a = q and a ¢ cl(A) and thus we get the density property for H over P. Finally,
9



since the same § is not small, there is ¢ € M, ¢ = § and ¢ € cl(AU H(M)) =
acl(AU P(M)U H(M)). Thus the extension property holds as well.

Now assume that (M, P, H) is an PH-structure. Then H is an cl-independent
set, and by the density property for P and the extension property it follows that
(M, P) is a lovely pair. Now let A C M be finite dimensional and let § € SF(A)
be non-small. We may enlarge A and assume that A is P-independent. Let ¢ be
the restriction of ¢ to the language £. Note that ¢ is the unique extension of ¢
to a non-small type. By the density for H over P, there is a € H(M) such that
a = q, a & cl(A) and thus a = §. Finally the extension property follows from the
extension property for PH-structures. [l

We will now show that the class of PH-structures is "first order", that is, that
there is a set of axioms whose |T'|"-saturated models are the PH-structures. The
axiomatization works as in H-triples.

Proposition 3.8. Assume T eliminates 3°°. Then the theory Tpy is ariomatized
by:
1) T
(2) azioms saying that P distinguishes an elementary substructure.
(3) For all L-formulas o(x, )
Vi(p(x,y) nonalgebraic = Fx(p(x,y) Az € P)).
(4) For all L-formulas p(z,¥), m € w, and all L-formulas Y (x,21,...,2m,T)
such that for some n € w YNGIAS" 2 (x, Z,7) (so ¥ (x,¥,7) is always alge-
braic in x)
Vi (p(z,§) nonalgebraic — Jx(p(z,y) Aax € H) A
Ywy ... Ywy, € P-)(x,wy,. .., wn,Y))
(5) For all L-formulas p(x,¥), m € w, and all L-formulas ¥ (x,21,...,2m,T)
such that for some n € w YNGIAS"a)(z, Z,7) (so Y (x,¥,7) is always alge-
braic in x)
Vi (p(z, ) nonalgebraic — Jx(p(z, ) ANx € PAx & H) A
Ywy ... Ywy, € PUH-Y(z,w,. .., Wn,Y))
Furthermore, if (M, P, H) = Tpy is |T|"-saturated, then (M, P, H) is a
PH -structure.

Now we list a family of structures of SU-rank w where we do know if the corre-
sponding theory of H-structures is axiomatizable. In both cases it is open whether
or not the extension property is first order.

3.7. ACFA. Let T = ACFA, (a completion) of the theory of algebraically closed
fields with a generic automorphism. This theory is simple of SU rank w and it is
unstable.

Let p(x) be the generic type of the theory, namely the type of a transformally
independent element. This type is complete, stationary and definable over (). Let
(x,y) be a formula and let (7) be its p-definition. Then for (K,o0) = ACFA,
d@ € K, the formula ¢(z,a) is large iff ¢(@). Thus this theory eliminates the
quantifier 3@79¢

Question Does the extension property hold for ACFA? Does Ty satisfy wnfcp?

3.8. Hrushovski amalgamation without collapsing. In this subsection we fol-

low the presentation of Hrushovski amalgamations from [16], all the results we men-

tion can be found in [16]. Let £ = {R} where R stands for a ternary relation. We
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let C be the class of L-structures where R is symmetric and not reflexive. For A € C
a finite structure we let 6(A) = |A| — |R(A)| and we let C?m be the subclass of C
consisting of all finite £-structures M where for A C M we have §(A) > 0. Finally
M? stands for the Fraissé limit of the class C};,. Let Ty be the theory of M, then
MR(Ty) = w and Md(Tp) = 1.

Now let M |= Ty and for A C M finite we define d(A) = inf{6(B) : A C B}.
Then d is the dimension function of a pregeometry and that for an element a and
aset B, d(a/B) =1 if and only if MR(a/B) = w if and only if U(a/B) = w. Thus
the pregeometry studied in [16] corresponds to the pregeometry associated to cl.
Since the theory Tj has a unique generic type, by definability of types the theory
To eliminates the quantifier 3'¢79¢,

Question Does the extension property hold for T;? Does Ty satisfy nfcp?

4. DEFINABLE SETS IN H-STRUCTURES

Fix T a SUrank w theory and let (M, H(M)) = T™¢. Our next goal is to obtain
a description of definable subsets of M and H(M) in the language L.

Notation 4.1. Let (M, H(M)) be an H-structure. Let @ be a tuple in M. We de-
note by etpy (@) the collection of formulas of the form 3x, € H ... 3x,, € Ho(Z,y),
where p(Z, ) is an L-formula such that there exists h € H with M = ¢(h, ).

Lemma 4.2. Let (M,H(M)), (N,H(N)) be H-structures. Let @, b be tuples of
the same arity from M, N respectively. Then the following are equivalent:

(1) etpy (@) = etpy (b).
(2) d, b have the same Ly -type.
Proof. Clearly (2) implies (1). Assume (1), then tp(a@) = tp(b).

Claim dimg (b/H) = dimg (@/H).

Let h = (h,...,h;) € H(M) be such k := dimy(@/h) = dime(@/H(M)). We
may assume that @* = (ay, ..., ax) are independent over H and @* = (ag1,...,a,) €
c(ay,...,ap, b1, ..., ). Choose ¥(Z, i, Z) such that for any b € M, &€ M (b, ¢, ?)
is always small in Z and M k= o(h, @', a@2). Since etpy (@) = etpy(b) we get that
dima(b/H) < k. A similar argument shows that dim (@/H (M)) < dime (b/H(N)).

Claim tp; (b) = tpy (@).

As before, let h = (hy,...,h) € H(M) be such that k := dimg(a@/h) =
dime (@/H(M)). Then @h is H-independent. Since N is saturated as an L-structure
there are 1/ = (R, ..., hj) € H such that tp(a, h) = tp(b, k). By the claim above

——

bh' is H-independent, so the result follows from Lemma, 2.7. O

Now we are interested in the £py-definable subsets of H(M). This material is
very similar to the results presented in [5].

