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Abstract

We define a topological notion of independence in Polish structures and we prove
that it has some nice properties. Using this notion, we prove counterparts of some
basic results from geometric stability theory in the context of small Polish structures.
Examples of small Polish structures are also given.

0 Introduction

We propose a new, model theoretic, approach to study classical descriptive set theoretic
objects, like Polish G-spaces or Borel G-spaces. More generally, we are going to study
Polish structures which are defined as follows.

Definition 0.1 A Polish structure is a pair (X,G) where G is a Polish group acting faith-
fully on a set X so that the stabilizers of all singletons are closed subgroups of G. We say
that (X,G) is small if for every n ∈ ω, there are only countably many orbits on Xn under
the action of G.

Notice that the assumption that G acts faithfully on X is purely cosmetic as we can
always divide G by the maximal subgroup acting trivially on X.

Profinite structures (X and G are profinite and the action is continuous) introduced by
Newelski in [13, 14] and then considered also by Wagner [17] and by myself [4, 5, 6, 8], and,
more generally, compact structures [7] (X is a compact metric space, G is a compact group
and the action is continuous) are particular cases of Polish structures. More generally,
Polish G-spaces (X is Polish and the action is continuous) and Borel G-spaces (X is
a standard Borel space and the action is Borel-measurable) are also examples of Polish
structures.

In Section 1 we introduce the notion of nm-independence and we prove that it has some
nice properties, similarly as forking independence in stable theories. We show that nm-
independence generalizes the notion ofm-independence introduced by Newelski for profinite
structures. However, the proof that nm-independence is transitive is rather complicated
and it uses some descriptive set theory, whereas transitivity of m-independence follows
immediately from the definition. Similarly as in the case of profinite structures, in order
to get the existence of nm-independent extensions we need to assume smallness. In fact,
we could just assume the existence of nm-independent extensions (as in [7]) but we prefer
to assume smallness since it is more natural and easier to check in concrete examples.
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In Section 2 we consider counterparts of some basic notions from geometric stability
theory and we prove fundamental results about them.

In Section 3 we give examples of small Polish structures. We end up with a list of open
questions.

The general goal of this paper, similarly as in [7] where I was investigating compact
structures, is to make an attempt to apply stability theory ideas to various classical math-
ematical objects. A similar motivation appears in [13, 14] where Newelski was considering
small profinite structures. However, Polish structures (particularly Polish G-spaces) seem
to be more interesting than profinite structures from the point of view of descriptive set
theory or topology. Moreover, in my opinion Polish structures yield a more adequate
generalization of profinite structures than compact structures. This is because each small
compact structure is profinite. So instead of smallness we should assume here the existence
of m-independent extensions; but I do not know any interesting examples of such compact
structures which are not profinite. In contrast, we have several natural examples of small
Polish structures which are not profinite, and it seems to me that it should be not very
difficult to find another ones.

Having all the notions and basic results established in this paper, the natural next step
would be to try and prove the counterparts of some deep results from stability theory, e.g.
a group configuration theorem. Such results were proved by Newelski for small profinite
structures [14]. In [7] I noticed that most of them can be generalized to the case of compact
[profinite] structures satisfying the existence of m-independent extensions. In small Polish
structures the situation is more complicated and it is even not clear how to formulate the
appropriate conjectures.

There are also certain open questions about the existence of small profinite structures
with some model theoretic properties (e.g. M-gap conjecture [13, 14, 17]). I think it
would be interesting to find counterexamples for them in the wider context of small Polish
structures.

The notions introduced in this paper (e.g. nm-independence, NM -rank) may also turn
out to be new tools to deal with purely descriptive set theoretic or topological problems.

I am very grateful to S lawomir Solecki for interesting discussions and suggestions, in
particular, for pointing me the pseudo-arc as an example of small Polish structure.

1 Independence relation

In this section we define a notion of independence, which we call nm-independence (read
non-meager independence), and we study its properties. We also prove that it coincides
with Newelski’s m-independence in compact structures.

If (X,G) is a Polish structure and A ⊆ X, then by GA we denote the pointwise stabilizer
of A. For a ∈ Xn we define o(a/A) = {f(a) : f ∈ GA} (the orbit of a over A).

Let us recall the definition of m-independence.

Definition 1.1 Let (X,G) be a compact structure, a be a finite tuple and A,B finite
subsets of X. We say that a is m-independent from B over A (written a

m|̂ AB) if o(a/AB)
is open in o(a/A). We say that a is m-dependent on B over A (written a

m6̂ | AB) if o(a/AB)
is nowhere dense in o(a/A).

We cannot use the above definition for a Polish structure (X,G) as there is no topology
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on X. Even if we assumed that (X,G) is a Polish G-space, orbits could be weird, e.g. mea-
ger in their relative topologies, and then m-independence would not have nice properties
in this context.

The idea to omit the above obstacle is to define a relation of independence in terms of
the Polish group G.

Definition 1.2 Let (X,G) be a Polish structure, a be a finite tuple and A,B finite subsets
of X. Let πA : GA → o(a/A) be defined by πA(g) = ga. We say that a is nm-independent
from B over A (written a

nm|̂ AB) if π−1
A [o(a/AB)] is non-meager in π−1

A [o(a/A)]. Otherwise,
we say that a is nm-dependent on B over A (written a

nm6̂ | AB).

One can also define o-independence just replacing the word ’non-meager’ by ’open’
in the above definition. Some of the results will work for both notions of independence.
However, the proof of the existence of nm-independent extensions in small Polish structures
does not work for o-independence. In Section 3 we will show that the pseudo-arc is an
example of a small Polish structure without the existence of o-independent extensions.
That is why nm-independence is a more appropriate notion of independence.

Notice that nm and o in Definition 1.2 come from topological properties ’non-meager’
and ’open’, whereas m in Definition 1.1 comes from the word ’multiplicity’.

Notation If T is a topological space and U, V ⊆ T , then U ⊆nm V means that U is a
non-meager subset of V and U ⊆o V means that U is an open subset of V . When we write
∗ = nm, it means that ∗ stands for non-meager; similarly, ∗ = o means that ∗ stands for
open.

Proposition 1.3 Let (X,G) be a Polish structure, a be a finite tuple and A,B finite
subsets of X. Assume ∗ = nm or ∗ = o. Then TFAE:

(1) a
∗|̂ BA,

(2) GABGAa ⊆∗ GA,

(3) GAB/GAa ⊆∗ GA/GAa.

Proof. (1) ↔ (2). An easy computation shows that π−1
A [o(a/AC)] = GACGAa for any

C ⊆ X. Hence π−1
A [o(a/AB)] = GABGAa and π−1

A [o(a/A)] = GA. Now the desired
equivalence follows directly from the definition of ∗-independence.
(2) → (3). Let π : GA → GA/GAa be the quotient map. Then π is continuous and open.

