AN ORDERED STRUCTURE OF RANK TWO RELATED TO
DULAC’S PROBLEM

A. DOLICH AND P. SPEISSEGGER

ABSTRACT. For a vector field £ on R? we construct, under certain assump-
tions on &, an ordered model-theoretic structure associated to the flow of
£. We do this in such a way that the set of all limit cycles of & is rep-
resented by a definable set. This allows us to give two restatements of
Dulac’s Problem for {&—that is, the question whether ¢ has finitely many
limit cycles—in model-theoretic terms, one involving the recently developed
notion of UP-rank and the other involving the notion of o-minimality.

INTRODUCTION

Let & = ala% + aza% be a vector field on R? of class C', and let

S(f) = {(l’,y) € ]R2 : al(xvy) = CLQ(Z’,?/) = O}

be the set of singularities of £&. By the existence and uniqueness theorems
for ordinary differential equations (see Camacho and Lins Neto [1, p. 28| for
details), ¢ induces a C'-foliation F¢ on R? \ S(€) of dimension 1. Abusing
terminology, we simply call a leaf of this foliation a leaf of £&. A cycle of ¢ is
a compact leaf of &; a limit cycle of ¢ is a cycle L of ¢ for which there exists
a non-compact leaf L’ of £ such that L is contained in the closure of L'.

Dulac’s Problem is the following statement: “if £ is polynomial, then £ has
finitely many limit cycles”. Tt is a weakening of the second part of Hilbert’s
16th problem, which states that “there is a function H : N — N such that for
all d € N, if € is polynomial of degree d then £ has at most H(d) limit cycles”.
Both problems have an interesting history, and while Dulac’s problem was
independently settled in the 1990s by Ecalle [3] and Ilyashenko [5], Hilbert’s
16th problem remains open; see [5] for more details.

In this paper, we attempt to reformulate Dulac’s Problem in model-theoretic
terms. Our motivation to do so is twofold: we want to
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(i) find a model-theoretic structure naturally associated to £ in which the
flow of ¢ and the set of limit cycles of £ are represented by definable
sets;

(ii) know to what extent the geometry of such a structure is determined
by Dulac’s Problem.

Our starting point for (i) is motivated by the piecewise triviality of Rolle
foliations associated to analytic 1-forms as described by Chazal [2]. Let U C R?
be open; a leaf L of £y is a Rolle leaf of £y if for every Ct-curve § : [0, 1] —
U with 6(0) € L and 6(1) € L, there is a t € [0,1] such that §'(¢) is tangent
to £(4(t)). Based on Khovanskii theory [6] over an o-minimal expansion of the
real field [12], we establish (Proposition 1.5 and Theorem 3.4):

Theorem A. Assume that £ is definable in an o-minimal expansion of the
real field. Then there is a cell decomposition C of R* compatible with S()
such that, with C,., :={C € C: C'NS(E) =0},

1) every 1-dimensional C' € C,,, is either transverse to £ or tangent to &;
Y g g
2) for every open C' € C,q,, every leaf of £|¢ is a Rolle leaf of &|¢;
g
3) for every open C' € C,ep, the flow of & in C' is represented by a lexico-
g
graphic ordering of C.

Part (3) of this theorem needs some explanation, as it represents our under-
standing of the “triviality” of the flow of £ in C. Given an open C € Cg, it
follows from part (2) that the direction of ¢ induces a linear ordering <r on
every leaf L of {|c. We can furthermore define a relation on the set £(C') of all
leaves of | as follows: given a leaf L of £|¢, the fact that L is a Rolle leaf of
¢|c implies (see Remark 1.2 below) that L separates C'\ L into two connected
components Uy, ; and Uy 5 such that the vector £+ (z) := (ag(2), —a1(2)) points
into Uy for all z € L. Thus, for a leaf L' of {|¢ different from L, we define
L <c L't ! CUpyand L' ¢ Lif L' € Up;. In general, though, the
relation < does not always define an ordering, even if every leaf of &|¢c is
Rolle; see Example 2.2 below.

Part (3) now means that the cell decomposition C may be chosen in such a
way that for every open C' € Cyeq, the ordering < on £(C) is a linear ordering.
(See Example 3.2 for such a decomposition in the situation of Example 2.2.)
This leads to lexicographic orderings as follows: given C' € Cyz and z € C,
we denote by L. the leaf of {|c containing z. If C' € C,eq is open, we define a
linear ordering <¢ on C by x <¢ y if and only if either L, <¢ Ly, or L, = L,
and x <r, y. Letting E¢ be a set of representatives of £(C'), it is not hard
to see that the structures (C, <¢, E¢) and (R?, <ix, {y = 0}) are isomorphic,
where <., is the usual lexicographic ordering of R2.

To complete the picture, we also define an ordering < on each 1-dimensional
C € Cye: if C is tangent to &, we let <o be the linear ordering induced on
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C by the direction of &, and if C' is transverse to &, we let <c be the linear
ordering induced on C' by the direction of £+. For each open C' € Cpoq, we
also let <p,. be the restriction of < to E¢. Each of these orderings induces
a topology on the corresponding set that makes it homeomorphic to the real
line. Finally, for each 1-dimensional C' € C,.; tangent to &, we fix an element
ec € C.

In the situation of Theorem A, we reconnect the pieces of C according to
the flow of £ as follows: let B be the union of

all 1-dimensional cells in C,, transverse to &,

the sets E¢ for all open cells C' € Cpeg,

all O-dimensional cells in C,q,, and

the singletons {ec} for all 1-dimensional C' € C,, tangent to &.

We define the forward progression map f : BU {00} — B U {oc} by
(roughly speaking) putting f(x) equal to the next point in B on the leaf of £
through z if  # oo and if such a point exists, and otherwise we put f(x) := oo.
In this situation, a point x € B belongs to a cycle of £ if and only if there is a
nonzero n € N such that {*(z) = z, where {* denotes the n-th iterate of f.

In fact, only finitely many iterates of § are necessary to capture all cycles of
¢ (Proposition 5.3): since a cycle of £ is a Jordan curve in R? it is a Rolle leaf
of ¢ and therefore intersects each C' € C of dimension at most 1 in at most
one connected component. Hence there is an N € N such that for all x € B,
x belongs to a cycle of ¢ if and only if V(z) = .

To see how we can use this to detect limit cycles of certain &, we first
define a cycle L of £ to be a boundary cycle, if for every x € L and every
neighborhood V' of z, the set V intersects some non-compact leaf of £. One
of Poincaré’s theorems [10] (see also Perko [9, p. 217]) implies that if £ is
real analytic, then the limit cycles of £ are exactly the boundary cycles of
&. On the other hand, it follows from the previous paragraph that for every
x € B, the point = belongs to a boundary cycle of £ if and only if x is in the
boundary (relative to B considered with the topology induced on it by the
various orderings defined above) of the set of all fixed points of V.

Based on the observations mentioned in the preceding paragraphs (and a
few related observations), we associate to each decomposition C as in Theorem
A a flow configuration @, = ®,(C) of £, intended to code how the cells in C
are linked together by the flow of £. To each flow configuration ®, we associate
in turn a unique first-order language £(®), in such a way that the situation
described in the preceding paragraphs naturally yields an £(®¢)-structure M,
in which the lexicographic orderings of Theorem A, the associated forward
progression map § : B U {oo} — B U {oo} and the set of all z € B that
belong to some boundary cycle of £ are definable.
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If, in the situation of Theorem A, there is an open C' € Cyeg, then the induced
structure on C' in M, is not o-minimal (because the structure (C,<c¢, E¢)
described above is definable in M¢). Thus, to answer (ii) we need to work
with notions weaker than o-minimality. A natural weakening that includes
lexicographic orderings is provided by the rosy ordered theories introduced
by Onshuus [8]: the theory Tiex of the structure (R? <je, {y = 0}) is rosy
of UP-rank two, while every o-minimal structure is rosy of UP-rank one. (We
refer the reader to [8] for the relevant definitions; for a structure M, we write
UP(M) for the UP-rank of the theory of M.)

Note that our discussion above implies UP(M¢) > 2. The main result of
this paper is the following restatement of Dulac’s problem:

Theorem B. Assume that & is definable in an o-minimal expansion of the real
field, and let M be the L(®¢)-structure associated to some flow configuration
®¢ of §. Then

(1) € has finitely many boundary cycles if and only if UP(M;) = 2;
(2) if £ is real analytic, then £ has finitely many limit cycles if and only if
UP(M¢) = 2.

The proof of Theorem B is lengthy, but straightforward: we prove that
M admits quantifier elimination in a certain expanded language (Theorem
9.11). The main ingredient in this proof is a reduction—modulo the theory
of M¢ in the expanded language, roughly speaking—of general quantifier-free
formulas to certain quantifier-free order formulas, which allows us to deduce
the quantifier elimination for M, from quantifier elimination of the theory of
(R?, <jex, {y = 0}, 7), where 7 : R*> — {y = 0} is the canonical projection
on the z-axis. Under the assumption of having only finitely many boundary
cycles, the new predicates of the expanded language are easily seen to define
subsets of the various cells obtained by Theorem A that are finite unions of
points and intervals. Theorem B then follows by general UP-rank arguments.

As a corollary of Theorem B, Ecalle’s and ITlyashenko’s solutions of Dulac’s
Problem imply the following:

Corollary. Assume that £ is polynomial, and let M be the L(®¢)-structure
associated to some flow configuration ®¢ of £. Then UP(M,) = 2. O

It remains an open question whether, in the situation of the corollary, the
structures are definable in some o-minimal expansion of the real line. An
answer to this question, however, seems to go far beyond our current knowledge
surrounding Dulac’s Problem.

Finally, our proof of Theorem B gives rise to a second restatement of Dulac’s
problem that does not involve UP-rank: let G be the union of all 1-dimensional
C' € Cyeg that are transverse to £, all O-dimensional C' € C,eg and {oo}. Let G
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be the expansion of G by all corresponding orderings < and by the map §2|.
(Note that f*|¢ maps G into G.) We may view G¢ as a graph whose vertices
are the elements of G and whose edges are defined by §2.

Theorem C. Assume that ¢ is definable in an o-minimal expansion of the
real field, and let G¢ be as above. Then

(1) & has finitely many boundary cycles if and only if the structure induced
by G¢ on each 1-dimensional C' C G is o-minimal;

(2) if £ is real analytic, then £ has finitely many limit cycles if and only if
the structure induced by G¢ on each 1-dimensional C C G is o-minimal.

Our paper is organized as follows: in Sections 1-5, we establish Theorem
A and its consequences. Based on the latter, we define the notion of a flow
configuration and the associated first-order language in Section 6, where we
also give an axiomatization of the crucial properties satisfied by the models
M above. Some basic facts about the iterates of the forward progression
map are deduced from these axioms in Section 7. In Section 8, we extend our
axioms to reflect the additional assumption that there are only finitely many
boundary cycles, and we introduce additional predicates for certain definable
sets related to the sets of fixed points of the iterates of the forward progression
map. The quantifier elimination result is then given in Section 9, and we prove
Theorems C and B in Section 10. We finish with a few questions and remarks
in Section 11.

Acknowledgements. We thank Lou van den Dries and Chris Miller for their
suggestions and comments on the earlier versions of this paper.

Global conventions. We fix an o-minimal expansion R of the real field;
“definable” means “definable in R with parameters”.

For 1 < m < n, we denote by II,, : R® — R™ the projection on the first
m coordinates.

Given (z,y) € R?, we put (z,y)* = (y, —x).

For a subset A C R", we let cl(A), int(A), bd(A) := cl(A) \ int(A) and
fr(A) :=cl(A) \ A denote the topological closure, interior, boundary and fron-
tier, respectively.

For n € N, we define the analytic diffeomorphism ¢,, : R* — (—1,1)" by

On(T1y .. xy) = (:Ul/\/l+x%,...,xn/\/1—|—wi) . Given X C R", we write

X* := ¢,(X), and given a vector field n on R™ of class C*!, we write n* for the
push-forward (¢,,).n of n to (—1,1)™.
1. ROLLE DECOMPOSITION

Let U C R? be open and p > 1 be an integer. Let & = (113% + aga% be a
definable vector field on U of class C? (that is, the functions ay,as : U — R
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are definable and of class C?), and let
S):={z€U: a1(z) = as(z) =0}

be the set of singularities of £&. By the existence and uniqueness theorems
for ordinary differential equations [1, p. 28], ¢ induces a CP-foliation F* on
U\ S(&) of dimension 1. Abusing terminology, we simply call a leaf of this
foliation a leaf of &.

Remark. Put w := asdr — aidy; then S(§) is the set of singularities of w, and
the foliation F* is exactly the foliation on U \ S(€) defined by the equation
w = 0. Below, we will use this observation (mainly in connection with some
citations) without further mention.

Definition 1.1. Let v : I — U of class C?, where [ C R is an interval.
We call v a CP-curve in U and usually write I' := ~(I). If ¢t € I is such
that &H(y(t)) - v/(t) # 0, we say that v is transverse to ¢ at t; otherwise,
v is tangent to £ at ¢t. The curve ~ is transverse (tangent) to ¢ if v is
transverse (tangent) to £ at every ¢ € I.

