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Abstract

Let G be a definably compact group in an o-minimal expansion of
a real closed field. We prove that if dim(G \ X) < dim G for some
definable X ⊆ G then X contains a torsion point of G. Along the way
we develop a general theory for so-called G-linear sets, and investigate
definable sets which contain abstract subgroups of G.
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1 Introduction

We prove:

Theorem 1.1. Let G be a definably compact group in an o-minimal ex-
pansion of a real closed field. If X ⊆ G is a definable large set (i.e.
dim(G \X) < dim G) then X contains a torsion point of G.

This is a weak approximation to the conjecture that every generic set
in a definably compact group contains a torsion point, a conjecture which
itself follows from the “compact domination conjecture” from [4].

The proof starts with the abelian case, where we first develop, in o-
minimal expansions of an ordered group, a notion of a coset of a definable
local subgroup (a G-linear set). We then use tools from Algebric Topology,
in expansions of real closed fields, to conclude the theorem.

∗Partially supported by GEOR MTM2005-02568 and Grupos UCM 910444
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2 G-linear sets

In this section M will denote an o-minimal expansion of an ordered group.
By definable we mean definable in M. G will denote a definable abelian
group. All topological concepts are with respect to the group topology such
G is equipped with. (We believe that most, if not all, of the work below
can be developed in an arbitrary definable group, but for simplicity we limit
ourselves to the commutative setting.)

Definition 2.1. 1) Given two sets X, Y ⊆ G and a ∈ G, we say that X
and Y have the same germ at a, in notation X =a Y , if there exists an open
neighborhood U of a such that X ∩ U = Y ∩ U . We say that the germ of X
at a is contained in the germ of Y at a, in notation X ⊆a Y , if there exists
an open U 3 a such that X ∩ U ⊆ Y ∩ U .

2) Given X ⊆ G and g, h ∈ G, we say that the germ of X at g is G-
equivalent to the germ of X at h if X − g =0 X − h. (Note that if X is a
definable set then we obtain in this way a definable equivalence relation on
G.)

Definition 2.2. Let X be a definable subset of G.
1) X is called G-linear if for every g, h ∈ X we have X − g =0 X − h.

Given g ∈ X, we say that X is locally G-linear at g if there exists an open
U 3 g such that for every h ∈ U ∩X we have X − g =0 X − h.

Two G-linear sets X, Y ⊆ G are called G-equivalent if for every g ∈ X,
h ∈ Y , we have X − g =0 Y − h.

2) Let X be a G-linear set. A definable Y ⊆ G is called a G-subset of X
if for every h ∈ Y and g ∈ X, we have Y − h ⊆0 X − g.

Example 2.3. Let G be a definable abelian group and H a definable sub-
group. If X is a relatively open subset of a coset of H then X is G-linear.
If Y is any definable subset of a coset of H then Y is a G-linear subset of
X.

We observe without a proof (we will not be using it): If M expands a
real closed field then Y is a G-subset of the G-linear set X if and only if at
every smooth point y ∈ Y , the tangent space of Y at y is a subset of the
tangent space of X at any of its points point.

Lemma 2.4. If X is definably connected and locally G-linear at every g ∈ X
then X is G-linear.

Proof. Because X is locally G-linear at every point the G-equivalence class
of every g ∈ X is relatively open in X. But then it is also relatively closed
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(since its complement is a union of open sets), so by definable connectedness
there exists only one G-equivalence class, so X is G-linear.

Definition 2.5. Given X ⊆ G, we let

Xlin = {g ∈ X : X is locally G-linear at g}.

Notice that Xlin is a relatively open (possibly empty) subset of X. By
the last lemma, every definably connected component of Xlin is a G-linear
set, but Xlin itself might not be G-linear (E.g., if X = H1 ∪ H2 is the
union of two definable subgroups of G, none containing the other, then
Xlin = X \ (H1 ∩ H2) is not a G-linear set). It is easy to see that Xlin

is itself G-linear if and only if all its definably connected components are
G-equivalent.
Notation We denote by Xmax

lin the union of all components of Xlin of max-
imal dimension.

Infinitesimals
It might be easier here to use the language of infinitesimals: We move

to an |M |+-saturated elementary extension N of M. For g ∈ G(M), we
denote by νg the intersection of all M-definable open neighborhoods of g
(with respect to the group topology) in the structure N . For X ⊆ G, we
write νg(X) = νg∩X. Notice that for X, Y ⊆ G and g, h ∈ G, νg(X) = νg(Y )
iff X =g Y , and νg(X)− g = νh(X)− h iff X − g =0 X − h.

We will be using the following simple observation: If X, Y are A-definable
sets, and x is generic in X and in Y over A then νx(X) ⊆ Y .

Lemma 2.6. X is locally G-linear at g ∈ X if and only if νg(X) − g is a
subgroup of G. In particular, X is a C0-manifold near g.

Proof. : If νg(X) − g is a subgroup then for every h ∈ νg(X), we have
h− g + νg(X) = νg(X). It easily follows that X is locally G-linear at g.

Conversely, assume that X is locally G-linear at g. We need to prove:
For all h1, h2 ∈ X sufficiently close to g we have (h1− g)− (h2− g) = h′− g,
for some h′ ∈ X, or equivalently, g + (h1 − h2) ∈ X.