If ∗ = o, the implication follows from the fact that π is open. So consider the case
∗ = nm. Suppose GAB/GAa is a meager subset of GA/GAa, i.e. GAB/GAa is covered
by a countable union

⋃
i∈ω Di of closed and nowhere dense subsets of GA/GAa. Then

GABGAa = π−1[GAB/GAa] ⊆
⋃

i∈ω π
−1[Di]. Since π is continuous and open, we get that

π−1[Di], i ∈ ω, are closed and nowhere dense. So GABGAa is a meager subset of GA.
(3) → (2). Since π is continuous and GAB is Polish, we see that GAB/GAa is analytic
so it has the Baire property [3, Theorem 21.6], i.e. GAB/GAa = D4U where D is mea-
ger and U is open in GA/GAa. Assume now that GAB/GAa ⊆nm GA/GAa. Then U is
nonempty. We have GABGAa = π−1[D]4π−1[U ]. Since π is continuous and open, we
get that π−1[D] is meager and π−1[U ] 6= ∅ is open in GA. Hence GABGAa ⊆nm GA.

�
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Definition 1.4 Let (X,G) be a Polish structure and A be a finite subset of X. We define
the algebraic closure of A (written Acl(A)) as the set of all elements of X with countable
orbits over A. The strong algebraic closure of A (denoted by acl(A)) is the set of all
elements of X with finite orbits over A. If A is infinite, we define Acl(A) =

⋃
{Acl(A0) :

A0 ⊆ A is finite} and acl(A) =
⋃
{acl(A0) : A0 ⊆ A is finite}.

In Polish structures Acl plays a similar role as acl in compact [profinite] structures.

Theorem 1.5 In any Polish structure (X,G) ∗-independence, where ∗ = nm or ∗ = o,
has the following properties.

(1) (Symmetry) For every finite a, b, C ⊆ X we have that a
∗|̂ Cb iff b

∗|̂ Ca.

(2) (Transitivity) For every finite A ⊆ B ⊆ C ⊆ X and a ⊆ X we have that a
∗|̂ BC ∧

a
∗|̂ AB iff a

∗|̂ AC.

(3) For every finite A ⊆ X we have that a ∈ Acl(A) iff for all finite B ⊆ X, a
∗|̂ AB .

Proof. Only (2) requires a serious argument, but let us first check (1) and (3) for complete-
ness.
(1) a

∗|̂ Ab ⇐⇒ GAbGAa ⊆∗ GA ⇐⇒ GAaGAb ⊆∗ GA ⇐⇒ b
∗|̂ Aa.

(3) (⇒). a ∈ Acl(A) means that o(a/A) is countable. Hence [GA : GAa] ≤ ω. So GAa is
non-meager in GA by the Baire category theorem. Since GAa is a closed subgroup of GA,
we get GAa ⊆o GA =⇒ GABGAa ⊆o GA =⇒ a

o|̂ AB =⇒ a
nm|̂ AB for any finite B ⊆ X.

(⇐). Suppose that a
∗|̂ AB for every finite B ⊆ X. Then a

∗|̂ AAa. Hence GAa ⊆∗ GA =⇒
GAa ⊆o GA =⇒ [GA : GAa] ≤ ω =⇒ a ∈ Acl(A).

In order to prove transitivity we need first to prove some purely descriptive set theoretic
lemmas, which seem to be interesting on their own rights.

Lemma 1.6 Suppose that H1 and H2 are closed subgroups of a Polish group H. Let
H3 = H1 ∩ H2. Then H1H2 is a Borel subset of H. Moreover, for every A1 = A1H3 a
Borel subset of H1 and A2 = H3A2 a Borel subset of H2 we have that A1A2 is a Borel
subset of H1H2.

Proof. Define f : H1 × H3 × H2 → H by f(h1, h3, h2) = h1h3h2. By [3, Theorem 12.17]
we can choose a Borel set S1 meeting every coset from H1/H3 in exactly one point and a
Borel set S2 meeting every coset from H3\H2 in exactly one point.

Let f0 be the function f restricted to S1×H3×S2. Notice that f0 is an injection. Indeed,
if s1, s′1 ∈ S1, s2, s′2 ∈ S2, h, h′ ∈ H3 and s1hs2 = s′1h

′s′2, then s′−1
1 s1 = h′s′2s

−1
2 h−1 ∈

H1 ∩H2 = H3. Hence s1 = s′1. Similarly s2 = s′2. So h = h′.
Since S1 × H3 × S2 is a Borel subset of the Polish space H1 × H3 × H2, we get that

f0[S1 ×H3 × S2] = S1H3S2 = H1H2 is a Borel subset of H.
To prove the second part of the lemma, first notice that A′1 := A1 ∩ S1 and A′2 :=

A2 ∩ S2 are Borel subsets of H1 and H2, respectively. Hence f0[A′1 ×H3 × A′2] is a Borel
subset of H. On the other hand, f0[A′1 × H3 × A′2] = A′1H3A

′
2 = A1H3A2 = A1A2.

Hence A1A2 is a Borel subset of H, which implies that it is a Borel subset of H1H2.
�
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Lemma 1.7 Suppose that H1 and H2 are closed subgroups of a Polish group H such that
H1H2 is non-meager in its relative topology. Let H3 = H1 ∩ H2. Then for every A1 =
A1H3 ⊆o H1 and H2 = H3A2 ⊆o H2 we have A1A2 ⊆o H1H2.

Proof. Let us define a function ψ : H1H2 → H1/H3 ×H3\H2 by

ψ(h1h2) = (h1H3,H3h2)

where h1 ∈ H1 and h2 ∈ H2.
We check that ψ is well-defined. Suppose h1h2 = h′1h

′
2 where h1, h

′
1 ∈ H1 and h2, h

′
2 ∈

H2. Then h′−1
1 h1 = h′2h

−1
2 ∈ H1 ∩H2 = H3. Hence h1H3 = h′1H3 and H3h

′
2 = H3h2.

To finish the proof it is enough to show that ψ is continuous. The following Claim
follows from Lemma 1.6.

Claim 1 ψ is Baire measurable.

By Claim 1 and [3, Theorem 8.38] there is a set C ⊆ H1H2 which is a countable intersection
of dense open subsets of H1H2 such that ψ � C is continuous.

Claim 2 ψ is continuous.

Proof of Claim 2. Suppose for a contradiction that there are hi
1 ∈ H1 and hi

2 ∈ H2, i ∈ ω,
such that

1. hi
1h

i
2 −→ h1h2,

2. (hi
1H3,H3h

i
2) 6−→ (h1H3,H3h2).