A leaf L of £ is a Rolle leaf of ¢ if for every C'-curve « : [0,1] — U with
7(0) € L and (1) € L, there is a t € [0,1] such that £-(y(t)) - +v/(¢) = 0.

A cycle of £ is a compact leaf of £&. A cycle L of £ is a limit cycle of ¢ if
there is a non-compact leaf L’ of £ such that L C cl(L'). A cycle L of £ is a
boundary cycle of £ if for every open set V' C R? with V N L # (), there is a
non-compact leaf L' of £ such that V N L' # (.

Remark 1.2. Since ¢ is integrable in U \ S(§), every Rolle leaf L of £ is an
embedded submanifold of U \ S(§) that is closed in U \ S(£). In particular,
by Theorem 4.6 and Lemma 4.4 of Chapter 4 in [4], if U \ S(§) is simply
connected, then U\ (S(§) U L) has exactly two connected components such
that L is equal to the boundary in U \ S(&) of each of these components.

Lemma 1.3 (Khovanskii [6]). (1) Assume that U \ S(§) is simply con-
nected, and let L C U \ S(§) be an embedded leaf of £ that is closed
in U\ S(€). Then L is a Rolle leaf of £ in U.
(2) Let L be a cycle of §&. Then L is a Rolle leaf of €.

Sketch of proof. (1) Arguing as in the preceding remark, the set U \ S(§) has
exactly two connected components Uy and Uy, such that bd(U; ) N(U\S(&)) = L
for i = 1,2. The argument of Example 1.3 in [12| now shows that L is a Rolle
leaf of €.

(2) Since L is compact, L is an embedded and closed submanifold of R?.
Now conclude as in part (1). O

Definition 1.4. We call £ Rolle if S(¢) = 0, £ is of class C! and every leaf
of € is a Rolle leaf of &.
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We now let C be a CP-cell decomposition of R? compatible with U and S(€),
and we put Cy := {C € C: C CU}. Refining C, we may assume that & is
of class CP for every C' € Cy, and that every C' € Cy of dimension 1 is either
tangent or transverse to £. Refining C again, we also assume that

(I) a; and ay have constant sign on every C € Cy.

Such a decomposition C is called a Rolle decomposition for £, because of
the following:

Proposition 1.5. Let C' € Cy be open such that C N S(§) = 0. Then | is
Rolle. Moreover, if both a; and ay have nonzero constant sign on C', then either
every leaf of £|¢ is the graph of a strictly increasing C? function f : I — R, or
every leaf of |¢ is the graph of a strictly decreasing CP-function f : [ — R,
where I C R is an open interval depending on f.

Proof. If a;1|c = 0 or as|c = 0, the conclusion is obvious. So we assume that
a1|c and as|c have constant positive sign, say; the remaining three cases are
handled similarly. Let L be a leaf of £|c; we claim that L is the graph of a
strictly increasing CP-function f: I — R, where [ :=II,(L).

To see this, assume first that there are x,y;,yo € R such that (z,y;) € L for
i =1,2 and y; # yo. Since ¢ is of class CP, the leaf L is a CP-curve, so by
Rolle’s Theorem, there is an a € L such that L is tangent at a to 0/0y. But
this means that ai(a) = 0, a contradiction. Thus, L is the graph of a strictly
increasing CP-function f: I — R.

It follows from the claim that L is an embedded submanifold of C' and, since
CN S =0, that L is a closed subset of C. Thus by Lemma 1.3(1), L is a
Rolle leaf of &|c. O

2. ROLLE FOLIATIONS AND HAUSDORFF LIMITS OF ROLLE LEAVES

We continue working with £ as in Section 1, and we fix a Rolle decomposition
C for . We fix an open C' € Cy such that C' N S(€) = 0.

To simplify notation, we write £ in place of £|c throughout this section.

Let L be a leaf of £. Since L is a Rolle leaf of £, C'\ L has two connected
components Ur; and Up o, and L is the boundary of Ur; in C for ¢ = 1, 2.
Since £+(z) # (0,0) for all z € C and L is connected, there is an i € {1,2}
such that £*(z) points inside Uy ; for all 2 € L; reindexing if necessary, we
may assume that +(2) points inside Uy 5 for every leaf L of &.

Definition 2.1. For a point z € C, we let L be the unique leaf of £ such that
z € LS. For any subset X C C, we define

FYX) = L,

zeX
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called the ¢-saturation of X, and we put
LX) ={LS: z€ X}.

For X C C, we define a relation < on the set £¢(X) as follows: L <5 M if
and only if L C Uy (if and only if M C Uy ,).

Whenever ¢ is clear from context, we omit “£¢” in the definitions and nota-
tions above.

Note that in general the relation < may not define an order relation on

L(C):

Example 2.2. Let ( := —ya% + x%, and let ¢ : R2 — R be defined by
g(z,y) == (y — (x — 2))%.. Then g is a real analytic vector field on R? and
S(g¢) = {0} U{(z,y) : y = ax —1}. Let also C be the cell (a, ), where
a,(:(0,1) — R are defined by a(z) :== 2 — 2 and f(z) :== = — 1.

Then C'NS(g¢) = 0, and since every leaf of ¢ is a Rolle leaf of (, the vector
field ¢gC|c is Rolle. However, <<‘éC is not an ordering of £(C): pick a leaf L of
¢ (that is, a circle with center (0,0)) such that L Ngr(«) contains two points.
Then L N C consists of two distinct leaves L; and Ly of g(|c. Since (*(2)
points outside the circle L for every z € L, we get L; C Uy, and Ly, C Uy, 1,
that is, Ly <% Ly and Ly <% L.

However, for certain X the relation <x is a linear ordering of £(X), as
discussed in the following lemma. For a curve v : I — C', we write

L(t) = L’Y(t) for all t € [
in this situation, we have F(I') = (J,o; L(t).

Lemma 2.3. Let v: I — C be a CP-curve transverse to £, where I C R is
an interval.
(1) If I is open, then F(I') is open.
(2) The relation <r is a linear ordering of L(I"), and the map t — L(t) :
I — L(T) is order-preserving if &X(y(t)) - +/(t) > 0 for all t € I and
order-reversing if €-((t)) -~/ (t) < 0 for all t € 1.

Proof. (1) Assume that I is open, and let ¢ € I. Because £ is C? and nonsingu-
lar and ~y is transverse to &, by Picard’s Theorem there is an open set B; C C
containing y(t) such that B, C F(I'). Put B := {J,c; Bi; then I' € B C F(I'),
so F(I') = F(B). Since B is open, it follows from Theorem III.1 in [1] that
F(T") is open.

(2) Since 7y is transverse to £ and each L(t) is Rolle, the map t — L(t) :
I — L(T') is injective. It therefore suffices to show that either

s<t < L(s)<r L(t) for all s,t € I,
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or
s<t << L(t) <r L(s) for all s,t € 1.

Since 7 is transverse to &, the continuous map t — &X(y(¢)) -+/(t) : I — R
has constant positive or negative sign. Assume it has constant positive sign;
the case of constant negative sign is handled similarly. Then for every ¢ € I,
the set
Fop={v(s): sel,s<t}

is contained in Upyy,1. Hence L(s) C Upy,: for all s € I with s < t, that is,
L(s) < L(t) for all s € I with s < ¢. Similarly, L(t) < L(s) for all s € I
with s > t, and since t € [ was arbitrary, the lemma follows. O

We assume for the rest of this section that C' is bounded. Let £- be the
1-form on C' defined by

_ €le
gl
Then &¢ is a bounded, definable CP-map on C, so by o-minimality, there is
a finite set Fio C fr(C) such that ¢ extends continuously to cl(C) \ Fr; we
denote this continuous extension by &- as well.

Let ¢,d € Rand «, 5 : (¢,d) — R be definable and C? such that C' = («, ).
By o-minimality and because C' is bounded, the limits a(c) = lim,_. a(z),
a(d) = lim, 4 a(z), B(c) = lim,_.. B(z) and B(d) := lim,_.4 B(z) exist in R.
The points of the set

Ve = {(c, a()), (d, a(d)), (¢, B(c)), (d, 5(d)) }

are called the corners of C.

Example 2.4. In Example 2.2, we have Fo C Vi and both g¢ - (0/0x) and
gC-(0/0y) have constant nonzero sign. The next proposition shows that under
the latter assumptions, the situation of Example 2.2 is as bad as it gets.

Proposition 2.5. Suppose that Fo C Vg, ailc # 0 and as|c # 0. Let
v :[0,1] — C be a CP-curve transverse to £, and let t; € (0,1) be such that
to <ty <ty <--- and t; — 1. Then the sequence (cl(L(t;))) converges in the
Hausdorff metric to a compact set K :=limcl(L(t;)) C cl(C), such that
(i) IL(K) =[a,b] withc <a<b<d;
(ii) each component of K NC is a leaf of &;
(iii) K NIl (a,b) = gr(f) for some continuous function f : (a,b) — R.

Proof. By Proposition 1.5, we may assume that for every ¢ € [0, 1], the leaf
L(t) is the graph of a strictly increasing CP-function f; : (a(t),b(t)) —
R (the other cases are handled similarly). Since C' is bounded, the limits
fi(a(t)) = limg_qq) fi(x) and fi(b(t)) := limg_,q) fi(x) exist, and we also
denote by f; : [a(t),b(t)] — R the corresponding continuous extension of
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ft- Then cl(L(t)) = gr(f:). By Lemma 2.3, we may also assume that the
map t +— L(t) : [0,1] — L(I') is order-preserving (again, the other case is
handled similarly). Finally, since each f; is strictly increasing and the map
t— L(t) : [0,1] — L(I') is order-preserving, it follows that fs(z) > f;(x) for
all s,t € [0, 1] such that s <t and = € (a(s),b(s)) N (a(t), b(t)).

Since each cl(L(t;)) is connected, the set K is connected, so II;(K) is a
interval [a, b], which proves (i). It follows in particular that for every x € (a, ),
there is an open interval I, C (a,b) containing = such that I, C (a(t;),b(t;))
for all sufficiently large i. Thus by our assumptions,

(%) for every = € (a,b) we have fi,|;, > fi,,. |1, for sufficiently large 1.

Next, we show that K N C' is an integral manifold of £. Fix a point (z,y) €
K N C; it suffices to show that there is an open box B C C' containing (z,y)
such that K N B is an integral manifold of £&. Let B = I x J be an open box
containing (z,y) such that I C I,. Since ai(x,y) # 0, we may also assume
(after shrinking B) that there is an € > 0 such that |ai(2',y")| > € for all
(',y') € B; in particular, there is an M > 0 such that f;,|; is M-Lipshitz
for all sufficiently large i. Hence by (x), the function f : I — R defined by
f(2') == lim; . ft,(2’) is Lipshitz and satisfies K N (I x R) = K N B = gr(f).
Finally, shrinking B again if necessary, the fact that F* is a foliation gives
that K N B is an integral manifold of &, as required.

Since K is compact and K NC'is an integral manifold of £, every component
of KNC'is a leaf of £. It also follows from the previous paragraph that K NC
is the graph of a continuous function g : IT; (K N C') — R, which proves (ii).

Let now z € (a,b) be such that x ¢ II;(K N C). Then (z,a(x)) or (z, 3(x))
belongs to K, because (a b) C II1(K); by (x) we have (x,0(z)) ¢ K, so
(z,a(z)) € K. If (§c - £)(z,a(z)) # 0, then by the same arguments as
used for (ii), we conclude that there are open intervals I,J C R such that
(x,a(x)) € I xJand KN (I xJ)is the graph of a continuous function defined
on I. Therefore, part (iii) is proved once we show that ({c - 2)(z, a(z)) # 0
for all z € (a,b) \ II;1 (K NC).

Assume for a contradiction that there is an z € (a,b) \ II; (K N C) such that
(&c - &)z, alz)) = 0. Let M > |&/(z)|, and let I,J C R be open intervals
such that I C I, and |ag/a1| > M on B := I x J. Since f;,(x) — a(z), it
follows from the fundamental theorem of calculus for all sufficiently large ¢
that f;,(z;) = a(z;) for some z; € I, a contradiction. O

3. PIECEWISE TRIVIAL DECOMPOSITION

We continue working with ¢ as in Section 1, and we adopt the notations used
there. Note that £* (as defined at the end of the introduction) is a definable
vector field on U* of class CP, and that C is a Rolle decomposition of R? for ¢
if and only if C* := {C*: C € C} is a Rolle decomposition of (—1,1)? for £*.
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Let C' C U be a bounded, open, definable CP-cell such that £|c is Rolle.
To detect situations like the one described in Example 2.2, we associate the
following notations to such a C: there are real numbers ¢ < d and definable
CP functions a, 8 : (¢,d) — R such that C' = (a,3). Given a C'-function
d : (¢,d) — R such that a(x) < §(z) < f(x) for all x € (¢,d), we define
os: C — R by

os(x,y) =& (w,y) - (5’(190)) ’

Note that for each z € (c,d), there are by o-minimality a maximal af (z) €
(a(z), B(z)] and a minimal 3§ (x) € [a(x), 3(x)) such that the function o, has
constant sign on {r} x (a(z),af(x)) and the function oz has constant sign
on {z} x (8§ (z), B(x)); we omit the superscript “C” whenever C is clear from

context. Note that ag, 3y : (¢,d) — R are definable.

