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Abstract. We investigate several model theoretic minimalities in the frame-
work of modules over a given serial ring R.

1 Introduction

Throughout this paper, ring will always mean an associative ring with iden-
tity, and module a right unital module. Rings are possibly uncountable (unless
otherwise stated). We are interested in classifying strongly minimal, quasi min-
imal, pseudo-strongly minimal and weakly minimal modules over a serial ring.
Modules satisfying one of these minimalities can be viewed as having low model
theoretic complexity and in this sense are easier to approach.

For instance, for R an arbitrary countable ring, an infinite R-module M is
strongly minimal (s. m. from now on) if and only if every proper pp-subgroup
of M is finite, and quasi minimal (q. m.) if and only if M is uncountable and
every proper pp-subgroup of M is countable.

A common key property of s. m. and q. m. modules is the following.

Remark 1.1 ([7], [8], [14], [15]) Let M be a s. m., or q. m. module over R.
Then AnnR(M) = {r ∈ R : Mr = 0} is a completely prime ideal and M is a
divisible module over the quotient domain R/Ann(M). In particular

(?) for every r ∈ R either Mr = 0 or Mr = M .

Introducing pseudo-strong minimality requires some more details and com-
ments. Indeed this notion was defined in [3] over commutative rings R; in
this setting an R-module M is called pseudo-strongly minimal (p. s. m. from
now on) if and only if M is of infinite length but every proper pp-subgroup
of M is of finite length as a module over R. In fact, over a commutative R
pp-subgroups are also R-submodules; but this may fail over a non-commutative
R. Accordingly the definition of pseudo-strong minimality had to be arranged
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in a suitable way to be extended over group rings DG for D a Dedekind domain
and G a finite possibly non-abelian group: this was done in [7].

A possible way of extending pseudo-strong minimality to modules over any ring
R is the following. For every R-module M , let ZR(M) denote the subring of R
of the elements r of R such that, for all s ∈ R, rs and sr act in the same way
on M ; in other words

ZR(M) = {r ∈ R : ∀s ∈ R,M [rs− sr] = M}

(for t ∈ R, M [t] denotes here the pp-subgroup of the elements of M annihilated
by t). Observe that ZR(M) extends the center of R and that every pp-subgroup
of M is in a natural way a right module over ZR(M). Accordingly call M
pseudo-strongly minimal (p. s. m.) if and only if

• M has infinite length over R (and consequently over ZR(M)),

• every proper pp-subgroup of M over R has finite length over ZR(M).

Note that this definition coincides with that of [3] over a commutative R because
under the commutativity assumption ZR(M) = R for every M . It also extends
that over group rings R = DG for D a Dedekind domain and G a finite group,
so pseudo-strong minimality as defined in [7]; in fact, for every module N over
ZR(M) N has finite length over ZR(M) if and only if N has finite length over
D because ZR(M) includes D and has finite length over D.

Observe that a module M p. s. m. over an arbitrary ring R is p. s. m. even
over ZR(M) because ZZR(M)(M) = ZR(M).

This definition of pseudo-strong minimality preserves the basic properties ob-
served in [3] and [7] in the particular cases of commutative rings and group
rings. For instance, it turns out that:

• A p. s. m. R-module is totally transcendental (that is, it satisfies the
descending chain condition on pp-subgroups).

• A p. s. m. R-module M is connected (in fact, as M is totally transcen-
dental, it makes sense to consider the connected component M0 of M , as
a minimal pp-subgroup of finite index; if M0 6= M , then M0 has finite
length over ZR(M), which implies that M has finite length over ZR(M),
too).

More notably, a p. s. m. R-module M shares with s. m. and q. m. modules
the key property in Remark 1.1. In particular

(?) for every r in R, either Mr = 0 or Mr = M .

To check this, consider for every r ∈ R

0 → M [r] → M → Mr → 0
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as an exact sequence over ZR(M). Observe that, if Mr is neither M nor 0, then
both Mr and M [r] are proper subgroups of M , and so both Mr and M [r] have
finite length over ZR(M), which implies that M is of finite length, too.

Another basic fact concerning ZR is the following one.

Remark 1.2 If M = M0 ⊕M1, then ZR(M) = ZR(M0) ∩ ZR(M1). Hence, if
ϕ(v) is a pp-formula and ϕ(M) is of finite length over ZR(M), then for each
i = 0, 1 ϕ(Mi) is of finite length over ZR(M) and over ZR(Mi).

Even weak minimality deserves a specific attention. Weakly minimal modules
are those of U -rank 1, but can be equivalently introduced in the following way:
A module M over R is weakly minimal (w. m.) if and only if every pp-subgroup
of M is either finite or of finite index. Hence w. m. modules may fail to satisfy
(?), although they admit the following related and weaker property: For every
r ∈ R, either Mr is finite, or Mr has finite index and M [r] is finite (see [9] and
[10]).