Notice that (1) and (2) hold for hhi
1, h

i
2g, hh1, h2g instead of hi

1, h
i
2, h1, h2 for arbitrary

h ∈ H1 and g ∈ H2. Hence to get a contradiction it is enough to find h ∈ H1 and g ∈ H2

such that hh1h2g ∈ C and hhi
1h

i
2g ∈ C for all i ∈ ω. So we will be done if we prove the

following:

Subclaim (∀h1h2 ∈ H1H2)(∀∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C).

Proof of Subclaim. Since C∗ := {h1h2 ∈ H1H2 : (∀∗(h, g) ∈ H1 × H2)(hh1h2g ∈ C)} is
invariant under multiplication by H1 on the left and by H2 on the right, it is enough to
show that

(∗) (∃h1h2 ∈ H1H2)(∀∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C).

Since C is comeager in H1H2, we have

(∀(h, g) ∈ H1 ×H2)(∀∗h1h2 ∈ H1H2)(hh1h2g ∈ C).

So by the Kuratowski-Ulam theorem [3, Theorem 8.41] we get

(∀∗h1h2 ∈ H1H2)(∀∗(h, g) ∈ H1 ×H2)(hh1h2g ∈ C).

Since H1H2 is non-meager in its relative topology, we get (∗) and we are done. �

Lemma 1.8 Suppose that H1 and H2 are closed subgroups of a Polish group H such that
H1H2 is non-meager in its relative topology. Let H3 = H1 ∩H2. Then for every analytic
set A1 = A1H3 ⊆nm H1 and A2 = H3A2 ⊆nm H2 we have A1A2 ⊆nm H1H2.
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Proof. In the same way as in the proof of Proposition 1.3 we get that A1/H3 ⊆nm H1/H3

and H3\A2 ⊆nm H3\H2. Moreover, since A1 and A2 are analytic, A1/H3 and H3\A2

have the Baire property [3, Proposition 14.4, Theorem 21.6]. So A1/H3 = D14U1 and
H3\A2 = D24U2 where D1, D2 are meager and U1, U2 are nonempty and open in H1/H3

and H3\H2, respectively. So there are hi, gi, i ∈ ω, such that R1 :=
⋃

i∈ω hiA1/H3 and
R2 :=

⋃
i∈ω H3\A2gi are comeager in H1/H3 and H3\H2, respectively. So there are Ui, Vi,

i ∈ ω, open and dense in H1/H3 and H3\H2, respectively, such that
⋂

i∈ω Ui ⊆ R1 and⋂
i∈ω Vi ⊆ R2.

Let π1 : H1 → H1/H3 and π2 : H2 → H3\H2 be the quotient maps. Let U ′i = π−1
1 [Ui]

and V ′i = π−1
2 [Vi]. Then

(∗) U ′i is open and dense in H1 and V ′i is open and dense in H2 for all i ∈ ω,

(∗∗) U ′i = U ′iH3 and V ′i = H3V
′
i for all i ∈ ω,

(∗ ∗ ∗)
⋂

i∈ω U
′
i ⊆ π

−1
1 [R1] =

⋃
i∈ω hiA1 and

⋂
i∈ω V

′
i ⊆ π

−1
2 [R2] =

⋃
i∈ω A2gi.

Claim (
⋂

i∈ω U
′
i)(

⋂
i∈ω V

′
i ) =

⋂
i∈ω U

′
iV
′
i .

Proof of Claim. The inclusion ⊆ is obvious. So let us prove ⊇. Consider any a ∈
⋂

i∈ω U
′
iV
′
i .

Then for every i ∈ ω we can choose ui ∈ U ′i and vi ∈ V ′i so that a = uivi. For every i, j ∈ ω
we have uivi = ujvj =⇒ u−1

j ui = vjv
−1
i ∈ H1 ∩ H2 = H3. So ui ∈ ujH3 and vi ∈ H3vj .

Hence by (∗∗) we get u0 ∈
⋂

i∈ω U
′
i and v0 ∈

⋂
i∈ω V

′
i . So a = u0v0 ∈ (

⋂
i∈ω U

′
i)(

⋂
i∈ω V

′
i ).
�

By (∗ ∗ ∗) and Claim we get⋃
i,j∈ω

hiA1A2gj = (
⋃
i∈ω

hiA1)(
⋃
i∈ω

A2gi) ⊇ (
⋂
i∈ω

U ′i)(
⋂
i∈ω

V ′i ) =
⋂
i∈ω

U ′iV
′
i .

By Lemma 1.7, (∗) and (∗∗), U ′iV ′i ⊆o H1H2. By (∗), U ′iV ′i is dense in H1H2. Hence⋂
i∈ω U

′
iV
′
i is comeager, and thus non-meager, in H1H2. Therefore

⋃
i,j∈ω hiA1A2gj and so

A1A2 are non-meager in H1H2. �

To prove (2) in Theorem 1.5 we will need the following corollary of Lemma 1.7 and 1.8.

Corollary 1.9 Suppose that H1 and H2 are closed subgroups of a Polish group H such
that H1H2 is non-meager in its relative topology. Then
(i) for every A1 ⊆o H1 we have A1H2 ⊆o H1H2,
(ii) for every analytic set A1 ⊆nm H1 we have A1H2 ⊆nm H1H2.

Proof. Apply Lemma 1.7 and 1.8 for A2 = H2. �

Now we are returning to the proof of Theorem 1.5.

Proof of (2) in Theorem 1.5. First consider the case ∗ = o. We need to prove that

GCGBa ⊆o GB ∧GBGAa ⊆o GA ⇐⇒ GCGAa ⊆o GA.

(⇒). Assume GCGBa ⊆o GB ∧ GBGAa ⊆o GA. Define H := GA,H1 := GB,H2 :=
GAa, A1 := GCGBa. Then H1H2 = GBGAa ⊆o GA, so it is non-meager in its relative
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topology. Moreover, A1 ⊆o H1. Hence by Corollary 1.9(i) we get GCGAa = GCGBaGAa =
A1H2 ⊆o H1H2 = GBGAa ⊆o GA. So GCGAa ⊆o GA.
(⇐). Assume GCGAa ⊆o GA. Then of course GBGAa ⊆o GA. On the other hand, taking
the intersection with GB, we get that GCGBa ⊆o GB.

Now consider the case ∗ = nm. We need to prove that

GCGBa ⊆nm GB ∧GBGAa ⊆nm GA ⇐⇒ GCGAa ⊆nm GA.

(⇒). The proof is similar as in the case ∗ = o. We need only to check the last implication,
namely GCGAa ⊆nm GBGAa ⊆nm GA implies GCGAa ⊆nm GA.