Lemma 4.3. Let (My, H(My)) = (M1, H(My)) and assume that (My, H(M)) is
|Mo|-saturated. The My (seen as a subset of My ) is a H-independent set.

Proof. Assume not. Then there are ay,...,a, € My \ H(My) such that a, €
cl(aiy...,an—1,H(M;)) and a,, & cl(aq,...,an—1,H(My)). Let p(z,¥, %) be a for-

mula which is always small on x and b € H(M;)z be a tuple such that ¢(a,,a1,...,a,-1, l_;)
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holds. Since (M, H(My)) = (M, H(M)) there is b’ € H(My)z such that
O(an, a1, ... an_1,0) A-F"20(z, a1, .. an1,b)
holds, so a,, € acl(ay,...,an—1, H(Mp)), a contradiction. O

Proposition 4.4. Let (M, H(M)) be an H-structure and let Y C H(M)™ be Lg-
definable. Then there is X C M™ L-definable such that Y = X N H(M)".

Proof. Let (My, H(M;)) = (M,H(M)) be s-saturated where x > |M|+ |L| and let
@,b € H(M;)™ be such that tp(@/M) = tp(b/M). We will prove that tpy(@/M) =
tpy (b/M) and the result will follow by compactness. Since @,b € H(M;)", we get
by Lemma 4.3 that ]\{d, Mb are H-independent sets and thus by Lemma 2.7 we
get tpy (/M) = tpp (b/M). U
Definition 4.5. Let (M, H) = T be saturated. We say that an £y-formula
Y(x,€) defines a H-large subset of M if there is b = v (z, ¢) such that b & cl(HE).

This is equivalent as requiring that there are infinitely many realizations of i (z, ©)
that are not small over H(M)c.

Definition 4.6. Let (M, H) = T be s-saturated and let A C M be smaller
than k. Let b € M be a tuple. We say that b is in the H-small closure of A
if b € cl(AH(M)). Let X C M™ be A-definable. We say that X is H-small if
X Ccl(AUH(M)).

Proposition 4.7. Let (M, H(M)) be an H-structure. Let @ = (a1,...,a,) € M.
Then there is a unique smallest tuple h € H(M) such that d | . H.

Proof. Since T is supersimple, there is a finite tuple h € H such that &'J/ﬁ H.

Choose such a tuple so that |%| (the length of the tuple) is minimal. We will now
show such a tuple h is unique (up to permutation).

We can write @ = (d@1,d2) so that @; is independent tuple of generics which is
independent, from H(M) and @ € cl(d@;). If @ = 0, then h = § and the result
follows. So we may assume that @y # (.

Then ds € cl(dy, i_i) Let &’ be another such tuple. Let h; be the list of common
elements in both 2 and 1/, so we can write i = (hy, hy) and i’ = (I, h).

Claim hy = b} = 0.

Assume otherwise. Then there is ¢ € ds such that ¢ € cl(d, i_il, fzg) \ cl(ay, ﬁl)
Since @ | ;;, H, we must have that ¢ € cl(ai, hy, k) \ (@, h1). By the exchange
property dimd(ﬁé/&’lﬁlﬁg) < dimd(f_ié/d'li_il). Since @; is a tuple of generic el-
ements that are independent over H we get that dime(h)/h1hs) < dime (kb /hy)
and since H is independent, fzg has a common element with 71’2, a contradiction. [

Remark 4.8. Let (M,H(M)) be an H-structure. Let d = (ay,...,a,) € M and
let C C M be such that C is H-independent. As before, there is a unique smallest
tuple h € H(M) such thata | ;  H.

Notation 4.9. Let (M, H(M)) be an H-structure. Let @ = (a1,...,a,) € M. Let
h € H(M) be the smallest tuple such that @ | H. We call h the H-basis of @ and

we denote it as HB(@). Given C C M such that C is H-independent, let h € H(M)
the smallest tuple such that @ | . H. We call h the H-basis of @ over C' and we
12



denote it as HB(d@/C). Note that H-basis is unique up to permutation, therefore
we will view the H-basis h = (hy,...,hy) either as a finite set {hy,...,hip} or as
the imaginary representing this finite set. If we view it as a tuple, we will explicitly
say so.

Proposition 4.10. Let (M, H(M)) be an H-structure. Let ay,...,an,an41 € M
and let C C M be such that C is H-independent. Then HB(ay,...,ay,a,+1/C) =
HB(ay,...,a,/C) U HB(ant+1/Cay,...,anHB(as,...,a,/C)), where all H-basis
are seem as sets.

Proof. Let hy = HB(ay, ..., a,/C). First note that since a1, ..., an \Lcﬁl H, then

theset aq, ... ,anC’l_{l is H-independent and we can define hy = HB(ap4+1/Cay,. .. ,an/_il).
Finally, let h = HB(ay,...,an, ant1/C).
Claim h C hjhs.

We have aq,...,a, J/C}_il H and a,11 J‘/CE1H2U/17-- o H, so by transitivity,

A1y vy QpQpyl J—/Cﬁlfzg H and by the minimality of an H-basis, we have h C
hyhs.

Claim h D) hth.

By definition, ai,...,anani1 \J/Cﬁ H, so ay,...,an, J-/Cﬁ H and by minimality
we have Hl C h. We also get by transitivity that a,41 J-/C’al,‘..,ani_ilf_{ H and by the
minimality of H-basis we get ho C h as desired. O

Proposition 4.11. Let (M,H(M)) be an H-structure. Let ay,...,a, € M and
let C C D C M be such that C, D are H-independent. Assume that there is
h e HB(as,...,a,/C)\ HB(as,...,a,/D). Then h € D.