We pick h ∈ X close to g and generic over g such that X − g =0 X − h.
We take U 3 0, definable over parameters independent of g, h, such that
(X − g) ∩ U = (X − h) ∩ U . Because of the genericity of h, there exists a
neighborhood V 3 h, which we may assume is contained in h+U , such that
for all h′ ∈ X ∩ V ,

(X − h) ∩ U = (X − g) ∩ U = (X − h′) ∩ U.
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By adding h to both sides of the last equation, we obtain: For all h′ ∈ X∩V ,
X ∩ (h + U) = (X − h′ + h) ∩ (h + U), hence (since V ⊆ (h + U)) also for
all h′ ∈ X ∩ V ,

X ∩ V = (X − h′ + h) ∩ V.

In particular, if h′′, h′ ∈ X are sufficiently close to h (so that h′′−h′+h ∈
V ) then we have (h′′ − h′) + h in X. It follows, as was pointed out above,
that νh(X)− h is a subgroup of G. Because νg(X)− g = νh(X)− h, it also
follows that νg(X)− g is a subgroup of G.

Because the germ of X at g is G-equivalent to the germ of X at some
generic point near g, it follows that X is a C0-manifold near g.

Notation. For a G-linear X, we denote by ν(X) the group νx(X)−x, for
some (all) x ∈ X. Notice that Y is a G-subset of X iff νh(Y )−h is a subset
of the group ν(X), for every h ∈ Y . Note also that two G-linear sets X1, X2

are G-equivalent if and only if ν(X1) = ν(X2).

Lemma 2.7. Let X, Y ⊆ G be definable sets of dimension d. If dim(X +
Y ) = d then Xlin is large in X, Ylin large in Y and Xmax

lin , Y max
lin are G-linear

sets that are G-equivalent.

Proof. We assume that X and Y are ∅-definable and write Z = X + Y .
Take g generic in X over ∅ and h generic in Y over g. Then g + h is generic
in Z over each g and h and hence for every two x, y ∈ {g, h, g + h} we have
dim(x/y) = d.

For every ∅-definable neighborhood U of g, we have (U ∩ X) + h ⊆ Z.
Moreover g + h is generic in (U ∩X) + h over h and therefore (U ∩X) + h
contains νg+h(Z). It follows that νg(X) + h ⊇ νg+h(Z). By symmetry
we may conclude that νg(X) + h = νg+h(Z), or equivalently, νg(X) − g =
νg+h(Z)− (g + h).

In the very same way we see that νh(Y )−h = νg+h(Z)− (g +h). Hence,
we showed that for every generic g ∈ X, h ∈ Y which are independent from
each other we have νg(X)− g = νh(Y )− h.

Fixing a generic h ∈ Y , this implies that νg′(X) is constant as g′ varies
over all elements g′ which are generic in X over h. In particular, Xlin

contains all those elements g′ and moreover all the components of Xlin of
dimension d are G-equivalent. The same argument shows that all compo-
nents of Ylin of dimension d are G-equivalent to each other and that Xmax

lin

is G-equivalent to Y max
lin .
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Corollary 2.8. Let X, Y, Z ⊆ G be definable sets of dimension d. Assume
that for every g in a large set X0 ⊆ X, we have dim((g +Y )∩Z) = d. Then
Xlin is large in X.

Proof. Without loss of generality, X, Y, Z,X0 are ∅-definable, and hence
every generic element g ∈ X belongs to X0. For every such g ∈ X0 there
exists c ∈ (g + Y )∩Z which is generic in Z over g. It follows that h = c− g
is in Y and, as before, the dimension of any two of {g, h, c} is 2d. We can
now find open neighborhoods V of h and W of c, defined over independent
parameters, such that g + (V ∩ Y ) ⊆ (W ∩ Z). Because of the genericity of
g there is a neighborhood U of g such that (U ∩X) + (V ∩ Y ) ⊆ (W ∩ Z).
In particular, dim((U ∩X) + (V ∩ Y )) = d. We can therefore apply Lemma
2.7 to U ∩X and V ∩ Y and conclude that X is locally G-linear at g.

Note that we cannot conclude, under the assumption of the last Lemma,
that all components of Xmax

lin are G-equivalent.

Definition 2.9. If U is an open symmetric (U = −U) neighborhood of 0
and Y ⊆ G a definable set, we say that h1, h2 ∈ Y are U -connected in Y if
h2 ∈ h1 + U and there exists a definable path in Y connecting h1 and h2,
which is contained in h1 + U .

Lemma 2.10. Let X be G-linear and Y a G-subset of X. Take g ∈ X, and
assume that U is an open symmetric neighbourhood of 0 such that (g+U)∩X
is relatively closed in g + U . Then, for any h1, h2 ∈ Y that are U -connected
in Y , we have g + (h1 − h2) ∈ X

Proof. Because h1, h2 are U -connected in Y , there exists a definable path
γ : [a, b] → Y such that γ(a) = h1, γ(b) = h2 and for every t ∈ [a, b],
γ(t)−h1 ∈ U . Consider the set T of all t ∈ [a, b] such that g+(h1−γ(t′)) ∈ X,
for all t′ ≤ t.

