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Abstract

We introduce a notion of Polish structure and, in doing so, provide a set-
ting which allows the application of ideas and techniques from model theory,
descriptive set theory, topology and the theory of profnite groups. We define
a topological notion of independence in Polish structures and prove that it has
some nice properties. Using this notion, we prove counterparts of some basic
results from geometric stability theory in the context of small Polish structures.
Then we prove some structural theorems about compact groups regarded as
Polish structures: each small, nm-stable compact G-group is solvable-by-finite;
each small compact G-group of finite NM -rank is nilpotent-by-finite. Exam-
ples of small Polish structures and groups are also given.

0 Introduction

We propose a new, model theoretic, approach to study classical descriptive set the-
oretic objects, like Polish G-spaces or Borel G-spaces. More generally, we are going
to study Polish structures which are defined as follows.

Definition 0.1 A Polish structure is a pair (X,G) where G is a Polish group acting
faithfully on a set X so that the stabilizers of all singletons are closed subgroups of
G. We say that (X,G) is small if for every n ∈ ω, there are only countably many
orbits on Xn under the action of G.

Notice that the assumption that G acts faithfully on X is purely cosmetic as we
can always divide G by the maximal subgroup acting trivially on X.

Particular cases of Polish structures are profinite structures (X andG are profinite
and the action is continuous) introduced by Newelski in [21, 22] and then considered
also by Wagner [15, 27] and by myself [10, 11, 12, 15], and, more generally, com-
pact structures [13] (X is a compact metric space, G is a compact group and the
action is continuous). More generally, Polish G-spaces (X is Polish and the action
is continuous) and Borel G-spaces (X is a standard Borel space and the action is
Borel-measurable) are also examples of Polish structures.
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In Section 1 we introduce the notion of nm-independence and we prove that it
has some nice properties, as forking independence in stable theories. We show that
nm-independence generalizes the notion of m-independence introduced by Newelski
for profinite structures. However, the proof that nm-independence is transitive is
rather complicated and it uses some descriptive set theory, whereas transitivity of
m-independence follows immediately from the definition. Similarly to the case of
profinite structures, in order to get the existence of nm-independent extensions, we
need to assume smallness. In fact, in many general results we could just assume
the existence of nm-independent extensions (as in [13]), but we prefer to assume
smallness since it is more natural and easier to check in concrete examples.

In Section 2 we consider counterparts of some basic notions from geometric sta-
bility theory and we prove fundamental results about them.

In Section 3 we give examples of small Polish structures which are not profi-
nite. In particular, we prove that the pseudo-arc considered with the full group of
homeomorphisms is a small Polish structure.

In Section 4 we study small topological groups regarded as Polish structures. We
prove the existence of generics in a large class of such groups. Then we study the
structure of small compact G-groups (Definition 4.1). We give examples showing that
counterparts of some conjectures about small profinite groups are false in our wider
context. Then we prove the main structural results: each small, nm-stable compact
G-group is solvable-by-finite, and each small compact G-group of finite NM -rank is
nilpotent-by-finite. We finish with a list of open questions.

The general goal of this paper, as in [13] for the case of compact structures, is to
make an attempt to apply stability theory ideas to various classical mathematical ob-
jects. A similar motivation appears in [21, 22] where Newelski was considering small
profinite structures. However, Polish structures (particularly Polish G-spaces) seem
to be more interesting than profinite structures from the point of view of descriptive
set theory or topology. Even when we look at profinite groups, it seems more natural
to consider them together with the full group of topological automorphisms rather
than with the group of automorphisms preserving a distinguished inverse system.
Moreover, in my opinion, Polish structures yield a more adequate generalization of
profinite structures than compact structures. This is because each small compact
structure is profinite, so instead of smallness we should assume here the existence
of m-independent extensions; but then it is not easy to find interesting examples of
such compact structures which are not profinite. In contrast, we have many natural
examples of small Polish structures which are not profinite.

Having established all the basic notions and results, the natural next step would
be to try and prove the counterparts of some deep results from stability theory,
e.g. a group configuration theorem. Such results were proved by Newelski for small
profinite structures [22]. In [13] I noticed that most of them can be generalized to
the case of compact [profinite] structures satisfying the existence of m-independent
extensions. In small Polish structures the situation is more complicated, and it is
even not clear how to formulate the appropriate conjectures.
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There are also certain open questions about the existence of small profinite struc-
tures with some model theoretic properties (e.g. M-gap conjecture [21, 22, 27]). I
think it would be interesting to find counterexamples for them in the wider context
of small Polish structures.

The notions introduced in this paper (e.g. nm-independence, NM-rank) may also
turn out to be new tools to deal with purely descriptive set theoretic or topological
problems.

I am very grateful to S lawomir Solecki for interesting discussions and suggestions,
in particular, for driving my attention to the pseudo-arc which turned out to be an
important example of a small Polish structure.

1 Independence relation

In this section we define a notion of independence, which we call nm-independence
(read non-meager independence), and we study its properties. We also prove that it
coincides with Newelski’s m-independence in compact structures.

If (X,G) is a Polish structure and A ⊆ X, then by GA we denote the pointwise
stabilizer of A. For a ∈ Xn we define o(a/A) = {f(a) : f ∈ GA} (the orbit of a over
A).

Let us recall the definition of m-independence.

Definition 1.1 Let (X,G) be a compact structure, a be a finite tuple and A,B finite
subsets of X. We say that a is m-independent from B over A (written a

m

⌣| AB) if
o(a/AB) is open in o(a/A). We say that a is m-dependent on B over A (written
a

m
6⌣| AB) if o(a/AB) is nowhere dense in o(a/A).

We cannot use the above definition for a Polish structure (X,G) as there is no
topology on X. Even if we assumed that (X,G) is a Polish G-space, orbits could be
weird, e.g. meager in their relative topologies, and then m-independence would not
have nice properties in this context.

The idea to avoid the above obstacle is to define a relation of independence in
terms of the Polish group G.

Definition 1.2 Let (X,G) be a Polish structure, a be a finite tuple and A,B finite
subsets of X. Let πA : GA → o(a/A) be defined by πA(g) = ga. We say that a
is nm-independent from B over A (written a

nm

⌣| AB) if π−1
A [o(a/AB)] is non-meager

in π−1
A [o(a/A)]. Otherwise, we say that a is nm-dependent on B over A (written

a
nm
6⌣| AB).

One can also define o-independence just replacing the word ’non-meager’ by ’open’
in the above definition. Some of the results will work for both notions of indepen-
dence. However, the proof of the existence of nm-independent extensions in small
Polish structures does not work for o-independence. In Section 3 we will show that

3



the pseudo-arc is an example of a small Polish structure without the existence of o-
independent extensions. That is why nm-independence is a more appropriate notion
of independence.

Notice that nm and o in Definition 1.2 come from topological properties ’non-
meager’ and ’open’, whereas m in Definition 1.1 comes from the word ’multiplicity’.

Notation If T is a topological space and U, V ⊆ T , then U ⊆nm V means that U is
a non-meager subset of V and U ⊆o V means that U is an open subset of V . When
we write ∗ = nm, it means that ∗ stands for non-meager; similarly, ∗ = o means that
∗ stands for open. Later we will also use this notation for ∗ ∈ {c,m, nwd} where c
stands for closed, m for meager and nwd for nowhere dense.

Proposition 1.3 Let (X,G) be a Polish structure, a be a finite tuple and A,B finite
subsets of X. Assume ∗ = nm or ∗ = o. Then TFAE:

(1) a
∗

⌣| AB,

(2) GABGAa ⊆∗ GA,

(3) GAB/GAa ⊆∗ GA/GAa.

Proof. (1)⇔ (2). An easy computation shows that π−1
A [o(a/AC)] = GACGAa for any

C ⊆ X. Hence π−1
A [o(a/AB)] = GABGAa and π−1

A [o(a/A)] = GA. Now the desired
equivalence follows directly from the definition of ∗-independence.
(2) ⇒ (3). Let π : GA → GA/GAa be the quotient map. Then π is continuous and
open.

If ∗ = o, the implication follows from the fact that π is open. So consider the case
∗ = nm. Suppose GAB/GAa is a meager subset of GA/GAa, i.e. GAB/GAa is covered
by a countable union

⋃
i∈ω Di of closed and nowhere dense subsets of GA/GAa. Then

GABGAa = π−1[GAB/GAa] ⊆
⋃

i∈ω π
−1[Di]. Since π is continuous and open, we get

that π−1[Di], i ∈ ω, are closed and nowhere dense. So GABGAa is a meager subset
of GA.
(3) ⇒ (2). If ∗ = o, it follows from continuity of π. So consider the case ∗ = nm.
Since π is continuous and GAB is Polish, we see that GAB/GAa is analytic so it has
the Baire property [7, Theorem 21.6], i.e. GAB/GAa = D△U where D is meager
and U is open in GA/GAa. Assume now that GAB/GAa ⊆nm GA/GAa. Then U is
nonempty. We have GABGAa = π−1[D]△π−1[U ]. Since π is continuous and open, we
get that π−1[D] is meager and π−1[U ] 6= ∅ is open in GA. Hence GABGAa ⊆nm GA.

�

Definition 1.4 Let (X,G) be a Polish structure and A be a finite subset of X. We
define the algebraic closure of A (written Acl(A)) as the set of all elements of X with
countable orbits over A. The strong algebraic closure of A (denoted by acl(A)) is the
set of all elements of X with finite orbits over A. The definable closure of A (written
dcl(A)) is the set of all elements of X which are fixed by GA. If A is infinite, we define

4



Acl(A) =
⋃
{Acl(A0) : A0 ⊆ A is finite}, acl(A) =

⋃
{acl(A0) : A0 ⊆ A is finite}

and dcl(A) =
⋃
{dcl(A0) : A0 ⊆ A is finite}.

In Polish structures Acl plays a similar role to acl in compact [profinite] struc-
tures.

Theorem 1.5 In any Polish structure (X,G) ∗-independence, where ∗ = nm or
∗ = o, has the following properties.

(0) (Invariance) a
∗

⌣| AB ⇐⇒ g(a)
∗

⌣| g[A]g[B] whenever g ∈ G and a, A,B ⊆ X are
finite.

(1) (Symmetry) a
∗

⌣| Cb iff b
∗

⌣| Ca for every finite a, b, C ⊆ X.

(2) (Transitivity) a
∗

⌣| BC and a
∗

⌣| AB iff a
∗

⌣| AC for every finite A ⊆ B ⊆ C ⊆ X
and a ⊆ X.

(3) For every finite A ⊆ X, a ∈ Acl(A) iff for all finite B ⊆ X we have a
∗

⌣| AB.

Proof. Only (2) requires a serious argument, but let us first check (0), (1) and (3)
for completeness.
(0) We know that a

∗

⌣| AB iff GABGAa ⊆nm GA, which in turn is equivalent to
g−1GABgg

−1GAag ⊆nm g−1GAg and hence to Gg[A]g[B]Gg[A]g(a) ⊆nm Gg[A]. The last
condition is equivalent to g(a)

∗

⌣| g[A]g[B].
(1) a

∗

⌣| Ab ⇐⇒ GAbGAa ⊆∗ GA ⇐⇒ GAaGAb ⊆∗ GA ⇐⇒ b
∗

⌣| Aa.
(3) (⇒). a ∈ Acl(A) means that o(a/A) is countable. Hence [GA : GAa] ≤ ω. So GAa

is non-meager in GA by the Baire category theorem. Since GAa is a closed subgroup
of GA, we get GAa ⊆o GA, and so GABGAa ⊆o GA for any finite B ⊆ X. This implies
that a

∗

⌣| AB for all finite B ⊆ X.
(⇐). Suppose that a

∗

⌣| AB for every finite B ⊆ X. Then a
∗

⌣| AAa. Hence GAa ⊆∗
GA =⇒ GAa ⊆o GA =⇒ [GA : GAa] ≤ ω =⇒ a ∈ Acl(A).

In order to prove transitivity, we need first to prove some purely descriptive set
theoretic lemmas, which seem to be interesting in their own rights.

Lemma 1.6 Suppose that H1 and H2 are closed subgroups of a Polish group H. Let
H3 = H1 ∩H2. Then H1H2 is a Borel subset of H. Moreover, for every A1 = A1H3

a Borel subset of H1 and A2 = H3A2 a Borel subset of H2 we have that A1A2 is a
Borel subset of H1H2.

Proof. Define f : H1 × H3 × H2 → H by f(h1, h3, h2) = h1h3h2. By [7, Theorem
12.17] we can choose a Borel set S1 meeting every coset from H1/H3 in exactly one
point and a Borel set S2 meeting every coset from H3\H2 in exactly one point.

Let f0 be the function f restricted to S1×H3×S2. Notice that f0 is an injection.
Indeed, if s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2, h, h

′ ∈ H3 and s1hs2 = s′1h
′s′2, then s′−1

1 s1 =
h′s′2s

−1
2 h−1 ∈ H1 ∩H2 = H3. Hence s1 = s′1. Similarly s2 = s′2. So h = h′.

Since S1 × H3 × S2 is a Borel subset of the Polish space H1 × H3 × H2, we get
that f0[S1 ×H3 × S2] = S1H3S2 = H1H2 is a Borel subset of H .
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To prove the second part of the lemma, first notice that A′1 := A1∩S1 and A′2 :=
A2∩S2 are Borel subsets of H1 and H2, respectively. Hence f0[A

′
1×H3×A′2] is a Borel

subset of H . On the other hand, f0[A
′
1 × H3 × A′2] = A′1H3A

′
2 = A1H3A2 = A1A2.