With this in mind, we are going to examine the previous four minimalities (s.
m., q. m., p. s. m. and w. m.) within modules over a serial ring R. Recall
that an R-module M is said to be uniserial if the lattice of submodules of M is
a chain and serial if M is a direct sum of uniserial modules; a ring R is said to
be uniserial (serial) if both RR and RR are uniserial (serial) modules.

Here is the plan of the paper. First we see in § 2 that (?) easily reduces our
analysis from serial to uniserial rings. At this point some previous results of the
second author ([14] and [15]) apply and solve the s. m. case in a satisfactory
way. Even the q. m. case can be treated on the basis of what is shown in
[3]. So, when (?) holds, it remains to examine p. s. m. modules over uniserial
rings: this will be the content of § 3. As said, w. m. modules require an ad-hoc
approach because they may not satisfy (?); § 4 will be devoted to them, in
particular we will see that even in their setting most of the analysis concerns
the uniserial case.

The main part of the paper is that regarding the pseudo-strong case. The other
minimalities are either already treated in the literature, although sometimes
implicitly, as in the q. m. case, or too general to allow a sharp description; this
is what happens, for instance, in the w. m. case. Anyhow we think it useful to
provide a general outline of all of them in the serial framework.

We refer to [2] and [17] for (modules over) serial rings, to [11] for noncommu-
tative rings and to [5], [13] and [19] for model theory of modules. Our notation
will be standard.

We thank our anonymous referee for carefully reading our original manuscript
and suggesting several simplifications.
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2 From serial to uniserial, and from strong to
quasi

When (?) holds, our analysis quickly reduces from serial rings to uniserial do-
mains.

Lemma 2.1 Let R be a serial ring, M be a nonzero module over R satisfying
(?). Then R/AnnR(M) is a uniserial domain.

Proof. (?) implies that R/AnnR(M) is a domain. But R/AnnR(M) is also
serial, as a homomorphic image of a serial ring. Hence R/AnnR(M) is uniserial.
a

Accordingly every s. m., or q. m., or p. s. m. module M over a serial
ring R is in fact a module over the uniserial domain R/AnnR(M), and as such
it remains s. m., q. m., p. s. m. respectively. In particular, regarding
pseudo-strong minimality, observe that ZR(M) includes AnnR(M) and the cor-
responding quotient ring ZR(M)/AnnR(M) is just ZR/AnnR(M)(M) because the
natural projection of R onto R/AnnR(M) clearly sends elements of ZR(M) into
elements of ZR/AnnR(M)(M) and, conversely, every element of ZR/AnnR(M)(M)
can be reached in this way by some element in ZR(M). Then we can reduce
our analysis to the case of faithful – indeed divisible – modules over uniserial
domains. On the other hand, s. m. modules over right distributive rings, and
hence in particular over uniserial rings R, were completely described in [14] (see
also [15]). Let us recall the key result in [14] in the case of uniserial rings.
Jac(R) denotes here, as usual, the Jacobson radical of R.

Theorem 2.2 [14] Let M be a faithful s. m. indecomposable module over a
uniserial ring R. Then R is a domain and either

1. M is torsionfree over R and then M is isomorphic to the quotient (skew)
field Q(R) of the uniserial domain R, or

2. M has R-torsion and then R is a noetherian uniserial domain, R/Jac(R)
is a finite field and M is isomorphic to the injective envelope of the unique
simple module R/Jac(R).

The proof refers in a crucial way to results in [18]. Moreover the converse is also
true ([14]): every module satisfying 1) or 2) is strongly minimal. On this basis,
one obtains the following classification of s. m. modules over uniserial rings.

Theorem 2.3 Let R be a uniserial ring. An infinite module M over R is s.
m. if and only if one of the following holds.

1. M decomposes as

Q(R′)(α) ⊕
⊕
P∈S

(ER′(R′/P ))(βP )
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where α and the βP are cardinals and the βP are finite; R′ = R/J for
some completely prime ideal of R such that R/J is not a skew field; Q(R′)
is a classical right quotient ring of R′; S is a set of completely prime ideals
of R′ such that R′/P is a finite field, the right localization R′(P ) of R′ at
P is right noetherian and its ideals are

pR′(P ) ⊃ p2R′(P ) ⊃ . . . ⊃ pnR′(P ) ⊃ . . .

where p is a generator of the largest ideal in R′(P ); finally, every nonzero
element r ∈ R′ is contained in at most finitely many ideals of S.