Proof. Write hp = HB(ay,...,a,/D) and see it as aset. Then ay,...,a, D J/hDH(D)H
and ai,...,a, J/hDCH(D) H. By minimality of HB(ay,...,a,/C) we get that

HB(ay,...,a,/C) C hpH(D) and thus if h € HB(ay,...,a,/C) \ hp, we must
have h € H(D). O

We will now apply the H-basis to characterize definable sets in terms of L-
definable sets.

Proposition 4.12. Let (M,H(M)) be an H-structure and let Y C M be Lp-
definable. Then there is X C M L-definable such that YAX is H-small, where /\
stands for a boolean connective for the symmetric difference.

Proof. It Y is H-small or H-cosmall, the result is clear, so we may assume that both
Y and M\Y are H-large. Assume that Y is definable over @ and that @ = ¢H B(@).
Let b € Y be such that b & cl(@H) and let ¢ € M \'Y be such that ¢ & cl(@aH).
Then bd, ca are H-independent and thus there is Xp. an £-definable set such that
b € Xy and ¢ € Xp.. By compactness, we may get a single £-definable set X such
that for & € Y and ¢ € M\ X not in the H-small closure of @, we have b’ € X and
¢ € M\ Z. This shows that YAX is H-small. O

Our next goal is to characterize the algebraic closure in H-structures. The key
tool is the following result:

Lemma 4.13. Let (M, H(M)) be an H-structure, and let A C M be acl-closed and
H-independent. Then A is acly-closed.
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Proof. Suppose a € M, a ¢ A. If a & cl(AH), then AU {a} is H-independent, and
using the extension property, we can find a;, i € w, acl-independent over AUH (M),
realizing tp(a/A). By Lemma 2.7, each a; realizes tpy(a/A), and thus a & acly (A).

If a € cl(AH), take a minimal tuple h € H(M) such that a € acl(Ah). Using
conjugates of h over A it is easy to see that tp(a/A) has co-many realizations. [

Corollary 4.14. Let (M,H(M)) be an H-structure, and let A C M. Then
acly (A) = acl(4, HB(A)).

Proof. By Proposition 4.7, it is clear that HB(A) € acl(A), so aclg(A) D acl(4, HB(A)).
On the other hand, A U HB(A) is H-closed, so by the previous Proposition,
acl(AU HB(A)) = aclg (AU HB(A)) and thus acly(A4) C acl(A, HB(A)) O

5. SUPERSIMPLICITY

In this section we prove that 7°"¢ is supersimple and characterize forking in
Tind_

Theorem 5.1. The theory T is supersimple.

Proof. We will prove that non-dividing has local character.

Let (M,H(M)) | T be saturated. Let C C D C M and assume that
C = acly(C) and D = acly(D). Note that both C and D are H-independent.
Let @ € M. We will find a collection of conditions for the type of @ over C' that
guarantee that tpy(d/D) does not divide over C.

We may write @ = (d1,d2) € M so that @ is an independent tuple of generics
over DH, ds is a tuple such that ds € cl(@1DH).

Assume that the following conditions hold for C:

(1) HB(@/D) = HB(d/C).
(2) SU(ay/Cd H) = SU(dy/Da,H)

Claim tpy(a/D) does not divide over C.

Let p(#, D) = tp(di, D). Let {D; : i € w} be an Ly-indiscernible sequence
over C. Since d@; is an independent tuple of generics over D, tp(d;/D) does not
divide over C' and U;e,p(Z, D;) is consistent. We can find @} | U;ewp(Z, D;) such
that {@}D; : ¢ € w} is indiscernible and @ is an independent tuple of generics
over U;c,D;. By the generalized extension property, we may assume that aj is
independent over U;c,D;H. Note that d; D is H-independent, @) D; is also H-
independent for any ¢ € w. So by Lemma 2.7 tpy(d1D) = tpy(d@;D;) for any
1€ w.

Now let h = HB(@/C) (viewed as a tuple) and let (7,1, D) = tp(h,a, D).
Note that & is an independent tuple of generics over @; D (as well as an independent
tuple over @;C). Since {D;ad; : i € w} is an L-indiscernible sequence, there is
% E Uicwq(y,dy, D;). We may assume that R’ is independent from UiewD;dy and
thus it is a tuple of generics over U;¢,, D;@). Furthermore we may assume that the
sequence {D;a@, : i € w} is indiscernible over /.

By the generalized coheir/density property, we may assume that k' € H. Note
that since each @) D; is H-independent, then E’Ei’lDi is also H-independent. On
the other hand, tp(l_i, a, D) = tp(ﬁ’,d”l, D;) for each i, so by Lemma 2.7 we have
tpy (R, @, D) = tpy (I, @, D;). This shows that tp(a@y, /D) does not divide over
C.
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Now cousider (7, d1, 71, D) = tp(ds, dy, h, D). By the assumption SU(&g/C’&JL) =
SU(de/Dash), so tp(dz/dihD) does not divide over @ hC. Since tp(dihD) =
tp(ath' Do), then t(Z,a}, k', Dy) does not divide over @} h'C.

Since {D; : i € w} is an L-indiscernible sequence over Ca’}h/, there is @ =
Uiewt(Z,d}, b, D;). We may assume as before that af J/a’li?c Ui D;.

By the extension property, we may assume that @ | _ ;, ,, H. Using transi-

1 i
tivity we also have @) J/a/lﬁlc H U; D; and it follows that a5 J/i_illﬁ/Di H, so we have

a@) a jp, H, and thus, also ayahD; \|—/}_£’H(D,i) H for each index i.

Since both @@, hD, @, @,h'D; are H-independent and tp(@, @' D;) = tp(@1@zhD)
by Lemma 2.7 tp (@, @yh' D;) = tpy (@1d@:hD) .

This shows that tp(ad/D) does not divide over C.