Hence A1A2 is a Borel subset of H , which implies that it is a Borel subset of H1H2.
�

Lemma 1.7 Suppose that H1 and H2 are closed subgroups of a Polish group H such
that H1H2 is non-meager in its relative topology. Let H3 = H1 ∩H2. Then for every
A1 = A1H3 ⊆o H1 and A2 = H3A2 ⊆o H2 we have A1A2 ⊆o H1H2.

Proof. Let us define a function ψ : H1H2 → H1/H3 ×H3\H2 by

ψ(h1h2) = (h1H3, H3h2)

where h1 ∈ H1 and h2 ∈ H2.
We check that ψ is well-defined. Suppose h1h2 = h′1h

′
2 where h1, h

′
1 ∈ H1 and

h2, h
′
2 ∈ H2. Then h′−1

1 h1 = h′2h
−1
2 ∈ H1 ∩ H2 = H3. Hence h1H3 = h′1H3 and

H3h
′
2 = H3h2.

To finish the proof, it is enough to show that ψ is continuous. The following
Claim follows from Lemma 1.6.

Claim 1 ψ is Baire measurable.

By Claim 1 and [7, Theorem 8.38] there is a set C ⊆ H1H2 which is a countable
intersection of dense open subsets of H1H2 such that ψ ↾ C is continuous.

Claim 2 ψ is continuous.

Proof of Claim 2. Suppose for a contradiction that there are hi
1 ∈ H1 and hi

2 ∈ H2,
i ∈ ω, such that for some h1 ∈ H1 and h2 ∈ H2 we have:

1. hi
1h

i
2 −→ h1h2,

2. (hi
1H3, H3h

i
2) 6−→ (h1H3, H3h2).

Notice that (1) and (2) hold for hhi
1, h

i
2g, hh1, h2g instead of hi

1, h
i
2, h1, h2 for

arbitrary h ∈ H1 and g ∈ H2. Hence to get a contradiction, it is enough to find
h ∈ H1 and g ∈ H2 such that hh1h2g ∈ C and hhi

1h
i
2g ∈ C for all i ∈ ω. So we will

be done if we prove the following:

Subclaim (∀h1h2 ∈ H1H2)(∀∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C).

Proof of Subclaim. Since C∗ := {h1h2 ∈ H1H2 : (∀∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C)}
is invariant under multiplication by H1 on the left and by H2 on the right, it is
enough to show that

(∗) (∃h1h2 ∈ H1H2)(∀
∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C).

Since C is comeager in H1H2, we have

(∀(h, g) ∈ H1 ×H2)(∀
∗h1h2 ∈ H1H2)(hh1h2g ∈ C).

6



So by the Kuratowski-Ulam theorem [7, Theorem 8.41] we get

(∀∗h1h2 ∈ H1H2)(∀
∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C).

Since H1H2 is non-meager in its relative topology, we get (∗) and we are done. �

Lemma 1.8 Suppose that H1 and H2 are closed subgroups of a Polish group H such
that H1H2 is non-meager in its relative topology. Let H3 = H1 ∩H2. Then for every
analytic sets A1 = A1H3 ⊆nm H1 and A2 = H3A2 ⊆nm H2 we have A1A2 ⊆nm H1H2.

Proof. Since A1 and A2 are analytic subsets of Polish spaces H1 and H2, by [7,
Proposition 14.4, Theorem 21.6], we see that A1/H3×H3\A2 has the Baire property
as a subset of H1/H3 ×H3\H2. Using [7, Lemma 8.43] and the argument from the
proof of Proposition 1.3, we get that A1/H3 ×H3\A2 ⊆nm H1/H3 ×H3\H2.

Let us keep the notation from the proof of Lemma 1.7, where it is shown that
ψ is continuous, which we use. By the above paragraph, it is enough to prove that
ψ−1[B] is non-meager if B is non-meager and has the Baire property.

Suppose for a contradiction that ψ−1[B] is meager. Since B is non-meager and
has the Baire property, there exists a nonempty open set U and nowhere dense closed
sets Fn, n ∈ ω, such that B ⊇ U \

⋃
n Fn. Then

ψ−1[B] ⊇ ψ−1[U ] \
⋃

n

ψ−1[Fn].

Since ψ−1[B] is meager and ψ−1[U ] is open, there is n0 ∈ ω with ψ−1[Fn0
] non-meager.

Since ψ−1[Fn0
] is closed, it has a nonempty interior, so countably many of its trans-

lates of the form h1ψ
−1[Fn0

]h2 with h1 ∈ H1 and h2 ∈ H2 cover H1H2. Then the
same translates of Fn0

cover H1/H3×H3\H2 contradicting nowhere density of Fn0
. �

To prove (2) in Theorem 1.5, we will need the following corollary of Lemmas 1.7
and 1.8.

Corollary 1.9 Suppose that H1 and H2 are closed subgroups of a Polish group H
such that H1H2 is non-meager in its relative topology. Then

(i) for every A1 ⊆o H1 we have A1H2 ⊆o H1H2,

(ii) for every analytic set A1 ⊆nm H1 we have A1H2 ⊆nm H1H2.

Proof. Apply Lemmas 1.7 and 1.8 for A2 = H2. �

Now we are returning to the proof of Theorem 1.5.

Proof of (2) in Theorem 1.5. First consider the case ∗ = o. We need to prove that

GCGBa ⊆o GB ∧GBGAa ⊆o GA ⇐⇒ GCGAa ⊆o GA.
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(⇒). Assume GCGBa ⊆o GB ∧ GBGAa ⊆o GA. Define H := GA, H1 := GB, H2 :=
GAa, A1 := GCGBa. Then H1H2 = GBGAa ⊆o GA, so it is non-meager in its relative
topology. Moreover, A1 ⊆o H1. Hence by Corollary 1.9(i), we get

GCGAa = GCGBaGAa = A1H2 ⊆o H1H2 = GBGAa ⊆o GA.

So GCGAa ⊆o GA.
(⇐). Assume GCGAa ⊆o GA. Then of course GBGAa ⊆o GA. On the other hand,
taking the intersection with GB, we get that GCGBa ⊆o GB.

Now consider the case ∗ = nm. We need to prove that

GCGBa ⊆nm GB ∧GBGAa ⊆nm GA ⇐⇒ GCGAa ⊆nm GA.

(⇒). The proof is similar to the case ∗ = o. We only need to check the last
implication, namely GCGAa ⊆nm GBGAa ⊆nm GA implies GCGAa ⊆nm GA.

Suppose for a contradiction that there are closed and nowhere dense subsets Di,
i ∈ ω, of GA such that GCGAa ⊆

⋃
i∈ω Di. By the assumption that GCGAa ⊆nm

GBGAa, there is i ∈ ω such that Di∩GBGAa has a non-empty interior in GBGAa. So
countably many translates (by elements of GB on the left and by elements of GAa on
the right) of Di cover GBGAa. Since Di is nowhere dense in GA, we get that GBGAa

is meager in GA. This is a contradiction.
(⇐). Assume GCGAa ⊆nm GA. Then of course GBGAa ⊆nm GA. It remains to prove
that GCGBa ⊆nm GB.

By Proposition 1.3, we get GC/GAa ⊆nm GA/GAa. Moreover, by [7, Theorem
12.17], we can find a Borel subset B of GC (and hence of GA) meeting every left coset
of GAa ∩GC in exactly one point. Then the continuous function f : GA → GA/GAa

given by f(g) = gGAa is injective on B, so by [7, Theorem 15.1], f [B] = GC/GAa is
a Borel subset of GA/GAa. We conclude that GC/GAa = D△U where D is meager
and analytic (even Borel) and U 6= ∅ is open in GA/GAa.

Let π : GA → GA/GAa be the quotient map. Define D′ = π−1[D] and U ′ =
π−1[U ]. Then we have that GCGAa = D′△U ′, D′ is meager and analytic [7, Propo-
sition 14.4] and U ′ 6= ∅ is open in GA. Moreover, D′GAa = D′, U ′GAa = U ′ and
GC ⊆ GB. Hence U ′ ∩GB 6= ∅.

Suppose for a contradiction that GCGBa is meager in GB. Since GCGBa =
(GCGAa)∩GB = (D′△U ′)∩GB = (D′∩GB)△(U ′∩GB) and U ′∩GB 6= ∅ is open in
GB, we get that D′∩GB ⊆nm GB. We also know that D′∩GB is analytic. Moreover,
GBGAa ⊆nm GA so it is non-meager in its relative topology. Hence by Corollary
1.9(ii), we get (D′ ∩ GB)GAa ⊆nm GBGAa ⊆nm GA. So, in the same way as in the
proof of (⇒), we get (D′ ∩ GB)GAa ⊆nm GA. Hence D′GAa ⊆nm GA, which means
that D′ ⊆nm GA, a contradiction. �

In order to get the existence of nm-independent extensions we assume smallness.

Theorem 1.10 (Existence of nm-independent extensions) Let (X,G) be a small
Polish structure. Then for all finite a ⊆ X and A ⊆ B ⊆ X, there is b ∈ o(a/A)
such that b

nm

⌣| AB.
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Before the proof let us show the following remark.

Remark 1.11 A Polish structure (X,G) satisfies the existence of ∗-independent ex-
tensions, where ∗ = nm or ∗ = o, iff for all finite a ⊆ X and A ⊆ B ⊆ X there
exists f ∈ GA such that GBfGAa ⊆∗ GA.

Proof. The existence of ∗-independent extensions is equivalent to the fact that for
every finite a ⊆ X and A ⊆ B ⊆ X there is b ∈ o(a/A) such that GBGAb ⊆∗ GA,
which in turn is equivalent to the conclusion of the remark. �

Proof of Theorem 1.10. Consider a, A,B as in the theorem. Let {ai : i ∈ I} be
a countable set of representatives of all orbits over B contained in o(a/A). Then
o(a/A) =

⋃
i∈I o(ai/B). Take fi ∈ GA, i ∈ I, such that fi(a) = ai.

Claim GA =
⋃

i∈I GBfiGAa.

Proof of Claim. Consider any f ∈ GA. Then f(a) ∈ o(ai/B) for some i ∈ I. Hence
there is g ∈ GB such that g(f(a)) = fi(a). Then f−1

i gf ∈ GAa, so f ∈ g−1fiGAa ⊆
GBfiGAa. Hence GA ⊆

⋃
i∈I GBfiGAa. The opposite inclusion is obvious. �

By the Claim and the Baire category theorem, there is i ∈ I such that GBfiGAa ⊆nm

GA. So the proof is completed by Remark 1.11. �

We see that the above application of the Baire category theorem works only
for nm-independence. In Section 3 (Remark 3.5) we will see that the pseudo-arc
is an example of a small Polish structure without the existence of o-independence
extensions.

One justification for our definition of nm-independence is the fact that it satis-
fies all the fundamental properties (Theorems 1.5 and 1.10) necessary to develop a
counterpart of basic geometric stability theory. Another justification is given by the
next corollary, which shows that in compact [profinite] structures nm-independence
coincides with m-independence.

Theorem 1.12 Let (X,G) be a Polish structure such that G acts continuously on a
separable metrizable space X. Let a, A,B ⊆ X be finite. Assume that o(a/A) is non-
meager in its relative topology (e.g. it is Polish). Then a

∗

⌣| AB ⇐⇒ o(a/AB) ⊆∗
o(a/A) where ∗ = o or ∗ = nm.

Proof. Let π : GA/GAa → o(a/A) be defined by π(gGAa) = ga. Since o(a/A) is
non-meager in its relative topology, by Effros’ theorem [2, Theorem 2.2.2] we have
that π is a homeomorphism. Hence o(a/AB) ⊆∗ o(a/A) ⇐⇒ π−1[o(a/AB)] ⊆∗
π−1[o(a/A)] ⇐⇒ GAB/GAa ⊆∗ GA/GAa. We finish using Proposition 1.3. �

Corollary 1.13 In every compact structure o-independence, nm-independence and
m-independence coincide.

In fact, for nm-independence we can strengthen Theorem 1.12.
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Theorem 1.14 Let (X,G) be a Polish structure such that G acts continuously on
a Hausdorff space X. Let a, A,B ⊆ X be finite. Assume that o(a/A) is non-meager
in its relative topology. Then a

nm

⌣| AB ⇐⇒ o(a/AB) ⊆nm o(a/A).

Proof. Assume for simplicity that A = ∅. Let π := π∅ : G → o(a), i.e. π(g) = ga.
By assumption, π is continuous. We need to show

(∗) π−1[o(a/B)] ⊆nm G ⇐⇒ o(a/B) ⊆nm o(a).

Before the proof of (∗) we need to recall some facts from general topology. We
work in a Hausdorff space Y . There is a classical result [1, Theorem 25.3] that
the class of all sets with the Baire property is a σ-algebra and is closed under the
(Souslin) operation A. On the other hand, an easy modification of the proof of [7,
Theorem 25.7] gives us that if f : P → Y is continuous and P is Polish, then f [P ] ∈
A(CLO(Y )) where A(CLO(Y )) is the family of all sets obtained by application of
the operation A to any family of closed subsets of Y . So we conclude that f [P ] has
the Baire property.