We claim that T is both open and closed (with respect to the order
topology in M) in [a, b]. Indeed, because (g + U) ∩X is relatively closed in
g + U , the set T is closed in [a, b].

To see that it is open, assume that t0 ∈ T . In particular, k = g + (h1 −
γ(t0)) is in X. For t′ ∈ [a, b] close to t0 we have (γ(t0) − γ(t′)) ∈ X − k
(because νγ(t0)(Y )−γ(t0) ⊆ νk(X)−k = ν(X) is a subgroup of G), therefore
t′ ∈ T . It follows that T is open and closed in [a, b], hence T = [a, b] and
therefore g + (h1 − h2) ∈ X.

The following technical lemma ensures that we can extend every G-
linear set and every G-subset of a G-linear set beyond its frontier (where
the frontier of X is Cl(X) \X).
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Lemma 2.11. Assume that X is G-linear and Y is G-subset of X. Then
Cl(Y ) is also a G-subset of X.

Proof. Fix h in Cl(Y ) \ Y . We first prove that νh(Y )− h ⊆ ν(X). Namely
we show: For all h′ ∈ Y sufficiently close to h and every g ∈ X we have
g + h′ − h ∈ X.

If the above fails then we have a curve γ : [a, b) → Y , with limt→b γ(t) =
h such that for all t ∈ [a, b), g + γ(t) − h /∈ X. Fix U an open symmetric
neighborhood of 0 such that X ∩ (g + U) is relatively closed in g + U . By
choosing γ(a) sufficiently close to h, we may assume that for every t ∈ [a, b],
we have γ(t) ∈ γ(a) + U (so in particular, h ∈ γ(a) + U). It follows that
for every t ∈ (a, b), we have γ(a) and γ(t) are U -connected (as witnessed by
γ) and therefore, by Lemma 2.10, g + γ(a) − γ(t) ∈ (g + U) ∩X. Because
X ∩ (g + U) is closed in g + U , we may take t to be b and conclude that
g + γ(a)− γ(b) = g + γ(a)− h ∈ X, contradicting our assumption.

We therefore showed that for all h ∈ Cl(Y )\Y , νh(Y )−h ⊆ ν(X). By our
assumption on Y this is true for every h ∈ Cl(Y ). Because X is locally closed
we may take the closure on the left and conclude that νh(Cl(Y ))−h ⊆ ν(X)
for every h ∈ Cl(Y ), hence Cl(Y ) is a G-subset of X.

Lemma 2.12. Let X ⊆ G be a definable set. Assume that
(i) Xlin is large in X (i.e. dim(X \Xlin) < dim(X)) and
(ii) for every h ∈ X and g ∈ Xlin, X − g ⊆0 X − h.

Then X is G-linear.

Proof. Assume that dim(X) = d. First notice that by (ii), all the compo-
nents of Xlin are G-equivalent to each other and therefore Xlin is itself a
G-linear set of dimension d.

Because of (ii) the local dimension of X at every point is d and therefore,
by (i), Xlin is dense in X. By Lemma 2.11, X is a G-subset of Xlin.

Given any h ∈ X, we have

νh(X)− h ⊆ ν(Xlin) ⊆ νh(X)− h.

(the left inclusion follows from the fact that X is a G-subset of Xlin while
the right one is just assumption (ii)).

It follows that X is locally G-linear at h hence X is G-linear.

Before the next lemma we make a small observation.

Remark 2.13. Let Z,W ⊆ G be definable sets and let f : Z → W be a
definable continuous map (all are 0-definable). Then for every w ∈ f(Z) that
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is locally generic in W and z ∈ f−1(w), we have νw(W ) = f(νz(Z)). (By
“locally generic” we mean that for some open V 3 w, we have dim(w/∅) =
dim(V ∩W )).

Proof. Fix V as above and let U ⊆ G be a definable open neighborhood of
z such that w is still generic in V ∩W over the parameters (say A) defining
U . Then dim(w/A) = dim(w) = dim f(U ∩ Z), w ∈ f(U ∩ Z) and therefore
f(U ∩ Z) and V ∩ W have the same germ at w. In particular, νw(W ) =
νw(V ∩W ) ⊆ f(U ∩Z). Because this is true for every U neighborhood of z,
it follows that νw(W ) ⊆ f(νz(Z)). The converse follows by continuity.

Lemma 2.14. Let X and Y be two G-linear sets. Then:
(i) X + Y is G-linear and we have

ν(X + Y ) = ν(X) + ν(Y ).

In particular, if X and Y are G-equivalent G-linear sets then X + Y is
G-equivalent to them as well.
(ii) If X and Y are G-equivalent then X ∪ Y is a G-linear set and G-
equivalent to X and Y .

Proof. (i) First, notice that, by continuity, for any x ∈ X, y ∈ Y , and
z = x + y we have νx(X) + νy(Y ) ⊆ νz(X + Y ). It follows that for all
z ∈ X + Y , we have ν(X) + ν(Y ) ⊆ νz(X + Y )− z.