2. M ' (R/I)(γ) where I is a completely prime ideal of R and R/I is a skew
field.

In this way the s. m. analysis is accomplished even over a serial ring R. Indeed
a sharper description of strong minimality can be obtained under stronger as-
sumptions on R, for instance when R is a serial indecomposable basic ring.

In fact, let e1, . . . , en be a complete system of pairwise orthogonal indecom-
posable idempotents of R. Define Ri = eiRei, i = 1, . . . , n and Rij = eiRej ,
i, j = 1, . . . , n; i 6= j. Then the Ri are uniserial rings and the Rij are (Ri, Rj)-
bimodules. Recall that R is said to be basic if all modules eiR, i = 1, . . . , n,
are pairwise nonisomorphic. If i 6= j then, since R is a basic ring, we have that
RijRji is a proper ideal of the ring Ri. By [12] this ideal is completely prime
if Rij 6= 0 or Rji 6= 0. Since R is indecomposable then for every i there is k
such that Rik 6= 0 or Rki 6= 0. Therefore the ideal Pi generated by the set
{ej | j 6= i} is a proper ideal (since ei 6∈ Pi) and P ′i = eiPei is a completely
prime ideal of the form RikRki for some k. From this it follows that Pi is a
Goldie prime ideal. Notice also that if the ideal Jac(Ri) is non-nilpotent then
the ideal Jacω(Ri) = ∩nJac(Ri)n is completely prime.

Let M be a s. m. R-module, set for simplicity P = AnnR(M). Then R/P is a
uniserial domain and P contains all but one of the orthogonal indecomposable
idempotents e1, . . . , en. Suppose that P does not contain ei; then P includes
Pi. Therefore P is a Goldie prime ideal containing some (unique) ideal Pi. If M
has R-torsion then R/P is a noetherian uniserial domain. Therefore Jac(Ri) is
a nonnilpotent ideal and Jacω(Ri) = eiPei. In conclusion, combining this and
Theorem 2.2, we have the following.

Theorem 2.4 Let M be a s. m. indecomposable module over a serial inde-
composable basic ring R, let e1, . . . , en be a complete set of pairwise orthogonal
indecomposable idempotents of R and for every i = 1, . . . , n let Pi denote the
ideal generated by the ej for j 6= i. Then there is a Goldie prime ideal P con-
taining some (unique) ideal Pi such that either

1. M is the quotient (skew) field of the uniserial domain R/P , or

2. Jac(Ri) is a non-nilpotent ideal, Jacω(Ri) = eiPei, Si = Ri/Jac(Ri) is a
finite field and M is the injective envelope over the ring R/P of the unique
simple module Si.
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By Theorem 2.2 the converse is also true: every module satisfying the property
1) or the property 2) is strongly minimal.
Lemma 2.1 applies also to the q. m. case and reduces its analysis from serial
to uniserial rings. Moreover uniserial domains are Ore and, although quasi
minimality is not preserved under elementary equivalence, it is known that,
over a countable Ore domain, a module is elementarily equivalent to some q.
m. module if and only if it is divisible: this fact is observed in [8], but is
essentially proved in [4]. This changes in some sense our perspective, because
our investigation of q. m. modules over uniserial domains becomes a part of the
characterization of divisible modules over Ore domains. The latter purpose can
be developed on the basis of the corresponding investigation over commutative
domains in [3]. [16] gives the details of this analysis, but it turns out that the
main results and proofs are basically the same as in [3]. So we omit here a
detailed report.

At this point we have to examine the p. s. m. case over uniserial domains, and
we will devote the next section to this matter.

3 Pseudo-strong minimality

As said, we deal here with p. s. m. modules M over a uniserial domain R. We
refer to the parallel analysis of the s. m. case in [15], § 4.3.

Remarks 3.1 1. First of all it is worth underlining that, just due to unise-
riality, for all t, t′ ∈ R, either tR ⊆ t′R or, conversely, t′R ⊆ tR, in other
words either t = t′s for some s ∈ R or t′ = ts for some s ∈ R.

2. As already illustrated in the previous sections, we can assume that M is
divisible.

3. Now recall the result in [1], Corollary 1.6, and [17], Lemma 11.1, saying
that, over a serial ring R, every pp-formula is equivalent to a finite sum of
conjunctions of divisibility formulas s | v or torsion formulas vt = 0 where
s ∈ eR, t ∈ Rf and e, f are in a complete system of pairwise orthogonal
idempotents. Over a uniserial R, we can assume that this finite sum just
consists of formulas s | v ∧ vt = 0 with s and t in R. Within divisible
modules, any divisibility condition like s | v with s 6= 0 trivially holds
true, so we can reduce any finite sum as before to a torsion statement
like

∑
t vt = 0. Again using uniseriality and the previous remark 1, we

easily deduce that each pp-formula over a uniserial domain R is equivalent
within divisible R-modules M to a single torsion condition vt = 0 with
t ∈ R, which emphasizes the key role of annihilator pp-subgroups M [t] =
{m ∈ M : mt = 0} in our setting.