Now we return to the proof of (∗).

Claim 1 If M ⊆m o(a), then π−1[M ] ⊆m G.

Proof. We will be done when we show that D ⊆nwd o(a) implies π−1[D] ⊆nwd G. We
can assume that D is closed. Suppose for a contradiction that π−1[D] is not nowhere
dense in G. Since it is closed, it has a nonempty interior. So there are gi, i ∈ ω, such
that

⋃
i∈ω giπ

−1[D] = G. Then
⋃

i∈ω giD = o(a). Since o(a) is non-meager in itself,
there is i ∈ ω such that giD ⊆nm o(a), and so D ⊆nm o(a), a contradiction. �

Claim 2 If N has the Baire property as a subset of o(a) and N ⊆nm o(a), then
π−1[N ] ⊆nm G.

Proof. We have N = U△M where U is a nonempty, open and M a meager subset
of o(a). So π−1[N ] = π−1[U ]△π−1[M ]. We also have that π−1[U ] 6= ∅ is open, and
by Claim1, π−1[M ] is meager in G. �

By Claim 1, we get (⇒) in (∗). To show (⇐), notice that o(a/B) = π[GB] and GB

is Polish, so by the remarks right below statement (∗), we have that o(a/B) has the
Baire property in o(a). We finish using Claim 2. �

In Section 3 (Remark 3.5) we will see that the pseudo-arc considered with the
group of all homeomorphisms is an example of a small Polish structure where o-
independence and nm-independence differ. Below we give simpler examples of Polish
structures in which these two notions differ, but these structures are not small.

Example 1 (i) Let X = (S1)ω and G = (Homeo(S1))ω. We consider the Polish
structure (X,G) where G acts naturally on X on the appropriate coordinates. Then
in (X,G) o-independence is different from nm-independence. Moreover, (X,G) sat-
isfies neither the existence of o-independent nor nm-independent extensions. Thus,
it is not small.
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(ii) Let X = (S2)ω and G = (Homeo(S2))ω. Then we get the same conclusions as in
(i) except that now (X,G) satisfies the existence of nm-independent extensions.

Proof. (i) Take any x = 〈x0, x1, . . .〉 ∈ X and y = 〈y0, y1, . . .〉 ∈ X such that xi 6= yi

for all i ∈ ω. Then o(x) = X and o(x/y) = S1 \ {y0} × S1 \ {y1} × . . .. So o(x/y)
is non-meager and not open in o(x). Since o(x) = X is Polish, by Theorem 1.12, we
get that x

nm

⌣| y and x
o6⌣| y. This also shows that (X,G) does not satisfy the existence

of o-independent extensions.
In order to prove the lack of nm-independent extensions, take any x = 〈x0, x1, . . .〉 ∈

X, y = 〈y0, y1, . . .〉 ∈ X and z = 〈z0, z1, . . .〉 ∈ X such that for every i ∈ ω the el-
ements xi, yi and zi are pairwise distinct. Consider any t = 〈t0, t1, . . .〉 ∈ X. Then
o(t/xyz) is a product of singletons and interiors of closed arcs contained in S1, so it
is meager in o(t) = X. By Theorem 1.12, we get t

nm6⌣| xyz.
(ii) is left to the reader. �

2 Basic model theory

In this section we introduce counterparts of some basic notions from stability theory
and we investigate their properties. We also study them in a more topological setting
of G-spaces.

In compact [profinite] structures definable sets were defined as the sets which are
closed and invariant over finite subsets. Since for a Polish structure (X,G) we do not
have any topology on X, we need another definition of definable sets. Moreover, as
in model theory we would like to have (imaginary) names for definable sets for which
forking calculus works in the same way as for the real elements. Below we propose
definitions of definable sets and imaginary elements that fulfill these requirements.

From now on we assume that (X,G) is a Polish structure. For Y ⊆ Xn, we define
Stab(Y ) := {g ∈ G : g[Y ] = Y }. We say that Y is invariant [over a finite set A] if
Stab(Y ) = G [Stab(Y ) = GA, respectively].

Definition 2.1 The imaginary extension, denoted by Xeq, is the union of all sets of
the form Xn/E with E ranging over all invariant equivalence relations such that for
all a ∈ Xn, Stab([a]E) <c G. The sets Xn/E will be called the sorts of Xeq.

Remark 2.2 Let E be an invariant equivalence relation on Xn whose classes have
closed stabilizers in G. Then G induces a group of permutations of Xn/E, denoted
by G ↾ Xn/E, which is Polish, and (Xn/E,G ↾ Xn/E) is a Polish structure.

As in model theory, (Xeq)eq = Xeq which means that if E is an invariant equiv-
alence relation on a product of sorts Xn1/E1 × . . . × Xnk/Ek whose classes have
closed stabilizers in G, then the set of E-classes can be identified with the sort
Xn1 × . . .×Xnk/E′ where

E ′(x1, . . . , xk; y1, . . . , yk) ⇐⇒ E(x1/E1, . . . , xk/Ek; y1/E1, . . . , yk/Ek).

11



Definition 2.3 A subset D of X (or more generally of any sort of Xeq) is said to be
definable over a finite subset A of Xeq if D is invariant over A and Stab(D) <c G.
We say that D is definable if it is definable over some A. We say that d ∈ Xeq is a
name for D if for every f ∈ G we have f [D] = D ⇐⇒ f(d) = d.

Proposition 2.4 Each set definable in (X,G) [or in Xeq] has a name in Xeq.

Proof. The proof is similar to the proof of Proposition 1.9 in [13]. Suppose D is
a-definable for some finite a ∈ Xn. We define an equivalence relation E on Xn by:

E(a1, a2)⇐⇒ [a1 = a2 ∨ (a1, a2) ∈ S(a, a)]

where S = {(f, g) ∈ G × G : f [D] = g[D]}. It is easy to check that E is invariant,
every class of E has a closed stabilizer and a/E is a name for D. �

Working in Xeq, we can define Acleq in the same way as in X. Then the results
of Section 1 (including Theorems 1.5 and 1.10) are true in Xeq (the only exception is
the fact that the Polish structure (X,G) considered in Example 1(ii) does not satisfy
the existence of nm-independent extensions in Xeq). However, in the case of a com-
pact [profinite] structure (X,G) both the family of definable sets and Xeq computed
according to the definitions given in this paper are larger than those computed ac-
cording to the definitions from [21, 22, 13]. For example, any invariant subset of X
is definable in our sense, but it is not necessarily closed; also, if Y ⊆ X is invariant,
but not closed, then the equivalence relation E on X with classes Y and X \ Y is
invariant and X/E ⊆ Xeq in our sense, but not in the sense of [21, 22, 13].

We could give more restrictive definitions of definable sets. For example, we
could say that D ⊆ Xn is definable if for every a ∈ Xn the set {g ∈ G : ga ∈ D}
is closed. Then the family of definable sets would be closed under finite unions and
intersections, but not necessarily under complements (as in compact structures).
In the case of compact structures, this notion is also more general than Newelski’s
notion of definability, but it agrees with it on every orbit, i.e. D is definable in our
sense iff for every a ∈ Xn, o(a) ∩D is closed.

Recall some classical definitions. In the whole paper we assume that compact
spaces are Hausdorff by definition.

Definition 2.5 Let G be a Polish group.
(i) A (topological) G-space is a Polish structure (X,G) such that X is a topological
space and the action of G on X is continuous.
(ii) A Polish [compact] G-space is a G-space (X,G) where X is a Polish [compact]
space.

In such topological situations it is natural to consider the same notion of defin-
ability as in profinite structures. To distinguish between this notion and our previous
notion of definability, we will follow Wagner’s terminology [27].
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Definition 2.6 Suppose (X,G) is a topological G-space. We say that D ⊆ Xn is
A-closed for a finite A ⊆ Xeq if it is closed and invariant over A. Let E be an
invariant equivalence relation on Xn whose classes have closed stabilizers in G, and
equip Xn/E ⊆ Xeq with the quotient topology. Then A-closed subsets of Xn/E are
defined as above. We say that D is ∗-closed if it is A-closed for some finite A.

It would be nice to know that if (X,G) is topologically nice, then so is (Xeq, G).
However, in general, taking quotients does not preserve good topological properties
like being Hausdorff or Polish. The following considerations tell us that everything
looks nice for compact G-spaces, which we will be using in Section 4.

Proposition 2.7 Let (X,G) be a compact G-space and E be a ∅-closed equivalence
relation on Xn. Then Xn/E is compact, and (Xn/E,G/GXn/E) is a compact G-
space where GXn/E = {g ∈ G : g[a]E = [a]E for every a ∈ Xn}.

Proof. We can assume n = 1. The fact that X/E is compact is a standard result
in general topology. Let us give a few details. Only the fact that X/E is Hausdorff
requires an explanation. Since E is closed and X is compact, the quotient map from
X to X/E is closed. Since every compact space is normal and normality is preserved
by closed functions, X/E is Hausdorff.

We also have that GX/E =
⋂

x∈X G[x]E , which implies that GX/E <c G as each
[x]E is a closed subset of X. So G/GX/E is a Polish group.

It remains to show that the action of G/GX/E on X/E is continuous, i.e. the
function Φ : G/GX/E ×X/E → X/E given by Φ(gGX/E , [x]E) = [gx]E is continuous.
It is continuous if we equip G/GX/E with the compact-open topology because X/E is
compact and it is easy to see that G/GX/E acts on X/E by homeomorphisms. So it
is enough to show that the quotient topology on G/GX/E is stronger or equal to the
compact-open topology. Take any set U of the compact-open subbasis on G/GX/E ,
i.e. U = {g ∈ G/GX/E : g[K] ⊆ U} where K is a compact and U is an open subset
of X/E. Let πG : G → G/GX/E and πX : X → X/E be the quotient maps. Then
K1 := π−1

X [K] is a compact and U1 := π−1
X [U ] is an open subset of X. We also have

that π−1
G [U ] = {g ∈ G : g[K1] ⊆ U1}. Thus, π−1

G [U ] is open in the compact-open
topology on G, and hence in the original topology on G because X is compact and the
action of G on X is continuous. So U is open in the quotient topology on G/GX/E . �

The above proposition leads to the following definition.

Definition 2.8 Let (X,G) be a compact G-space. We define X teq (topological imag-
inary extension) as the disjoint union of the spaces Xn/E with E ranging over all
∅-closed equivalence relations on Xn. The spaces Xn/E will be called topological
sorts of X teq.

By Proposition 2.7, each topological sort X/E together with the group G/GX/E

is a compact G-space. If E is A-closed for some finite set A, then replacing G by GA,
X/E can also be treated as a topological sort. We say that D is A-closed in X teq if
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it is A-closed in a sort of X teq. Quotients that occur in natural situations are often
topological sorts, e.g. if we divide a compact G-group (Definition 4.1) by a ∗-closed
subgroup.

Proposition 2.9 If (X,G) is a small compact G-space, then X is second countable
and hence metrizable. Thus, X is a Polish, compact space.

Proof. We need to recall some topological terminology. If Y is a topological space,
then a family N of subsets of Y is said to be a net of Y if for every y ∈ Y and
its open neighborhood U there is M ∈ N with y ∈ M ⊆ U . The smallest possible
cardinality of a net of Y is called the net weight of Y and is denoted by nw(Y ). Of
course, for every space Y we have nw(Y ) ≤ w(Y ). For us the following easy fact is
essential [3, Twierdzenie 3.1.19]: If Y is compact, then nw(Y ) = w(Y ).

By this fact, in order to prove that X is second countable, it is enough to show
that nw(X) ≤ ℵ0. Fix a countable basis U of G. Let {ai : i ∈ I} be a countable set
of representatives of all orbits, and πi : G→ o(ai), i ∈ I, be defined by πi(g) = gai.
It is easy to see that the countable family {πi[U ] : i ∈ I, U ∈ U} is a net of X.

By [3, Theorem 4.2.8], we get that X is metrizable. �

Let us formulate one more topological remark.

Remark 2.10 (i) Let (X,G) be a Polish structure and D an A-definable [or only
invariant over A] subset of Xeq. Then (D,GA/GAD) is a Polish structure. Moreover,
if (X,G) is small, then (D,GA/GAD) is also small, and for tuples and subsets of D,
nm-independence computed in (X,GA) coincides with nm-independence computed in
(D,GA/GAD).
(ii) Let (X,G) be a topological G-space. If D is an A-closed subset of Xn [or X teq,
if X is compact], then (D,GA/GAD) is a topological GA/GAD-space.

Proof. (i) Only the fact that the two notions of nm-independence coincide requires an
explanation. Let

1

⌣| and
2

⌣| be the notions of nm-independence computed in (X,GA)
and (D,GA/GAD), respectively. Let a be a finite tuple and A,B finite subsets of D.