Definition 3.1. A CP-cell decomposition of R? compatible with U, bd(U) and
S(€) is called almost piecewise trivial for ¢ if

(I) every C € Cy of dimension 1 is either tangent or transverse to &;
(IT) the components of £ have constant sign on every C' € Cy;

and for every open, bounded C' € Cy such that C' N S(§) = 0, the following
hold:

(IT) Fo C Ve

(IV) the maps ayg, fy : (¢,d) — R are continuous;

(V) the map o, has constant sign on the cell (o, o), and the map o5 has
constant sign on the cell (3, 3).

We call C piecewise trivial for £ if C* is almost piecewise trivial for £*.

Example 3.2. Let ( := —y% +x%, and let C be the cell decomposition of R?

consisting of the sets of the form {(z,y): x*0, y*0} with *,x € {=,<,>}.
Then C is piecewise trivial for (.

Remarks 3.3. (1) Any piecewise trivial decomposition for £ is a Rolle

decomposition for &.

(2) If U is bounded, then C is almost piecewise trivial for £ if and only if
C is piecewise trivial for .

(3) We obtain a piecewise trivial decomposition for £ in the following way:
first, obtain a CP-cell decomposition C compatible with U, bd(U) and
S(€) satistying (I) and (II). Then, to satisfy (III)~(V), we only need to
refine I1; (C) := {II,(C) : C € C}.

We now fix a piecewise trivial decomposition C of R? for £&. The name
“piecewise trivial” is justified by:
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Theorem 3.4. Let C' € Cy be open such that CNS(§) = 0. Then the relation
< ¢ on L(C) is a linear ordering.

To prove the theorem, we fix a bounded, open C' € Cy;y such that CNS(E) = 0.
Establishing the theorem for this C' suffices: if the theorem holds for every
bounded, open D € C such that D N S(§) = ), then the theorem holds with
C* and &* in place of C and £ (because every D € C* is bounded). Since ¢y is
an analytic diffeomorphism, it follows that the theorem holds for every open
D € C such that DN S(§) = 0.

We need quite a bit of preliminary work (see the end of this section for
the proof of the theorem). For Lemma 3.5 and Corollary 3.6 below, we fix a
CP-curve 7 : [0, 1] — C transverse to &.

Lemma 3.5. Let t; € (0,1), for i € N, such that t; — t € [0,1]. Then
C Nlimcl(L(t;)) = L(t).

Proof. From Proposition 2.5 we know that C'N K is a union of leaves of &|¢,
where K :=limcl(L(¢t;)). Thus, since y(t;) — ~(t) and ~v(t) € L(t), it follows
that L(t) C CNK. To prove the opposite inclusion, we may assume by Propo-
sition 1.5 that every leaf of £|c is the graph of a strictly increasing function
(the other case is handled similarly). By Proposition 2.5 again, II; (K) = [a, 0]
with ¢ < a < b < d, and there is a continuous function f : (a,b) — R such
that K N ((a,b) x R) = gr(f).

Assume for a contradiction that there is a leaf M of £|¢ such that M # L(t)
and M C C N K. Then L(t) and M are disjoint subsets of gr(f); say L(t) =
gr(fy), where f; : (a(t),b(t)) — R, and M = gr(g), where g : (a’,V)) —
R. We assume here that ¢’ < b < a(t) < b(t); the other case is again
handled similarly. By our assumption, ¢ < a(t) and hence lim,_,+ fi(x) €
{a(a(t)), B(a(t))}. We assume here that lim, .+ fi(x) = a(a(t)), the other
case being handled similarly. Then by the Mean Value Theorem, for every e >
0 there is an = € (a(t), a(t) +¢€) such that f/(z) > o/(x), that is, o, (z, fi(z)) <
0. It follows from (V) that

() the map o, has constant negative sign on («, ap).

On the other hand, b < d, and we may assume that lim, - g(z) = a(b'):
otherwise, lim, .,- g(z) = $(b'), and since lim,_., t)f( r) = lim, o)+ fe(z) =
a(a(t)), we can replace M by a leaf of £|c that is contained in gr( ) an

has the desired property. But lim, .y- g(z) = «a(b') means (as above) that
for every € > 0 there is an x € () — ¢,0') such that ¢'(z) < o/(x), that is,
0oz, g(x)) > 0. This contradicts (x), so the lemma is proved. O

Put F:= F(v((0,1))); note that F' is open by Lemma 2.3(1).

Corollary 3.6. C N bd(F) = L(0) U L(1); in particular, there are distinct
jg,jl S {1, 2} such that C \ Cl(F) = UL(O),jo U UL(I) j1
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Proof. Let z € cl(F)NC, and let z; € F be such that z; — z. Let t; € (0,1)
be such that z; € L(t;); passing to a subsequence if necessary, we may assume
that t; — ¢t € [0,1]. Then z € C Nlimcl(L(t;)), so z € L(t) by Lemma 3.5.
Since F' is open by Lemma 2.3(1), it follows that CNbd(F) C L(0)UL(1). On
the other hand, by Lemma 2.3(2), there is a j € {1,2} such that L(t) C U,
for all ¢ € (0,1] and L(t) C Uy for all t € [0,1), where 5/ € {1,2} \ {j}.
Hence L(0) U L(1) C CNbd(F(T')), and the corollary is proved. O

Definition 3.7. Let 7 : [0,1] — U be continuous. We call 7 piecewise
CP-monotone in ¢ if there are tp == 0 < t] <ty < -+ < tp <ty =1
and * € {<,>} such that for all i = 0,...,k, the restriction 7,4, ) is C?,
and either £X(7(¢)) - 7/(t) = 0 for all t € (t;,t;11) or EX(7(¢)) - 7'(¢) * 0 for
all t € (t;,t;41). In this situation, we also say that 7 is x-piecewise CP-
monotone in {. We call such a 7 tangent to ¢ if each 7,4, ) is tangent to

.

Lemma 3.8. Let v,w € C. Then there is a curve 7 : [0,1] — C that is
piecewise CP-monotone in & and satisfies 7(0) = v and 7(1) = w.

Proof. If L, = L, then there is a CP-curve 7 : [0,1] — L, such that 7(0) = v
and 7(1) = w, and we are done. So we assume from now on that L, # L,.
Let juw € {1,2} be such that w € Uy, ;,,, and put

L)< =1
T > i iy = 2

By o-minimality, there is a definable CP-curve 7 : [0, 1] — C' such that

(I) 7(0) = v and 7(1) = w.
Again by o-minimality, there are ty:=0 < t; < --- <t} < tx41 := 1 such that
for each 1 =0,...,k,

(IT) the map ¢ — &+(7(¢)) - 7/(t) has constant sign on (t;,t;11).

By Khovanskii theory [12]|, we may also assume that for every i = 0,... k,

(III) either T((ti,ti_,_l)) N (Lv U Lw) = @ or T<<ti7ti+1)) g Lv U Lw-

We now proceed by induction on k, simultaneously for all v,w € C and 7
satisfying (I)—(III), to prove that 7 can be changed into a curve that is s,,-
piecewise CP-monotone in . If £ = 0, then 7 is *,,-piecewise CP-monotone in
&, so we are done. Therefore, we assume that k£ > 0 and that the claim holds
for lower values of k.

Since 7(1) = w ¢ L, and L, is closed in C, there is a maximal ¢ € [0,1)
such that 7(t) € L,, and by our choice of t1,...,t;, we have t = ¢; for some
i €{0,...,k}. If ¢ > 1, we replace 7|4, by a C? curve 7y : [0,t;] — L, such
that 71(0) = v and 7 (¢;) = 7(¢;), and we reindex t;,... g1 as tq, ..., tr_iyo.
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Hence by the inductive hypothesis, we may assume that i < 1 and 7([0,1]) C
L,uUyp, .. Put v’ :=7(t;); we now distinguish two cases:

Case 1: v € L,. Then *,, = %, so by the inductive hypothesis (and
rescaling), there is a curve 7y : [t1, 1] — C that is *,,-piecewise CP-monotone
in ¢ and satisfies 7 (t;) = v’ and 7 (1) = w. Now replace 7|y, 1) by 7.

Case 2: v ¢ L,. Then we must have £X(7(t)) - 7(t) *,, 0 for all ¢ € (0,¢1). If
v € Ly, the lemma follows by a similar argument as in Case 1, so we assume
that v' ¢ L,. We claim again that *,.,, = %*,, in this situation, from which
the lemma then follows from the inductive hypothesis as in Case 1.

To see the claim, note that by Corollary 3.6, the complement of F'(7([0,%]))
in C' has two connected components Uy, ; and U, ,, where 7,7 € {1,2} are
distinct. By the above, j must be different from j,,, so w € ULU,J,,, that is,
J" = Juw, which implies j,., = ju as required. U

Lemma 3.9. Let 7 : [0,1] — C' be piecewise CP-monotone in § such that T
is not tangent to £. Then there is a C? curve 7 : [0,1] — C' such that v is
transverse to C, v(0) = 7(0) and (1) = 7(1).

Proof. Let tg:=0 <t; <ty <--- <ty <try1 :=1be asin Definition 3.7. We
work by induction on k; if k£ = 0, then by hypothesis 7 is transverse to £, and
we take v := 7. So we assume that k£ > 0; for the inductive step, it suffices to
consider the the case £ = 1. The hypothesis on 7 then implies that at least
one of 7|,y and 7|q, 1) is transverse to &; so we distinguish three cases:

Case 1: both 7|y, and 7|y, 1) are transverse to . By Picard’s theorem,
there are an open neighborhood W C C' of 7(t;) and a CP-diffeomorphism
f:R? — W such that f(0) = 7(t;) and f*¢ = 0/0x, where f*¢ is the pull-
back of £ via f. Then for some e > 0, the continuous curve f~'o 7|y —cs 1o 18
C? and transverse to 0/0z on (t; —e, t1)U(t1, t1+€). Using standard smoothing
arguments from analysis, we can now find a CP-curve 1 : (t; — €, t; +¢) — R?
that is transverse to 9/dz and satisfies n(t) = f~1(7(t)) for all t € (¢t; —€,t; —
€/2) U (t1 + €/2,t1 + €). Now define « : [0,1] — C' by

(1) = 7(t) fO<t<t,—eort;+e<t<l,
=Y fa) it —e<t<t te

Case 2: T|(oy,) is transverse to £ and 7|¢, 1) is tangent to £ Since 7([t,1])
is compact, there are (by Picard’s theorem again) sp := t; < 53 < -+ <
s; < si41 := 1, open neighborhoods W; C U of 7(s;) and CP-diffeomorphisms
fi 1R — W;, for i = 0,...,1+ 1, such that 7([t;,1]) € Wy U --- U Wy,
fi(0) = 7(s;) and f;¢ = 0/0x for each i. We assume that [ = 0, so that so = ¢;
and s; = 1; the general case then follows by induction on [.
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Let u € (t1,1) be such that 7(u) € Wy N W;. Working with fy similarly as
in Case 1, we can replace 7|j, by a CP-curve n : [0,u] — C' transverse to
¢ such that 7(0) = 7(0) and n(u) = 7(u). Define n(t) := 7(t) for t € (u,1];
repeating the procedure with 1 and f; in place of 7 and fjy, we obtain a C?-
curve v : [0,1] — C that is transverse to £ and satisfies 7(0) = 7(0) and
v(1) = 7(1), as desired.

Case 3: 7|y, is tangent to £ and 7y, 1) is transverse to {. This case is
similar to Case 2. O

Combining Lemmas 3.8 and 3.9, we obtain:

Corollary 3.10. Letu,v € C be such that L, # L,. Then there is a C? curve
v :[0,1] — C such that v(0) = u, v(1) = v and ~ is transverse to §. O

Proof of Theorem 3.4. Let M,L € L(C) be distinct and choose v € M and
w € L. By Corollary 3.10, there is a CP-curve v : [0,1] — C such that
7(0) = v, y(1) = w and v is transverse to £&. Hence ¢t — &1 (y(t)) - ¥/(t) has
constant nonzero sign on [0, 1]; this shows that < is irreflexive. Transitivity
follows by a similar argument. 0J

4. FOLIATION ORDERINGS

Let £ = ala% + aQ% be a definable vector field of class C! on R%2. We fix a

piecewise trivial decomposition C of R? for &; refining C if necessary, we may
assume that C is a stratification. To simplify statements, we put

Creg :={C €C: CNSE) =0}

For instance in Example 3.2, the piecewise trivial decomposition C is a strati-
fication and Crg = C \ {0}.

Remark 4.1. C being a stratification has the following consequence: for every
1-dimensional C' € C, there are exactly two distinct open D € C such that
CNfr(D) # 0, and for each of these D we have C' C fr(D).