By Remark 2.13, if z = x+ y is a generic element of X +Y then νz(X +
Y )− z = νx(X) + νy(Y )− z = ν(X) + ν(Y ). Therefore, X + Y is G-linear
at every generic z ∈ X + Y and we have νz(X + Y )− z = ν(X) + ν(Y ).

It follows that (X + Y )lin is large in X + Y and the germs of X + Y at
all points in (X + Y )lin are G-equivalent. Taken together with the above,
we see that X + Y satisfies the assumptions of Lemma 2.12(1), hence it is
G-linear and we have ν(X + Y ) = ν(X) + ν(Y ).

If X and Y are G-equivalent then ν(X) = ν(Y ), hence ν(X) + ν(Y ) =
ν(X), so X + Y is G-equivalent to both X and Y .

(ii) It is easy to see that for all z ∈ X ∪ Y , if x /∈ Fr(X) ∪ Fr(Y ), then
we have (X ∪Y )−z =0 X−z (if z ∈ X) or (X ∪Y )−z =0 Y −z (if z ∈ Y ).
Because X and Y are G-linear and G-equivalent, it follows that (X∪Y )lin is
large in X ∪Y . Also, for every x ∈ X we clearly have X−x ⊆0 (X ∪Y )−x,
and similarly for y ∈ Y . We therefore can apply Lemma 2.12(1) again and
conclude that X ∪ Y is G-linear, and G-equivalent to X and Y .

Lemma 2.15. Let X be a G-linear set and Y1, Y2 two G-subsets of X. Then
(i) Y1 + Y2 is a G-subset of X.
(ii) Y1 ∪ Y2 is a G-subset of X.
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Proof. (i) Because Y1 and Y2 are G-subsets of X, for all y1 ∈ Y1, y2 ∈ Y2,
we have

(νy1(Y1)+νy2(Y2))−(y1+y2) = (νy1(Y1)−y1)+(νy2(Y2)−y2) ⊆ ν(X)+ν(X) = ν(X).

Again as before, if z = y1 +y2 is a locally generic element of Y1 +Y2 then

νz(Y1 + Y2)− z = νy1(Y1) + νy2(Y2)− z ⊆ ν(X)

and hence Y1 + Y2 is G-subset of X at z. We thus have (Y1 + Y2)slin dense
in Y1 + Y2. By Lemma 2.11, Y1 + Y2 is a G-subset of X.

(ii) Here we only need to note that for z ∈ Y1 ∩ Y2, it is not true in
general that the germs of Y1 and Y2 at z coincide. However, it is still true
that (Y1 ∪ Y2)− z ⊆0 X − g, so we can proceed as before.

We recall the following definition:

Definition 2.16. Given a definable group G in a sufficiently saturated M,
a subgroup H of G is called locally-definable, if it can be written as the
directed union of definable sets H =

⋃
{Xi : i ∈ I}, where |I| < κ.

We say that H is definably connected if the Xi’s can all be chosen to be
definably connected.

Such groups were sometimes called
∨

-definable groups (see [6]) or Ind-
definable groups (see [4]). The dimension of a locally-definable group is
taken to be max{dim Xi : i ∈ I}. Notice that if H is definably connected
then it is actually definably path connected in the sense that any two points
can be connected by a definable path in H. The following claim is easy to
verify:

Claim 2.17. If H =
⋃
{Xi : i ∈ I} is a locally-definable group and g ∈ H

then there exists i ∈ I such that g ∈ Xi and

νg(H) = g + ν0(H) = νg(Xi).

Lemma 2.18. Every locally-definable subgroup H of G can be written as
the directed union of G-linear sets.

Proof. Without loss of generality all Xi’s in the definition ofH have maximal
dimension d. By Claim 2.17, for every g ∈ H there exists i ∈ I such that
νg(H) = νg(Xi). For such an i we have: g ∈ (Xi)lin, the local dimension
of Xi at g equals d (hence, g ∈ (Xi)max

lin ) and all (Xi)max
lin are G-linear and

G-equivalent. If we let X ′
i = (Xi)max

lin then we have H =
⋃

i∈I X ′
i.
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To see that {X ′
i : i ∈ I} is a directed system of sets: Given i, j ∈ I, we

take k ∈ I such that Xi ∪Xj ⊆ Xk and claim that X ′
i ∪X ′

j ⊆ X ′
k. Indeed,

if g ∈ X ′
i then νg(X ′

i) = νg(H) and hence νg(Xi) = νg(Xk). In particular,
g ∈ (Xk)max

lin = X ′
k.

Lemma 2.19. We assume M is an ω-saturated structure. Let X be a
definable G-linear set, 0 ∈ X. Then the following hold.

(1) The group 〈X〉 generated by X is locally-definable and its germ at 0
equals to ν(X). In particular, dim(〈X〉) = dim X.

(2) If Y a G-subset of X containing 0, then the group generated by Y is
a locally-definable of dimension ≤ dim X, whose germ at 0 is contained in
ν(X).