Since T is supersimple, for any D and @ we can always choose a finite subset Cy
of D such that C = acly (Cp) satisfies the conditions (1) and (2) above. This shows

that 7% is supersimple. O

Proposition 5.2. Let (M, H) = T be saturated, let C C D C M be such that
C =acly(C), D = acly (D) and leta € M. Thentp(a/D) forks over C iffa € D\C
ora € cl(HD)\ cl(HC) or HB(a/C) 2 HB(a/D) or, HB(a/C) = HB(a/D) and
SU(a/CH) # SU(a/DH) .

Proof. In the proof of Theorem 5.1 we showed that if a € C or if, HB(a/C) =
HB(a/D) and SU(a/CH) = SU(a/DH) then tp(a/D) does not fork over C. So
it remains to show the other direction, which we do case by case.

Case 1: Assume that a € D\ C, then a becomes algebraic over D and tp(a/D)
forks over C.

Case 2: Assume that a € cI(DH) \ cI(CH). Then SU(tp(a/DH)) < w and
SU(tp(a/CH)) = w. We will prove that ¢tpg(a/D) divides over C.

Let d € D and let &€ C be such that a € cl(@H), so SU(tp(a/déH)) < w. By
additivity of Lascar rank, we can choose d to be independent generics over HC'.
Let h € H be such that a € cl(@dh). Let p(x,7) = tpg(a,d/C).

Let {d; : i € w} be an £ -indiscernible sequence in tp(d/C) over C such that
{dﬂZ : i € w} is independent over C. By the generalized extension property, we
may assume that {d; : i € w} is independent over HC. Note that by Lemma 2.7
{d; : i € w} is an Ly-indiscernible sequence of generics over C.. Assume, in order to
get a contradiction, that there is a’ |= Ujewp(a, d;). Then there are {h; : i € w} such
that a’ € cl(d;, & h;) for every 4, that is, SU(a’/d;, & h;) < w. But a’ & cl(CH), so
d} J’/CH Jl, a contradiction.

Case 3: Assume that HB(a/D) # HB(a/C) and a € cI(CH). Then HB(a/D)
is a proper subset of HB(a/C). Write he = HB(a/C), hp = HB(a/D) and let
l_“;E € H be such that ﬁc = i_ipi_iE. Note that i_iE # () and that l_iE is an independent
tuple over C.

Let p(x,7) = tpy(a,hg/C). Let {hi : i € w} be an L-indiscernible sequence in
tp(hg/C) such that {fa}s : 4 € w} is independent over C. Then by the generalized
density property, we may assume that the sequence {i_i’E : 1 € w} belongs to H.
Note that by Lemma 2.7, the sequence {E}E : i € w} is Ly-indiscernible over C.
We will show that U;cp(z, E}E) is inconsistent.
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Assume, not, so there is a’ | UiEwp(x,H?E). Then we can find HDi in H such
that HB(a'/C) = hp,h’;. Since the ki, are independent, we get that the H B basis
of a’ over C is not unique, a contradiction.

Case 4: Assume that a € cl(HC), that HB(a/D) = HB(a/C) and SU(a/CH) <
SU(a/DH).

Let qﬁ = HB(a/D) = HB(a/C), so SU(a/Ch) < SU(a/Dh) and a L g5 D-
Write hp = H(D) \ H(C). Note that h is independent over D. Let p(z,h,D) =
tp(a,h, D) and let {D; : i € w} be an L-Morley sequence in tp(D/Ch) such
that {p(z,h, D;) : i € w} is k-inconsistent. Let hp, be such that tp(D, hp) =
tp(D;, hp,), then {hp, : i € w} is a L-Morley sequence in tp(hp/Ch). By the
density property, we may choose the elements in H. By the extension property,
we can realize tp((D; : i € w)/C Use,, hp,) independent from H over C Use,
hp,. Then tp(D, hp/Ch) = tp(D;, hp,/Ch) so by Lemma 2.7, tpy (D, hp/Ch) =
tpy (D;, hp, /Ch) so we get that {D; : i € w} is a sequence in tpy(D/Ch) such
that {p(a;,l_i, D;) : i € w} is k-inconsistent. Using Erds-Rado, we can change
{D; : i € w} for an indiscernible sequence in tpy(D/ Cﬁ) with the property that
{p(x,h,D;) : i € w} is k-inconsistent. This proves that tpy(a/Dh) divides over
Ch. But since h € acly(Ca) we also get that tpy(a/D) divides over C.

(]

Corollary 5.3. Let (M, H) |= T be saturated, let C C D C M be such that C
and D are H-independent and let aq,...,a, € M. We may reorder the tuple and
assume that there is k < n such that aq,...,a; are independent generics over CH
and agy1,...,an € claq,...,ax,C,H). Then tpy(ai,...,a,/D) forks over C iff
(1) dima(as,...,an/cl(HD)) < dima(a,...,an/ cl(HD)) or
(2) dima(as,...,a,/cl(HD)) = dima(as,...,a,/cl(HD)) and HB(as,...,a,/C) 2
HB(ay,...,a,/D) or,
(3) dima(as,...,an/cl(HD)) = dima(ay,...,an/cl(HD)), HB(a1,...,a,/C) =
HB(ai,...,a,/D) and

SU(ag+1y---yan/a1,...,a,CH) > SU(ags1,-..,an/a1,...,axDH).

Proof. The proof is by induction on n. For n = 1 the result follows from Proposition
5.2 noticing that the arguments in the proposition work with the weaker assumption
that the base sets C, D are H-independent sets.

Assume the result holds for n and consider aq,...,a,41 € M.

Assume that tp(ay,...,a,/D) forks over C or that tp(a,+1/ai,...,a,D) forks
over ay,...,a,C. We apply the induction hypothesis and Proposition 5.2.

fdima(as,...,an/HD) < dima(ay,...,a,/HC)orif dime(an+1/a1,...,an HD) <
dime (ant1/ai,...,a, HC), then dime(ay, . .., ant1/HD) < dima(ay,...,ant1/HC)
as we wanted.