Let V C R?\ S(£) be an integral manifold of £, that is, a 1-dimensional
manifold tangent to £. Given u,v € V', we define u <§, v if and only if there is
a C' path v :[0,1] — V such that v(0) = u, v(1) = v and &(y(¢)) - 7/(t) > 0
for all t € [0,1].

Lemma 4.2. Assume that V is connected and not a compact leaf. Then the
relation <§/ defines a dense linear ordering of V without endpoints.

Proof. Let u,v € V be such that u # v. Since V' is connected, we get u <§/ v or

v <€ u. On the other hand, if there are C'-paths 7,§ : [0,1] — V such that
7(0) = 6(1) = u, ¥(1) = 6(0) = v and {(y(t)) - 7'(t) > 0 and {(4(¢)) - &'(t) > 0
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for all ¢ € [0, 1], then ([0, 1]) U ([0, 1]) is a compact leaf of £ contained in V;
since V is connected, it follows that V' is a compact leaf, a contradiction. [J

We now fix a C' € Cyg such that dim(C) > 0.

Definition 4.3. The foliation of ¢ induces an ordering <% on C' as follows:

e Suppose that C' is open, and let u,v € C. Then every leaf of {|¢ is
non-compact by Proposition 1.5. Thus, we define u <£C v if and only
if L, <<g L,or L,=L, and u <£Lu v.

e Suppose that dim(C) = 1 and C'is tangent to £&. Then C'is a connected,

non-compact integral manifold of £, so we define <£c as before Lemma
4.2.
e Suppose that dim(C') = 1 and C' is transverse to . Let u,v € C; we

define u <§, v if and only if there is a C''-curve 7 : [0,1] — C such

that &L (y(¢)) -9/(t) > 0 for all t € [0, 1].
As before, we omit the superscript ¢ whenever it is clear from context.
A <c-interval is a set A of the form (a,b) := {c € C': a*y c*9 b} with
a,b e C,or(a,00):={ceC: axc}witha € C,or(—00,b) :={ceC: cxc}
with b € C, where *, %1, %9 € {<¢, <¢}; we call A open if x = % = %y =<¢.

Lemma 4.4. The ordering <¢ is a dense linear ordering on C' without end-
points. Moreover, if dim(C) = 1, then every <c-bounded subset of C' has a
least upper bound.

Proof. Tt is clear from the definition that C' has no endpoints with respect to
<¢. Density and linearity follow from Lemmas 2.3 and 4.2 if dim(C') = 1, and
if C' is open, they follow from Lemma 4.2 and Theorem 3.4.

For the second statement, assume that dim(C) =1 and let o : (0,1) — R?
be C'! and injective such that C' = «((0,1)). If C'is tangent to &, then the map
t— &(a(t)) - /(t) has constant nonzero sign, and if C' is transverse to £, then
the map t — &1 (a(t))-o/(t) has constant nonzero sign. Thus in both cases, the
map «a : ((0,1),< ) — (C,<¢) is either order-preserving or order-reversing;
the second statement follows. O

We assume for the remainder of this section that either C' is open, or C' is
1-dimensional and tangent to &.

Definition 4.5. For each leaf L of |, it follows from Proposition 1.5 that
fr(L) consists of exactly two points P;, Py € fr(C) U {oco}, where, for x €
{>, <}, P} is the unique of these two points with the property that for every
Cl-curve v : [0,1) — L satisfying v(0) € L and lim; ., v(t) = P}, we have
E(y(t)) -~'(t) % 0 for all t € [0,1). In this situation, we define the forward
projection fo : C — fr(C) U {oo} and the backward projection b¢ :
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C — fr(C) U {0} as
fo(z) == P;. and be(z):=P;, forallzeC.

From now on we assume that C'is open, and we let D € C,, be of dimension
1 and contained in fr(C') such that D is transverse to .

Lemma 4.6. Either D C fo(C) and D Nbo(C) = 0, or D C be(C) and
Dnfe(C)=10.

Proof. Let o : (0,1) — R? be a definable C'-map such that D = «((0,1))
and & (a(t)) - o/(t) > 0 for all t € (0,1). Thus, either £(a(t)) points into
C for all t, or {(a(t)) points out of C for all t. In the first case, we have
fc(C)N D =0, and in the second case b (C) N D = (. Moreover by Picard’ s
Theorem, for every w € D there is an integral manifold V' C R? of £ such that
V' N D = {w}; hence, either w € f(C) or w € b (C). O

Lemma 4.7. The maps fcl;-1py and bely-1(py are increasing.

Proof. We prove the lemma for fo. Let u,v € C' with u <¢ v be such that
fo(u),fo(v) € D; we may clearly assume that L, <¢ L,, and hence (by
Picard’s Theorem) that fo(u) # fo(v).

We assume here that D = gr(a), where a : (a,b) — R is a definable C'-
function; the case D = {a} x (b, ¢) is handled similarly. Let also 3 : (a,b) — R
be a definable C'-function such that C' = («, 3) or C = (3, a); we assume here
the former, the latter being handled similarly. For s € [0, 1], we put

as(t) == (1 —s)a(t) +s6(t), a<t<b.

Then for every t € (a,b), we have lim,_¢ as(t) = a(t) and lim,_o o (t) = o/(¢).

Let now a < @’ < b < b be such that fo(u), fo(v) € grafwwy). Since D
is transverse to &, there is an ¢ > 0 such that gr as|(a/,b/) is transverse to &
for all s € [0,¢). It follows from the previous paragraph that the map t —
0a(t,a(t)) has the same constant nonzero sign as the map ¢ — o, (t, as(t)),
for all s € (0,€). Therefore by Lemma 2.3(2) and the definition of <p, we
have fo(u) <p fo(v), as required. O

Corollary 4.8. Let I C C be a <c¢-interval. Then each of fo(I) N D and
bo(I) N D is either empty, a point or an open < p-interval.

Proof. Assume that a,b € fo(I) N D are such that a <p b, and let ¢ € D be
such that a <p ¢ <p b; it suffices to show that ¢ € fo(I). By Lemma 4.6,
c € fo(C). Let u,v,w € C be such that a = fo(u), b = fo(v), ¢ = fo(w) and
u,v € I. Then u <¢ w <¢ v by Lemma 4.7, as required. 0
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We fix a set Ec C C such that |[Ec N L| = 1 for every L € £(C) and put
<p.:=<c |g., and we denote by e the unique element of £ N L, for every
LeL(CO).

Remark. Themap L — LNEq: (L£(C), <¢) — (E¢, <g,) is an isomorphism
of ordered structures.

Proposition 4.9. Let g € {f,b}. If D C go(C), then D, := g;'(D) N E¢
is an <g.-interval, and the map gc|p, : (Dg, <g. |p,) — (D,<p) is an
isomorphism of ordered structures.

Proof. The transversality of D to £ implies that if u € D and Ly, Ly, € L(C)
are such that w = Py = P; or uw = P; = Py, then Ly = Ly. Thus by
Lemma 4.7, the map gc¢|p, is strictly increasing, so the lemma follows. ([l

5. PROGRESSION MAP

We continue working with ¢ and C as in Section 4, and we adopt all corre-
sponding notations. We let
(i) Copen be the collection of all open cells in Cyeg;
(i) Cian be the collection of all cells in C,e; that are of dimension 1 and
tangent to &;
(iii) Cirans be the collection of all cells in C,e, that are of dimension 1 and
transverse to &; and
(iv) Cgingle the collection of all p € R? such that {p} € Cye,.

By Lemma 4.6 and since C is a stratification, there are, for each C' € Cirans,
distinct and unique cells C®, CT € Copen such that CNcl(C) # 0, CNel(C) # 0
and

C C feo (C®) and O C b (O).
Similarly, there are, for each p € Csngle, distinct and unique cells p®, pf €
Copen U Cran such that p € cl(p®), p € cl(pf) and

P € e (p°) and p € by (p).

(For p € Cgingle, we use the fact that there is an open box B containing p such
that the leaf of £|p passing through p is a Rolle leaf.) For each C € Ciay, we
fix an arbitrary element ec € C'; note that for each z € C, C is the unique
leaf L, of {|¢ containing z.

We now define f,b" : R? — R? U {co} by

fc(z) if z € C € Copen UCray and e, <j_ 2,
f(z) = €L . if z € C € Copen U Cran and z <z er,_,
(bcf ’ch) (Z) if z € C € Cirans U Csingle,
z if z € S(¢)
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and
bo(2) if z€ C € Copen UCan and z <y _ ey,
o) = er. » if z € C € Copen U Cran and e, <z, 2,
(Feole,,)  (2) if 2 € O € Cirans U Csinge,
z if z € S(§).

Definition 5.1. We define f,b : R? U {oo} — R*U {oco} by
() = {f’(z) if € R? and (2) ¢ S(¢),

00 otherwise

and

00 otherwise.

b(z) i {b’(z) if € R? and b'(2) ¢ S(€),

We call { a progression map associated to £ and b a reverse progression
map associated to £&. We put

Cl = Ctrans U csingle U U {EC : C € Copen} U {{60} . C € Ctan}

and let B := |JCy; note that f(R?) C BU{oc} and b(R?) C BU{oo}. Finally,
we define f : R? U {oo} — R? U {oc} by {%(z) := z, and for k£ > 0 we define
¥ R2U {oo} — R? U {oo} inductively on k by f*(z) := §f(§*~1(z)).

Proposition 5.2. Let X € C; and L be a compact leaf of §. Then | XNL| < 1.

Proof. If X € Cgingle or X = {ec} for some C' € Cian, the conclusion is trivial.
By Lemma 1.3(2), L is a Rolle leaf of &; in particular, | XNL| < 1if X € Cyaps.
So we may assume that X = E¢ for some C € Copen. Then there is at most
one L' € L(C') contained in L: otherwise by Corollary 3.10, there is a C'-curve
v : [0,1] — C transverse to £ such that v(0),v(1) € L, a contradiction. It
follows again that [ X N L| < 1. O

Proposition 5.3. There is an N € N such that for every x € B, the leaf of £
through x is compact if and only if f¥(z) = z.

Proof. Let x € B; if §*(z) = z for some k > 0, then the leaf of ¢ through
x is compact. For the converse, we assume that the leaf L of £ through x is
compact. Since L is compact, we have LNS(&) = (), that is, {*(x) € B for every
k > 0. Thus with n := |Cyeg|+ 1, there are a C' € Cyeg and 0 < ky < ky < n such
that f*1(x),{*(z) € C. It follows from Proposition 5.2 that f*(z) = *2(z),
and hence that

r =0 (@) = B o (@) = @),

Since n is independent of x € B, the number N := n! will do. O
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6. FLOW CONFIGURATION THEORIES

Inspired by the previous sections, we now define a first-order theory as
described in the introduction. Our main goal, reached in Section 9, is to show
that this theory admits quantifier elimination in a language suitable to our
purposes.

Definition 6.1. A flow configuration is a tuple
O = (q)opena (I)tana (I)tran57 (I)singlen bea ¢f7 IIliIl, max, N@)
such that ®open, Pran, Pirans and Dging1e are pairwise disjoint, finite sets,

¢b7 ¢f : CI)‘crans U(I)single - (I)open U (I)tam

min, max : (I)open U (I)tan U (I)trans ? (bsingle U {OO}

and Ny € N. In this situation, we shall write a® and af instead of ¢°(a) and
(bf(a), for a € (I)trans Uq)single-

Example 6.2. Let ¢ be a vector field on R? of class C' and definable in
an o-minimal expansion of the real field, and let C be a piecewise trivial cell
decomposition of R? that is also a stratification. We define Copen, Cran, Cirans,
Ceingle and T Cirans UCsingle — Copen UCran as in Section 5, and we let N € N
be as in Proposition 5.3.

Let C € Copen U Cran U Cirans- If there is a point in Cgpgle that is contained

in the closure of every set {:c cC: x<s a} with a € C, we let min(C') be

any such point; otherwise, we put min(C') := oo. Similarly, if there is a point

in Cgingle that is contained in the closure of every set {az eC: a <g :1:} with

a € C, we let max(C') be any such point; otherwise, we put max(C') := oo.
Then the tuple

(I)g = CI)£<C) = (Copenactana Ctrans>csinglea b’ f; min, max, N)
is a flow configuration associated to &.

For the remainder of this section, we fix a flow configuration .

Definition 6.3. Let £(®) be the first-order language consisting of

(i) a unary predicate C' and a binary predicate <¢, for each C' € ®gpen U
(I)tan U (Dtrans;
(ii) a unary predicate E¢ for each C' € ®pen and a constant symbol ec for
each C € ®y,y;
(iii) a constant symbol s, and a constant symbol ¢ for each ¢ € Pgingle;
(iv) unary function symbols f and b;
(v) constant symbols rf, and s for each C' € ®yan and g € {f,b}.
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Throughout the rest of this paper, for m € N we write ™ for the £(®)-word
consisting of m repetitions of the symbol f, and similarly for b™.