Suppose for a contradiction that there are closed and nowhere dense subsets Di, i ∈ ω,
of GA such that GCGAa ⊆

⋃
i∈ω Di. By the assumption that GCGAa ⊆nm GBGAa, there

is i ∈ ω such that Di ∩ GBGAa has a non-empty interior in GBGAa. So countably many
translates (by elements of GB on the left and by elements of GAa on the right) of Di cover
GBGAa. Since Di is nowhere dense in GA, we get that GBGAa is meager in GA. This is a
contradiction.
(⇐). Assume GCGAa ⊆nm GA. Then of course GBGAa ⊆nm GA. It remains to prove that
GCGBa ⊆nm GB.

By Proposition 1.3 we get GC/GAa ⊆nm GA/GAa. Moreover, GC/GAa is Polish, so it is
a Gδ subset of GA/GAa. So GC/GAa = D4U where D is meager and analytic and U 6= ∅
is open in GA/GAa. Let π : GA → GA/GAa be the quotient map. Define D′ = π−1[D]
and U ′ = π−1[U ]. Then we have that GCGAa = D′4U ′, D′ is meager and analytic [3,
Proposition 14.4] and U ′ 6= ∅ is open in GA. Moreover, D′GAa = D′, U ′GAa = U ′ and
GC ⊆ GB. Hence U ′ ∩GB 6= ∅.

Suppose for a contradiction that GCGBa is meager in GB. Since GCGBa = (GCGAa)∩
GB = (D′4U ′)∩GB = (D′ ∩GB)4(U ′ ∩GB) and U ′ ∩GB 6= ∅ is open in GB, we get that
D′∩GB ⊆nm GB. We also know that D′∩GB is analytic. Moreover, GBGAa ⊆nm GA so it
is non-meager in its relative topology. Hence by Corollary 1.9(ii) we get (D′∩GB)GAa ⊆nm

GBGAa ⊆nm GA. So, in the same way as in the proof of (⇒), we get (D′∩GB)GAa ⊆nm GA.
Hence D′GAa ⊆nm GA, which means that D′ ⊆nm GA, a contradiction. �

In order to get the existence of nm-independent extensions we assume smallness.

Theorem 1.10 (Existence of nm-independent extensions) Let (X,G) be a small
Polish structure. Then for all finite a ⊆ X and A ⊆ B ⊆ X, there is b ∈ o(a/A) such that
b

nm|̂ AB.

Before the proof let us show the following remark.

Remark 1.11 A Polish structure (X,G) satisfies the existence of ∗-independent exten-
sions, where ∗ = nm or ∗ = o, iff for all finite a ⊆ X and A ⊆ B ⊆ X there exists f ∈ GA

such that GBfGAa ⊆∗ GA.

Proof. The existence of ∗-independent extensions is equivalent to the fact that for every
finite a ⊆ X and A ⊆ B ⊆ X there is b ∈ o(a/A) such that GBGAb ⊆ GA, which in turn is
equivalent to the conclusion of the remark. �

Proof of Theorem 1.10. Consider a,A,B as in the theorem. Let {ai : i ∈ ω} be a set of
representatives of all orbits over B contained in o(a/A). Then o(a/A) =

⋃
i∈ω o(ai/B).
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Take fi ∈ GA, i ∈ ω, such that fi(a) = ai.

Claim GA =
⋃

i∈ω GBfiGAa.

Proof of Claim. Consider any f ∈ GA. Then f(a) ∈ o(ai/B) for some i ∈ ω. Hence there
is g ∈ GB such that g(f(a)) = fi(a). Then f−1

i gf ∈ GAa, so f ∈ g−1fiGAa ⊆ GBfiGAa.
Hence GA ⊆

⋃
i∈ω GBfiGAa. The opposite inclusion is obvious. �

By Claim and the Baire category theorem there is i ∈ ω such that GBfiGAa ⊆nm GA. So
the proof is completed by Remark 1.11. �

We see that the above application of the Baire category theorem works only for nm-
independence. In Section 3 (Remark 3.5) we will see that the pseudo-arc is an example of
a small Polish structure without the existence of o-independence extensions.

One justification for our definition of nm-independence is the fact that it satisfies all the
fundamental properties (Theorem 1.5 and 1.10) necessary to develop a counterpart of basic
geometric stability theory. Another justification is given by the next corollary, which shows
that in compact [profinite] structures nm-independence coincides with m-independence.

Theorem 1.12 Let (X,G) be a Polish structure such that G acts continuously on a sep-
arable metrizable space X. Let a,A,B ⊆ X be finite. Assume that o(a/A) is non-meager
in its relative topology (e.g. it is Polish). Then a

∗|̂ AB ⇐⇒ o(a/AB) ⊆∗ o(a/A) where
∗ = o or ∗ = nm.

Proof. Let π : GA/GAa → o(a/A) be defined by π(gGAa) = ga. Since o(a/A) is non-
meager in its relative topology, by Effros’ theorem [1, Theorem 2.2.2] we have that π is
a homeomorphism. Hence o(a/AB) ⊆∗ o(a/A) ⇐⇒ π−1[o(a/AB)] ⊆∗ π−1[o(a/A)] ⇐⇒
GAB/GAa ⊆∗ GA/GAa. We finish using Proposition 1.3. �

Corollary 1.13 In every compact structure o-independence, nm-independence and m-
independence coincide.

In Section 3 (Remark 3.5) we will see that the pseudo-arc considered with the group of
all homeomorphisms is an example of a small Polish structure where o-independence and
nm-independence differ. Below we give a simpler example of a Polish structure in which
these two notions differ, but this structure is not small.

Example 1 Let X = (S1)ω and G = (Homeo(S1))ω. We consider the Polish structure
(X,G) where G acts naturally on X on the appropriate coordinates. Then in (X,G) o-
independence is different from nm-independence. Moreover, (X,G) is not small, it does
not have the existence of o-independent extensions but it satisfies the existence of nm-
independent extensions.

Proof. Take any x = 〈x0, x1, . . .〉 ∈ X and y = 〈y0, y1, . . .〉 ∈ X such that xi 6= yi for all
i ∈ ω. Then o(x) = X and o(x/y) = S1 \ {y0} × S1 \ {y1} × . . .. So o(x/y) is non-meager
and not open in o(x). Since o(x) = X is Polish, by Theorem 1.12 we get that x

nm|̂ y and
x

o6̂ | y. The ’moreover’ part is left to the reader. �
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2 Basic model theory

In this section we introduce counterparts of some basic notions from stability theory and
we investigate their properties.