For every (divisible) R-module M let us introduce PR(M) as the set of the
elements t ∈ R such that M [t] 6= 0, hence some nonzero m ∈ M is annihilated
by t.

6



Lemma 3.2 Let M be a divisible module over a uniserial domain R. Then
PR(M) is a completely prime ideal of R.

Proof. This is a general fact and does not depend on pseudo-strong minimality.
Here are some details.

• The fact that PR(M) is closed under addition follows directly from the
uniseriality assumption on R. To see this, take t, t′ in PR(M), have to
check that t + t′ is in PR(M), too. For if t, t′ are in PR(M) then by
uniseriality we can assume that t = t′s for some s. Consequently, for any
m ∈ M , if t′ annihilates m, then t does. In particular if some m 6= 0
satisfies mt′ = 0, then mt = 0 as well, and m(t + t′) = 0.

• The fact that PR(M) is closed under left and right multiplication by el-
ements of R follows from the divisibility assumption on M . To see this
take t ∈ PR(M) and r ∈ R. We have to check that both tr and rt are in
PR(M). This is trivial when r is to the right or when r = 0. So assume
r 6= 0 and look at rt. Pick m ∈ M such that m 6= 0 and mt = 0. Divisi-
bility provides m′ ∈ M such that m′r = m, whence m′rt = 0. But m′ 6= 0
and so rt ∈ PR(M) as expected.

• The rest of the proof follows directly from the definition of PR(M).

a

As a consequence, if M is a divisible R-module, then the right localization
R(PR(M)) exists. Let R denote this localization below.

Lemma 3.3 Let M be a divisible p. s. m. (indeed totally transcendental)
module over a uniserial domain R. Then M is Σ-injective.

Proof. As noted before, a p. s. m. M is totally transcendental and conse-
quently Σ-pure injective. A pure injective module is injective if and only if it
is ℵ0-injective, that is, for every n ≥ 2, every system of fewer than n R-linear
equations in one unknown v that has a solution in some extension of M has a
solution in M . Therefore it suffices to show that M is ℵ0-injective. We prove
this by induction on n ≥ 2; the case n = 2 (that is, one linear equation) is just
the divisibility of M . So let us assume our claim true for n and prove it for n+1.
Suppose that the equations vri = mi (1 ≤ i ≤ n, mi ∈ M and ri ∈ R for every
i) have a common solution a in some extension N of M . Using the uniseriality of
R and possibly rearranging the order of these equations we can assume rn = r1t
for some t ∈ R. Hence mn = arn = ar1t = m1t. By induction there is some
b ∈ M satisfying bri = mi for 1 ≤ i < n. But then brn = br1t = m1t = mn. a

In view of [18], Theorem 4.2, if M is an indecomposable Σ-injective module
over a uniserial ring (indeed over a right distributive ring) R, then PR(M) is
a completely prime ideal, the right localization R = R(PR(M)) of R exists and
enjoys several nice properties (see Theorem 3.6 below).
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Let us point out now a couple of simple facts about R. In the following lemmas
we assume that M is any module over R such that PR(M) is a completely prime
ideal. Note that any element of R− PR(M) acts invertibly on M .

Lemma 3.4 ZR(M) ⊆ ZR(M).

Proof. Let r ∈ R satisfy mrs = msr for every m ∈ M and s ∈ R. For
s ∈ R − PR(M), let m = ms−1 be the element of M satisfying ms = m. Then
mr = msr = mrs, whence mrs−1 = mr = ms−1r. Consequently for t ∈ R,
s ∈ R− PR(M) and m ∈ M mrts−1 = mts−1r. a
Note that ZR(M) also includes the elements r−1 with r ∈ ZR(M)− PR(M).

Lemma 3.5 Every pp-subgroup of M over R is also a pp-subgroup over R.

Proof. Every atomic formula vrs−1 = w with r, s ∈ R and s 6∈ PR(M) is
equivalent in M to vr = ws. In this way every pp-formula ϕ(v) over R can be
translated into a pp-formula ϕ′(v) for which ϕ(M) = ϕ′(M). a
In particular, for every r = ts−1 ∈ R, M [r] = M [t] and hence M [r] is a pp-
subgroup of M over R.

Let us come back to the analysis of p. s. m. modules. We distinguish two cases,
according to whether PR(M) is 0 or not.