Example 6.4. Let £ and C be as in Example 6.2; we adopt the notations used
there. We associate to & a unique L£(®¢)-structure My = M¢(C) as follows:
(i) the universe M of M; is R*\ S(§) U{c0};
(i) for each C' € Copen U Cian U Cirans, the predicate C is interpreted by
the corresponding cell in C, and the predicate <. is interpreted by the
union of <¢, with {(min(C),a) : a € C}, and {(a, max(C)) : a € C};
(iii) for each C' € Coypen, the predicate E¢ is interpreted by the set E¢
described in Section 5, and for each C € C;,n, the constant ec is inter-
preted by the element e € C' picked in Section 5;
(iv) the constant s is interpreted as oo, and for each ¢ € Cyingle, the constant
c is interpreted as the corresponding element of Cgingie;
(v) the functions f and b are interpreted by the corresponding forward
progression and reverse progression maps;
(vi) for each C' € Cipans and g € {f, b}, the constants rg, and sg, are inter-
preted as the lower and upper endpoints, respectively, of the interval

9(C) in Ecs U {min(C?), max(C*?)}.

Definition 6.5. We put ®¢ := Pypen U Pran U Pirans; intending to capture the
theory of the previous example, we let T'(®) be the £(®)-theory consisting of
the universal closures of the formulas in the axiom schemes (F1)—-(F15) below.

(F1) The formulas

(a) /\ —c=dA /\ -Ce,

Cvdeésinglevc#d Ceq)singlevce':bo
) A e=sn /\ Cs
Ceq)single Ceq)()
(c) z=sV \/ x:c\/\/ <Cx/\ /\ ﬂDa:>.
CE(I)single Cedo Dedy,DFAC

(F2) For each C' € ®g the sentences stating that <¢ is a dense linear ordering
of C, together with Cz — (z <¢ max(C) A min(C) <¢ z).

Remark. We do not wish to state that <o is a linear order on all of C U
{min(C), max(C)}, because it is possible that min(C') = max(C'). The axioms
(F2) suffice for our purpose, which is to be able to refer to C' as the <-interval
between min(C') and max(C').

(F3) The formula /\ Cec N\ /\ Ecx — Cx.
Cedian CeP@open
(F4) For each C' € ®,pe, the sentences stating that the restriction of <¢ to
E¢ is a dense linear ordering.
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(F5) For each (g,h) € {(f,b),(b,f)} and * € {<, >} the formulas

(a) gs=s A (—z =5 — —gr =x),

) A (nge=s—bge= o),

c€Pgingle

(c) /\ Cgr — Ecgr A /\ Cgr — gr = ec,
Cedopen Cedian

(d) /\ (Cx Aec *c x xc gec) — gr = gec,
Cedtan

(e) /\ (Cx Aec*c x xc heg) — gr = ec.
Cedtan

(F6) For each C € Copey and g € {f, b} the formula
(Ecx N Ecy ANgr =gy) — (gz =sVa =y).
(F7) For each ¢ € Dgingle and g € {f, b}, the sentences gc = e if ¢? € Py
and Egsgeif ¢ € Ogpep.
(F8) For each C' € ¥y and (g,h) € {(f,b),(b,f)} the sentences stating
that g(C) is an interval I; in Ece and g|c : C — I; is an order-
isomorphism.

(F9) For each C' € ®pen and (g, h) € {(f,b), (b,f)} the formula

Fecrx — |gr=sV \/ Dgx Vv \/ gr=d
DE®¢rans, C=DY dEDgingle, C=db

We need more axioms describing the ordering < and the behavior of f and
bon C, for C € Qppey,. For example, if z € C'\ E¢, we want that = has either
a unique predecessor or a unique successor in Ex. Also, for any y € E¢, the
set of points x for which y is either the predecessor or successor is infinite and
densely ordered by <¢. For convenience, we let ¢} (x,y) and ¢%(z,y) be the
following formulas:

gbfc(x, y) is Cx A—-Ecx ANEcyNz <cyAN—-Jz(Ecz Nz <c z<cy),
oS (x,y) is Cx A-Ecx ANEcyNy <cxA-32(Ecz ANy <¢ z <c ©).
(F10) For each C € ®gpey the formulas
(a) Ca A=Ecx — Jy(@(a.y) V 6z, y)),
(b) Jyop(.y) — Iy (z. 2),
(¢) 3yoe(z,y) — =Iydh(z,y),
and the formula scheme Ecy — 3%2¢}(x,y) A 3°zd% (2, y).
(F11) For each C' € @y, the sentences stating that for every y € E¢, the
restriction of <¢ to the set C, := {x : ¢%(z,y) Vv ¢fc(x,y) Vo =uy}is
a dense linear ordering, together with C,z — (z <¢ fy A gy <¢ ).
(F12) For each C € ®gpe, and (g, ) € {(f,b), (b, f)} the formulas
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(a) Cx A =Ecx A Jyod(z,y) — Vz2(o% (2, 2) — gz = z),
(b) Cx A =Ecz A Elygzﬁg(x, y) — ‘v’z(gb?;(x, z) — gr = g2).
(F13) For each C € ¥y, and (g, ) € {(f,b), (b,f)} the formulas
(a) Ecard Vri =min(C?) V rd = max(C?),
((b; chg sV 5% = min(C?) V s = max(C?),
c) re <cs S¢s

(d) Ecex — (Chr < 13 <ca T <cw $3)-
(F14) For each m,n € N, C' € ®ppen, D € Pians and g € {f, b} the formulas
(a) Ecx AN Ecgmz ANg'e =2 — g"x = x,
(b) Dz A Dg"x Ng'r =x — g™z = x.
(F15) For each m € N and g € {f, b} the formula g"(z) = x — gh*(z) = .
This completes our list of axioms for T'(P).

Our choice of axioms above and Sections 4 and 5 imply the following:

Proposition 6.6. Let £ be a vector field on R? of class C! and definable in
an o-minimal expansion of the real field, and let M, be an L(®¢)-structure
associated to & as in Example 6.4. Then M, |= T (®¢). O

Definition 6.7. We write
Q) = Dpans U{Ec: C € Dopen}-

The following L£(®)-formulas are of particular interest: for C' € &y, we let
Fixc(z) be the formula Cx A f¥*x = 2z and Fixo(z,y) be the formula

Jz((z <¢ 2z <cyVy <c z <cz)AFixc(z)).
Next, we let Bdg(z) be the formula
Fixc(z) AVyVz(y <c z <¢ z — Jw(y <c w <¢ z A = Fixe(w))),
and let Limg(z) be the formula
Fixc(x) A Jy(Cy Ay # x A = Fixe(x,y)).

Example 6.8. Let & be a vector field on R? of class C' and definable in
an o-minimal expansion of the real field, and let M, be an L(®¢)-structure
associated to £ as in Example 6.4. Let also C' € C; := Cirans U{EF : F € Copen }-
Then the set Fixc(M) is the set of points in C' that belong to a cycle of &,
the set Bdg (M) is the set of points in C' that belong to a boundary cycle of
¢, and the set Limg (M) is the set of points in C' that belong to a limit cycle
of £. Note that if ¢ is analytic, then the set Bda (M) is discrete by Poincaré’s
Theorem [10] (see also |9, p. 217]); in particular, Bd¢ (M) = Lime (M) in this
case.

In general, by Proposition 5.3, the cardinality of Bds (M) is equal to the
number of boundary cycles of £ that intersect C. Since every cycle of ¢ inter-
sects the set |J Cian U Cirans U U Csingle, it follows that, with b(¢) denoting the
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cardinality of the set of all boundary cycles of £, we have

|Bde(M)] < b(E) < [Cuan| + [Coingie] + > [ Bdp(M)].

DeCtrans

7. ITERATING THE PROGRESSION MAPS

We continue to work with a flow configuration & as in Definition 6.1.
Throughout this section, we fix (g,b) € {(f,b), (b,f)}.

For the next lemma, we denote by ©(yy) the universal closure of the con-
junction of the formulas (Ayce, ~Cx) — ghr = 7,

(Cx AN Echx) — ghr =gr and (Ecx Abhx #s) — gher ==
for each C' € ®gpen,
(CxAbr=ec) —ghr=gr and (z=ecAbr#s)—ghr=x
for each C € ®@y,y,, and Cx — ghx = z for each C' € Pyrans UDgingle.
Lemma 7.1. T(®) F Op).

Proof. Let M = T(®), and let a € M be such that a ¢ (Jyee, C- Then
by (F1), either a = ¢ for some ¢ € ®gipge, Or a = s. In the latter case, we
have g(h(a)) = h(g(a)) = a by (F5), so we may assume that a = ¢ for some
¢ € Dgingle- Then h(g(a)) = g(b(a)) = a by (F7)-(F9).

The proofs of the other conjuncts is similar, using also (F12); we leave the
details to the reader. U

Corollary 7.2. Let ¢ be any quantifier-free L(®)-formula. Then ¢ is equiva-
lent in T(®) to a quantifier-free formula ¢’ such that no term occurring in ¢’
contains both the symbols § and b.

Proof. By induction on [ := max{length(¢) : ¢1is a term occurring in ¢}, using
Lemma 7.1. O

For the remainder of this section, we fix an arbitrary model M of T'(®).

To simplify notation, we omit the superscript M below and write C' := C' U
{min(C), max(C)} for C € ;.

Definition 7.3. Let C' € &; and k € N. We define
GE = {g'(2): zis a constant, 0 <1 <k and g'(z) € C},

and we let OF be the collection of all possible order types of pairs (a,b) € ok

over G%. In addition, for (5, ¢; € C and D € ®, we put
95k<<07C1) = {x eD: (<cg'(z) <c C1}
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and

HP(Co,C1) == {b'(2) : 2 € {{o,C1} or 2 is a constant,
0 <1<kandb'(z) € D}.

Note that G% and H¥ (¢, (1), and hence OF, are finite sets whose cardinality is
bounded by a number depending only on the language and k, but independent
of M7 C, D7 CO or Cl'

Proposition 7.4. Let C,D € &y, (;,(; € C and k € N.

(1) The set g5,*(Co, ¢1) is a union of points in H¥ (o, (1) and open intervals
with endpoints in H%((o, ¢1).

(2) For each 9 € OF, there is a conjunction oy(z,yo,y1) of atomic formulas
with free variables x, yo and y; such that whenever ({y, (1) have order
type ¥ over GE, the set g 5" (Co, (1) is defined by the formula o4(z, (o, (1)

(3) g* restricted to g;,"({o, 1) is continuous.

Proof. Note that for every x € g*(Co, (1), there is a sequence E = (Ey, . . ., Ej)
of elements of @y := 1 U {{c}: ¢ € Dgingle} U {{ec} : C € Pyan} such that
Ey =D, Ey = C and g¢g'(z) € E; for i = 0,...,k. Thus, we fix a sequence
E = (Ey,...,E) € 5™ with E, = O, and we define the set

a5 (Co, (1) = {zeM: g(x)eE fori=0,....k (<c a"(z) <¢ G}

it suffices to prove the proposition with gz"({y,¢;) and HEO(CO, (1) in place of
gBk(C(]? Cl) and H§<C07 Cl)

Next, we note that if E; € {{c} : ¢ € Pgingle} U{{ec}: C € Pyan} for some
i€ {l,...,k—1}, thena € g;"(o, (1) if and only if g’(a) is the unique constant
in E; and (s <¢ g¥(a) <¢ (1, so the proposition follows in this case.

We therefore assume from now on that F; € & for each + = 0,...,k, and
in this case we prove the proposition with part (1) replaced by

(1)’ The set gz"(Co, 1) is an open interval with endpoints in Hf, ((o, C1)-

We proceed by induction on k. The case k = 0 is trivial, so we assume that & >

1. By Axiom (F8), the set g(’b}kil Ek)(C()’ (1) is an open interval whose endpoints

Mo, 1 belong to the set Hék—l(cb’ (1) and are determined by the order type of
(Co,¢1) over G, . In fact, we claim that the order type of (1, 71) over G'fE;il is
determined by the order type of ({y, ;) over G’fEk; together with the inductive

hypothesis applied to g’(cbiolm Ek—l)(TIO’ 71), the proposition then follows, because

H} (e, d) is contained in Hp, (o, ¢1) for all ¢,d € HE — (Co, G1).
To see the claim, assume first that £ = E¢ for some C' € ®qpe. Then by
Axiom (F8), the set {g(z) : z € G]]};il} is contained in G} and the claim
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follows in this case. So we assume that Ey € ®ypans. Then by Axiom (F13),
Ey_1 = E¢ for some C' € ®gp,e, and there are constants a and b such that

(no,m) C (a,b) = g ' (Ey) = h(E}) (as intervals).

Hence the order type of (ng,n;) over G%’Cl is determined by the order type of
(10, m1) over the set G’ := {z € G]]“;Cl : a <c z <c b} . Then again by Axiom
(F8), the set {g(z) : z € G'} is contained in G} and the claim also follows in
this case. 0

Corollary 7.5. Let C € ®; and put G := g;" (min(C), max(C)).
(1) The set Bd¢(M) is a closed and nowhere dense subset of G.
(2) Assume that ® = &, and M = M, for some definable vector field £
of class C' on R%. Then for every c € G\ Bdgo(M), there are a,b € C
such that

a=sup{z € Bde(M)U(C\G): z<cc}

and
b=inf{z € Bde(M)U(C\G): c<cz}.