Assume a
1

⌣| AB. We need to show a
2

⌣| AB. We have GABGAa ⊆nm GA. Of course,
we also know that GAD is a closed, normal subgroup of GA. So arguing as in the proof
of Proposition 1.3, we get (GAB/GAD)(GAa/GAD) = (GABGAa)/GAD ⊆nm GA/GAD,
which means that a

2

⌣| AB.
In order to show that a

2

⌣| AB implies a
1

⌣| AB, we also proceed as in the proof of
Proposition 1.3.
(ii) is very easy. �

We come back to the general situation when (X,G) is a Polish structure, but
from now on we assume that (X,G) is small. In fact, more generally, one could only
assume that (X,G) satisfies the existence of nm-independent extensions and, working
in Xeq, one should also assume that the existence of nm-independent extensions holds
in Xeq.
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As usual, having a notion of independence satisfying the properties listed in
Theorems 1.5 and 1.10, one can define a rank, which has some nice properties.

Definition 2.11 The rank NM is the unique function from the collection of orbits
over finite sets to the ordinals together with ∞, satisfying

NM(a/A) ≥ α + 1 iff there is a finite set B ⊇ A such that
a

nm
6⌣| AB and NM(a/B) ≥ α.

The results formulated below follow from a standard forking calculation (e.g. see
[26, Lemma 5.1.4 and Theorem 5.1.6]).

Proposition 2.12 Let a, b, A be any finite tuples (subsets) of X or Xeq.

(1) a
nm

⌣| Ab impliesNM(a/Ab) = NM(a/A). The converse holds wheneverNM(a/A) <
∞.

(2) NM(a/bA) +NM(b/A) ≤ NM(ab/A) ≤ NM(a/bA)⊕NM(b/A).

(3) SupposeNM(a/Ab) <∞ andNM(a/A) ≥ NM(a/Ab)⊕α. ThenNM(b/A) ≥
NM(b/Aa) + α.

(4) SupposeNM(a/Ab) <∞ andNM(a/A) ≥ NM(a/Ab)+ωαn. Then NM(b/A) ≥
NM(b/Aa) + ωαn.

(5) If a
nm

⌣| Ab, then NM(ab/A) = NM(a/bA)⊕NM(b/A).

As in stable or simple theories, the (in-)equalities in (2)-(5) will be called Lascar
inequalities.

Using existence of nm-independent extensions in Xeq and Proposition 2.12(1), an
easy induction yield the following remark.

Remark 2.13 Let a, A ⊆ X be finite. Then NM-rank of o(a/A) computed in X is
the same as NM -rank of o(a/A) computed in Xeq.

Definition 2.14 (X,G) is nm-stable if every 1-orbit has ordinal NM-rank.

Remark 2.15 (X,G) is nm-stable iff there is no infinite sequence A0 ⊆ A1 ⊆ . . .
of finite subsets of X and a ∈ X such that a

nm6⌣| Ai
Ai+1 for every i ∈ ω.

By Lascar inequalities and Remark 2.13 we easily get:

Remark 2.16 (X,G) is nm-stable iff each n-orbit, n ≥ 1, has ordinal NM-rank iff
each 1-orbit in Xeq has ordinal NM-rank.

Proposition 2.17 TFAE:

(1) (X,G) is nm-stable.
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(2) There is no a ∈ X and finite sets A0 ⊆ A1 ⊆ . . . ⊆ X such that GAi+1
GAia is

meager in GAi
for every i ∈ ω.

(3) For every a ∈ X and finite sets A0 ⊆ A1 ⊆ . . . X there is n ∈ ω such that
GAn+i+1

GAna ⊆nm GAn+i
GAna for every i ∈ ω.

Proof. (1)⇔ (2) is obvious by Proposition 1.3 and Remark 2.15.
(1) ⇒ (3). By Proposition 1.3, Remark 2.15 and transitivity, we can find n ∈ ω
such that GAn+i+1

GAn+ia ⊆nm GAn+i
for every i ∈ ω. So by Corollary 1.9(ii) and

induction, we easily get that GAn+i+1
GAna ⊆nm GAn+i

GAna for every i ∈ ω.
(3)⇒ (1). Take any a ∈ X and finite sets A0 ⊆ A1 ⊆ . . . ⊆ X. By (3), there is n ∈ ω
such that GAn+i+1

GAna ⊆nm GAn+i
GAna for every i ∈ ω. Hence we easily get that

GAn+i
GAna ⊆nm GAn

for every i ∈ ω. So a
nm

⌣| An
An+i+1, and hence a

nm

⌣| An+i
An+i+1, for

every i ∈ ω. We are done by Remark 2.15. �

One can adopt the proofs of [20, Proposition 1.1, Corollary 1.2] to conclude the
following

Proposition 2.18 Assume (X,G) is nm-stable. Let a ∈ Xeq, A be a finite subset
of X and α ∈ Ord. Then TFAE:

(1) NM(a/A) ≥ α + 1.

(2) There is a finite set B ⊆ o(a/A) such that a
nm6⌣| AB and NM(a/AB) ≥ α.

Using this together with Remark 2.10, we get

Corollary 2.19 Assume (X,G) is nm-stable. Let D be definable over A, and a,B ⊆
D finite. Then NM(a/AB) computed in (X,G) is equal to NM(a/B) computed in
(D,GA/DAD).

As it was mentioned in the introduction I hope that nm-independence, NM-
rank and maybe some other model theoretic notions may be useful in descriptive
set theory or topology. It is worth mentioning here that by Theorem 1.14, if orbits
are non-megear in their relative topologies, then NM-rank and nm-stability can be
expressed in terms of X instead of G, and NM-rank measures a ’topological size’ of
orbits. More precisely, Theorem 1.14 gives us the following remark.

Remark 2.20 Suppose that X is a Hausdorff space and G acts continuously on X.
Assume that all orbits over finite sets are non-meager in their relative topologies.
Then

(1) NM(a/A) ≥ α + 1 iff there is a finite set B ⊇ A such that o(a/B) is meager
in o(a/A) and NM(a/B) ≥ α.

(2) (X,G) is nm-stable iff there is no infinite sequence A0 ⊆ A1 ⊆ . . . of finite
subsets of X and a ∈ X such that o(a/Ai+1) is meager in o(a/Ai) for every
i ∈ ω.
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By Corollary 1.13, we see that in compact structures NM-rank and nm-stability
coincide with M-rank and m-stability, respectively.

As in model theory and in profinite structures one can define a natural pregeom-
etry on an orbit of NM-rank 1. To introduce this definition, first we need to prove
several remarks.

Remark 2.21 For any finite a, A ⊆ Xeq we have that NM(a/A) = 0 iff a ∈
Acleq(A).

Proof. (⇒). Assume NM(a/A) = 0. Then a
nm

⌣| AB for every finite B ⊆ Xeq. By
Theorem 1.5(3), we get a ∈ Acleq(A).
(⇐). Assume a ∈ Acleq(A). By Theorem 1.5(3), we get that a

nm

⌣| AB for every finite
B ⊆ Xeq. Hence NM(a/A) = 0. �

Corollary 2.22 If (X,G) is a G-space and o(a/A) is Polish, then NM(a/A) = 0
iff o(a/A) is countable with the discrete topology.

For a finite set A ⊆ Xeq we define the operator AcleqA by AcleqA (B) = Acleq(A∪B).

Remark 2.23 Assume NM(a/A) = 1 and B is a finite subset of Xeq. Then a ∈
AcleqA (B) iff a

nm6⌣| AB.

Proof. (⇒). Assume a
nm6⌣| AB. Then NM(a/AB) < NM(a/A) = 1. Hence

NM(a/AB) = 0. By Remark 2.21, we get a ∈ AcleqA (B).
(⇐). Assume a ∈ AcleqA (B). By Remark 2.21, NM(a/AB) = 0 < NM(a/A).
Hence by Proposition 2.12(1), a

nm
6⌣| AB. �

Proposition 2.24 Assume NM(a/A) = 1. Then (o(a/A), AcleqA ) is a pregeometry.

Proof. The proof is the same as in model theory. Let us only check the exchange
property. Take any B ⊆ o(a/A) and b ∈ o(a/A). Consider any a′ ∈ AcleqA (Bb) \
AcleqA (B). Wlog B is finite. By Remark 2.23, a′

nm6⌣| AABb and a′
nm

⌣| AAB. Hence by
Theorem 1.5, b

nm6⌣| ABa
′. So b

nm6⌣| ABa
′, which implies that b ∈ AclA(Ba′). �

Definition 2.25 IfD is definable over A inXeq, we defineNM(D) = sup{NM(d/A) :
d ∈ D}.

Let D be definable over A. As above one can show that if NM(D) := 1, then
(D,Acleq) is a pregeometry.

17



3 Examples

In this section we give several examples of small Polish structures. To begin with,
notice that all small profinite structures are such examples. This class contains
for instance all abelian profinite groups of finite exponent presented as the inverse
limit of a system indexed by the natural numbers and considered with the standard
structural group [11, Theorem 1.9]. Thus, all such groups with the full group of
topological automorphisms are also small. Below we give examples which are not
profinite.

Example 2 (i) For every n ≥ 1 the Polish structure (Sn, Homeo(Sn)) where Sn is
the n-dimensional sphere and Homeo(Sn) is the group of all homeomorphisms of Sn

with the compact-open topology is small of NM-rank 1.
(ii) For every n ≥ 1 the Polish structure ((S1)n, Homeo((S1)n)) where (S1)n is the
n-dimensional torus is small of NM-rank 1.

Example 3 The Polish structure (Iω, Homeo(Iω)) where Iω is the Hilbert cube is
small of NM-rank 1.

Proof. By [18, Section 6.1, Exercise 2] we know that the action is n-transitive for
every n ≥ 1. �

Example 4 (i) Let X = (S1)ω and G be the group of all homeomorphisms of X
respecting the inverse system consisting of initial subproducts S1 ←− S1×S1 ←− . . ..
Then (X,G) is a small, non-nm-stable Polish structure.
(ii) The Polish structure ((S1)ω, Homeo((S1)ω) is small of NM-rank 1.

Proof. (i) It is easy to see that G is a closed subgroup of Homeo((S1)ω) so (X,G) is
a Polish structure. The following claim is essential, and we leave it as a non-difficult
topological exercise.

Claim Let x = 〈xi〉i∈ω ∈ X and A be a finite subset of X. If A 6= ∅, choose an
element a = 〈ai〉i∈ω ∈ A with the longest common beginning with x. If x 6= a, let
n be the smallest natural number such that xn 6= an. Then we have the following
possibilities.

(1) If A = ∅, then o(x/A) = X.

(2) If A 6= ∅ and x /∈ A, then o(x/A) = {x0} × . . . × {xn−1} × U × S1 × S1 × . . .
for some open U ⊆ S1.

(3) If x ∈ A, then o(x/A) = {x}.

Smallness is a simple consequence of the Claim once we use the fact that on
S1 there is no uncountable family of open, pairwise disjoint sets. We also see that
1-orbits are non-meager in their relative topologies. Take any x = 〈xi〉i∈ω ∈ X
and xj = 〈xj

i 〉i∈ω ∈ X, j ∈ ω, such that xj
j+1 6= xj+1 and xj

i = xi for i ≤ j. By

the Claim, we see that for every n ∈ ω we have o(x/{xj : j ≤ n}) is meager in
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o(x/{xj : j ≤ n+ 1}). Thus, in virtue of Remark 2.20, (X,G) is not nm-stable.
(ii) follows from the fact that the action is n-transitive for every n ≥ 1. Smallness also
follows immediately from (i). We give a brief sketch of the proof of n-transitivity.
Take any finite set A ⊆ X and x = 〈xi〉i∈ω ∈ X \ A. We need to show that
o(x/A) = X \ A. Consider any y = 〈yi〉i∈ω ∈ X \ A. There is n ∈ ω such that
〈x0, . . . , xn〉, 〈y0, . . . , yn〉 /∈ A ↾ n + 1. Then there is a homeomorphism h of (S1)n+1

fixing A ↾ n + 1 and mapping 〈x0, . . . , xn〉 to 〈y0, . . . , yn〉. As in the proof of the
Claim, h can be ’extended’ to a homeomorphism of (S1)ω fixing A and mapping x
to y. �

Example 5 The Polish structure (P,Homeo(P )) where P is the pseudo-arc is small
and not nm-stable.

Before the proof we recall some notions and results about continua. Recall that a
continuum is a nonempty, compact, connected metric space. The pseudo-arc P is the
unique nondegenerate (i.e. with more than one point), hereditarily indecomposable,
chainable continuum (hereditary indecomposablity means that no subcontinuum of
P can be written as the union of its two proper subcontinua; for the definition of
a chainable continuum the reader is referred to [19, Chapter 12]). By hereditary
idecomposability, we get that for every A ⊆ P the intersection of all subcontinua of
P containing A is the smallest subcontinuum of P containing A.

Let C be any nondegenerate continuum (e.g. P ). We say that C is irreducible
between subsets A and B if there is no proper subcontinuum of C containing A and
B. For p ∈ C we define the composant of p, denoted by κ(p), as the set of the points
x ∈ C for which there is a proper subcontinuum A of C such that p, x ∈ A.

For every p ∈ C, κ(p) is the union of countably many proper subcontinua of
C containing p [19, Proposition 11.14] and κ(p) is dense and connected [19, Exer-
cise 5.20]. Moreover, by [19, Exercise 6.19] C is indecomposable iff every proper
subcontinuum of C is nowhere dense in C. Hence

(∗) If C is indecomposable, then κ(p) is meager and dense in C for every p ∈ C.

If C is indecomposable, we define an equivalence relation E on C by:

EC(x, y) ⇐⇒ y ∈ κ(x).