Assume now that dime(a1,...,a,/HC) = dima(ai,...,a,/HD) and that

dime(a1,...,an41/HC) = dima(as,...,ant1/HD).

If HB(aq,...,a,/C) 2 HB(a1,...,a,/D), then there is h € HB(ay,...,a,/C)
withh € D. Ifap41 | HDay,...,an, then HB(ay,...,an4+1/D) = HB(a1,...,a,/D)
and HB(a1,...,an4+1/C) = HB(ay,...,a,/C).

So HB(ay,...,an4+1/C) 2 HB(ay,...,an+1/D) as needed.
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If a1 € cl(HDay,...,ay) then by the condition on dim. we must also have
that a,11 € cl(HCay,...,ay,) and thus

HB(ant1/Day,...,a,) C HB(apy1/Cay, . .., an).

Thus we get again HB(ay,...,an+1/D) C HB(ay,...,a,+1/D).
If HB(aq,...,a,/C) = HB(a4,...,a,/D) and

HB(ant1/Day, ... a,) C HB(ant1/Cay, ..., an)

then thereis h € HB(ap4+1/Caq,...,a,) with h € D. Then HB(aq,...,an,4+1/C)
HB(ay,...,ans1/D).

Assume now that dimci(aq,...,apn41/ cl(HD)) = dimq(ay,...,ant1/ cl(HD)),
HB(G,]_, .. .,anH/C’) = I‘IB(G,]_7 .. .,an+1/D).

Case 1. SU(agt1,---,an/a1,...,a,CH) > SU(aks1,...,an/a1,...,a,DH).
Then if a,41 € cl(a,...,ar,C,H) we also get by additivity of SU-rank that
SU(ag+41y--yany1/ar,...,aCH) > SU(ak+1,...,ant1/01,...,aDH) as desired.

If apy1 & cl(as,...,ak,C, H), then by the assumptions on dim. we also have
an+1 € cl(ay, ... a5, D, H) and tp(ant+1/DHay,...,a) is orthogonal to

tp(akt1,.--,an/DHay,. .., ax)
and
SU(ak+41,---5an/01,...,a5an+1CH) > SU(ag41,...,0n/a01,...,axa,+1DH),
as desired.
Case 2. SU(ag41,---,an/ar,...,axCH) = SU(ak41,...,an/a1,...,axDH) and
SU(any1/a1...,a,CH) > SU(apt1/a1...,a,DH). Then by additivity of SU-
rank we have SU (ag+1,---,ant1/01,--.,axCH) > SU(ag+1,---,ant1/01,.-.,axDH)

as desired.
The other direction is proved in a similar way. (Il

We use the above result to give a different perspective on H-basis.

Lemma 5.4. Let (M,H(M)) be an H-structure. Let @ = (aq,...,a,) € M and
let C' C M be such that C is H-independent. Let h be a minimal tuple such that
dimg(@/Ch) = dimg(ad/CH), then h = HB(d/C).

Proof. Write d = dyds, where d; are independent generics over CH and dy €
cl(@CH). Choose h minimal so that d; € cl(d@;Ch). Then d@; are independent
generics over CH and SU(@,/@;Ch) < w. Then tp(@;/C) is independent from H
and tp(d@y/d@;Ch) is orthogonal to H. We get a | zHand HB(@/C) C h. For the
other direction, @ J-/CHB(E/C’) H implies that dimq (d/CHB(@/C)) = dimq(a/CH)
and by minimality of h we get HB(d/C) C h. O

We are interested in characterizing canonical bases. We start with the following
result which holds also in the geometric setting:

Lemma 5.5. Let (M, H) be a sufficiently saturated H-structure of T, B C M an
H-independent set, and @ € M, h = HB(d/B) (viewed as an imaginary represent-
ing a finite set). Suppose e € acl®(B) (in the original theory) is such that dh | B.

Thend | "™ B.
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Proof. We may assume that @ = dids, where d@; are generics over B U H(M),
dy € cl(H(M)Bd,). Note that d> € cl(@iBh), so @h | B implies that d» €
cl(@ieh), SU(tp(dz/Bdih)) = SU(tp(dz/edr1h)) and also HB(@/B) = HB(d/e).
Since HB(i/B) = HB(d/e) and dh | B by our characterization of forking in
T we get @ J/i"d B. O

Finally, the following result on canonical bases can be proved doing very small
modifications to the argument presented in [5]:

Proposition 5.6. Let (M, H) be a sufficiently saturated H -structure of T, B C M
an H-independent set, and @ € M. Then Cby(d/B) and Cb(@dHB(a/B)/B)) are
interalgebraic.

Proof. Let e = Cb(@dHB(d/B)/B)). We saw in the previous lemma that @ J/l”d B
and thus Cby(a/B) € acl®(e).

We will now prove that e is in the algebraic closure of any Morley sequence in
stps2(@/B).

Let {d; : i« < w} be an Ly-Morley sequence in tpy(ad/acly(B)). Let h; =
HB(d;/B) (viewed as an imaginary representing a finite set), so we have h; €
dclg(@;B). Thus {d@;h; : i < w} is also an Ly-Morley sequence over B. This implies
hj = HB(d;/Bd<jh<;). We can write &; = d;1d,2 and hence by our characteriza-
tion of forking in 7°? we have that d;1h; is an independent tuple of £ generics over
Bﬁ<jh<j) and SU(an/Bﬁ<jh<j6j1hj) = SU(ﬁjg/Bajlh]) Then it follows that
tp(djh;/Bd<;h<j) does not fork (in the sense of £) over B. Thus, {d;h; : i < w}
is also an L-Morley sequence over B in tp(@h/B). Since tp(@pho/{@;h; : 0 <
i < w}B) is a free extension of tp(dpho/{d;h; : 0 < i < w}) we also get that
e = Cb(doho/{d;h; : 0 < i < w}). It follows that e € acl®({a@;h; : i < w}).