Theorem 3.6 Let M be a divisible module over a uniserial domain R. Suppose
that PR(M) 6= 0. Then the following conditions are equivalent:

1. M is indecomposable and p. s. m.;

2. M is canonically a module over R and indeed MR ' ER(R/P ), where E

denotes injective hull, R is right noetherian, P = PR(M)(PR(M)) is the
largest ideal of R, R/P has finite length over ZR(ER(R/P )) and, if p is
a generator of P , then the ideals of R are just pR ⊃ p2R ⊃ . . . ⊃ phR ⊃
. . . ⊃ 0 (for h a nonnegative integer).

Proof. 1 ⇒ 2. Recall that M , as a p. s. m. module, is totally transcendental.
As M is indecomposable and Σ-injective, Theorem 4.2 of [18] applies and con-
firms that the right localization R of R at the completely prime ideal PR(M)
exists. It moreover ensures some further properties: M is, as claimed, a faithful
Σ-injective module over R, and indeed M is over R isomorphic to ER(R/P ).
Also, R is right noetherian and right uniserial, hence right duo (see [18] and
[15], § 4.3). Finally, P is the largest ideal of R.

Now let us examine the ideals of R. First observe that, as R is right duo, ideals
just coincide with right ideals in R. Every right noetherian uniserial domain is
a principal right ideal domain; hence every ideal of R is of the form tR for some
t. In particular let p denote a generator of P . Take two nonzero proper ideals
I = tR and I ′ = t′R of R. Observe that M [I] = M [t] (and M [I ′] = M [t′]). Due
to (right) uniseriality, either I ⊆ I ′ or I ′ ⊆ I ′. Assume for simplicity the former
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condition, so t = t′s for some s 6= 0 and conclude that M [t′] ⊆ M [t]. Further-
more I 6= I ′ implies M [t′] 6= M [t]: take a nonzero m ∈ M for which ms = 0 and
m′ ∈ M such that m′t′ = m, then m′t′ 6= 0 and m′t = m′t′s = ms = 0. Now
recall that M , as a totally transcendental R-module, satisfies the descending
chain condition on pp-subgroups over R, in particular on annihilator subgroups
M [t] over R. Correspondingly, for every proper nonzero ideal I of R, there are
at most finitely many ideals I ′ of R containing I. This implies ∩hphR = 0
and hence, as R is local, the ideals of R are just as said in Statement 2 of the
theorem.

It remains to show the claim about the length of R/P . Put

U = {m ∈ M : AnnR(m) ⊆ P} =
⋂
t∈P

M [t].

Then U = M [p] and we can find a nonzero r ∈ R for which U = M [r]. Due to
the structure of ideals of R, U is a submodule of M over R, and the same holds
true for M [pn] for every nonnegative integer n. In fact, take r ∈ R and m ∈ M
satisfying mpn = 0, note that rpn is in pnR because the latter is a two-sided
ideal, hence rpn = pnr′ for some r′ ∈ R, and conclude that mrpn = mpnr′ = 0.
By [18], Theorem 4.2, U is a 1-dimensional vector space over the skew field
R/P . Furthermore U – as M [r] – is a pp-subgroup of M over R, and indeed
a proper pp-subgroup because r 6= 0. Then pseudo-strong minimality implies
that U has finite length over ZR(M). R/P is isomorphic to U as a vector space
over R/P , hence over R and a fortiori over R, which embeds into R, and even
over ZR(M). Hence R/P has finite length over ZR(M), and so over ZR(M)
because the latter clearly extends ZR(M). As M ' ER(R/P ), U is of finite
length over ZR(ER(R/P ))

2 ⇒ 1. As M is divisible, PR(M) is completely prime and hence the localization
R exists. Furthermore R is local and right uniserial. Also, P = PR(M)(PR(M))

is the maximal ideal of R, and M = ER(R/P ) is indecomposable (see [18], §§
3-4). Furthermore M is Σ-injective and P = PR(M). At this point we need
show that M is p. s. m. over R.

It is easy to see that M has infinite length over R. For, fix a generator p of
P and look at the ascending chain of subgroups M [pn] where n is a positive
integer. As said before, M [pn] is actually an R-submodule.