By (∗) and the Baire category theorem, EC has uncountably many classes (they are
just composants). We will need the following two facts, which can be found in [16,
Theorem 2, Theorem 6].

Fact 3.1 The pseudo-arc is homeomorphic to each of its nondegenerate subcontinua.

Fact 3.2 Suppose H1,1, H1,2, . . . , H1,n are proper subcontinua of the pseudo-arc P
and that P is irreducible between each pair of them. Suppose T is a homeomorphism
of H1,1 ∪H1,2 ∪ . . .∪H1,n onto H2,1 ∪H2,2 ∪ . . .∪H2,n where H2,1, H2,2, . . . , H2,n are
proper subcontinua of P such that P is irreducible between each pair of them. Then
T can be extended to a homeomorphism of P onto P .
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Now we can prove the following Lemma which immediately implies that the Polish
structure (P,Homeo(P )) is small.

Lemma 3.3 For every n ≥ 1, there are only finitely many orbits on P n under the
action of Homeo(P ).

Proof. The proof is by induction on n. The case n = 1 follows from the fact that the
pseudo-arc is homogeneous.

Assume that Lemma 3.3 is true for the tuples of length < n where n ≥ 2. Suppose
for a contradiction that there are infinitely many n-tuples t0 = (t00, . . . , t

n−1
0 ), t1 =

(t01, . . . , t
n−1
1 ), . . . lying in different orbits under Homeo(P ). Then there is an infi-

nite subsequence ti0 , ti1 , . . . such that for every j, k ∈ ω, the tuples tij and tik are
isomorphic, via fjk, with respect to the relation EP . Wlog ij = j for every j ∈ ω.
Then there is m ≤ n− 1 such that for every i ∈ ω, {t0i , . . . , t

n−1
i } can be partitioned

into classes modulo EP , say A0
i , . . . , A

m
i , so that fjk[Al

j] = Al
k for every j, k ∈ ω

and l ≤ m. Let B0
i , . . . , B

m
i be the smallest proper subcontinua of P containing

A0
i , . . . , A

m
i , respectively. Then B0

i , . . . , B
m
i are pairwise disjoint proper subcontinua

of P such that P is irreducible between each pair of them.

Case 1 m > 1. By Fact 3.1, for every i ∈ ω we can find homeomorphisms
f l

i : Bl
i → Bl

0, l = 0, . . . , m. By the inductive hypothesis, there are i 6= j for
which there exist homeomorphisms gl : Bl

0 → Bl
0, l = 0, . . . , m, such that

T := (f 0
j )−1g0f

0
i ∪ . . . ∪ (fm

j )−1gmf
m
i : B0

i ∪ . . . ∪ B
m
i → B0

j ∪ . . . ∪ B
m
j

is a homeomorphism extending fij. Since both {B0
i , . . . , B

m
i } and {B0

j , . . . , B
m
j } are

collections of proper subcontinua of P such that P is irreducible between each pair of
them, by Fact 3.2, T can be extendend to an element of Homeo(P ). Since T (ti) = tj ,
we get a contradiction.

Case 2 m = 1. Then B0
i , i ∈ ω, are proper subcontinua of P , so by Fact 3.1, we

can find homeomorphisms fi : B0
i → B0

0 . Let t′i = fi(ti). If we show that there exist
i 6= j and a homeomorphism f : B0

0 → B0
0 with f(t′i) = t′j , then T := f−1

j ffi is
a homeomorphism from B0

i onto B0
j such that T (ti) = tj , and we finish using Fact

3.2. By the minimality of B0
i , i ∈ ω, we see that each tuple t′i, i ∈ ω, meets at least

two composants computed within B0
0 . So applying the argument preceding Case1

for B0
0 and t′0, t

′
1, . . ., we come to the situation described in Case 1, and the proof is

completed. �

Lemma 3.4 (P,Homeo(P )) is not nm-stable.

Proof. Take any p ∈ P . By (∗), we can find p0 ∈ κ(p) such that p0 6= p. Now choose
the smallest proper subcontinuum P0 of P containing p and p0. Then P0 is also the
pseudo-arc and it is nowhere dense in P . We see that P0 is definable over {p, p0}. Let
q0 be a name of P0. By Fact 3.2, o(p/q0) = P0, which is nowhere dense in o(p) = P .
Since P is Polish, Theorem 1.12 implies that p

nm6⌣| q0.
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Let us repeat this step within P0. By (∗), we can find p1 ∈ κP0
(p) such that p1 6= p,

where κP0
is κ computed within P0. Now choose the smallest proper subcontinuum

P1 of P0 containing p and p1. Then P1 is also the pseudo-arc and it is nowhere dense
in P0. We see that P1 is definable over {p, p0, p1}. Let q1 be a name of P1. By Fact
3.2, o(p/q0q1) = P1, which is nowhere dense in o(p/q0) = P0. Since P0 is Polish,
Theorem 1.12 implies that p

nm
6⌣| q0

q1.
We repeat this procedure and obtain an infinite sequence of imaginaries q0, q1, . . .

such that p
nm6⌣| q<i

q≤i for all i ∈ ω. By Remarks 2.15 and 2.16, the proof is completed.�

Remark 3.5 For any p0 ∈ P , the orbits over p0 are {p0}, κ(p0)\{p0} and P \κ(p0).

Proof. By Fact 3.2, we get that if p ∈ P \ κ(p0), then o(p/p0) = P \ κ(p0). Now
assume p ∈ κ(p0) \ {p0}. Of course, o(p/p0) ⊆ κ(p0) \ {p0}. To show the opposite
inclusion, consider any q ∈ κ(p0) \ {p0}. Let Bp and Bq be the smallest subcontinua
containing {p0, p} and {p0, q}, respectively. By Fact 3.1 and homogeneity of Bq,
there is a homeomorphism f : Bp → Bq fixing p0. So in virtue of Fact 3.2, f can be
extended to a homeomorphism from P onto P , which will be still denoted by f . By
the minimality of Bp and Bq, we see that f(p) and q are not in the composant of p0

computed within Bq. So the first paragraph of the proof gives us the existence of a
homeomorphism h : Bq → Bq fixing p0 and mapping f(p) to q. By Fact 3.2, h can
be extended to a homeomorphism from P onto P , which will be still denoted by h.
Then h ◦ f : P → P is a homeomorphism fixing p0 and mapping p to q. �

It is not clear how to repeat the proof of Lemma 3.4 without using imaginaries.
Keeping the notation from this proof, by Remark 3.5 and (∗), we have that o(p/p0) =
κ(p0) \ {p0} is meager in o(p) = P and P is Polish, so by Theorem 1.12, p

nm
6⌣| p0.

However, by (∗) and Effros’ theorem (or directly from the comments preceding (∗)),
o(p/p0) = κ(p0) \ {p0} is meager in its relative topology, so starting from this point
we cannot work just with orbits, but we should look at their preimages in Homeo(P ),
which is rather complicated.

Remark 3.6 (i) (P,Homeo(P )) does not satisfy the existence of o-independent ex-
tensions.
(ii) In (P,Homeo(P )) the relations

o

⌣| and
nm

⌣| are different.

Proof. (i) Since P is homogeneous, by Theorem 1.12, it is enough to show that there
is p ∈ P such that every orbit over p is not open in P . Take any p ∈ P . Using
Remark 3.5, we have that the only orbits over p are {p}, κ(p) \ {p} and P \ κ(p), so
we are done by (∗).
(ii) It follows from (i), Lemma 3.3 and Theorem 1.10. We can also see it directly.
Take any p ∈ P and q /∈ κ(p). By Remark 3.5, o(q/p) = P \ κ(p). So by (∗), we get
that o(q/p) is non-meager in o(q) = P , and hence, by Theorem 1.12, q

nm

⌣| p.
On the other hand, by (∗) we see that P \ κ(p) is not open in P , and hence, by

Theorem 1.12, q
o6⌣| p. �
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In fact, any natural, simple example of a compact (connected) metric space X
with the full group of homeomorphisms seems to be a small Polish structure (e.g. Sn,
(S1)n, Iω, (S1)ω are small). Also, a much more complicated continuum, the pseudo-
arc, turned out to be small. One could think that it is always the case (at least if X
is connected). However, the main result of [9] says that a certain continuum, called
the pseudo-circle, with the full group of homeomorphisms has uncountably many
1-orbits, so it is not small.

In the next section we will give several examples of small Polish groups regarded
as Polish structures, i.e. small Polish structures (H,G) such that H is a Polish group
and G acts continuously as a group of automorphisms of H .

We end up with a remark, which follows from Lascar inequalities, and yields
examples of small Polish structures of arbitrary finite NM-rank.

Remark 3.7 If (X,G) is a small Polish structure of NM-rank 1, then for every
natural number n ≥ 1, (Xn, G) is a small Polish structure of NM-rank n.

4 Small compact G-groups

In this paper all topological groups are Hausdorff by definition. We will be using the
following terminology.

Definition 4.1 Let G be a Polish group.
(i) A Polish group structure is a Polish structure (H,G) such that H is a group and
G acts as a group of automorphisms of H.
(ii) A (topological) G-group is a Polish group structure (H,G) such that H is a
topological group and the action of G on H is continuous.
(iii) A Polish [compact] G-group is a topological G-group (H,G) where H is a Polish
[compact] group.

Definition 4.2 (i) We say that a group H is definable in a Polish structure (X,G)
[or in Xeq] if H as well as the group operation on H are definable in (X,G) [Xeq].
(ii) We say that a group H is ∗-closed in a G-space (X,G) [or in X teq, if X is
compact] if H as well as the group operation on H are ∗-closed.

In this section we mostly study small compact G-groups. We will give some
examples and prove structural results about such groups.

Let us first discuss a notion of a generic orbit in the general context of small Polish
group structures. So let (H,G) be a small Polish group structure and a, A ⊆ H finite.

Definition 4.3 We say that the orbit o(a/A) is left nm-generic (or that a is left
nm-generic over A) if for all b ∈ H with a

nm

⌣| Ab, one has that b ·a
nm

⌣| A, b. We say that
it is right nm-generic if, for b as above, we have a · b

nm

⌣| A, b. An orbit is nm-generic
if it is both right and left nm-generic.
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All the facts about generic types in simple and rosy groups which use only formal
properties of the underlying independence relation go through in our situation. In
particular, Lemma 1.12, Remark 1.20 and Propositions 1.24, 1.26, 1.27(1) of [4] are
true in our context, after replacing ∗ by nm, U∗ by NM , and assuming that H/L
is contained in a sort of Heq (whenever the set H/L of cosets modulo the definable
subgroup L occurs) which is always the case when (H,G) is a G-group and L is a
∗-closed subgroup of H . For example, we have: if a is left (right) nm-generic over
A, then a

nm

⌣| A; being left (right) nm-generic is preserved under taking restrictions
and nm-independent extensions; left nm-generic coincides with right nm-generic
and so with nm-generic; in the nm-stable situation, being nm-generic means being
of maximal NM -rank. However, in order to get the existence of generics [thorn
generics] in simple [rosy] groups, one uses suitable stratified local ranks, which are
not present in our situation. In fact, even in the rosy context, if we consider an
abstract independence relation, it is not clear whether a generic type with respect to
this relation exists (see [4, Question 1.19]). In our context the corresponding question
has the following form.

Question 4.4 Let (G,H) be a small Polish group structure. Does H possess a
generic orbit?

The answer to the above question is positive in a rather big class of structures.

Proposition 4.5 Suppose (H,G) is a small G-group such that H is not meager in
itself (e.g. H is Polish or compact, or more generally Baire). Then at least one
nm-generic orbit exists, and an orbit is nm-generic iff it is non-meager in H.

Proof. By smallness and the fact that H is not meager, for any finite A ⊆ H there
is an orbit o = o(h/A) which is non-meager in H . Let us show that o is nm-generic.
Consider any h′

nm

⌣| Ah. We claim that o(h/A, h′) ⊆nm H . Otherwise there are closed
subsets Di, i ∈ ω, of H with empty interiors such that o(h/A, h′) ⊆

⋃
i∈ω Di. Then

π−1
A [o(h/A, h′)] ⊆

⋃
i∈ω π

−1
A [Di] where πA : GA → o(h/A) is given by πA(g) = gh.

Since π−1
A [o(h/A, h′)] ⊆nm GA and π−1

A [Di], i ∈ ω, are closed, there is k such that
π−1

A [Dk] has nonempty interior in GA. So countably many left translates of π−1
A [Dk]

by some elements g0, g1, . . . ∈ GA cover GA. Hence the sets giDk, i ∈ ω, cover o(h/A).
Thus o(h/A) is meager in H , a contradiction. From o(h/A, h′) ⊆nm H we get

o(h/A, h′)h′ ⊆nm H ⇒ o(hh′/A, h′) ⊆nm H ⇒ o(hh′/A, h′) ⊆nm o(hh′).

By Theorem 1.14, we conclude that hh′
nm

⌣| A, h
′.

We have proved that every orbit which is non-meager in H is nm-generic, and so
an nm-generic orbit exists. Now suppose that o(k/A) is nm-generic. We need to show
that o(k/A) ⊆nm H . Take h ∈ H such that o(h/A) ⊆nm H and k

nm

⌣| Ah. Then hk
nm

⌣| Ah
so h

nm

⌣| Ak
−1h−1. By the first paragraph of the proof, we get o(h/A, k−1h−1) ⊆nm H .