Proof. Part (1) follows from the continuity of g|¢ and the definition of the set
Bdg(M). Part (2) follows from part (1) and the fact that CM¢ is complete. [

Finally, for each C' € ®; we let Cx abbreviate Cz V x = min(C) V x =
max(C). We let G* be the set of all £(®)-terms g’c such that 0 < j < k and
c is a constant symbol, and we let OF be the set of all formulas of the form

(Cyo A Cyn) A A GTren ),

{1,p} SG*U{yo,y1}

where C' € @ and *(, 3 € {<¢,>c,=,#}. The cardinalities of G* and OF
are bounded by a number depending only on & (and on £(®)). Moreover in
M, each formula ¥ € OF determines an order type in OF, for some C' € ®y;
and conversely, every order type in OF with C' € @, is determined by some
formula ¥ € OF. Thus we obtain the following from Proposition 7.4:

Corollary 7.6. Let k € N. Then there are | = (k) € N and quantifier-free
formulas 9% (yo, y1), - - -, 95 (yo, y1) with free variables yo and y; such that

!
(1) T(®) = \/ 9 (o, 1) < \/ (Cyo A Cip);
i=1 Cedy
(2) for every D € ®, there are quantifier-free formulas """ (x, yo,y1) with
free variables x, yo and vy, i = 1,...,1, such that if M | 9%((o,¢1)
for (y,¢; € M and some i, then the set g;,"((y, (1) is defined by the

formula UiD’k(L G0, C1)- -
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Remark 7.7. We obtain analogous statements to Proposition 7.4 and Corol-
lary 7.6 if we replace the open interval ((p, (1) by a half-open or closed interval.

8. DULAC FLOW CONFIGURATIONS

It is clear from Remark 6.8 that, for a vector field ¢ on R? definable in R,
the set of boundary cycles of £ is represented in M, by the definable sets
Bd¢(M). The following example shows that the theory T'(®) has hardly any
implications for the nature of these sets.

Example 8.1. Consider the vector field ¢ of Example 3.2, and let C be the
piecewise trivial decomposition obtained there. We denote by ®, the flow con-
figuration corresponding to this C, and write Cy := {(z,y) : = >0, y=0} €
C. We show here how to define, given any closed and nowhere dense subset
F of Cy, a vector field ¢’ of class C*° for which @, is still a flow configuration
and such that Bdg, (M) = F.

First, given 0 < a < b < oo, we let dp) : R? — R be the function
dip) (z,y) == (0* — (2* + ) ((2* + y*) — a?), and we let e(,p) : R? — R be
the C* function defined by e ) (2, y) := exp(—1/d@p)(z,y)). We let (qp) be
the vector field of class C* on the annulus A, = {(z,y) : dp(z,y) > 0}
defined by

0 0
C(a,b) = (y + e(a,b)(zvy)x) % + (:l7 - e(a,b)(xay)y) a_y

Second, let £' C Cj be an arbitrary closed and nowhere dense subset. Then

Co \ F is open in Cy and hence the union of countably many disjoint open
intervals Iy, I1, I5,.... We let ¢’ be the vector field on R? of class C° defined
by
. if Ajp f €N
Cl(x,y) — ij(xay) 1 (I,y) € I; Ior some j € N,
((x,y)  otherwise.

(Note that by Wilkie’s Theorem [13], ¢’ is definable in some o-minimal expan-
sion of the real field if and only if F is finite.)

In view of the previous example, we now introduce a strengthening of the
setting described in Section 6.

Definition 8.2. A Dulac flow configuration V is a pair (®,v) such that ®
is a flow configuration and v € N.

Example 8.3. Let & be a definable vector field on R? of class C'. Let & = &
be a flow configuration associated to £ as in Example 6.2 and let M be the
associated L(®¢)-structure described in Example 6.4. Assume that there is a
v € N such that for each C' € &4, the set Bdo (M) has cardinality at most v.
Then W, := (®¢, v) is called a Dulac flow configuration associated to &.
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For the remainder of this section, we fix a Dulac flow configuration ¥ =
(,v).

Definition 8.4. The language L£(WV) consists of the symbols of £(®) together
with the following symbols for each C' € ®y:
(i) binary predicates Ro and Sjn,C” Bjmc, S,[’mc and Bfn’c for each m € N;
(ii) constant symbols v}, ..., V4.
We put I' =T'(¥) := {*yé: C e dy, jzl,...,z/}.

Example 8.5. Let ¢ be a definable vector field on R? of class C*, and let
M be an L(P¢)-structure associated to ¢ as in Example 6.4. Assume that
there is a v € N such that for each C' € Cirans U Copen, the set Bde(Me) has
cardinality at most v, and let W, be a Dulac flow configuration associated to
¢ as in Example 8.3. We expand M into an £(W¢)-structure M{ as follows:
for each C € &4,

(i) Rc is interpreted as the set
{(z,y) el Jz(x <c 2z <c y ANFixe(2)) V(z =y A Fixc(x))} ;
(ii) for m € N, g € {f, b} and G € {S}, ;, B, o}, we put

L. <o ifGis Sh e
| >c ifGis BE .,

and we interpret GG as the union of the sets
{(x,y) cC? F2(CzAx <cz<cyACg™(z) Ag™(z) z)}

and the set {(z,z) : Cx A Cg™(x) AN g™ (x) *x};
(iii) if a1 <¢ --+ <¢ an, are the points in C' that lie on boundary cycles of
¢, we interpret 77, as a; if 1 < j < m and as max(C) if m < j < v.
This completes the description of M?.

Definition 8.6. Inspired by the previous example, we let T'(¥) be the L£(¥)-
theory consisting of T'(®) and the universal closures of the formulas in the
axiom schemes (D1)-(D6) below.

(D1) For each C' € ®;, m € Nand G € {RC,SI,L,C,BLC,S}’”
formulas
(a) Gzy — (Cz A Cy),
(b) Gzy — (z <¢ y V (r = min(C) Ay = max(C))).
(D2) For each C' € &, the formulas
(a) Roxy < Jz(x <¢ z <¢ y A Fixe(2)), and
(b) Rexx « Fixc(x).
(D3) For each m € N, C' € ®; and g € {f, b} the formulas

e Bﬁ%c}, the
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(a) ( mcxy) o z(r<cz<cyNg™(z) <c 2),
(b) (S, cxx) > (Cx Aghe <¢ x),
(c) (B® ny) o z(r<cz<cyNz<cgh(z)),
(d) (Bg%cmx) (Cx Az <o gmz).
(D4) For each m € N, C' € @y, g € {f,b} and G € {R¢, B,, ¢, 55, ¢} the
formula

(G:Uy AVz (x <cz<cy— Ugmz) A=z (x<cz<cyA Bdc(z)))
—Vz(r <¢c z<cy— Gzz).

(D5), For each C' € @, the formulas

(a) C’yé (CL — Fixe (7)) for j=0,...,v,

(b) & <cvE A (”yc =y L= max(C)) for j =0,...,v — 1.
(D6), For each C' € @, the formula

(Cx A Bde(x \/ x:'yé/\C’yé).

This completes the description of the axioms.

Proposition 8.7. If¢ is a definable vector field on R? of class C* with finitely
many boundary cycles, then M |= T(¢).

Proof. This is almost immediate from the definition of ./\/l? and Proposition
6.6, except perhaps for Axiom (D4), which follows from Proposition 7.4 and
the fact that every bounded subset of R has an infimum. O

Remark 8.8. Let T(®)" be the union of T'(®) with Axioms (D1)—(D4) only.
Since (D1)—(D3) just extend T'(®) by definitions in the sense of Section 4.6 in
Shoenfield [11], the argument in the proof of the previous proposition shows
that any L£(®¢)-structure M, as defined in Example 6.4 can be expanded to
a model M of T'(®)".

9. QUANTIFIER ELIMINATION FOR T'(V)

We fix a Dulac flow configuration ¥ = (®, v); our ultimate goal is to show
that T'(V) eliminates quantifiers. Most of the work in this section goes towards
showing that, in order to eliminate quantifiers, we need only consider formulas
of the form Jy¢(z,y) where ¢ is of a special form.

Terminology. Let z = (x4, ...,x,,) be a tuple of variables and y and z single
variables. To simplify terminology, we write “term” and “formula” for “L£(V)-
term” and “L(W¥)-formula”. For a formula ¢, we write ¢(z,y) to indicate that
the free variables of ¢ are among x4, ..., z,, and y. A binary atomic formula
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is a formula of the form Atity, where A is a binary relation symbol in £(V)
and ¢; and t, are terms.

For this section fix an arbitrary model M of T(¥); again, we omit the
superscript M when interpreting predicates in M.

Definition 9.1. An order formula is a quantifier-free £(®) U I'-formula.
A z-order formula is a quantifier-free formula ¢ such that every atomic
subformula of ¢ containing z is an £(®) U I'-formula.

A z-order formula ¢ is minimal if the only subterm of ¢ containing z is z
itself and every binary atomic subformula At ts of ¢ is such that at most one
of t; and t, contains z.

Our first goal is to show that we may, in order to prove quantifier elimination,
restrict our attention to y-order formulas. This argument is based on the
following lemma, which will also be of use later.

Lemma 9.2. Let G € L(V) \ L(D).
(1) The formula Gyy is equivalent in T'(V) to a minimal y-order formula

D(y)-
(2) The formula Gyz is equivalent in T(V) to a formula ¢ (y,z) that is
both a minimal y-order formula and a minimal z-order formula.

Proof. Let C' € ®;, m € Nand g € {f, b} be such that G € {R¢, Sy, o, By, ¢}-
In this proof, we write < instead of <¢; if G is R¢, we assume m = N = Ng.
By Corollary 7.6(1), any formula ¢ is equivalent in T(¥) to the conjunc-
tion of the formulas ¥; — ¢, where ¢ € {1,...,l(m)} and ¥; is the for-
mula ¥7"(min(C), max(C)). Hence it suffices to prove the lemma with each
¥; — Gyy in place of Gyy and each ¥; — Gyz in place of Gyz; so we also
fix an i below and write ¢ in place of 9;. Now by Corollary 7.6(2), there are
finitely many terms af, aj for 1 < j <, built up exclusively from constants,
such that whenever M |= ¥ the set {z € C' : g™(z) € C} is the union of the
open intervals I; = (a9, aj) and points o) = o.

(1) We claim that the formula ¥ — Gyy is equivalent to ¥ — ¥¢, where ¢
is of the form

Cy/\(\/ (a?<y<a§Va?:y:a;)>/\<\/wg\/ \/ wg(),m)

1<j<r BeY Bo,b1€Y
with Y :=TU{a} : 1€ {0,1} and 1 < j < r}, and for each § € Y, the formula
VG is Cy A ((y = BAGBB) Vy = t9) with

y it G is Re,
t the term ¢ h™min(C) if G is S, ¢,
b™ max(C) if G is By o,



AN ORDERED STRUCTURE OF RANK TWO 31

and for each 3y, #; € Y, the formula ¢g07ﬁ1 is of the form
(CBoV By = min(C)) A (CBy V B = max(C)) A By <y < B An, 4,

where
SN B A -BR ofobr if Gis Re,
ngoﬁl iS _'Brgn,Cﬁoﬁl A\ _‘Rcﬁoﬁl 1f G iS Srgn,C7
—S5.cBobi A—RefoBy  if Gis BY, .
Note that ¥ — 1% is a minimal y-order formula; thus, the proof of part (1) is
finished once we prove the claim.

We prove the claim for Rgo; the other cases of GG are similar and left to
the reader. Suppose that M = ¢ and pick an @ € M such that M
Reaa. Then M |= of < a < o for some j € {1,...7}. If a = § for some
G €Y, we are done, so we assume a # 3 for all § € Y. Then there are
Bo, 1 € Y such that M |E Gy < a < fy and M |E =(fy < < ) for
every § € Y. Hence by Axiom (D4), M | Rcbb for every b € (0, 31),
so M | =S5, oBof1 A =By, oBof1 as required. The converse of the claim is
immediate.

(2) The formula ¥ — Gyz is in turn equivalent in 7'(¥) to

¥ — (Gyz A (y = min(C) Vy = max(C) V Cy));
since the lemma is immediate for the formulas ¥ — (Gyz A y = min(C)) and

¥ — (Gyz Ay = max(C')), we need only consider ¥ — (Gyz A Cy). We claim
that the latter is equivalent to ¥ — ¢, where ¥ is of the form

Cy/\(C’Z\/z:maX(C’))/\y§z/\((y:z/\ny)\/(y<z/\nG)),

n% is the formula

V=8rGB2)v \[(y<B<znGBBV \/ 154,

pey pey Bo,f1€Y, 1<j<r

and for each 3y, 01 € Y and j € {1,...,r}, the formula ng)ﬂm is

ﬁ0<y/\2<ﬁ1/\049§60/\61Sajl'/\Gﬁ[)ﬂl/\ng)ﬁ1

with ng)ﬂl defined as for part (1).