Proof. (1) The group 〈X〉 generated by X is a countable increasing union
of the sets X0 = X, X1 = X −X, X2 = (X −X) + (X −X), . . ., so locally-
definable. By the Lemma 2.14, each Xn is G-linear and G-equivalent to X
(so in particular, has the same dimension as X). Given g ∈ 〈X〉, there exists
n ≥ 0 such that g ∈ Xn. Because of the G-linearity, for every k ≥ n, we
have Xn =g Xk. Because of saturation, there exists a neighborhood U of g
such that U ∩ 〈X〉 = U ∩Xn. It follows that the germ of 〈X〉 at this point
equals to that of Xn and in particular, 〈X〉0 = ν(X).

(2) The group 〈Y 〉 generated by Y is a countable increasing union of the
sets Y0 = Y , Y1 = Y − Y , Y2 = (Y − Y ) + (Y − Y ), . . .. Because −Y is
also a G-subset of X, we can apply Lemma 2.15 and conclude that each Yn

is a G-subset of X whose germ at 0 is contained in ν(X). It follows that
the dimension of 〈Y 〉 is at most dim X and that the germ of 〈Y 〉 at 0 is
contained in that of 〈X〉.

We end this section with a small observation on locally-definable sub-
groups:

Lemma 2.20. Let H1,H2 be locally-definable subgroups of G. Then H1+H2

is a locally-definable group whose germ at 0 equals to the sum of the germs
of H1 and H2 at 0.

Proof. Let
H1 =

⋃
i∈I

Xi ; H2 =
⋃
j∈J

Yj .

As was pointed out above, we may assume that the Xi’s Yj ’s are all G-
linear. By Lemma 2.14(1), the sets Xi +Yj are all G-linear and ν(Xi +Yj) =
ν(Xi) + ν(Yj). By Lemma 2.19(1),

ν0(H1 +H2) = ν(Xi + Yj) = ν(Xi) + ν(Yj) = ν0(H1) + ν0(H2).
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3 Definable sets containing abstract subgroups

In this section M will denote an ω-saturated o-minimal expansion of an
ordered group.

Theorem 3.1. Let G be a definable abelian group, Γ ⊆ G an abstract sub-
group (i.e., Γ is not necessarily definable). Let X ⊆ G be a definable set
containing Γ of minimal dimension d. Then there exist a definable set X ′ of
dimension d, a definably connected locally-definable subgroup H of dimension
d, and g1, . . . , gk ∈ Γ such that Γ ⊆ X ′ ⊆

⋃k
i=1H+ gi.

Proof. Assume the nontrivial case d > 0. For every g ∈ Γ, the set X∩(g+X)
contains Γ and, hence by minimality, has dimension d. It follows that the
set Y = {g ∈ X : dim(X ∩X + g) = d} contains Γ and therefore, again by
minimality, has dimension d.

We now apply Lemma 2.8 to Y, Y,X and X (for X0, X, Y and Z, respec-
tively), and conclude that Ylin is large in Y .

Since Y contains Γ we may replace X with Y and assume from now on
that Xlin is large in X (however, it need not be the case that X or even
Xlin is G-linear). Moreover, we pick X ⊇ Γ such that Xlin has the minimal
number of definably connected components of dimension d. Note that each
component has infinitely many elements of Γ (otherwise, we can replace it
by finitely many points).
Claim 1 All the components of Xlin of dimension d are G-equivalent to
each other.
Proof Indeed, if X1, X2 are two such components then for g ∈ X1 ∩ Γ,
the set {h ∈ X2 : g + h ∈ X} = X2 ∩ X − g contains X2 ∩ Γ and there-
fore has dimension d (otherwise, we could replace X2 by a definable set of
smaller dimension). For the same reason, the set of all g ∈ X1 such that
dim(X2 ∩ (X − g)) = d has dimension d. Just like in the proof of Corollary
2.8, we can apply Lemma 2.7 locally to X1 and X2, and conclude that for
some open U and V we have U ∩ X1 is G-equivalent to V ∩ X2. Because
X1 and X2 are G-linear it follows that they are G-equivalent to each other.
End of Claim 1.

We therefore showed that Xmax
lin is G-linear. It is left to handle X∗ =

X \Xmax
lin . Fix one of the components X0 of Xmax

lin .
As before, for every g ∈ Γ ∩X∗, the set {h ∈ X0 : g + h ∈ X} contains

X0 ∩ Γ and hence has dimension d. Therefore, after possibly replacing X∗
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by a smaller set we may assume that for all g ∈ X∗ the set (g + X0) ∩ X
has dimension d.
Claim 2 X is a G-subset of Xmax

lin .
Proof By abuse of notation we let ν(X) be the infinitesimal subgroup asso-
ciated to the G-linear set Xmax

lin . By Lemma 2.11, it is enough to see that a
dense subset of X is G-linear in Xmax

lin . Namely, we will show that for every
locally generic g ∈ X, we have νg(X)− g ⊆ ν(X). It is clearly sufficient to
consider g ∈ X∗.

We fix an open set U ⊆ G and g ∈ X∗ which is generic in U ∩ X. By
our assumption on X∗, there exists h generic in X0 over g such that g + h
(generic) in X. As in the proof of Lemma 2.7, it follows that νg(X) + h ⊆
νg+h(X), hence

νg(X)− g ⊆ νg+h(X)− (g + h) = ν(X).