So o(k−1/A, k−1h−1) ⊆nm H , which implies o(k−1/A) ⊆nm H , and so o(k/A) ⊆nm H .
�
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The above discussion on generics extends easily to the situation when H is a
∗-closed subgroup of a G-group H̃ (the difference is that here parameters from the

supergroup H̃ are allowed).
The above proposition together with Lascar inequalities for groups [4, Proposition

1.27(1)] easily imply the following corollary, whose direct proof is given below for the
reader’s convenience. In fact, only point (i) of this corollary will be very useful later.
Notice that point (ii) does not require the existence of nm-generics.

Corollary 4.6 (i) Let (H,G) be a small G-group whose all ∗-closed subgroups are
non-meager in their relative topologies (e.g. (H,G) is a Polish or compact G-group).
If H1 <nwd H2 are ∗-closed subgroups of H and NM(H2) < ∞, then NM(H1) <
NM(H2).
(ii) Let (H,G) be a small G-group. If H1 <o H2 are ∗-closed subgroups of H, then
NM(H1) = NM(H2).

Proof. (i) Assume for simplicity that H1 and H2 are ∅-closed. The equivalence
relation on H given by xEy ⇐⇒ xH1 = yH1 is ∅-closed, so H/H1 is a sort of
Heq. Since H1 <nwd H2 and H2 is non-meager in its relative topology, [H2 : H1] >
ℵ0. By smallness, Acleq(∅) ∩ H/H1 is countable, so there is h2 ∈ H2 such that
h2H1 /∈ Acleq(∅). By Proposition 4.5, we can choose h1 nm-generic in H1 over h2.
Since h2h1 ∈ h2H1, we have h2H1 ∈ dcl(h2h1). So h2H1

nm6⌣| h2h1. Thus NM(H2) ≥
NM(h2h1) > NM(h2h1/h2H1) ≥ NM(h2h1/h2) = NM(h1/h2) = NM(H1).
(ii) Assume for simplicity that H1 and H2 are ∅-closed. First we show that [H2 :
H1] ≤ ω. Suppose it is not the case. Let K = H2/H1 and G0 = G/GK . Since
H1 <o H2, the quotient topology on H2/H1 is discrete. It is easy to check that
(K,G0) is a small G0-space. Since K is uncountable, there is an uncountable orbit
o(a) in K. As the surjection π : G0 → o(a) given by π(g) = ga is continuous, the
preimages of singletons form a partition of the Polish group G0 into uncountably
many open sets, a contradiction.

We need to show NM(H2) ≤ NM(H1) (the opposite inequality is obvious).
It is enough to prove that for any h2 ∈ H2 there is h1 ∈ H1 with NM(h2) ≤
NM(h1). Take any h2 ∈ H2. Since H2/H1 is countable, it is contained inAcleq(∅). So
h2

nm

⌣| h2H1. Choose a ∈ o(h2/h2H1) so that a
nm

⌣| h2H1
h2. Then h2

nm

⌣| a and a−1h2 ∈ H1.
Thus, NM(h2) = NM(h2/a) = NM(a−1h2/a) ≤ NM(a−1h2), and so h1 := a−1h2

does the job. �

Proposition 4.7 (i) Let (H,G) be a small Polish G-group. Then any finitely gen-
erated subgroup of H is countable and does not have limit points in H.
(ii) Let (H,G) be a small compact G-group. Then H is locally finite.

Proof. Let S ⊆ H be finite.
(i) Then 〈S〉 ⊆ dcl(S). So by smallness, 〈S〉 < H is countable. If 〈S〉 had a limit
point, 〈S〉 would be perfect and hence uncountable, a contradiction.
(ii) By compactness, if 〈S〉 was infinite, then it would have a limit point, and we
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would get a contradiction as in (i). �

The next example is an example of a small Polish (but non-compact) G-group.
It shows that point (i) of the above remark cannot be strengthen to get local finite-
ness of H . This is one of the reasons why our proofs of structural results for small
compact G-groups in the further part of this section do not go through for Polish
G-groups.

Example 6 Let us consider the discrete topology on Q and the product topology
on Qω. We consider the additive group structure on Q. Let Aut0(Qω) [Aut0(Qn),
respectively] be the group of all automorphisms of Qω [Qn, respectively] respecting
the inverse system Q ←− Q × Q ←− . . .. Then Aut0(Qω) can be considered as
the inverse limit of the system consisting of Aut0(Qn), n ∈ ω, where on Aut0(Qn)
we have the pointwise convergence topology. Then (Qω, Aut0(Qω)) is a small Polish
Aut0(Qω)-group of NM-rank 1, and Qω is torsion-free, 0-dimensional and not com-
pact.

Proof. We leave to the reader checking that (Qω, Aut0(Qω)) is a Polish Aut0(Qω)-
group. We will show that it is small of NM-rank 1.

The following claim is obvious.

Claim If f ∈ Aut0(Qn) and {η1, . . . , ηn} is a basis of Qn over Q, then for all
ǫ0, ǫ1, . . . , ǫn, ǫ′0, ǫ

′
1, . . . , ǫ

′
n ∈ Q such that ǫ0, ǫ

′
0 6= 0, there is f ∈ Aut0(Qn+1) such

that f(0⌢ǫ0) = 0⌢ǫ′0 and f(η⌢
i ǫi) = f(ηi)

⌢ǫ′i, i = 1, . . . , n.

Now consider any finite set A ⊆ Qω and a ∈ Qω. Then either a ∈ Lin(A) or
there is the largest natural number n such that a↾n ∈ Lin(A)↾n. So by the Claim
we get that either a ∈ Lin(A), and then o(a/A) = {a}, or a /∈ Lin(A), and then
o(a/A) = {η ∈ Qω : η↾n = a↾n ∧ η↾(n + 1) /∈ Lin(A)↾(n + 1)} where n is the largest
n such that a↾n ∈ Lin(A)↾n. So each orbit over A is either a singleton from Lin(A)
or an open set. Hence there are countably many orbits over A, so (Qω, Aut0(Qω)) is
small; we also see that NM(Qω) = 1. �

Example 7 (i) IfH is a compact metric group, thenAut(H) is Polish and (H,Aut(H))
is a compact Aut(H)-group where Aut(H) is the group of all topological automor-
phisms of H equipped with the compact-open topology.
(ii) If (H,G) is a small compact G-group, then (H,Aut(H)) is a small compact
Aut(H)-group.

Proof. In order to show (i), it is enough to check that Aut(H) is a closed subgroup
of Homeo(H), which is an easy exercise.
(ii) follows from (i) and Proposition 2.9. �

From now on we assume that (H, G) is a small compact G-group. The
following theorem is proved by Hewitt and Ross [5, Theorem 28.20].

Fact 4.8 Every compact torsion group is profinite.
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This fact together with Proposition 4.7 imply

Corollary 4.9 H is profinite.

Notice that in spite of the fact that H is profinite we are still in a much more
general situation than small profinite groups in the sense of Newelski. This is because
G is a Polish group, which is not necessarily compact. In particular, we consider here
the case when H is a profinite group being the inverse limit of a countable system and
G is the full group of topological automorphisms of H (then G is Polish but often not
compact), which is more natural from the point of view of group theory and topology
than considering only automorphisms preserving a distinguished inverse system.

The next two remarks will be useful later.

Remark 4.10 For every open subgroup U of H, Stab(U) is a clopen subgroup of G
and so [G : Stab(U)] ≤ ω.

Proof. We see that U is clopen and hence compact. Since G is a group of automor-
phisms of H acting continuously on H , the topology on G must be stronger or equal
to the compact-open topology. Thus, since

Stab(U) = {f ∈ G : f [U ] ⊆ U} ∩ {f ∈ G : f−1[U ] ⊆ U},

we get that Stab(U) is an open subgroup of G, and so it is also closed. Since G is
Polish, we get [G : Stab(U)] ≤ ω. �

Remark 4.11 If G0 is a closed subgroup of G of countable index, then (H,G0) is
small, and

nm

⌣| as well as NM-rank computed in (H,G) are the same as in (H,G0).

Proof. If (H,G0) is not small, there are uncountably many n-tuples ai, i ∈ I, in
different orbits under G0. Since (H,G) is small, there are i0 ∈ I0 ⊆ I with |I0| > ℵ0

such that for every i ∈ I0 there is g ∈ G such that gai0 = ai. As [G : G0] ≤ ℵ0, we
can find an uncountable set I1 ⊆ I0 so that for all distinct i, j ∈ I1 there is g ∈ G0

with gai = aj , a contradiction. So we have proved that (H,G0) is small.
Now suppose that a

nm

⌣| AB in the sense of (H,G0). Then G0ABG0Aa ⊆nm G0A.
Since G0A is a clopen subgroup of GA and G0ABG0Aa ⊆ GABGAa, we easily get
GABGAa ⊆nm GA, i.e. a

nm

⌣| AB in the sense of (H,G0).
Finally assume that a

nm

⌣| AB in the sense of (H,G). Then GABGAa ⊆nm GA. But
GABGAa =

⋃
i∈I

⋃
j∈J liG0ABG0Aarj where the countable sets {li : i ∈ I} and {rj : j ∈

J} are the sets of representatives of left cosets of GAB modulo G0AB and right cosets
of GAa modulo G0Aa, respectively. So we easily conclude that G0ABG0Aa ⊆nm G0A,
i.e. a

nm

⌣| AB in the sense of (H,G0).
We have proved that

nm

⌣| is the same in both structures, and so must be NM-rank.
�
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Proposition 4.12 (i) H is the inverse limit of a countable system of finite groups.
Thus, it has a countable basis consisting of clopen sets.
(ii) If G = Aut(H) is the group of all topological automorphisms of H, then the
topology on G must coincide with the compact-open topology.
(iii) If G is equipped with the compact-open topology, then G has a countable basis
of open neighborhoods of id consisting of open subgroups. Thus, G is isomorphic to
a closed subgroup of S∞.

Proof. (i) By smallness and Proposition 2.9, H is second countable. As H is also
profinite, we get that it has a countable basis of open neighborhoods of e consisting
of clopen, normal subgroups Hi, i ∈ ω, with Hj < Hi whenever i < j. So H is the
inverse limit of the countable system consisting of the finite quotients H/Hi, i ∈ ω.
Hence H has a countable basis consisting of clopen sets Ui, i ∈ ω.
(ii) By smallness and Proposition 2.9, H is metrizable (without smallness we would
have to assume metrizability). By Example 7, we get that Aut(H) equipped with
the compact-open topology is a Polish group. We also have that the given Polish
topology on G = Aut(H) is stronger or equal to the compact-open topology. So, by
[2, Theorem 1.2.6], both topologies on G coincide.
(iii) By (i), H has a countable basis consisting of clopen sets Ui, i ∈ ω. As it
was noticed in the proof of Remark 4.10, we have that Stab(Ui1 ∪ . . . ∪ Uin) is an
open subgroup of G for any i1, . . . , in ∈ ω. So it is enough to show that every set
of the compact-open subbasis on G containing id contains a subgroup of the form
Stab(Ui1 ∪ . . . ∪ Uin).

Take any element U of the compact-open subbasis on G containing id, i.e. U =
{f ∈ G : f [C] ⊆ U} where C ⊆ H is compact, U ⊆ H is open, and id ∈ U . Then
C ⊆ U . So, by compactness of C, C ⊆ Ui1 ∪ . . . ∪ Uin ⊆ U for some i1, . . . , in ∈ ω.
Therefore, Stab(Ui1 ∪ . . . ∪ Uin) ⊆ U .

Now the fact that G is isomorphic to a closed subgroup of S∞ follows from [2,
Theorem 1.5.1]. �

Recall now the main conjecture concerning small profinite groups.

Conjecture 4.13 Each small profinite group is abelian-by-finite.

In [27] Wagner proved the conjecture assuming additionally m-stability.

Fact 4.14 Each small, m-stable profinite group is abelian-by-finite.

In fact, the following three intermediate conjectures are still open.

Conjecture 4.15 Suppose (H,G) is a small profinite group. Then:
(A) H is solvable-by-finite,
(B) if H is solvable(-by-finite), then H is nilpotent-by-finite,
(C) if H is nilpotent(-by-finite), then H is abelian-by-finite.
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Remark 4.16 If S < H is abelian [solvable, nilpotent], then S is abelian [solvable,
nilpotent].

Below we give examples showing that all Conjectures (A), (B) and (C) are false
in the more general context of small compact G-groups. Then we prove that, for
small compact G-groups, in the nm-stable case Conjecture (A) is true, and in the
finite NM-rank case Conjecture (B) is also true.

Example A Let S be any finite group which is not solvable. Define an action of S∞
on Sω by

g〈s0, s1, . . .〉 = 〈sg(0), sg(1), . . .〉.

Then:
(i) Sω is not solvable-by-finite.
(ii) (Sω, S∞) is a small compact S∞-group.
(iii) (Sω, S∞) is not nm-stable.

Proof. (i) Let A be a solvable subgroup of Sω. Then the projections of A on every
coordinate are solvable and hence proper subgroups of S. So [Sω : A] is infinite.
(ii) The fact that (Sω, S∞) is a compact S∞-group is left to the reader. Now we will
prove smallness. First, notice that for every 〈si〉 ∈ Sω we have

Stab(〈si〉) =
⋂

s∈S

{g ∈ S∞ : g{i ∈ ω : si = s} = {i ∈ ω : si = s}}.