We again prove the claim for R¢, leaving the other cases of G to the reader.
Suppose that M = ¢ and M | Rcab A Cb and work inside M. Suppose that
a # [ for all § €Y and that M = —(a < § < b A Rgf3) for every 3 € Y.
Then fV(d) = d for some d € (a,b), and d € (o, a]) for some j. Moreover,
there are [y, /1 € Y such that d € (5o, 1) and G & (0o, 51) for every 5 € Y.
Hence by Axiom (D4), we get M |= =S, 6001 A=BY; o001, as required. The
converse of the claim is straightforward.

By symmetry, a similar claim holds with J — (Gyz A Cz) in place of ¥ —
(Gyz A Cy). Combining these two claims with part (1) now yields part(2). O
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Corollary 9.3. Every quantifier-free formula ¢(x,y) is equivalent in T (V) to
a y-order formula (z,y).

Proof. 1t suffices to prove the proposition for all atomic formulas; the relevant
atomic formulas are handled in Lemma 9.2. 0

Our second goal of this section is to show that we only need consider, for
quantifier elimination, y-order formulas in which the complexity of any term
involving y is as low as possible. Minimal y-order formulas are examples of such
y-order formulas; but we cannot always reduce to minimal y-order formulas.

Definition 9.4. Let ¢t be a term. The z-height h,(t) of t is defined as follows:
(i) if z does not occur in ¢, then h,(t) := 0;
(i) h.(2) =1
(iii) if ¢ is ft’ or bt’ for some term ¢’ and z occurs in t/, then h,(t) := h,(t')+1.
Let Atity be a binary atomic formula; the z-height h, (At ty) of Atitsy is
defined as the pair (a,b) € N2, where

1 if z occurs in both t; and t,,
0 otherwise,

and

max{h,(t1), h,(t2)} otherwise.

Let Bt be a unary atomic formula; the z-height h,(Bt) of Bt is defined by
h.(Bt) := (0,h.(t)) € N2

Let ¢ be a quantifier-free formula; the z-height h.(¢) of ¢ is the maxi-
mum of the set {h,(¢) : ¢ is an atomic subformula of ¢} with respect to the
lexicographic ordering of N2. We write h.(¢) = (hl(¢), h3(¢)) below.

Finally, a term ¢ is mixed if it contains both function symbols | and b;
otherwise ¢ is called unmixed.

Example 9.5. Let ¢ be a z-order formula. Then h.(¢) < (0,1) if and only if
¢ is minimal.

. {min{hz(tl), h,(t2)} if z occurs in both ¢; and o,

Lemma 9.6. Let ¢(x,y) be a y-order formula. Then there is a y-order formula
Y (x,y) that contains no mixed terms such that ¢ and ¢ are equivalent in T'(\V)

and hy () < hy(9).

Proof. Let ¢’ be the L(®)-formula obtained from ¢ by replacing each constant
Wé by a new variable zé, for C € ®; and j =1,...,v. By Lemma 7.1, ¢ is
equivalent in T'(®) to a quantifier-free £(®)-formula ¢/’ that is a disjunction of
formulas of the form n A&, where £ is obtained from ¢ by replacing each mixed
subterm by an unmixed term of lower y-height, and where 7 is a conjunction of
some of the premises of the implications occurring in O ;) and in Oy 5 with x
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there replaced by various unmixed subterms of ¢'. Clearly h,(§) < h,(¢') for
every such &; since h;(n) = 0 for every such 7, it follows that h,(¢") < hy(¢')
if h;(gb’) = 1. On the other hand, if h;(¢’) = 0, then every subterm ¢ of ¢/
satisfies hy(t) < h2(¢); so hy(n) < hy(¢') for every such 5. Therefore, we
always have h,(¢') < hy(¢') = hy(¢), and we let ¢ be the y-order formula

obtained from ¢’ by replacing each variable z/, again by /. O
Below we let «(y) denote the formula Aqeq , Cy — Ecy and we put
T":=TW)U{uy)}

Lemma 9.7. Let ¢(z,y) be a y-order formula. Then there is a y-order formula
Y(x,y) such that ¢ is equivalent in T to v and h;(w) <1.

Proof. By induction on h,(¢); the case where h (¢) < 1is trivial, so we assume
that A2 (¢) > 1 and we prove that

* ere e€xX1Sts an order rormula X suc a 1S equivalent in (6]
(x) there exist der formula ¥(z,y) such that ¢ is equivalent in 7" t

Y and hy (1) < hy (o).
To do so, we fix arbitrary (g, ) € {(f,b), (b, f)}, a unary predicate P, a C' € @y
and terms ¢; and ¢y, and we assume that y occurs in £;, and either y does not
occur in ty or hy(t1) < hy(t2). By the definition of h,(¢) and Axiom (F5), it
suffices to prove (x) with each of the atomic formulas Pgty, gt = to, gt1 <c t2
and ty < gt; in place of ¢.

Case 1: ¢ is Pgt;. By Axioms (F7)—(F9), the formula ¢ is equivalent in 7"
to 1, where v is the formula depending on P defined as follows:
o if P € @y, or Pis Ep for some F' € ®gpep, then 1 is
De®irans, pP=Db deq)singlev P=db

o if P € ®,,, then v is the formula t; = hep;
o if P € &, then v is the formula Epyt;.

In each case of ¢ above, we have h,(¢)) < hy,(¢), as required.

Case 2: ¢ is gt; = to. Then by Axioms (F5), (F7)-(F9) and (F13) the formula
¢ is equivalent in 7" to 1), where ¢ is the conjuction of the formulas

(i)tQZS\/\/CtQ\/ \/ to=c V \/ ty = e,
Ced, Ceq)single CePian
(ii) to = ¢ — t; = he for each constant ¢ different from s,

(i) ts = s — | (t1 = 5)V

\/ (Ectl NN ) <cti<esp) A\ (ot = bc)>v

Ceq)open DGSC Ceésingle
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\/ (gec <oty <cecVeo <ot <c gec) N gec = 8))
Cedian
with S¢ :={D € Dirans : DY = Ch,
(IV) Ctg — tl = [’th fOY C € (I)l-
If y does not occur in t9, then hy, (1)) < h,(¢); so we assume that y occurs
in t5. In this case, the only atomic subformula & of ¢ with h;(ﬁ) =1is

t1 = bto, and hy(t1 = bta) = (1, hy(t1)) < (1, hy(gt1)) = hy(¢) by hypothesis,
s0 hy(¢) < hy(¢) as well.

Case 3: ¢ is gt; <¢ t2. There are various subcases depending on C'.

o If C' € Dyans, we write D := Y then by Axioms (F8) and (F13) the
formula ¢ is equivalent in 7" to 1, where ¢ is the conjunction of the
formulas

(Cty V ta = max(C)) A ((Epty A rg <pti <p Tg) V t; = hmin(C))
and
(EDtl N T’g <pti <p Tg) — (tl <p f)tz V ity = max(C’))

o If C' € ®ypen, then by Axioms (F2), (F9), (F10), (F12) and (F13) the
formula ¢ is equivalent in 7" to v, where ¢ is the conjunction of the

formulas
(i) \/ Dt, V V  t=d
DE®irans, DI=C d€Dgingle, P=dD
(ii) Eclfg V (Ctg A ﬂEctQ A Ecgtg) V (Ctz VAN _\Ectg A ch’)tg) V (tg =
max(C)),

(111) (Dtl VAN Ectg) — ((7“% <o ty <¢ S% Nt <p htg) V (S% <c tz)) for
each D € Py ., with D = C,

(1V) (Dtl/\_'EctQ/\ECgtg) — ((T’% <c gtr <¢ SgD/\tl <D f)tz)\/(SgD <c
gls)) for each D € Py with D% = C|

(V) (Dtl/\_'EctgAEchtg) — ((TgD <c htg <c S%/\tl <p hhtg)V(SgD <c
hts)) for each D € Bypopg with D = C,

(Vl) tv=d— gd <ctgforde (I)single with P = d".

o If C' € ®yy,,, then by Axioms (F2) and (F7) the formula ¢ is equivalent
in 7" to ¢, where 1 is

(Cty V by = max(C)) A ((t1 = hec A ec <c¢ t2) V gty = min(C)).

In this case we let ¢ be the formula obtained from ¢’ by replacing the
subformula gt; = min(C') by the corresponding formula obtained in
Case 2.

We leave it to the reader to verify that h, (1) < h,(¢) in each of these subcases.
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Case 4: ¢ is ty <¢ gti. This case is similar to Case 3; we leave the details to
the reader. 0

Proposition 9.8. Let ¢(x,y) be a quantifier-free formula. Then there is a
minimal y-order formula ¢ (x,y) such that ¢ is equivalent in T" to .

Proof. By Corollary 9.3 and Lemma 9.7, we may assume that ¢ is a y-order
formula such that hi(qﬁ) < 1. By Lemma 9.6, there is a y-order formula
Y'(z,y) such that ¢ is equivalent in T” to /', ¢/’ contains no mixed terms and
hy(1) < hy (@)

In particular, for every binary atomic subformula n of ¢’ in which both
terms contain y, one of the terms is y itself and the other is either ™y or b™y
for some m = m(n) € N. We now replace each such binary atomic subformula
n of ' with m(n) > 1 by the formula 1’ defined as follows:

e ifnisy = g™y with g € {f, b}, then 1/’ is the disjunction of the formulas
y = c A g"c = ¢, for each constant symbol ¢, and C'g™y A Rcyy, for
each C € ®y;
e if is y <¢ g™y with g € {f, b}, then 0" is B} cyy;
e if 1 is g™y <¢ y with g € {f, b}, then ' is S} ~yy.
We also replace each occurrence of y = y by s = s and each occurrence of
y <c y by s # s, and we denote by ¢” be the resulting formula. Clearly
hy (") < hy(¢'), and every binary atomic subformula of ¢” in which both
terms contain y is of the form Gyy for some G € L(V) \ L(P). Moreover by
Axioms (D1)—(D4), (D5), and (D6),, the formula ¢ is equivalent in 7" to ¢".

Next, we replace each subformula of ¢” of the form Gyy, where G € L(W) \
L(®P), by the corresponding minimal y-order formula v (y) obtained in Lemma
9.2(1). If ¥ is the resulting y-order formula, then v” is equivalent in T'(\V)
to 1" and h,,(¢") = 0.

Finally by Lemmas 9.7 and 9.6, there is a y-order formula v such that
hy (1) < (0,1), ¢ contains no mixed terms and 1 is equivalent in 7" to ™. O

Finally, note that
T(®)u{Cy} | ~Ecy < (Cfy v Cby)

for each C' € ®ypen, by Axioms (F5), (F10) and (F12). Hence, for each C €
Pypen and each g € {f, b}, we put T 4 := T(¥) U{Cy A Cgy}; by the previous
proposition, it remains to reduce quantifier-free formulas in each T¢ 4. It turns
out, however, that we cannot entirely reduce to minimal y-order formulas in
these situations.

Instead, given g € {f,b}, we call a formula ¢ g-almost minimal if ¢ is
quantifier-free, the only subterms of ¢ containing z are z and gz and every
binary atomic subformula Atit, of ¢ is such that at most one of t; and t,
contains z.
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Proposition 9.9. Let ¢(x,y) be a quantifier-free formula, C € ®,pe, and
g € {f,b}. Then there is a g-almost minimal y-order formula ¢ 4(z,y) such
that ¢ is equivalent in T g to Ve g.

Proof. By Corollary 9.3 and Lemma 9.6, we may assume that ¢ is a y-order
formula containing no mixed terms. On the other hand, we have T' = «(fy)
and T' |= «(by) by Axiom (F'5). Let n(x,y) be an atomic subformula of ¢; it
suffices to show that there is a g-almost minimal y-order formula &, (z, y) such
that 1 and &, are equivalent in T 4. If hg(n) = 0, there is nothing to do, so
we assume hf/('n) > 0, and we distinguish two cases to define &,.

Case 1: h;(n) > 1. We first replace each occurrence of gy in n by a new
variable z and each occurrence of hy in 1 by hz. Denote the resulting atomic
formula by 7/(z, z); by Axiom (F12), /(x, gy) is equivalent in T¢ ¢ to n(z,y).
By Proposition 9.8, the formula n'(z, z) is equivalent in 7" to a minimal z-order
formula 7 (z, z). Since T (V) [= «(gy), it follows that 7 is equivalent in T¢ 4 to
the g-almost minimal y-order formula &, given by n"(z, gy).