(the right-most equality follows from the fact that g +h is generic in X and
hence belongs to Xmax

lin ). End of Claim 2.
Let Xmax

lin = X1 ∪ · · · ∪ Xr be the union of those components of Xlin

of dimension d. By Lemma 2.4 each Xi is G-linear. For each Xi, pick
gi ∈ Γ ∩ Xi, and consider the set X ′

i = Xi − gi. By Claim 1, the union
X ′ =

⋃r
i=1 X ′

i is G-linear (and ν(X ′) = ν(Xi) for every i). It also contains
0 and it is definably connected. Let H′ be the subgroup of G generated by
X ′. By Lemma 2.19(1), dimH′ = dim X ′ = d. We thus have

Xmax
lin ⊆

r⋃
i=1

H′ + gi.

Let X1, . . . , Xt be the definably connected components of X∗. For every
such Xj , we may assume that Xj ∩ Γ 6= ∅ (for otherwise we may omit this
component), take gj ∈ Γ ∩ Xj , and let X ′′ =

⋃t
i=1 Xj − gj . By Claim 2,

each Xj (and therefore also Xj − gj) is a G-subset of Xd
lin. By Lemma 2.15

(2), the set X ′′ is also a G-subset of Xmax
lin . It is also definably connected

and contains 0.
Let H′′ be the subgroup of G generated by X ′′. By Lemma 2.19(2), the

germ of H′′ at 0 is contained in that of X ′ and therefore of H′. We now let
H = H′ +H′′. By Lemma 2.20, we have ν0(H) = ν0(H′ +H′′) = ν0(H′), so
in particular the dimension of H is d.

Putting the above facts together we obtain:

Γ ⊆ X ⊆
k⋃

i=1

H+ gi,
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for some g1, . . . , gk ∈ Γ.
With that we end the proof of the theorem.

Corollary 3.2. Let G be a definably connected abelian group. Let Γ be a
divisible subgroup of the subgroup of torsion points Tor(G). Let X ⊂ G be
a definable set containing Γ. Then, there is a definably connected locally-
definable H subgroup of G with dimH ≤ dim X such that Γ ⊂ H.

Proof. By Theorem 3.1, taking X of minimal dimension, there is a definably
connected locally-definable group H subgroup of G, with dimH = dim X,
and g1, . . . , gk ∈ Γ such that Γ ⊆

⋃k
i=1H + gi. Then Γ ⊂ H. Indeed, let

g ∈ Γ and let m = lcm(o(g1), . . . , o(gk)), since Γ is divisible there is h ∈ Γ
such that g = mh. For such h there is an i such that h = h′ + gi, for some
h′ ∈ H. Then g = mh = mh′ ∈ H.

4 The main result: commutative case

In this sectionM will be an ω-saturated o-minimal expansion of a real closed
field and G will denote a definably compact definably connected abelian
group of dimension n. Such G is divisible and hence the subgroup Tor(G)
and any p-Sylow of G are also divisible (the p-Sylow of G is Gp =

⋃
n>0 G[pn],

where G[m] = {g ∈ G : mg = 0G}).
By Theorem 1.1 in [3] we have G[m] ∼= (Z/mZ)n for any m > 0, and

π1(G) ∼= Zn, where π1(G) is the o-minimal fundamental group of G.
Let p be a prime number and let x1, . . . , xn ∈ G[p] we say that x1, . . . , xn

are n independent p-torsion points if they are Fp-independent under the
isomorphism G[p] ∼= Fp

n.

Theorem 4.1. Let X be a definable subset of G. If X contains a p-Sylow
of G, then dim X = n.

Lemma 4.2. Let p be a prime number and let x1, . . . , xn ∈ G be n in-
dependent p-torsion points. For each i = 1, . . . , n let τi be a path in G
from 0G to xi, and let p τi denote the loop at 0G, t 7→ p τi(t). Then,
[p τ1], . . . , [p τn] ∈ π1(G) are Z-linearly independent.

Proof. Let ϕ : π1(G) → G[p] the homomorphism [γ] 7→ γ̃(1), where γ̃ is the
unique path in G starting at 0G and such that pγ̃ = γ (see the proofs of
propositions 2.10 and 2.11 in [3]). Suppose [pτ1], . . . , [pτn] are Z-linearly
dependent and let m1[pτ1] + · · · + mn[pτn] = [k0G ] with (m1, . . . ,mn) = 1,
where k0G is the constant loop at 0G. Applying ϕ to this equality we get
m1x1 + · · ·+ mnxn = 0G and hence p|(m1, . . . ,mn), a contradiction.
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Lemma 4.3. Let [γ1], . . . , [γn] ∈ π1(G) be Z-linearly independent. Then,{
n∑

i=1

γi(ti) : ti ∈ [0, 1), 1 ≤ i ≤ n

}
= G.

Proof. Consider the definably compact definably connected n-dimensional
abelian group T = [0, 1)n and the definable map

f : T −→ G
(t1, . . . , tn) 7→

∑n
i=1 γi(ti).