So it remains to prove that every proper pp-subgroup of M over R has finite
length over ZR(M). So take a subgroup M [r] with r ∈ R, r 6= 0; M [rn] can be
also represented as M [pn] for some suitable nonnegative integer n. Incidentally
notice that this implies that the pp-subgroups of M over R satisfy the descending
chain condition and consequently that M is totally transcendental. Consider
any proper nonzero ZR(M)-submodule U of M , and look at AnnR(U), so at
the set of the elements r ∈ R such that ur = 0 for every u ∈ U ; this is a right
ideal of R, and so a two-sided ideal because R – as a right uniserial and right
noetherian ring – is right duo. Then AnnR(M) equals pnR for some n (and
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hence is properly included in pn−1R). It follows that M [pn−1] ⊂ U ⊆ M [pn].
Consider the map from M [pn] to M [p] sending any a ∈ M [pn] to apn−1. This
is a ZR(M)-module homomorphism because ZR(M) ⊆ ZR(M) and hence, for
every r ∈ ZR(M) ⊆ ZR(M), a ∈ M [pn] and arpn−1 = apn−1r. Furthermore
this map is onto because M is divisible even over R, and its kernel is M [pn−1].
Consequently M [pn]/M [pn−1] ' M [p] over ZR(M). Hence it suffices for our
purposes to show that M [p] has finite length over ZR(M), and this is true
because M [p] is a one-dimensional vector space over R/P and R/P has finite
length over ZR(M) = ZR(ER(R/P )). a

Note that the proof of the implication 1 ⇒ 2 does not need the assumption that
M is of infinite length. In fact the only point where pseudo-strong minimality
is used is to deduce that M is totally transcendental. So the proof works even
under the assumption of total transcendence (in addition to the hypothesis on
R and the fact that M is indecomposable and the pp-subgroups of M over R
have finite length over ZR(M)).

The previous theorem illustrates what happens when PR(M) 6= 0. The opposite
case PR(M) = 0 (for R a right uniserial domain and M a divisible module over
R) is easy to treat. In fact M is even torsionfree over R. Also, R is a (right)
Ore domain, which implies that there exists a classical right ring of quotients
Q(R); M can be regarded as a vector space over Q(R), hence M is p. s. m.
exactly when it has infinite length over R.

The previous considerations lead to the following:

Theorem 3.7 Let R be a right uniserial domain and M be a divisible module
over R. Then M is p. s. m. if and only if either

1. R is not a skew field and M ' Q(R)(α)
⊕
⊕P∈IER(P )(R(P )/P(P ))(βP )

where Q(R) is a classical right ring of quotients of R; I is a set of com-
pletely prime ideals of R such that, for every P ∈ I, βP is finite, the
right localization R(P ) (exists and) is a right noetherian ring and the ide-
als of R(P ) are just those of the form pnR(P ) for p a generator of P(P )

and R(P )/P(P ) has finite length over ZR(P )(ER(P )(R(P )/P(P ))); Q(R)(α)

has infinite length over R if βP = 0 for ever P ∈ I; finally, every nonzero
r ∈ R is contained in at most finitely many P ∈ I, or

2. R is a skew field and M ' R(γ) for some infinite cardinal γ.

Proof. First suppose that M is p. s. m. over R. If R is a skew field, then M is
R(γ) for some cardinal γ, and pseudo-strong minimality forces γ to be infinite.
So suppose that R is not a skew field. Due to pseudo-strong minimality, M is
totally transcendental and consequently can be represented over R as a direct
sum M = ⊕j∈JM

(βj)
j of indecomposable pairwise non-isomorphic summands

Mj . Note that each Mj is either p. s. m. or of finite length over R (by Remark
1.2). But even in the latter case Mj is divisible and totally transcendental, and
every pp-subgroup of Mj is of finite length over ZR(Mj). When PR(Mj) =
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0, Mj is just a vector space over Q(R). So assume that PR(Mj) is not 0.
Put Rj = R(PR(Mj) and Pj = PR(Mj)(PR(Mj) for simplicity. By Theorem
3.6, Mj is isomorphic to ERj

(Rj/Pj). Notice that any two different ideals
PR(Mj) determine non-isomorphic modules Mj . Let pj denote a generator of
Pj , Pj = pjR. If βj is infinite, then M [pj ] is of infinite length over ZR(M),
which contradicts pseudo-strong minimality. Similarly, if r ∈ R is in infinitely
many Pj ’s, then M [r] is of infinite length over ZR(M) and again contradicts the
p. s. m. assumption.

Conversely, suppose that M satisfies 1 or 2. When R is a skew field (and 2
holds), it is easily seen that M is p. s. m. as claimed. So assume 1. Then M is
of infinite length over R: this is obvious if βP > 0 for some P , and follows from
the assumption on Q(R) and α otherwise. Also, every pp-subgroup of M is of
finite length over ZR(M). In fact, as R is a right uniserial domain, it suffices
to check this condition for annihilators M [r] with r ∈ R, and in this reduced
framework the claim follows because Q(R) is torsionfree, every r ∈ R lies in the
direct summand corresponding to an ideal P for at most finitely many P , and,
for any P , βP is finite and the ideals of R(P ) are as described. a

4 Weak minimality

We deal here with weak minimality over serial rings. Accordingly we fix a serial
ring R and a complete set of pairwise orthogonal indecomposable idempotents
e0, . . . , en in R. Recall that a module M is called weakly minimal (w. m.)
if and only if M is infinite and every pp-subgroup of M is either finite or of
finite index. Actually this is just the translation in the context of modules of
the general definition of weak minimality, according to which w. m. structures
are just those of U -rank 1. In any case, over a serial ring R weak minimality
can be characterized in a simpler way, only referring to divisibility and torsion
conditions.