Since T""¢ is supersimple there is N € w such that for all n > N, @, \L;ZdN B.

By Proposition 4.7 acly(d<y) is H-independent. By our characterization of non-
forking, HB(d,/B) = HB(d,/Bi<«y) = HB(d,/aclg(d<n)) and in particular
hy € acly(d@; : i < w) for every n > N. We then get e € acl}f({d@; : N < i < w}).
Now, since {@; : ¢ < w} is a Morley sequence in tpy(@/ acl}f (B)), we have

ind
{¢g; : N<i<w} | B,
Cby (@/B)
and thus also
ind
{di:N<i<w} | e
Cby (@/B)
It follows that e € acl}] (Cby(d/B)), as needed. O

6. AMPLENESS

In this section we examine the relation between the ampleness of T and 7%,
In [4] it is shown an example of an one-based geometric theory 7' such that 7" is
not one-based. We follow the ideas on [7] to understand exactly when one-based is
preserved and to show that non 2-ampleness is also preserved. In this section we
will assume that T" eliminates imaginaries.
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Remark 6.1. If T eliminates imaginaries then canonical bases are interalgebraic
with real tuples. By Proposition 5.6 canonical bases in T are also interalgebraic
with real tuples. Hence T has geometric elimination of imaginaries.

Example 6.2. Let G be an one-based stable group of U-rank w and T = Th(G).
Notice that T is again a stable theory so (M, H) is a stable group but clearly H
is not a boolean combination of cosets of subgroups, so T is not one-based.

Definition 6.3. A pregeometry (X,cl) is trivial if for every A C X, cl(A) =
Usea cl(a) .

Notice that if G is a group of U-rank w then cl is not trivial (take a | b both of
rank w and ¢ = a + b, then ¢ € cl(a,b) \ cl(a) U cl(d)).

Remark 6.4. In the theory of the free pseudoplane (see example 3.2 ) the prege-
ometry generated by cl is trivial: for A algebraically closed and a a single element,
U(a/A) = d(a, A) where d(a, A) is the minimum length of a path from a to an
element of A (or w if there is no path). If b € cl(A) it means that there is a path
to some element a € A so0 cl(A) = U, 4 cl(a).

We will now prove that one-basedness is only preserved in 7°"¢ when the prege-
ometry cl is trivial. It is worth to notice that, unlike the U-rank 1 case, the triviality
of cl does not imply that T is one-based. In fact, the theory of the free pseudoplane
is the canonical example of a CM-trivial theory which is not one-based. This is the
reason why the statement of the following proposition is a little bit different from

[7]-
Lemma 6.5. If cl is trivial in T then for every d and for every B = acly(B),
HB(a/B) C HB(Q).

Proof. Let h = HB(d/B) = {h;|i € I}. By minimality of H-bases for every i € I
d’j/Bh\hi h;, then h; € cl(@dBh\ h;). As B is H-independent and h; ¢ B then
hi | Bh'\ h;, hence h; ¢ cl(Bh\ h;). By triviality it means that h; € cl(a;)
for some a; € a. By exchange property a; € cl(h;), this implies a; J h; and
a; \Lhi H because tp(a;/h;) is orthogonal to H. We conclude that h; = HB(a;)

and HB(d@/B) = {hili € I} = U, e HB(a;) C HB(@). O

Proposition 6.6. Assume T is one-based, then T is one-based if and only if cl
1s trivial in T.

Proof of Proposition 6.6. (<) Assume cl is trivial, let @ be a tuple, B an algebraic
closed set in (M, H) and h = HB(@/B). By the characterization of canonical bases,
acly (cby (@/B)) = acly (cb(@h/B)), as T is one-based, c¢b(@h/B) C acl(a@h). By the
previous lemma, h C HB(@) then cby(@/B) C acly(@HB(@)) = acly (a@), i.e. T
is one-based.

(=) Assume T"? is one-based and cl is not trivial, then there are a tuple @
and elements b and h such that b € cl(ah) and b ¢ cl(a@) U cl(h). We can take d@
cl independent tuple minimal with this property and, by the generalized extension
property, we may assume that @ | H . Moreover, as h ¢ cl(@), we may assume also
that h belongs to H by the generalized density property.

As b € cl(@h) and @h is H-independent, tp(b/@h) is orthogonal to H, i.e.
b l,;H Recall that b [ _h and h is a single element, then h = HB(b/d). By
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hypothesis 7" is one-based, then acly(cby(b/@)) = acly(b) N acly(d@). Now,
acly (@) = acl(@) as @ | H. On the other hand, as @ | H, and b | , . H we have
b | H. By hypothesis b ¢ cl(h), hence b | h (recall that b is a single element)
arfbd by transitivity b | H. So HB(b) = 0 and acly(b) = acl(b). This means
acly (cbp (b/a@)) = acl(b) N acl(a).

Recall that aclgy(cby(b/d@)) = acly(cb(bh/d)). So a maximal cl-independent
subset d of cb(bh/@) satisfies that b € cl(dh) and b & cl(d) U cl(h). The minimality
of the length of @ yields cl(cb(bh/@)) = cl(d@), hence cl(a@) = cl(acl(a) N acl(b)) C
cl(@) Ncl(b), then @ € cl(b) and h € cl(ab) C cl(b). This is a contradiction.

The notion of ampleness, defined by Pillay, captures forking complexity. He
proved in [13] that a theory T is one-based if and only if is not 1-ample, a theory
T is CM-trivial if and only if is not 2-ample. Moreover if T" interprets a field then
it is n-ample for every n.