So for any 〈s1
i 〉, . . . , 〈s

n
i 〉 ∈ S

ω we get

Stab(〈s1
i 〉, . . . , 〈s

n
i 〉) = {g ∈ S∞ : (∀B ∈ B)(gB = B)}

where B is the set of all atoms of the finite Boolean algebra generated by the sets
{i ∈ ω : sj

i = s}, s ∈ S, j = 1, . . . , n.
Now we look at 1-orbits over {〈s1

i 〉, . . . , 〈s
n
i 〉}. We get that two elements 〈xi〉 and

〈yi〉 of Sω lie in the same orbit over {〈s1
i 〉, . . . , 〈s

n
i 〉} iff for every s ∈ S and B ∈ B

the cardinality of {i ∈ B : xi = s} equals the cardinality of {i ∈ B : yi = s}. Since
S and B are finite and for every B ∈ B there are only countably many possibilities
for the cardinality of a subset of B, we get that there are countably many 1-orbits
over {〈s1

i 〉, . . . , 〈s
n
i 〉}.

(iii) Let I0 ⊆ I1 ⊆ . . . ⊆ ω be such that In+1 \ In is infinite for every n ∈ ω. Choose
any s /∈ Z(S). Define xn = 〈sn

i 〉 ∈ S
ω by sn

i = s if i ∈ In, and sn
i = e if i /∈ In. Then

the projection of C(xn) on the i-th coordinate is equal to C(s) � S if i ∈ In, and S
if i /∈ In. Therefore, C(xn), n ∈ ω, form a descending sequence of ∗-closed subgroups
of Sω such that C(xn+1) <nwd C(xn) for every n. So by Corollary 4.6, (Sω, S∞) is
not nm-stable. �

Example B Let S be any finite solvable group which is not nilpotent. Define the
action of S∞ on Sω in the same way as in Example A. Then (Sω, S∞) is a small
compact S∞-group which is solvable, not nilpotent-by-finite and not nm-stable.
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Example C Let S be any finite nilpotent group which is not abelian. Define the
action of S∞ on Sω in the same way as in Example A. Then (Sω, S∞) is a small
compact S∞-group which is nilpotent, not abelian-by-finite and not nm-stable.

As we will see in the next remark, the above examples also show that some basic
properties of small profinite groups are not true for small compact G-groups, e.g.
invariant subgroups are not necessarily closed.

Remark 4.17 In Examples A, B and C we have that |Acl(∅)| = ℵ0 and Acl(∅) < Sω

is ∅-invariant but not closed. In fact, Acl(∅) is dense in Sω.

Proof. It is easy to see that Acl(∅) consists of those 〈si〉 ∈ Sω for which there exists
s ∈ S such that {i ∈ ω : si = s} is cofinite. So Acl(∅) is dense in Sω and of cardinal-
ity ℵ0. �

Newelski noticed [21, Remark 4.3] that if (H,G) is a small profinite group where
H =

∏
n<ω Hn with Hn’s being finite groups is regarded as the inverse limit of all

initial subproducts, then almost all Hn’s are abelian. Examples A, B and C show that
the same result is not true if (H,G) is a small compact G-group. Easy modifications
of the proof of [21, Remark 4.3] and the proof of (iii) in Example A yield:

Remark 4.18 (i) If H =
∏

i∈I Hi where Hi’s are finite groups and (H,G) is a small
profinite group (but the distinguished inverse system does not necessarily consist of
initial subproducts), then almost all Hi’s are abelian.
(ii) If H =

∏
i∈I Hi where Hi’s are finite groups and (H,G) is a small, nm-stable,

compact G-group, then almost all Hi’s are abelian.

The above remark shows that Conjecture 4.13 holds for small, nm-stable, compact
G-groups which are products of finite groups.

Now we will prove Conjecture (A) for small, nm-stable, compact G-groups. Our
proof is completely different from the one for small, m-stable profinite groups, and it
relies on some classical results about profinite groups. In fact, Wagner’s proof that
each small, m-stable profinite group is solvable-by-finite is a part of the inductive
(onM-rank) proof that each such group is abelian-by-finite [27, Proposition 17], and
it uses the inductive hypothesis about abelianity of subgroups of smaller M-rank.
There are also some other steps in Wagner’s proof of solvability which are not clear
in our context, e.g. in our situation invariant subgroups are not necessarily closed.

Theorem 4.19 If (H,G) is a small, nm-stable, compact G-group, thenH is solvable-
by-finite.

Before the proof we need to recall some classical facts on profinite groups. There
are two main tools that will be used in the proof of Theorem 4.19: Wilson’s theorem
on the structure of compact torsion groups [28, Theorem 1] and fundamental facts
about Frattini subgroups [25, Section 2.8].
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Fact 4.20 (Wilson) Let H be a profinite torsion group. Then H has a finite series

{e} = Hn < Hn−1 < . . . < H0 = H

of closed, topologically characteristic subgroups such that each group Hi/Hi+1 is either
a pro-p group, for some prime p, or a direct product of isomorphic copies of a finite
simple group.

Definition 4.21 The Frattini subgroup Φ(H) of a profinite group H is the intersec-
tion of all maximal open subgroups of H. Then Φn(H), n ∈ ω, are defined recursively
by Φ0(H) = H and Φk+1(H) = Φ(Φk(H)), k ∈ ω.

Fact 4.22 (i) If H is a profinite group, then Φ(H) is a proper, closed and topologi-
cally characteristic subgroup of H.
(ii) If H is a pro-p group, then Φ(H) = Hp[H,H ].
(iii) If H is a pro-p group, then H is finitely generated iff Φ(H) <o H.

Now we can prove Theorem 4.19.

Proof of Theorem 4.19. By Wilson’s theorem, there is a normal series

{e} = Hn < Hn−1 < . . . < H0 = H

of ∅-closed subgroups such that each group Hi/Hi+1 is either a pro-p group, for
some prime p, or a direct product of isomorphic copies of a finite simple group. By
Remarks 2.10 and 4.18, we get that each group Hi/Hi+1 is either a pro-p group or a
finite group. Replacing H by a clopen subgroup and using Remarks 4.10, 4.11 and
2.10, we can assume that each quotient Hi/Hi+1 is a pro-p group. So wlog H is a
pro-p group.

Of course, we can assume that H is infinite, and then by Proposition 4.7, we have
that H is not finitely generated. So by Fact 4.22, Φ(H) is a ∅-closed, nowhere dense
subgroup of H . We can continue this procedure (taking iterated Frattini subgroups),
and by Corollary 4.6, we get that Φn(H) is finite for some n ∈ ω. So there is m such
that Φm(H) = {e}. Since by Fact 4.22, Φi(H)/Φi+1(H) are abelian, H is solvable.�

A modification of the proof of Theorem 4.19 yields the following strengthening
of this theorem.

Corollary 4.23 If (H,G) is a small, nm-stable, compact G-group, then H has a
∗-closed, solvable subgroup of finite index.

Proof. We have to modify the first paragraph of the proof of Theorem 4.19. As
before we have a normal series

{e} = Hn < Hn−1 < . . . < H0 = H

of ∅-closed subgroups such that each group Hi/Hi+1 is either a pro-p group or a finite

group. We need to show that there is a ∗-closed subgroup H̃ of finite index in H
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such that for every i ≤ n− 1, H̃ ∩Hi/H̃ ∩Hi+1 is either a pro-p group or an abelian
group; then we will be done by the second paragraph of the proof of Theorem 4.19.

To obtain H̃ , we will build a sequence H̃0 > . . . > H̃n−1 of ∗-closed, normal, open
subgroups of H such that H̃j ∩ Hi/H̃j ∩ Hi+1 is either a pro-p group or an abelian

group for all 0 ≤ i ≤ j ≤ n− 1. Then H̃ := H̃n−1 will be as required.
The first step of the construction is obvious: if H0/H1 is a pro-p group, we put

H̃0 := H0; otherwise H0/H1 is finite so we can put H̃0 := H1.

For the induction step, suppose H̃0, . . . , H̃j have been constructed for some j <

n− 1. If K := H̃j ∩Hj+1/H̃j ∩Hj+2 is a pro-p group, we put H̃j+1 = H̃j . Otherwise

let K̃ = C eHj/ eHj∩Hj+2
(K). Since K � H̃j/H̃j ∩Hj+2 is finite, we have that for every

k ∈ K, C eHj/ eHj∩Hj+2
(k) is a clopen, ∗-closed subgroup of H̃j/H̃j ∩ Hj+2, and hence

K̃ is a clopen, ∗-closed subgroup of H̃j/H̃j ∩ Hj+2. Finally we define H̃j+1 as the

preimage of K̃ by the natural quotient map. �

Next we will prove Conjecture (B) for small compact G-groups of finite NM-
rank. Unlike in the proof of Conjecture (A), this proof is a modification of the
proof of Conjecture (B) for small, m-stable profinite groups [21, Theorem 3.3]. More
precisely, the scheme of the proof is the same as in [21], but there are some extra
difficulties arising from the fact that in our case: a group generated by an invariant
set is not necessarily closed and generated in finitely many steps, we do not know
if an increasing sequence of A-closed subgroups has to stabilize after finitely many
steps, Acl(∅) is not necessarily finite, etc..

In the following theorem and lemmas we could skip the assumption that the group
is solvable-by-finite because we know it by Theorem 4.19. But we do not do it in
order to emphasize that Theorem 4.24 does not rely on Wilson’s Theorem.

Theorem 4.24 If (H,G) is a small compact G-group of finite NM-rank, and H is
solvable-by-finite, then H is nilpotent-by-finite.

As in [21], first we need to prove some lemmas. The proof of the next lemma is
based on the proof of [21, Lemma 3.4], but it is relatively more complicated in our
case.

Lemma 4.25 Suppose D,H are infinite, abelian groups ∗-closed in X teq for some
small compact G-space (X,G), and NM(H) < ∞. Assume that D acts on H as a
group of automorphisms, and the action is ∗-closed. Then some open subgroup of D
fixes an infinite subgroup of H.

Proof. Wlog everything is invariant over ∅. If Da is finite for some a ∈ H , then
there is a clopen subgroup D0 of D such that a ∈ Fix(D0). By Remark 4.10,
we easily get that StabG(D0) is a clopen subgroup of countable index in G. If
Fix(D0) is infinite, we are done. So assume Fix(D0) is finite. We also have that
StabG(D0) ⊆ StabG(Fix(D0)). So G·Fix(D0) is countable, hence Fix(D0) ⊆ Acl(∅).
Thus a ∈ Acl(∅).
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We have proved that H0 := {a ∈ H : Da is finite} is contained in Acleq(∅), and
so it is countable.

Choose a ∈ H so that Da is infinite and H1 := 〈Da〉 < H is of minimal possible
NM-rank. Then every D-ivariant, ∗-closed subgroup of H1 is either finite or open
in H1.

Let R be the ring of endomorphisms of H1 generated by D. Then R is commuta-
tive and every element of R is determined by its value on a. Moreover, one can check
that the action of Ga on D extends to an action by automorphisms on R given by
g(d1 + . . .+ dn) = gd1 + . . .+ gdn for g ∈ Ga and d1, . . . , dn ∈ D, and this extended
action preserves the action of R on H1. This easily implies that R is locally finite.
Indeed, take any r1, . . . , rn ∈ R, and let R0 = 〈r1, . . . , rn〉 < R. It is easy to check
that R0a ⊆ dcl(a, r1a, . . . , rna). Hence R0a must be finite (otherwise R0a would be
an uncountable subset of dcl(a, r1a, . . . , rna), a contradiction). Since every element
r0 ∈ R0 is determined by r0(a), R0 is finite.

Now let I = {r ∈ R : r[H1] is finite}. Then I is a prime ideal of R because for
every r ∈ R, r[H1] is a D-invariant, ∗-closed subgroup of H1, and hence it is either
finite or open (so of finite index) in H1.

We conclude that R/I is a locally finite integral domain, and hence it is countable.

Also, D̃ := D/StabD(a) can be treated as a subgroup of the multiplicative group of

R. Therefore, there are di ∈ D̃, i ∈ ω, such that

D̃ ⊆
⋃

i∈ω

di + I.

Put Di = D̃ ∩ (di + I). Then D̃ =
⋃

i∈ω Di. If r ∈ I, then r[H1] is finite
and D-invariant, and so r[H1] < H0. Hence for every i ∈ ω and b ∈ H1 we have

(Di − di)b ⊆ Ib ⊆ H0. Thus, we easily get Di = {d ∈ D̃ : (d− di)H1 ⊆ H0}.

For h ∈ H0 and i ∈ ω put Kh,i = {(d, b) ∈ D̃ ×H1 : (d − di)b = h}. We see that

D̃×H1 =
⋃

h∈H0

⋃
i∈ω Kh,i. Since H0 is countable and D̃×H1 is compact, there are

h ∈ H0 and i ∈ ω such that Kh,i ⊆nm D̃ ×H1. By continuity of the action of D̃ on

H1, we also have that Kh,i is closed in D̃×H1. Thus, there are U ⊆o D̃ and V ⊆o H1

such that U × V ⊆ Kh,i.
Let H2 = {b ∈ H1 : (U − di)b = {0}} < H1. Then H2 is clopen in H1 be-

cause V − V ⊆ H2. For every b ∈ H2 we have Ub = dib, so d−1
i Ub = b. Hence

d−1
i U ⊆ SH2

:= {d ∈ D̃ : (∀b ∈ H2)(db = b)} < D̃. Since U ⊆o D̃, we get that SH2
is

an open subgroup of D̃ fixing H2. �

The proof of the next lemma is very similar to the proof of [21, Lemma 3.5].
The only serious difficulty comes from the fact that we do not have a basis of open
neighborhoods of e consisting of ∅-closed subgroups. Our previous remarks take care
of that.