Lemma 4.1 Let M be a module over a serial ring R. Then M is w. m. if and
only if, for every r ∈ R, either Mr is finite or Mr is of finite index in M and
M [r] is finite.

Observe that the first case “Mr is finite” implicitly implies that M [r], i. e. the
kernel of the right multiplication by r in M , is of finite index.

Proof. The direction from left to right is true in general (see [9], § 7). Con-
versely, take a pp-formula φ(v) over R. Due to [1], Corollary 1.6 (see also [17],
Lemma 11.1), φ(M) coincides with a finite sum of pp-subgroups Ms∩M [r] with
s ∈ eiR, r ∈ Rej , i, j ≤ n. Accordingly write φ(M) =

∑
k≤m(Msk ∩M [rk]). If

both Msk and M [rk] have finite index for some k ≤ m, then the same is true
of φ(M). Otherwise for every k ≤ m either Msk or M [rk] –and consequently
Msk ∩M [rk]– is finite, whence φ(M) is finite, too. a
Observe once again that a w. m. module may not satisfy (?). But let us
illustrate why, even in the w. m. case, our analysis can be reduced from serial
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to uniserial rings. Take a module M over the serial ring R. Then M decomposes
as ⊕i≤nMei where, for every i ≤ n, Mei is an abelian group and even a module
over the uniserial ring eiRei, but not necessarily a module over R (although
Mei is a pp-subgroup of M over R). Hence M is to be regarded here as an
abelian group but not as a module over R. It is easy to see what follows.

Lemma 4.2 Let M be a w. m. module over a serial ring R. Then there is a
unique i ≤ n for which Mei is of finite index (and, for j 6= i, Mej is finite).

Proof. As M decomposes as ⊕i≤nMei as an abelian group and M is infinite,
there is some i ≤ n such that Mei is infinite, and hence of finite index in
M . But, if for i < j ≤ n both Mei and Mej are of finite index, then also
(Mei)ej = Meiej = M0 = 0 is, whence M is finite. a

Assume for simplicity that i = 0, so Me0 is of finite index, while Mei is finite
when i > 0. Thus, in order to describe the structure of the w. m. R-module
M , both

1. Me0 as a module over the uniserial ring e0Re0, and

2. ⊕0<i≤nMei as a finite module over
∑

0<i,j≤n eiRej

have to be considered. But this is not enough, and there is a third point to be
contemplated, i. e.

3. for every r ∈ R and i > 0, two group morphisms, the former from Me0

into Mei sending any me0 into me0rei, the latter from Mei into Me0

taking any mei to meire0.

These morphisms contribute to the clarification of the R-module structure of M .
Observe that the kernel of the former morphism has finite index in Me0 because
Mei is finite, and for the same reason the image of the latter morphism is also
finite. One might think that one would have to consider further morphisms,
such as, for 0 < i < j ≤ n and ri, rj ∈ R,

me0 → me0riei + me0rjej

and
miei + mjej → mieirie0 + mjejrje0,

and so on; but note that the kernel of the former morphism is just the intersec-
tion of the kernels of multiplications by riei and rjej , and similarly the image
of the latter morphism if the sum of the images of rie0 and rje0.

Anyway the main ingredient in this description of M is Me0 as a module over
e0Re0. Notably Me0 is w. m. over e0Re0. To see this, note that every pp-
formula φ(v) over e0Re0 generates by relativization to ve0 = v a pp-formula
φ′(v) over R such that φ′(M) = φ(Me0); hence φ(Me0) is either finite or of fi-
nite index in Me0 because the same is true of φ′(M) in M . But the relationship
between M and Me0 is even stronger, and the following holds.
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Proposition 4.3 Let M be a module over the serial ring R, assume that Me0

is of finite index and that Mei is finite for 0 < i ≤ n. Then M is w. m. over
R if and only if Me0 is w. m. over e0Re0.

Proof. The direction from left to right has just been proved. Conversely suppose
that Me0 is w. m. over e0Re0. Take any r ∈ R, r =

∑
j≤n rej =

∑
i,j≤n eirej .