Definition 6.7. A supersimple theory T' is CM-trivial if for every tuple ¢ and for
every A C B, if acl®(cA) Nacl®(B) = acl®¥(A) then cb(c/A) C acl®(cb(c/B))
Definition 6.8. A supersimple theory T is n-ample if (possibly after naming some

parameters) there exist tuples aq, ..., a,, in M*? satisfying the following conditions:

Forall 1 <i<n-—1.

(1) ai+1 \Lai_l...ao,

[¢23
(2) acl®(ag...a;—1a;+1) Nacl®(ag...a;—1a;) = acl®(ag...a;—1).

(3) an L ao-

acl®?(a1)Nacl®?(ag)

Following [7] we prove that CM-triviality is preserved in 7°"?. First we need the
following lemma.

Lemma 6.9. Let A C B, A=acly(A) y B=acly(B). If acly(cA) N B = A then
HB(c/A) C HB(c/B).
Proof. 1t is clear that
HB(cA) C HB(cB).
By transitivity
HB(cA) = HB(¢c/A) UHB(A),
and the same with H B(cB), hence
HB(¢/A)UHB(A) C HB(¢/B) U HB(B),

in particular HB(c/A) C HB(¢/B)U HB(B).
Now, if HB(c/A) N H(B) = () we are done, but

HB(c/A)NHB(B) C aclg(cA)NB=A
and HB(c/A)N A = 0. O

Proposition 6.10. Let T be a SU-rank w theory eliminating imaginaries, then T
is CM-trivial if and only if T is CM-trivial.
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Proof. Assume T is 2-ample. Let ag, a1, as be tuples such that:

(1) a2 L ao,

(2) acl(apaz) Nacl(agar) = acl(ag),
(3) as L aop-
acl(aq)Nacl(ao)

By the generalized extension property, there are af, a}, a4 such that tp(apalab) =
tp(apaiaz) and agajay | H.

As the H-bases of any subset of {a{a}a}} are empty, the algebraic closure in
T of any of these sets is the same as in 7. So condition (2) holds in 7",

By the characterization of canonical bases, since H-bases are empty then condi-
tion (1) holds also in T""?, But if

a L ag
acly (a’)Nacly (af)
then
as L ag.
acl(a})Nacl(ay)

This is a contradiction.

Assume T is not 2-ample, so it is CM-trivial. Let us see that 7% is C' M-trivial.

Let ¢ be a tuple and A C B be algebraically closed sets (in 7°"%) such that
aclg(cA) N B = A. Define h = HB(c¢/A), K = HB(¢/B) and ¢ = ch. By
Proposition 5.6 we have acly (cby(c/A)) = acly(cb(ch/A)) and by Lemma 6.9 h C
h'. Note that acl(c’A) Nacl(B) = acl(A) because acl(c’A) C aclg(cA), A = acl(A)
and B = acl(B). So, by CM-triviality of T, ¢b(c//A) C acl(cb(¢’/B)). Recall that
¢’ = ch. Hence

aclg(cbp(c/A)) = aclyg

N N
o
o,
T

I
©
=2
T

O

We can adapt the previous proof in order to prove that if 7" is n-ample then T
is n-ample for every n. In [7] the converse has been proved for SU-rank 1 theories
with a predicate, but we could not adapt that proof to this context.

7. GEOMETRY MODULO H IN THE ONE-BASED CASE

In this section we consider the case when T is one-based, and follow the proofs
of Theorem 5.13 [15] and the results of Section 6 of [15], and Section 4 of [4], to
study the geometry induced by cl localized at H(M). Many of the proofs are nearly
identical to the ones from [15] and [4], we include them for completeness.

Let (M, H) be a sufficiently saturated model of T7"¢. Let cly be the localization
of the operator cl at H(M), i.e. clg(A) = cl(AUH(M)). Thus, a € clg(B) means
SU(a/BUH(M)) < w.

Proposition 7.1. Suppose T is one-based. Then the pregeometry (M, cly) is mod-
ular.
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Proof. 1t suffices to show that for any a,b € M and a small set C C M, if
a € clg(bC) then there exists d € cly(C) such that a € cly(bd). We may as-
sume that a,b & cly(C). Let h € H(M) be finite such that a € cl(bCh). Let
e = Cb(ab/Ch). Thus, by one-basedness of T, e € acl®(ab) N acl®(Ch). By
the density property, there is ¥ = tp(b/acl®)(Ch)), V' € H(M). Take o’ € M
such that tp(a’d’/ acl!(Ch)) = tp(ab/ acl!(Ch)). Then e € acl®(a’t’). Clearly,
a € c(b'Ch) C cly(C). Also, ab LECE implies SU(a/be) = SU(a/bCh) < w.
Since e € acl®(a'b’), we have SU(a/ba’'b') < SU(a/be) < w. Since b’ € H(M), this
implies a € cly(ba’). Hence, taking d = o/, we have d € cly(C) and a € cly(bd),
as needed. ]

Let (M*,cl*) be the geometry associated with (M, cly) (i.e. M* is the set
M\ cly (@) modulo the relation cly(z) = cly(y)) . For any a & clg (D), let a* be
the class of @ modulo the relation cly(z) = clgy(y). Define the relation ~ by

a*Nb* — |cl*(a*,b*)|23 or a*:b*.

Lemma 7.2. For any a,b € M, a* ~ b* if and only if there exist dy,...,d, € M
such that

a* € P (brdy .. di)\ el (d; ... d).

Proof. The "only if" direction is clear. For the "if" direction, suppose a* # b* and
a* € cl"(b*di ... d5)\cl*(d} ... d}). We may assume that n > 1 is minimal such.
Then a € cl*(bdy ...dyhy ... hg) for some hy, ..., hy € H(M). We may assume that
k is minimal such. Then the tuple abds...dyh1...h; is cl-independent. By the
density property, we can find dj, ...,d,, € H(M) such that tp(dj,...,d., /abh) =
tp(da, ..., dy,/abh). Let d| € M be such that

tp(d),d, ..., d, Jabh) = tp(dy,da, ..., dy/abh).