Lemma 4.26 Assume that (H,G) is an infinite, small compact G-group of finite
NM-rank. If H is solvable-by-finite, then some open subgroup of H has an infinite
center.
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Proof. By Remark 4.16, there is a clopen, solvable subgroup S of H . By Remarks
4.10 and 4.11, we can replace (H,G) by (H,Stab(S)). Then by Remark 2.10, we can
replace (H,G) by (S, Stab(S)/Stab(S)S) where Stab(S)S = {g ∈ Stab(S) : g(s) =
s}. So wlog H is solvable.

Replacing H by a clopen subgroup (and changing G as above), we can assume
that H has an infinite, invariant, normal, abelian subgroup. Taking its closure, we
get an infinite, normal, abelian, ∗-closed subgroup of H . Let H0 be a subgroup of
H with all these properties and minimal possible NM-rank, except for the fact that
being ∗-closed is with respect to (H,G0) where G0 is a clopen subgroup of G (notice
that by Remark 4.11, NM-rank does not depend on the choice of G0). Wlog H0 is
∅-closed in (H,G).

Let {Li : i ∈ I} be a basis of clopen, normal subgroups of H . Put Hi = H0 ∩ Li.
It is enough to prove the following

Claim There exists i ∈ I such that [H : CH(Hi)] < ω.

Proof. Suppose the Claim is false. First notice that it is enough to find i0, i1, . . . ∈ I
such that CH(Hij) is a subgroup of infinite index in CH(Hij+1

) for each j ∈ ω. Indeed,
since G acts continuously on H0, by Remark 4.10, Gj := Stab(Hi0)∩ . . .∩ Stab(Hij )
is a clopen subgroup of G. Hence, by Remarks 4.11 and 4.6, in (H,Gj) we have
NM(CH(Hij )) > NM(CH(Hij−1

)) > . . . > NM(CH(Hi0)), and so NM(H) > j.
Once again by Remark 4.11, NM(H) > j holds in (H,G) as well. So NM(H) ≥ ω,
a contradiction.

Suppose that i0, . . . , in have been chosen. Then D := H/CH(Hin) is an infinite
group ∅-closed in (H,Gn)teq. Then D acts on Hin by conjugation. Since D is solvable,

there is a clopen, normal subgroup D̃ of D with an infinite, abelian, invariant under
the action of H by conjugation subgroup D1 which is ∅-closed in (H,StabGn

(D̃))teq.
By Lemma 4.25, Di := D1 ∩ (Li/CH(Hin)) stabilizes an infinite subgroup H∗ =
Fix(Di) of Hin for some i ∈ I. Since D1, Li, Hin are invariant under the action of

H by conjugation, H∗ is normal in H . Moreover, H∗ is ∅-closed in (H,StabGn
(D̃) ∩

StabGn
(Li)). By Remark 4.10, StabGn

(D̃) ∩ StabGn
(Li) is a clopen subgroup of G,

so by the choice of H0, we get that H∗ is open in H0. We also see that [CH(H∗) :
CH(Hin)] ≥ |Di| ≥ ω. Now we can choose any in+1 ∈ I with Hin+1

< H∗ in order to
get [CH(Hin+1

) : CH(Hin)] ≥ ω. �

Proof of Theorem 4.24. Suppose H is not nilpotent-by-finite. Then by Lemma 4.26,
we can construct infinite sequences H = H0 > H1 > . . . > L1 > L0 = {e} such that
Hi’s are clopen, normal subgroups of H , each Li is a normal subgroup of H and
∗-closed in (H,Stab(H0) ∩ . . . ∩ Stab(Hi)), and Li+1/Li = Z(Hi+1/Li) is infinite.

Then the same argument as in the first paragraph of the proof of the Claim in
the proof of Lemma 4.26 shows that NM(H) ≥ ω, a contradiction. �

By Theorems 4.19 and 4.24, we get the following main result of this section.

Corollary 4.27 If (H,G) is a small compact G-group of finite NM-rank, then H
is nilpotent-by-finite.
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By some standard tricks, Corollary 4.27 implies the following

Corollary 4.28 If (H,G) is a small compact G-group of finite NM-rank, then H
has a ∗-closed, nilpotent subgroup of finite index.

Proof. By Corollary 4.27 and Remark 4.16, there is a clopen, normal, nilpotent sub-
group H̃ of H . The rest of the proof is almost the same as in [24, Theorem 3.17]
or [14, Remark 3.3(ii)]. Namely, by induction on the nilpotency class, we show that

H̃ has a nilpotent supergroup which is ∗-closed. Notice that in spite of the fact
that we do not have icc on centralizers, it is true that for any S ⊆ H such that
[H : C(S)] < ω, C(S) is an intersection of finitely many centralizers of singletons,
thus it is ∗-closed, and so is Z(C(S)). This is enough to repeat the proof of [14,
Remark 3.3(ii)]. �

Notice that unlike in [27], in our proofs we did not need to know that every infi-
nite, small, nm-stable compact G-group has an infinite, ∗-closed, abelian subgroup.
Anyway the next proposition tells us that this property holds in our case. We prove
it modifying slightly the proof of [21, Proposition 3.1].

Proposition 4.29 Every infinite, small, nm-stable compact G-group has an infinite,
∗-closed, abelian subgroup.

Proof. Replacing H by an infinite, ∗-closed subgroup of minimal possible NM-rank,
we can assume that H does not have infinite, ∗-closed subgroups of smaller NM-
rank. We will show that then H has an abelian, ∗-closed subgroup of finite index.

Since H is locally finite, it has an infinite abelian subgroup [15, Corollary 2.5],
say A. Taking the closure of A, we can assume that A is uncountable. So there is
a ∈ A \ Acl(∅) with C(a) infinite and hence open in H . Let d be a name for C(a).
By Remark 4.10, we see that d ∈ Acleq(∅). So o(a/d) is infinite. Put V = 〈o(a/d)〉.
We see that V is an infinite, ∗-closed subgroup of H , and hence it is open. Moreover,
since a ∈ Z(C(a)), we get o(a/d) ⊆ Z(C(a)) so V < Z(C(a)). Thus, V is an abelian,
∗-closed subgroup of finite index in H . �

Corollary 4.30 Each small, compact G-group of NM -rank 1 is abelian-by-finite.

Let us finish this section with several questions. We have shown that each small,
nm-stable [of finite NM -rank] compact G-group is solvable-by-finite [nilpotent-by-
finite, respectively]. It seems that the following should be true.

Conjecture 4.31 Each small, nm-stable compact G-group is abelian-by-finite.

The next question is open even for small profinite groups. Notice that Examples
A, B and C are not counterexamples for this question.

Question 4.32 Does every small compact G-group contain an infinite, abelian, ∗-
closed subgroup?
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The structure of small, nm-stable Polish G-groups is almost completely unknown.
Example 6 yields an abelian, Polish G-group of NM-rank 1 which is torsion free
and not profinite. Yet, it is still 0-dimensional. It would be interesting to find a
non-0-dimensional, small Polish G-group. A very interesting question is whether
Conjectures (A), (B) and (C) (with ’by-finite’ replaced with ’by-countable’) are true
for small, nm-stable [of finite NM-rank] Polish G-groups. In particular, one can ask
the following general

Question 4.33 Is it true that every small, nm-stable Polish G-group is abelian-by-
countable?

Even the following question is open.

Question 4.34 Is every small, Polish G-group of NM-rank 1 abelian-by-countable?

5 Final comments and questions

In model theory there are results, known as group configuration theorems, which say
that under some general geometric assumptions one can find a definable group (e.g.
[23, Chapters 5, 7]). Such theorems were also proved for small profinite structures
[22, Theorem 1.7, Theorem 3.3] or, more generally, for compact structures satisfy-
ing the existence of m-independent extensions [13, Theorem 3.15]. Considerations
concerning the existence of a definable (in some sense) group structure are the best
example illustrating how stability-theoretic ideas may lead to new aspects in the
analysis of classical topological objects. In the context of small Polish structures it
is not clear how to prove such kind of results. We can ask here the following general
questions.

Question 5.1 Suppose (X,G) is a small Polish structure. When is there a function
· : X ×X → X definable (or invariant) over a finite subset A of X such that (X, ·)
is a group?

Question 5.2 Suppose (X,G) is a small Polish structure. When is there an infinite
set Y ⊆ X and a function · : Y × Y → Y , both definable (or invariant) over a finite
subset A of X, such that (Y, ·) is a group?

The group configuration theorem for small profinite structures [22, Theorem 1.7]
yields a partial answer to Question 4.2. Namely, if we additionally assume that
(X,G) is profinite and m-normal, then in every non-trivial orbit of M-rank 1 there
is an open definable group.

So one of the possible ways of further research is to prove for small Polish struc-
tures counterparts of some advanced results from geometric stability theory, e.g. a
variant of the group configuration theorem.

There are also certain open questions about the existence of small profinite struc-
tures satisfying some additional assumptions. I think it would be interesting to find
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counterexamples for such questions in the bigger class of small Polish structures (e.g.
Examples A, B and C in the previous section are counterexamples for Conjectures
(A), (B) and (C), respectively). An interesting problem of this kind is

Conjecture 5.3 (NM-gap conjecture) Let (X,G) be a small Polish structure.
Then for every orbit o over a finite subset A of X one has NM(o) ∈ ω ∪ {∞}.

This conjecture is open in the class of small profinite structures; it was proved
only for small m-stable profinite groups [27, Theorem 18]. In the context of small
Polish structures it is open even for small nm-stable Polish [compact] G-groups.

At the end I would like to formulate several purely descriptive set theoretic (or
topological) facts and questions which came up naturally during my considerations
on Polish structures.

The following fact is Corollary 2.6.8 of [2].

Fact 5.4 The Polish Homeo(Iω)-space (Iω, Homeo(Iω)) is universal for Borel G-
spaces, i.e. every Borel G-space (X,G) can be embedded into (Iω, Homeo(Iω)) in the
sense that there is a topological isomorphism ψ : G → ψ[G] <c Homeo(I

ω) and a
Borel embedding φ : X → Iω such that φ(gx) = ψ(g)φ(x) for every g ∈ G.

We know that this universal Borel G-space is a small Polish structure [Example
3]. The following question is a counterpart of the above fact for groups.

Question 5.5 Does there exist a Polish G-group (U,G) which is universal for Borel
H-groups (i.e. every Borel H-group (G0, H) can be embedded into (U,G), preserving
the group structure on G0)? If yes, is (U,G) a small Polish G-group?

From now on we fix a Polish group G. The following fact comes from [6, Theorem
0.3] and [2, Corollary 2.6.8].

Fact 5.6 There is a Polish G-space which is universal for Polish [Borel] G-spaces.

Question 5.7 Does there exist a Polish G-group which is universal for Polish [Borel]
G-groups?

It is obvious that any universal Polish G-space (or G-group, if it exists) for a
fixed G is not small. However, we can ask the following question (or its variants for
Polish or Borel G-spaces or G-groups).

Question 5.8 Does there exist a small Polish structure [group structure] which is
universal for small Polish structures [group structures] of the form (X,G)?

At the very end we would like to formulate a question concerning small profinite
structures. The following is a well-known fact [17].
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Fact 5.9 If G is a locally compact group and (X,G) is a normal topological G-space,
then there is a topological group H ⊇ X such that the topology on X is inherited from
H and the action of G on X can be extended to an action on H so that (H,G) is a
topological G-group.

Question 5.10 Is it true that for every small profinite structure (X,G) one can find
a profinite group H ⊇ X such that X is closed in H, its topology is inherited from
H and the action of G on X can be extended to an action on H so that (H,G) is a
small profinite group?

It is not difficult to construct H so that (H,G) is not necessarily small. Namely,
if

X = lim
←−

Xi,

we can define H as the inverse limit of the system consisting of the linear spaces
spanned freely by Xi over the two element field F2.

Proposition 5.11 If Question 5.10 has the positive answer, thenM-gap conjecture
is true for small, m-stable profinite structures.

Proof. Suppose for a contradiction that (X,G) is a small, m-stable profinite structure
with an orbit o over some finite set A such that M(o) ∈ Ord \ ω; hence wlog
M(o) = ω. By the assumption, we have that X is ∅-closed in a small profinite group
(H,G).

By [21, Proposition 2.3], the subgroup 〈X〉 generated by X is generated in finitely
many steps. This easily implies that (〈X〉, G) is a small, m-stable profinite group.
Hence the M-rank of o computed within (〈X〉, G) also equals ω, and we get a con-
tradiction with the fact that M-gap conjecture holds for small, m-stable profinite
groups [27, Theorem 18]. �
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[10] K. Krupiński. Products of finite abelian groups as profinite groups. J. Alg.,
288:556–582, 2005.
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