It suffices to prove that f is onto. Since f is continuous with respect the
manifold topology of T, we can see f as a definable continuous map between
definable manifolds.
Claim It suffices to prove that f induces an isomorphism f∗ : H1(T; Q) →
H1(G; Q).
Proof The map f has a degree for any orientations of T and G, since both
T and G have dimension n (see section 4 in [3]). To prove that f is onto
it suffices to prove that one (equivalently each one) of these degrees is not
zero. Let ζG and ζT be the fundamental classes of some given orientations
of G and T, i.e., ζG (respectively ζT) is a generator of Hn(G) ∼= Z (resp.
of Hn(T) ∼= Z). The degree of f is defined by f∗(ζT) = deg(f)ζG. If
ωG and ωT are the corresponding cohomology classes by duality we have
f∗(ωG) = deg(f)ωT. Hence to prove that deg(f) 6= 0 suffices to prove that f
induces an isomorphism of the Q-vector spaces f∗ : Hn(G; Q) → Hn(T; Q).
Now f∗ : H∗(G; Q) → H∗(T; Q) is also Q-algebra homomorphism and by
Theorem 1.1 in [3], both Q-algebras are generated by elements of degree
one. So it suffices to prove that f induces an isomorphism f∗ : H1(G; Q) →
H1(T; Q). Applying duality again we have the required result. End of Claim.

Now, let δi : [0, 1] → T : t 7→ δi(t) = (0, . . . ,
i
1, . . . , 0). The map f induces

a map f∗ : π1(T) → π1(G) : [δi] 7→ f∗([δi]) = [γi], for each i = 1, . . . , n, which
is one to one and has finite cokernel (= π1(G)/Im(f∗)) because we have
n Z-linear independent [γi]’s. Identifying the π1’s with the H1’s via the
Hurewicz isomorphism, we have the following exact sequence

0 → H1(T)
f∗→ H1(G) → H1(G)/Im(f∗) → 0.

tensoring with Q we obtain that f∗ : H1(T; Q) → H1(G; Q) is an isomor-
phism.

Corollary 4.4. Let H be a definably connected locally-definable subgroup of
G. Suppose H contains G[p], for some prime p. Then H = G.
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Proof. Let x1, . . . , xn be n independent p-torsion points and for each i =
1, . . . , n let τi be a path in H from 0G to xi. Let γi denote the loop at 0G

defined by t 7→ pτi(t), since H is a group γi([0, 1]) ⊂ H. By Lemma 4.2
[γ1], . . . , [γn] ∈ π1(G) are Z-linearly independent.

By Lemma 4.3, S = {
∑n

i=1 γi(ti) : ti ∈ [0, 1), 1 ≤ i ≤ n} = G. Again
since H is a group S ⊂ H.

Proof of Theorem 4.1. Let X ⊆ G be a definable set containing a p-Sylow
Gp of G. Since Gp is divisible, by Corollary 3.2, there exists a definably
connected locally-definable group H of dimension ≤ dim X containing Gp.
Since Gp contains G[p], we can apply Corollary 4.4 to get H = G and hence
dim X = dim G

Corollary 4.5. Let X be a definable subset of G. If X is large in G then
for any prime p and any l there is an m > l and a g ∈ X of order pm.

Proof. Note that this corollary is equivalent to Theorem 4.1. Indeed, for the
nontrivial case suppose there is a prime p and an l such that X∩Gp ⊂ G[pl].
So the set X ′ = X \ G[pl] is still large in G and X ′ ∩ Gp = ∅. But then
G \ X ′ contains Gp and dim(G \ X ′) < dim G, a contradiction with the
theorem.

5 The main result: general case

We work in an ω-saturated structure M which is an o-minimal expansion
of a real closed field M. We will use multiplicative notation for groups, and
denote by pk the map x 7→ xk. A definably connected group which is either
abelian or definably compact is divisible (see [1] or [2]), hence the map pk

is onto. Recall that a generic subset Y of a definable abelian group G is a
definable subset of G such that finitely many translates of Y cover G.

Lemma 5.1. Let T be a definable abelian group. Suppose that for every
Y ⊆ T generic, Y ∩ Tor(T ) 6= ∅. Then, for each Y ⊆ T generic there is a
k ∈ N such that pk(Y ) = T .

Proof. First note that for each Y ⊆ T generic, there are g1, . . . , gl ∈ Tor(T )
such that T =

⋃n
i=1 giY . Indeed, if not, by compactness, there is h 6∈

Tor(T )Y , i.e., hY −1 ∩ Tor(T ) = ∅, but hY −1 is also generic, a contradic-
tion. Now taking k = lcm(o(g1), . . . , o(gl)) we have pk(Y ) = pk(T ) = T as
required.
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We recall that a maximal definably connected abelian subgroup T of a
definably connected definably compact group G is called a maximal torus of
G and that G =

⋃
g∈G T g (see Theorem 6.12 in [1] or [2]).

Lemma 5.2. Let G be a definably compact definably connected group. Let
T be a maximal torus of G and X ⊆ G is definable. Assume the following:

(i) For every g ∈ G and for every Y ⊆ T g generic, Y ∩ Tor(T g) 6= ∅,
and

(ii) For every g ∈ G, X ∩ T g is generic in T g.
Then there is a k ∈ N such that pk(X) = G.