In compact [profinite] structures definable sets were defined as the sets which are closed
and invariant over finite subsets. Since for a Polish structure (X,G) we do not have any
topology on X, we need another definition of definable sets. Moreover, as in model theory
we would like to have (imaginary) names for definable sets for which forking calculus works
in the same way as for the real elements. So we propose the following definition of definable
sets and imaginary elements.

From now on we assume that (X,G) is a Polish structure.

Definition 2.1 The imaginary extension, denoted by Xeq, is the union of all sets of the
form Xn/E with E ranging over all invariant equivalence relations such that for all a ∈ Xn,
Stab([a]E) <c G. The sets Xn/E will be called the sorts of Xeq.

Remark 2.2 Let E be an invariant equivalence relation on Xn whose classes have closed
stabilizers in G. Then G induces a group of permutations of Xn/E, denoted by G � Xn/E,
which is Polish, and (Xn/E,G � Xn/E) is a Polish structure.

As in model theory, (Xeq)eq = Xeq which means that if E is an invariant equivalence
relation on a product of sorts Xn1/E1× . . .×Xnk/Ek whose classes have closed stabilizers
in G, then the set of E-classes can be identified with the sort Xn1 × . . .×Xnk/E′ where

E′(x1, . . . , xk; y1, . . . , yk) ⇐⇒ E(x1/E1, . . . , xk/Ek; y1/E1, . . . , yk/Ek).

Definition 2.3 A subset D of X (or more generally of any sort of Xeq) is said to be
definable over a finite subset A of Xeq if D is invariant over A and Stab(D) <c G. We
say that d ∈ Xeq is a name for D if for every f ∈ G we have f [D] = D ⇐⇒ f(d) = d.

Proposition 2.4 Each set definable in (X,G) [or in Xeq] has a name in Xeq.

Proof. The proof is similar to the proof of Proposition 1.9 in [7]. Suppose D is a-definable
for some finite a ∈ Xn. We define an equivalence relation E on Xn by:

E(a1, a2)⇐⇒ [a1 = a2 ∨ (a1, a2) ∈ S(a, a)]

where S = {(f, g) ∈ G × G : f [D] = g[D]}. It is easy to check that E is invariant, every
class of E has a closed stabilizer and a/E is a name for D. �

Working in Xeq, we can define Acleq in the same way as in X. Then the results of
Section 1 (including Theorem 1.5 and 1.10) are true in Xeq (the only exception is the fact
that the Polish structure (X,G) considered in Example 1 does not satisfy the existence of
nm-independent extensions in Xeq). However, in the case of a compact [profinite] structure
(X,G) both the family of definable sets andXeq computed according to the definitions given
in this paper are larger than those computed according to the definitions from [13, 14, 7].

As usual, having a notion of independence satisfying the properties listed in Theorem
1.5 and 1.10, one can define a rank, which has some nice properties.
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Definition 2.5 The rank NM is the unique function from the collection of orbits over
finite sets to the ordinals together with ∞, satisfying

NM(a/A) ≥ α+ 1 iff there is a finite set B ⊇ A such that
a

nm6̂ | AB and NM(a/B) ≥ α.

From now on we assume that (X,G) is small. In fact, more generally, one could only
assume that (X,G) satisfies the existence of nm-independent extensions and, if we work
in Xeq, one should also assume that the existence of nm-independent extensions holds in
Xeq.

The results formulated below follow from a standard forking calculation (e.g. see [16,
Lemma 5.1.4 and Theorem 5.1.6]). In the next proposition a, b, A are finite tuples (subsets)
of X or Xeq.

Proposition 2.6 (1) a
m|̂ Ab iff NM(a/Ab) = NM(a/A).

(2) NM(a/bA) +NM(b/A) ≤ NM(ab/A) ≤ NM(a/bA)⊕NM(b/A).
(3) Suppose NM(a/Ab) < ∞ and NM(a/A) ≥ NM(a/Ab) ⊕ α. Then NM(b/A) ≥
NM(b/Aa) + α.
(4) Suppose NM(a/Ab) < ∞ and NM(a/A) ≥ NM(a/Ab) + ωαn. Then NM(b/A) ≥
NM(b/Aa) + ωαn.
(5) If a

m|̂ Ab, then NM(ab/A) = NM(a/bA)⊕NM(b/A).

As in stable or simple theories, the inequalities in the point (2) will be called Lascar
inequalities.

An easy induction and Proposition 2.6(1) yield the following remark.

Remark 2.7 Let a,A ⊆ X be finite. Then NM -rank of o(a/A) computed in X is the
same as NM -rank of o(a/A) computed in Xeq.

Definition 2.8 (X,G) is nm-stable if every 1-orbit has ordinal NM -rank.

Remark 2.9 (X,G) is nm-stable iff there is no infinite sequence A0 ⊆ A1 ⊆ . . . of finite
subsets of X and a ∈ X such that a

nm6̂ | AiAi+1 for every i ∈ ω.

By Lascar inequalities and Remark 2.7 we easily get:

Remark 2.10 (X,G) is nm-stable iff each n-orbit, n ≥ 1, has ordinal NM -rank iff each
n-orbit, n ≥ 1, in Xeq has ordinal NM -rank.

Proposition 2.11 TFAE:

(1) (X,G) is nm-stable.

(2) There is no a ∈ X and finite sets A0 ⊆ A1 ⊆ . . . ⊆ X such that GAi+1GAia is meager
in GAi for every i ∈ ω.

(3) For every a ∈ X and finite sets A0 ⊆ A1 ⊆ . . . X there is n ∈ ω such that
GAn+i+1GAna ⊆nm GAn+iGAna for every i ∈ ω.
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Proof. (1)⇔ (2) is obvious by Proposition 1.3 and Remark 2.9.
(1) ⇒ (3). By Proposition 1.3, Remark 2.9 and transitivity we can find n ∈ ω such that
GAn+i+1GAn+ia ⊆nm GAn+i for every i ∈ ω. So by Corollary 1.9(ii) and induction we easily
get that GAn+i+1GAna ⊆nm GAn+iGAna for every i ∈ ω.
(3) ⇒ (1). Take any a ∈ X and finite sets A0 ⊆ A1 ⊆ . . . ⊆ X. By (3) there is
n ∈ ω such that GAn+i+1GAna ⊆nm GAn+iGAna for every i ∈ ω. Hence we easily get that
GAn+iGAna ⊆nm GAn for every i ∈ ω. So a

nm|̂ AnAn+i+1, and hence a
nm|̂ An+iAn+i+1, for

every i ∈ ω. We are done by Remark 2.9. �

As it was mentioned in the introduction I hope that nm-independence, NM-rank
and maybe some other model theoretic notions may be useful in descriptive set theory
or topology. It is worth mentioning here that by Theorem 1.12, if orbits are non-megear
in their relative topologies, then NM-rank and nm-stability can be expressed in terms
of X instead of G, and NM-rank measures a ’topological size’ of orbits. More precisely,
Theorem 1.12 gives us the following remark.