We have to show that either Mr is finite or Mr is of finite index and M [r] is
finite. We know that either Me0re0 is finite or Me0re0 is of finite index and
Me0[e0re0] is finite. Observe

Mr =
∑

i,j≤n

Meirej = Me0re0 +
∑

i>0 or j>0

Meirej

where the latter summand is finite because each Meh is for h > 0. Thus, if
Me0re0 is finite, then Mr is, which yields the first case in Lemma 4.1. In the
same way, if Me0re0 is of finite index in Me0, then Mr is of finite index in M ,
because Me0 has finite index in M , hence [M : Me0re0] is finite and, as Meh

is finite for h > 0, [M : Mr] is finite, too. So, in order to get the second case
in Lemma 4.1, we have to show that M [r] is finite if Me0[e0re0] is. Note that,
for m ∈ M , mr =

∑
j≤n mrej is 0 if and only if mrej = 0 for every j ≤ n. For

j > 0, {m ∈ M : mrej = 0} has finite index in M because the group morphism
m → mrej has a finite image. So consider j = 0. Every element m ∈ M
such that mre0 = 0, equivalently me0re0 = −

∑
0<i≤n meire0, also satisfies

me0re0 ∈
∑

0<i≤n Meire0 where
∑

0<i≤n Meire0 is finite. Consequently {m ∈
M : mre0 = 0} is finite provided that M [e0re0] is. Write m =

∑
i≤n mei

and notice that me0re0 = 0 if and only if (me0)e0re0 = 0, where m − me0 =∑
0<i≤n mei can assume only finitely many values. Thus M [e0re0] is finite when

Me0[e0re0] is. a

Hence Proposition 4.3 again restricts the weak minimality analysis from serial
to uniserial rings. So let R be uniserial, and let M be a w. m. module over
R. Up to elementary equivalence, we can assume that M is a direct sum of
indecomposable pure injective modules, M = ⊕hMh. For a w. m. M , each
summand Mh is either finite or w. m. as well. As observed in [17], Corollary
11.5 (referring in its turn to [1]), each w. m. summand Mh is uniserial over
its endomorphism ring and consequently pp-uniserial. In other words the pp-
subgroups of Mh reduce to those of the forms Mhs or Mh[r] with r and s in R,
and are linearly ordered by inclusion. Moreover weak minimality implies that
the order type of this linear order is ω + ω? in the worst case, corresponding to
countably many finite pp-subgroups (ordered as ω) and then countably many
pp-subgroups of finite index (ordered as the reverse order ω?).

Further information and details can be obtained specifying M or R. For in-
stance, assume that R is an integral domain and that M is divisible, hence
Ms = M for every nonzero s ∈ R. This means that Mh[s] is finite for every s,
whence the lattice of pp-subgroups of Mh is either finite or linearly ordered of
type ω + 1. Conversely, if M is R-torsionfree, i. e. M [r] = 0 for every nonzero
r ∈ R, then for all h Mhr has finite index in Mh and the lattice of pp-subgroups
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of Mh is either finite or linearly ordered of type 1 + ω?. On the other hand, a
complete classification of w. m. modules over a commutative valuation domain
is given in [6].

As a further example let us consider the serial, right but not left noetherian ring

R =
(

Z(p) Q
0 Q

)
where p is a prime and Z(p) denotes the localization of integers at p (see [17],
11.16). Then

e1 =
(

1 0
0 0

)
, e2 =

(
0 0
0 1

)
are a complete system of pairwise orthogonal indecomposable idempotents in R.
Up to elementary equivalence we can single out the w. m. R-modules among
the direct sums of indecomposable pure injective R-modules. They are listed in
detail in [17], 11.16, so let us refer to their description there.

(i) Z/pn (n ≥ 1), Z/p∞, Ẑp and Q can be viewed as R-modules provided

we agree that e1 acts as 1 and e2 (and
(

0 1
0 0

)
as 0. All of them are

indecomposable pure injective, and either finite or weakly minimal.

(ii) Q can be regarded as an (indecomposable pure injective) R-module even
with respect to an identical action of e2 and a zero action of both e1 and(

0 1
0 0

)
; as such it is again weakly minimal.

The further indecomposable pure injective R-modules (the injective hull and
the pure injective hull of e1R, respectively) are not w. m. because (e1R)[e1]
–the pp-subgroup of the elements in e1R annihilated by e1– is both infinite and
of infinite index in R, and then in their hulls.

In order to build new w. m. R-modules M in this framework, i. e. among
direct sums of indecomposable pure injective R-modules, one can either

• form in (i) a finite direct power of either Z/p∞ or Ẑp and possibly add
finitely many direct summands among the Z/pn’s (n ≥ 1) and arbitrarily
many direct summands isomorphic to Q, or

• take in (i) or (ii) as many copies of Q as one wants, and possibly add a
finite direct summand from (i).

Note that in both cases either Me1 or Me2 has finite index in M .
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