Proof. Given g ∈ G, by (ii), we can apply Lemma 5.1, for Y = X ∩ T g, to
get a k(g) ∈ N such that the map y 7→ yk(g) sends X∩T g onto T g (note that
by divisibility of T g any multiple of k(g) has the same property). Then, by
compactness, there is k ∈ N such that for every g ∈ G, the map y 7→ yk

sends X∩T g onto T g. To finish the proof suffices to make use of the equality
G =

⋃
g∈G T g.

For the next lemma we will use the notions of compact domination and
very good reduction introduced in [4]. Recall that a definably simple group
has very good reduction and that a definably compact group which has very
good reduction has also compact domination (see Theorem 10.7 in [4]).

Lemma 5.3. Let G be a definably compact definably connected group. Let
X ⊆ G be a definable set such that Tor(G) ⊆ X. If G has very good
reduction then there is k ∈ N such that pk(X) = G.

Moreover, if N is a finite (central) normal subgroup of G and G/N has
very good reduction then there is k ∈ N such that pk(X) = G.

Proof. The result can probably be read off standard Lie theory. However,
since we could not find a reference we give a complete proof.

Without lost of generality we may assume that G = G(M) is defined
over the reals. By our assumptions on G, G(R) is a compact connected
Lie group. Let T0 be a standard maximal torus of G(R), hence T0 is also
a Lie group and hence definable over the reals. Let T = T0(M). So T is
still a maximal torus of G and it has very good reduction and hence it is
compactly dominated. The same happens for every conjugate T g of T , for
g ∈ G. Since all T g’s are also abelian, we can apply Proposition 10.6 in [4],
to get that for every g ∈ G, every generic subset of T g has a torsion point,
so condition (i) of Lemma 5.2 is satisfied.
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Because Tor(G) ⊆ X, the set T g \X has no torsion and hence, by (i),
it is non-generic. It follows that T g ∩X is generic and therefore (ii) holds.
Now we can apply Lemma 5.2 to get the required result.

For the moreover clause, let π : G → G/N be the projection map.
Because N is finite, all torsion elements of G/N are in π(X), hence by what
we have just proved, there is k such that pk(π(X)) = G/N . If we take
k′ = k · |N | then pk′(X) = G (because N is central and G divisible).

Notice, in the setting of the above lemma, that if pk(X) = G then in
particular, dim X = dim G (since the image of X under a definable map
cannot increase).

We can now prove the main result:

Theorem 5.4. Let G be a definably compact group and assume that X ⊆ G
is a definable set containing all torsion points of G. Then dim X = dim G.

Proof. By 4.1 in [5] and 5.4 in [8], after modding out G1 = G/Z(G) by its
finite center, the group we obtain is a direct product of simple groups. In
particular, it has very good reduction (see the proof of 5.1 in [7]) and hence
the “moreover” clause of Lemma 5.3 holds for G/Z(G). We therefore have:

(i) For every definable X1 ⊆ Z(G), if Tor(Z(G)) ⊆ X1 then dim X1 =
dim Z(G) (by Theorem 4.1 this is true for subsets of Z(G)0, but then it
clearly follows for subsets of Z(G) as well).

(ii) For every definable X1 ⊆ G, if Tor(G/Z(G)) ⊆ X1/Z(G) then
dim(X1/Z(G)) = dim(G/Z(G)). (by Lemma 5.3 and our previous obser-
vation).

We now proceed as follows, with X ⊆ G a definable set containing
Tor(G). Given g ∈ Tor(G) and h ∈ Tor(Z(G)), we have gh ∈ Tor(G) ⊆ X.
Hence, for every such g, we have

Xg = {h ∈ Z(G) : gh ∈ X} ⊇ Tor(Z(G)),

so, by (i), dim Xg = dim Z(G). Since gXg = (gZ(G)) ∩ X, we have, for
every g ∈ Tor(G),

dim gZ(G) ∩X = dim Z(G).

Let
X1 = {g ∈ G : dim(gZ(G) ∩X) = dim Z(G)}.

It follows from the above that Tor(G) ⊆ X1, and therefore Tor(G/Z(G)) ⊆
X1/Z(G). (Indeed, if hZ(G) ∈ Tor(G/Z(G)) then for some n ∈ N, hn ∈
Z(G), and therefore for some k ≥ n, hk ∈ Z(G)0. Because Z(G)0 is di-
visible there exists h1 ∈ Z(G), with hk

1 = hk. Because h1 is central,
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(hh−1
1 )k = e, hence hh−1

1 ∈ X1 and therefore hZ(G) ∈ X1/Z(G)). By
(ii), dim(X1/Z(G)) = dim(G/Z(G)).

To finish the proof, consider the set Y = (X1Z(G)) ∩X. The cosets of
Z(G) partition Y into equivalence classes, each of dimension dim Z(G) (by
definition of X1). Since every Z(G)-coset of an element in X1 intersects X
nontrivially, we have

dim(Y/Z(G)) = dim(X1/Z(G)) = dim(G/Z(G)).

Summarizing, we have

dim Y ≥ dim Z(G) + dim(G/Z(G)) = dim G,

and hence (since Y ⊆ X) dim X = dim G.
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