Remark 2.12 Suppose that X is a separable metrizable space and G acts continuously on
X. Assume that all orbits over finite sets are non-meager in their relative topologies. Then

(1) NM(a/A) ≥ α + 1 iff there is a finite set B ⊇ A such that o(a/B) is meager in
o(a/A) and NM(a/B) ≥ α.

(2) (X,G) is nm-stable iff there is no infinite sequence A0 ⊆ A1 ⊆ . . . of finite subsets
of X and a ∈ X such that o(a/Ai+1) is meager in o(a/Ai) for every i ∈ ω.

By Remark 2.12 we see that in compact structures NM-rank and nm-stability coincide
with M-rank and m-stability, respectively.

Similarly as in model theory and in profinite structures one can define a natural pre-
geometry on an orbit of NM-rank 1. To introduce this definition first we need to prove
several remarks.

Remark 2.13 For any finite a,A ⊆ Xeq we have that NM(a/A) = 0 iff a ∈ Acleq(A).

Proof. (⇒). Assume NM(a/A) = 0. Then a
nm|̂ AB for every finite B ⊆ Xeq. By Theorem

1.5(3) we get a ∈ Acleq(A).
(⇐). Assume a ∈ Acleq(A). By Theorem 1.5(3) we get that a

nm|̂ AB for every finite
B ⊆ Xeq. Hence NM(a/A) = 0. �

Corollary 2.14 If o(a/A) is Polish, then NM(a/A) = 0 iff o(a/A) is countable with the
discrete topology.

For a finite set A ⊆ Xeq we define the operator AcleqA by AcleqA (B) = Acleq(A ∪B).

Remark 2.15 Assume NM(a/A) = 1 and B is a finite subset of Xeq. Then a ∈ AcleqA (B)
iff a

nm6̂ | AB.

Proof. (⇒). Assume a
nm6̂ | AB. Then NM(a/AB) < NM(a/A) = 1. Hence NM(a/AB) =

0. By Remark 2.13 we get a ∈ AcleqA (B).
(⇐). Assume a ∈ AcleqA (B). By Remark 2.13, NM(a/AB) = 0 < NM(a/A). Hence by
Proposition 2.6(1), a

nm6̂ | AB. �
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Proposition 2.16 Assume NM(a/A) = 1. Then (o(a/A), AcleqA ) is a pregeometry.

Proof. The proof is the same as in model theory. Let us only check the exchange property.
Take any B ⊆ o(a/A) and b ∈ o(a/A). Consider any a′ ∈ AcleqA (Bb) \ AcleqA (B). Wlog B
is finite. By Remark 2.15, a′

nm6̂ | AABb and a′
nm|̂ AAB. Hence by Theorem 1.5, b

nm6̂ | ABa
′. So

b
nm6̂ | ABa

′, which implies that b ∈ AclA(Ba′). �

Similarly, one can show that if NM(X) := sup{NM(a) : a ∈ X} = 1, then (X,Acl) is
a pregeometry.

3 Examples

In this section we give several examples of small Polish structures. To begin with, notice
that all small profinite structures are such examples. This class contains for instance all
abelian profinite groups of finite exponent presented as the inverse limit of a system indexed
by the natural numbers and considered with the standard structural group [5, Theorem
1.9]. Below we give examples which are not profinite.

Example 2 For every n ≥ 1 the Polish structure (Sn,Homeo(Sn)) where Sn is the n-
dimensional sphere and Homeo(Sn) is the group of all homeomorphisms of Sn with the
compact-open topology is small of NM-rank 1. Similarly, (Sn, Diff(Sn)) where Diff(Sn)
is the group of all diffeomorphisms of Sn is also small of NM-rank 1.

Example 3 The Polish structure (Iω,Homeo(Iω)) where Iω is the Hilbert cube is small
of NM-rank 1.

Proof. By [11, Section 6.1, Exercise 2] we know that the action is n-transitive for every
n ≥ 1. �

Example 4 The Polish structure (P,Homeo(P )) where P is the pseudo-arc is small and
not nm-stable.

Before the proof we recall some notions and results about continua. Recall that the
pseudo-arc P is the unique hereditarily indecomposable chainable continuum. By heredi-
tary idecomposability we get that for every A ⊆ P the intersection of all subcontinua of P
containing A is the smallest subcontinuum of P containing A.

Let C be any nondegenerate continuum (e.g. P ). We say that C is irreducible between
subsets A and B if there is no proper subcontinuum of C containing A and B. For p ∈ C
we define the composant of p, denoted by κ(p), as the set of the points x ∈ C for which
there is a proper subcontinuum A of C such that p, x ∈ A.

For every p ∈ C, κ(p) is the union of countably many proper subcontinua of C contain-
ing p [12, Proposition 11.14] and κ(p) is dense and connected [12, Exercise 5.20]. Moreover,
by [12, Exercise 6.19] C is indecomposable iff every proper subcontinuum of C is nowhere
dense in C. Hence

(∗) If C is indecomposable, then κ(p) is meager and dense in C for every p ∈ C.

If C is indecomposable, we define an equivalence relation E on C by:

EC(x, y) ⇐⇒ y ∈ κ(x).
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By (∗) and the Baire category theorem EC has uncountably many classes (they are just
composants). We will need the following two facts, which can be found in [9, Theorem 2,
Theorem 6].

Fact 3.1 The pseudo-arc is homeomorphic to each of its nondegenerate subcontinua.

Fact 3.2 Suppose H1,1,H1,2, . . . ,H1,n are proper subcontinua of the pseudo-arc P and that
P is irreducible between each pair of them. Suppose T is a homeomorphism of H1,1∪H1,2∪
. . . ∪H1,n onto H2,1 ∪H2,2 ∪ . . . ∪H2,n where H2,1,H2,2, . . . ,H2,n are proper subcontinua
of P such that P is irreducible between each pair of them. Then T can be extended to a
homeomorphism of P onto P .

Now we can prove the following Lemma which immediately implies that the Polish
structure (P,Homeo(P )) is small.

Lemma 3.3 For every n ≥ 1, there are only finitely many orbits on Pn under the action
of Homeo(P ).

Proof. The proof is by induction on n. The case n = 1 follows from the fact that the
pseudo-arc is homogeneous.