Then d} & cly(0) and (d})* € cI*(a*, b*), while (d})* # a*,b*. Thus, |cl*(a*,b*)| >
3, as needed.
(I

Lemma 7.3. The relation ~ is an equivalence on M*.

Proof. Reflexivity and symmetry are clear. For transitivity, assume a* ~ b* ~
c*, with all three distinct. Then there exist dj € cl*(a*b*)\{a*,0*} and d} €
cl* (%, ¢ )\{b*, c*}. If df = d3, then ¢* € cl*(b*,d5) = cl*(b*,d}) = cl"(a*, d}), and
therefore di = d} € cl*(a*, ¢*)\{a*, c*}, hence a* ~ ¢*.

Now, assume that df # dj and a* € cl*(d},d}). If a* = db, then b* witnesses
a* ~ c*. If a* # dj, then d} € cl*(a*,d}). We also have b* € cl*(a*,d}), c* €
cl*(b*,d3). Thus, ¢* € cl*(a*,d}). If ¢* = df, b* witnesses a* ~ ¢*. If ¢* # d}, then
d} witnesses a* ~ c¢*. Finally, assume that d} # d; and neither o* & cl*(d}, d}).
Then

a* € cl*(c¢*didy)\ cl* (did3).
Thus, by Lemma 7.2, a* ~ c*.

For any a* € M* let [a*] denote the ~-class of a*.
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Lemma 7.4. The ~-classes are closed in the sense of cl*, i.e. for any a* € M*,
we have cl*([a*]) = [a*].

Proof. Assume ¢* € cI*(b3,...,b%), b* = (b%,...,b%) € [a*] minimal such tuple, and
n > 1 (if n =1, we have ¢* = bf). Then b ...b}_, witnesses ¢* ~ b}, by Lemma
7.2. ]

For any geometry (X, Cl), a non-empty subset of X, with the closure operator
induced by CI, is referred to as a subgeometry of (X,Cl). Clearly, a subgeome-
try is itself a geometry. Next lemma shows that ~ splits (M*,cl*) into disjoint
subgeometries of the form ([a*],cl*), with no "interaction" between them.

Lemma 7.5. For any A C M*, cI"(A) = U+ jepr+ s €l (AN [a*]).

Proof. Suppose ¢* € cI*(A4),and af,...,a: € Aisatuplesuch that ¢ € cl*(a},...,a}),
and n is minimal such. It suffices to show that a] all come from the same ~-class.
If n = 1, we are done. Suppose n > 1. Then c*a}...a} witnesses aj ~ a3 by
Lemma 7.2. Similarly, a] ~ a} for all 2 < i < n. Thus, all a} belong to the same
~-class. O

Next, we will show that the ~-classes are either singletons or infinite dimensional
(as geometries).

Lemma 7.6. If |[a*]| > 1, then dim([a*]) is infinite.

Proof. Suppose there exists b* ~ a*, b* # a*. Let ¢* € cl*(a*,b*)\{a*,b*}. Let
a,b,c € M be representatives of the classes a*,b* and ¢* modulo the relation
clg(x) = cly (y), respectively.

Then SU(a/H(M)) = SU(b/aH(M)) = w. By the extension property, we
can find b; = tp(b/a), i € w, independent over aH (M). Then, by Lemma 2.7,
tpy(bi/a) = tpy(b/a) for all i € w. Also, b; are cly-independent over a. Let ¢; be
such that tpy(bici/a) = tpy(be/a) for i € w. Passing to the geometry (M*, cl*),
we get b ~ a* witnessed by ¢}, i € w, with b; cl*-independent over a*. This shows
that that ([a*],cl®) is infinite dimensional. O

Recall the following classical fact (see [11]) about projective geometries.

Fact 7.7. A non-trivial modular geometry of dimension > 4 in which any closed
set of dimension 2 has size > 3 is a projective geometry over some division ring.

Lemma 7.8. If T is one-based and |[a*]| > 1, the geometry ([a*],cl) is an infinite
dimensional projective geometry over some division ring.

Proof. By Proposition 7.1, (M*,cl*) is modular. By Lemma 7.5, [a*] is closed in
(M*,cl"), and hence ([a*],cl") is also modular. Since |[a*]| > 1, ([a*],cl") is non-
trivial (there are two distinct point having a third one in its closure). Thus, the
statement follows by Fact 7.7 and the definition of ~. g

We are now ready to prove the characterization of the geometry of cly, as well
as the original geometry of cl in the case when T is one-based.

Proposition 7.9. Suppose T is a one-based supersimple theory of SU-rank w,
(N, H) a sufficiently (e.g. |T|*-) saturated models of T"?, and M a small model
of T (e.g. of size |T|). Then
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(1) The geometry (N*,cl*) of cly in (N, H) is a disjoint union of infinite dimen-
sional projective geometries over division rings and/or a trivial geometry.

(2) The geometry of the closure operator cl in M is a disjoint union of subgeometries
of projective geometries over division rings.

Proof. (1) Follows by Lemmas 7.5, 7.6 and 7.8.

(2) By Lemma 2.6, any structure of the form (M, H) where M =T, and H(M) is
an independent set of generics, can be embedded, in an H-independent way, in a
sufficiently saturated H-structure. Thus we may assume that (M, 0) C (N, H) with
M |, H(N). Then cl-independence over () in M coincides with cl-independence in
N over H(N), i.e. cly-independence. Thus, we have a natural embedding of the
associated geometry of (M, cl) into (N*,cl*). The result now follows by (1). O

Remark 7.10. The previous proposition also holds with the weaker assumption
that the pregeometry (N,cly) is modular instead of asking that is one-based. All
the proofs depend on the properties of the closure operator, not the properties of
forking in the full structure.
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