Assume that Lemma 3.3 is true for the tuples of length < n. Suppose for a contradiction
that there are infinitely many n-tuples t0 = (t00, . . . , t

n−1
0 ), t1 = (t01, . . . , t

n−1
1 ), . . . lying in

different orbits under Homeo(P ). Then there is an infinite subsequence ti0 , ti1 , . . . such
that for every j, k ∈ ω, the tuples tij and tik are isomorphic, via fjk, with respect to the
relation EP . Wlog ij = j for every j ∈ ω. Then there is m ≤ n−1 such that for every i ∈ ω,
{t0i , . . . , t

n−1
i } can be partitioned into classes modulo EP , say A0

i , . . . , A
m
i , so that fjk[Al

j ] =
Al

k for every j, k ∈ ω and l ≤ m. Let B0
i , . . . , B

m
i be the smallest proper subcontinua

of P containing A0
i , . . . , A

m
i , respectively. Then B0

i , . . . , B
m
i are pairwise disjoint proper

subcontinua of P such that P is irreducible between each pair of them.

Case 1 m > 1. By Fact 3.1 for every i ∈ ω we can find homeomorphisms f l
i : Bl

i → Bl
0,

l = 0, . . . ,m. By the inductive hypothesis and Fact 3.1 there are i 6= j for which there
exist homeomorphisms gl : Bl

0 → Bl
0, l = 0, . . . ,m, such that

T := (f0
j )−1g0f

0
i ∪ . . . ∪ (fm

j )−1gmf
m
i : B0

i ∪ . . . ∪Bm
i → B0

j ∪ . . . ∪Bm
j

is a homeomorphism extending fij . Since both {B0
i , . . . , B

m
i } and {B0

j , . . . , B
m
j } are col-

lections of proper subcontinua of P such that P is irreducible between each pair of them,
by Fact 3.2, T can be extendend to an element of Homeo(P ). Since T (ti) = tj , we get a
contradiction.

Case 2 m = 1. Then B0
i , i ∈ ω, are proper subcontinua of P , so by Fact 3.1 we can find

homeomorphisms fi : B0
i → B0

0 . Let t′i = fi(ti). If we show that there exist i 6= j and
a homeomorphism f : B0

0 → B0
0 with f(t′i) = t′j , then T := f−1

j ffi is a homeomorphism
from B0

i onto B0
j such that T (ti) = tj , and we finish using Fact 3.2. By the minimality of

B0
i , i ∈ ω, working with B0

0 and t′0, t
′
1, . . ., we are in the situation described in Case 1, so

the proof is completed. �

Lemma 3.4 (P,Homeo(P )) is not nm-stable.
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Proof. Take any p ∈ P . By (∗) we can find p0 ∈ κ(p) such that p0 6= p. Now choose the
smallest proper subcontinuum P0 of P containing p and p0. Then P0 is also the pseudo-arc
and it is nowhere dense in P . We see that P0 is definable over {p, p0}. Let q0 be a name
of P0. By Fact 3.2, o(p/q0) = P0, which is nowhere dense in o(p) = P . Since P is Polish,
Theorem 1.12 implies that p

nm6̂ | q0.
Let us repeat this step within P0. By (∗) we can find p1 ∈ κP0(p) such that p1 6= p,

where κP0 is κ computed within P0. Now choose the smallest proper subcontinuum P1

of P0 containing p and p1. Then P1 is also the pseudo-arc and it is nowhere dense in
P0. We see that P1 is definable over {p, p0, p1}. Let q1 be a name of P1. By Fact 3.2,
o(p/q0q1) = P1, which is nowhere dense in o(p/q0) = P0. Since P0 is Polish, Theorem 1.12
implies that p

nm6̂ | q0q1.
We repeat this procedure and obtain an infinite sequence of imaginaries q0, q1, . . . such

that p
nm6̂ | q<iq≤i for all i ∈ ω. By Remark 2.9 and 2.10 the proof is completed. �

It is not clear how to repeat the above proof without using imaginaries. More precisely,
by Fact 3.1, 3.2 and (∗) we have that o(p/p0) = κ(p) is meager in o(p) = P and P is Polish,
so by Theorem 1.12, p

nm6̂ | p0. However, by (∗) and Effros’ theorem, o(p/p0) = κ(p) is meager
in its relative topology, so starting from this point we cannot work just with orbits, but we
should look at their preimages in Homeo(S), which is rather complicated.

Remark 3.5 (i) (P,Homeo(P )) does not satisfy the existence of o-independent extensions.
(ii) In (P,Homeo(P )) the relations

o|̂ and
nm|̂ are different.

Proof. (i) Since P is homogeneous, by Theorem 1.12 it is enough to show that there is
p ∈ P such that every orbit over p is not open in P . Take any p ∈ P . Using Fact 3.1 and
3.2 we easily get that the only orbits over p are κ(p) and P \ κ(p), so we are done by (∗).
(ii) It follows from (i), Lemma 3.3 and Theorem 1.10. We can also see it directly. Take
any p ∈ P and q /∈ κ(p). By Fact 3.2, o(q/p) = P \ κ(p). So by (∗) we get that o(q/p) is
non-meager in P , and hence, by Theorem 1.12, q

nm|̂ p.
On the other hand, by (∗) we see that P \κ(p) is not open in P , and hence, by Theorem

1.12, q
o6̂ | p. �

Definition 3.6 (i) A Polish group structure is a Polish structure (H,G) such that H is a
group and G acts as a group of automorphisms of H.
(ii) A Polish group regarded as a Polish structure is a Polish structure (H,G) such that H
is a Polish group and G acts continuously as a group of automorphisms of H.

Of course every Polish group regarded as a Polish structure is a Polish group structure.
The next example is an example of a small Polish group regarded as a Polish structure.

Example 5 Let us consider the discrete topology on Q and the product topology on
Qω. We consider the additive group structure on Q. Let Aut0(Qω) be the group of all
automorphisms of Qω respecting the inverse system Q←− Q×Q←− . . .. Then Aut0(Qω)
can be considered as the inverse limit of the system consisting of Aut0(Qn), n ∈ ω, where
on Aut0(Qn) we have the pointwise convergence topology. Then (Qω, Aut0(Qω)) is a small
of NM-rank 1 Polish group regarded as a Polish structure.

Proof. We leave to the reader checking that (Qω, Aut0(Qω)) is a Polish group regarded as
a Polish structure. Now we will show that it is small of NM-rank 1.
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The following claim is obvious.

Claim If f ∈ Aut0(Qn) and {η1, . . . , ηn} is a basis of Qn over Q, then for all ε0, ε1, . . . , εn,
ε′0, ε

′
1, . . . , ε

′
n ∈ Q such that ε0, ε′0 6= 0, there is f ∈ Aut0(Qn+1) such that f(0_ε0) = 0_ε′0

and f(η_
i εi) = f(ηi)_ε′i, i = 1, . . . , n.

Now consider any finite set A ⊆ Qω and a ∈ Qω. Then either a ∈ Lin(A) or there is
the largest natural number n such that a�n ∈ Lin(A)�n. So by Claim we get that either
a ∈ Lin(A), and then o(a/A) = {a}, or a /∈ Lin(A), and then o(a/A) = {η ∈ Qω : η�n = a�
n∧η�(n+ 1) /∈ Lin(A)�(n+ 1)} where n is the largest n such that a�n ∈ Lin(A)�n. So each
orbit over A is either a singleton from Lin(A) or an open set. Hence there are countably
many orbits over A, so (Qω, Aut0(Qω)) is small; we also see that NM(Qω) = 1. �

We end up with a remark which follows from Lascar inequalities and yields examples
of small Polish structures of arbitrary finite NM-rank.

Remark 3.7 If (X,G) is a small Polish structure of NM-rank 1, then for every natural
number n ≥ 1, (Xn, G) is a small Polish structure of NM-rank n.

4 Final comments and questions

In model theory there are results, known as group configuration theorems, which say that
under some general geometric assumptions one can find a definable group (e.g. [15, Chapter
5, 7]). Such theorems were also proved for small profinite structures [14, Theorem 1.7,
Theorem 3.3] or, more generally, for compact structures satisfying the existence of m-
independent extensions [7, Theorem 3.15]. Considerations concerning the existence of a
definable (in some sense) group structure are the best example illustrating how stability
theory ideas may lead to new aspects in the analysis of classical topological objects. In the
context of small Polish structures it is not clear how to prove such kind of results. We can
ask here the following general questions.

Question 4.1 Suppose (X,G) is a small Polish structure. When is there a function · :
X×X → X definable (or invariant) over a finite subset A of X such that (X, ·) is a group?

Question 4.2 Suppose (X,G) is a small Polish structure. When is there an infinite set
Y ⊆ X and a function · : Y × Y → Y , both definable (or invariant) over a finite subset A
of X, such that (Y, ·) is a group?

The group configuration theorem for small profinite structures [14, Theorem 1.7] yields
a partial answer to Question 4.2. Namely, if we additionally assume that (X,G) is profinite
and m-normal, then in every non-trivial orbit ofM-rank 1 there is an open definable group.

So one of the possible ways of further research is to prove for small Polish structures
counterparts of some advanced results from geometric stability theory, e.g. a variant of the
group configuration theorem.

There are also certain open questions about the existence of small profinite structures
satisfying some additional assumptions. I think it would be interesting to find counterex-
amples for these questions in the bigger class of small Polish structures. Let us formulate
two such questions.
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Conjecture 4.3 (NM-gap conjecture) Let (X,G) be a small Polish structure. Then
for every orbit o over a finite subset A of X one has NM(o) ∈ ω ∪ {∞}.

This conjecture is open in the class of small profinite structures; it was proved only for
small m-stable profinite groups [17, Theorem 18]. In the context of small Polish structures
it is open even for small nm-stable Polish groups.

Question 4.4 Is it true that every small Polish group regarded as a Polish structure or,
more generally, every small Polish group structure, is abelian-by-countable?

In the case of small profinite structures the appropriate question asks if every small
profinite group is abelian-by-finite. This question is open in general but it was answered
positively for small m-stable profinite groups [17, Theorem 1]. Question 4.4 is open even
for small nm-stable Polish groups.

Let us notice here that all the structural results about small profinite groups were based
on the fact that such groups are locally finite [13, Proposition 2.4], which is not true for
small Polish groups [Example 5]. So an interesting general question is what we can prove
about small Polish groups regarded as Polish structures.

At the end I would like to formulate several purely descriptive set theoretic (or topo-
logical) facts and questions which came up naturally during my considerations on Polish
structures.

The following fact is Corollary 2.6.8 of [1].

Fact 4.5 The Polish Homeo(Iω)-space (Iω,Homeo(Iω)) is universal for Borel G-spaces,
i.e. every Borel G-space (X,G) can be embedded into (Iω,Homeo(Iω)) in the sense that
there is a topological isomorphism ψ : G → ψ[G] <c Homeo(Iω) and a Borel embedding
φ : X → Iω such that φ(gx) = ψ(g)φ(x) for every g ∈ G.

We know that this universal Borel G-space is a small Polish structure [Example 3]. The
following question is a counterpart of the above fact for groups.

Question 4.6 Does there exist a Polish G-group (U,G) which is universal for Borel H-
groups (i.e. every Borel H-group (G0,H) can be embedded into (U,G), preserving the group
structure on G0)? If yes, is (U,G) a small Polish group regarded as a Polish structure?

From now on we fix a Polish group G. The following fact comes from [2, Theorem 0.3]
and [1, Corollary 2.6.8].

Fact 4.7 There is a Polish G-space which is universal for Polish [Borel] G-spaces.

Question 4.8 Does there exist a Polish G-group which is universal for Polish [Borel] G-
groups?

It is obvious that any universal Polish G-space (or G-group, if it exists) for a fixed G is
not small. However, we can ask the following question (or its variants for Polish structures
which are additionally Polish or Borel G-spaces or G-groups).

Question 4.9 Does there exist a small Polish structure [group structure] which is universal
for small Polish structures [group structures] of the form (X,G)?

16



At the very end we would like to formulate a question concerning small profinite struc-
tures. The following is a well-known fact [10].

Fact 4.10 If G is a locally compact group and (X,G) is a topological G-space, then there is
a topological group H ⊇ X such that the topology on X is inherited from H and the action
of G on X can be extended to an action on H so that (H,G) is a topological G-group.

Question 4.11 Is it true that for every small profinite structure (X,G) one can find a
profinite group H ⊇ X such that X is closed in H, its topology is inherited from H and
the action of G on X can be extended to an action on H so that (H,G) is a small profinite
group?

It is not difficult to construct H so that (H,G) is not necessarily small. Namely, if

X = lim
←−

Xi,

we can define H as the inverse limit of the system consisting of the linear spaces spanned
freely by Xi over the two element field F2.

Proposition 4.12 If Question 4.11 has the positive answer, then M-gap conjecture is
true for small m-stable profinite structures.

Proof. Suppose for a contradiction that (X,G) is a small m-stable profinite structure with
an orbit o over some finite set A such thatM(o) ∈ Ord \ω; hence wlogM(o) = ω. By the
assumption we have that X is ∅-definable (i.e. closed and invariant) in a small profinite
group (H,G).

By [13, Proposition 2.3] the subgroup 〈X〉 generated by X is generated in finitely many
steps. This easily implies that (〈X〉, G) is a small m-stable profinite group. Hence the
M-rank of o computed within (〈X〉, G) also equals ω, and we get a contradiction with the
fact that M-gap conjecture holds for small m-stable profinite groups [17, Theorem 18]. �
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