Case 2: hi(n) = 1. In this case, we take , equal to 7 if 1 contains a unary
predicate symbol; so we assume that 7 is a binary atomic formula At t,. If 7
isy =y, we take &, tobe s = s, and if n is y <p y for some D € &, we take ¢,
to be s # s; 50 we also assume from now on that max{h(t), h;(t2)} > 1. By
Axiom (F5), the formulas y = g™y, y = "y, y <p ¢"y, ¥y <p by, §"y <p ¥y
and h™y <p y, for m > 0 and D € &, \ {C}, are all equivalent in T¢ 4 to
s # s, so we are left with four subcases:

(i) if n is y <¢ g™y for some m > 0, then we let ' be the formula
(y <c 9y ACg™y A Rogyey) V By, o8Y8Y;
(ii) if n is y <¢ h™y for some m > 0, then we let 1’ be the formula
(y <c gy A Ch™y A Regygy) V By, -9ygy;
(iii) if n is g™y <¢ y for some m > 0, then we let ' be the formula
(gy <c y ACg™y A Rogyey) V S5, 1 c8Y8Y;
(iv) if n is h™y <¢ y for some m > 0, then we let ' be the formula
(gy <c y A Ch™y A Regygy) V S) cayay.
We claim that 7 and 7" are equivalent in T¢ 3. We prove this for Case (i);
the other cases are similar and left to the reader. Let b € M be such that
M |= CbACgb. Assume that M |=b <¢ g"bA—-DBy,_; ogbgb. Then g™b € E¢
and g"b <¢ gb by Axioms (F2) and (F5). Hence b <¢ gb, so M = ¢/(b, gb)
by Axioms (F10) and (F12), which implies g"b = gb as required. Conversely,
assume first that M = b <c gb A Cg™b A Rcgbgb; then b <o g”b by Axioms
(D2) and (F14). Now assume that M |= B _, ~gbgb; then gb <¢ g™b by
Axiom (D3), and hence b <¢ g"b by Axioms (F10) and (F12).



AN ORDERED STRUCTURE OF RANK TWO 37

Finally, by Proposition 9.8, the formulas Bf ,z2, S§ o2, Cgrz N Rozz and
Ch*z A Rozz are each equivalent in 77 to minimal z-order formulas. It follows
from the claim that we are left to dealing with Subcases (i)—(iv) for m =
1. But by Axioms (F5), (F10) and (F12) we have Ty = —Chy. Hence
Teg = 0% (y, by), so from Axioms (F10) and (F12) we get Teq E 0% (y, gy).
Therefore, y <¢ gy is equivalent in To g to s = s if g is f, and to ~s = s if g is
b; the other subcases follow similarly. O

The previous two propositions allow us to reduce the problem of eliminating
quantifiers in 7'(¥) to that of eliminating quantifiers in two simpler theories:
for C € & U dyy, we let Lo be the language {<¢, min(C), max(C)} and T¢
be the Ls-theory consisting of the universal closures of

(A1) the sentences stating that < is a dense linear ordering on C, together
with the formula z = min(C)Ve = max(C)Vmin(C) <¢ z <¢ max(C).
For C' € ®gpen we let Lo be the language {<¢, 7o, Ec, min(C), max(C') }, where
e a unary function symbol, and we let T be the Ls-theory consisting of the
universal closures of (Al) as well as
(B1) the formula Ecmex A (Ecx — mex = x);
(B2) the formula mex <¢ x — =Jy(Ecy A mox <c¢ y <c¢ T);
(B3) the formula = <¢ mex — —Jy(Ecy A x <c y <¢ Tc);
(B4) the sentences stating that for every x € E¢, the restriction of <¢ to
the set {y : mcy = x} is a dense linear ordering without endpoints.

A routine application of a quantifier elimination test such as Theorem 3.1.4
in Marker |7] gives the following result; we leave the details to the reader.

Proposition 9.10. For each unary predicate symbol C' of L(®), the theory
To admits quantifier elimination in the language L. U

Theorem 9.11. The theory T(V) admits quantifier elimination.

Proof. Let ¢(z,y) be a quantifier-free formula; we show that Jy¢(z, v) is equiv-
alent in T'(V) to a quantifier-free formula. First, note that Jyd(z,y) is equiv-
alent in T'(¥) to the disjunction of the formulas

(1) ¢(x,c) for each constant c;

(2) Jy(Cy A ¢(x,y)) for each C' € Py U Pyyp;

(3) Jy(Cy A Cgy A ¢p(x,y)) for each C' € pey and each g € {f, b}.
We deal with each disjunct separately; since formulas of type (1) are trivial to
handle, we deal with types (2) and (3).

Type (2): Let C' € &1 U Dy, Since T(V) = Cy — 1(y), we may assume by
Proposition 9.8 that ¢ is a minimal y-order formula. Without loss of generality,
we may also assume that ¢ is a conjunction of atomic formulas, that y occurs
in each of the atomic subformulas of ¢ and, by Axiom (F1), that ¢ contains
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only the relation symbols = and <¢. Let ¢1,...,; be all maximal subterms
of ¢ that do not contain y, and let ¢'(21,..., 2x,y) be the formula obtained
from ¢ by replacing each ¢; by a new variable z;. Then ¢’ is a <¢-formula
without parameters; by Proposition 9.10, there is a quantifier-free £Lo-formula
Y'(z1,...,2) such that Jy¢’ and ¢’ are equivalent in To. Let ¥(x) be the
L(¥)-formula obtained from ' by replacing each z; by t;; then Jy¢ and v are
equivalent in 7'(V), as required.

Type (3): Let C' € ®gpen and g € {f, b}; by Proposition 9.9, we may assume
that ¢ is a g-almost minimal y-order formula. Without loss of generality, we
may also assume that ¢ is a conjunction of atomic formulas, that y occurs in
each of the atomic subformulas of ¢ and, by Axiom (F1), that ¢ contains only
the relation symbols =, <¢ and Es. Let tq,...,t; be all maximal subterms
of ¢ that do not contain y, and let ¢'(z1,...,2,y) be the formula obtained
from ¢ by replacing each t; by a new variable z;. Note that ¢’ contains no
parameters. Arguing as for Type (2), it now suffices to find a quantifier-free
formula ¢/ (zy, ..., zx) equivalent in T(¥) to Jyd' (21, - -, 2k, Y)-

To do so, we let mc be a new unary function symbol and let T (V) be the
theory T'(W) together with the universal closure of the formula

y=mcx < (Cx ANCfzr Ny =fx)V (Cx ANCbz ANy =bzx)V (Ecx ANy =1)).

Since T'(¥)¢ is an extension by definitions of 7'(V) in the sense of [11, Section
4.6], it suffices to find a quantifier-free £(W)-formula ¢)'(z1, ..., zx) equivalent

in T(V)o to yd' (21, - - -, 2k, Y)-

Let ¢” be the Lco-formula obtained from ¢ by replacing each occurrence
of gy by my; then ¢ and ¢” are equivalent in T(V)c. Since T(V)¢ E Te,
there is by Proposition 9.10 a quantifier-free Lo-formula ¢ (z1, ..., z;) that is
equivalent in T'(V)¢o to Jy¢”(z1, ..., 2k, y); without loss of generality, we may
assume that the only subterms of ¢ are z; and 7z; fori=1,... k.

Finally, we let ¢’ be the £(W)-formula obtained from " by replacing each
atomic subformula 7 of " by an L£(¥)-formula 7" determined as follows:

(i) if n is Ecmezi, we let ' be Cz; A (Ecz; V Cfz; V Cbz;);
(i) if n is Tz * z; with * € {=, <¢, >¢}, we let 1’ be

Cz ANCz; N \/ Ecgz Ngzix zj | ;
ge{f0,1,b}

(iii) if n is Toz <c mez; and * € {=, <c}, we let 7/ be

Czi ANCz; N \/ Ecgzi N Echzj A\ gz« hzj |
g.he{f0.f,6}
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and if 7 is not of one of the forms (i)—(iii) above, we let 7’ be n. This ¢’ is
equivalent in T (V)¢ to ¢” and is of the required form. O

10. CONSEQUENCES FOR THE MODEL THEORY OF T'(V)

The quantifier elimination result established in the previous section allows
us to show that the theory T'(¥) is very well-behaved: it is a theory of finite
rank in the sense developed by Onshuus [8].

We first rephrase the results from the previous section. For a flow configu-
ration ®, C' € ®open, M | T(¥) and z € EM, we put

CM .= {yGC’M: y:x\/fy:x\/by:x}
and U;M = CM U {j(x),g(x)}. The following corollary implies Theorem C:

Corollary 10.1. Let ¥ be a Dulac flow configuration and M = T(V).

(1) For C € &1 U Py,,, every definable subset of Cf is a finite union of
points and open <g-intervals with endpoints in C'.
(2) For C € ®upen and x € EM, every definable subset of CM is a finite

union of points and open <c-intervals with endpoints in C', .

Proof. This follows immediately from Theorem 9.11, Propositions 9.8 and 9.9
and Axioms (F2) and (F11). O

Below we use the terminology of [8].

Theorem 10.2. Let ¥ be a Dulac flow configuration and T' be any completion
of T(V). Then T is rosy with UP(T) < 2.

Proof. Let p(z) be a complete 1-type in T, M = T and a € M such that
M [ p(a). If Cz € p for some C' € Py, U Py, then by Proposition 10.1(1)
the type p is determined by the <c-order type of x over the constants; hence
UP(p) < 1. If Cx A—Ecz € p for some C' € ®ypep, then by Proposition 10.1(2)
the type p is determined by the <c-order type o(x) of a over the constants
and 7o (a), where 7o : C — E¢ is given by
z if z € EM,
me(z) = ¢ f(2) i f(2) € EE,
b(z) if b(z) € EM.
Again by Proposition 10.1(1), the type of mo(a) over the constants is deter-
mined by the <c-order type of m¢(a) over the constants.
Since p either contains one of the above formulas or a formula x = ¢ for

some constant symbol ¢, it follows from the Coordinatization Theorem in [8,
Theorem 2.2.2] that UP(T") < 2. O

In fact, the UP-rank in the previous theorem is actually equal to 2:



40 A. DOLICH AND P. SPEISSEGGER

Proposition 10.3. Let ® be a flow configuration and M = T(®), and assume
that ®,,en # 0. Then UP(M) > 2.

Proof. Let C' € ®gpen. Replacing M by an elementary extension, we may
assume that M is N;-saturated. Since F¢ is a dense linear ordering without
endpoints, there are infinitely many a € F¢ such that a ¢ acl(()). For any two
such a,b € E¢, the fibers C, and C}, are disjoint, infinite definable sets. Hence
UP(M) > 2. O

There is a certain converse to Theorem 10.2 based on Remark 8.8: we let
® be a flow configuration and consider the theory T'(®)* obtained by adding
the universal closures of the following formulas to T'(®)’ for each C' € Py pyps:

Cx — 3y (Cy Ay =inf{z: z <c 2 ABde(z)})

(10.1) _
Cx — Jy (Cy ANy =sup{z: z<cxA Bdc(z)}) )

Examples 10.4. (1) Let ¥ be a Dulac flow configuration. Then any model
M of T(V) satisfies (10.1).

(2) Let & be a definable vector field on R?, and let M be an £(®¢)-structure
associated to £ as in Example 6.4. Then M, satisfies (10.1) by Corollary 7.5,
and by Remark 8.8 the structure M, can be expanded to a model MZ of
T(®e)*.

Below, for each v € N we abbreviate the formula stating that Bdo(x) defines
a set with at most v elements by “| Bdo(z)| < v

Proposition 10.5. Let ® be a flow configuration and T' be a completion of
T(®)*, and assume that UP(T) < 2. Then there is a v € N such that

(1) T'= | Bde(2)| < v;

(2) every model M of T can be expanded to a model of T(®,v).

Proof. (1) Assume that T' 7= |Bdo(x)| < v for any v € N. Then by model
theoretic compactness, there are an M = T and a C' € ®; such that the
set Bdg (M) is infinite; we may assume that M is N;j-saturated. Moreover by
Axiom (F8), we may assume that C' € Py Also, by Axiom (F8) and an
argument as in the proof of Proposition 10.3, it suffices to find a d € C*™ such
that UP(d) > 2.

Since M is N;-saturated, there is an interval I C C™ such that INacl(()) = ()
and INBd¢ (M) is infinite. By (10.1) and since Bde (M) is nowhere dense, there
isac € I\Bdg(M) such that the elements a :=sup{z € I : = <¢ ¢ ABd¢(x)}
and b:=inf{z € C: a <¢c 2 ANBde(z)} existin I. Then a <¢ b, a,b ¢ acl(0),
b € dcl(a) and

MEa<cbABde(a) A—=Fz(Cx ANa <¢ x <c bABde(x)).
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It follows that the formula ¢(x) := a <¢ x <¢ b strongly divides over (); hence
UP(d) > 2 for some d € C™ | as required.
Part (2) follows from Proposition 8.7 and part (1). O

We can now prove our restatement of Dulac’s Problem:

Proof of Theorem B. (1) If £ has finitely many boundary cycles, then by Pro-
position 8.7 the structure M, can be expanded into a model M? of T'(®¢, v) for
some v € N. Since (¢)open 7# 0, it follows that 2 < UP(Me) < UP(MP) < 2
by Proposition 10.3 and Theorem 10.2. Conversely, if UP(M;) = 2 then by
Proposition 10.5, the structure M, can be expanded into a model of T'(®¢, v)
for some v € N, so by Example 6.7 the vector field £ has finitely many boundary
cycles.

Part (2) follows from part (1) and Poincaré’s Theorem [10] (see also [9, p.
217]). The “moreover” clause follows from part(1) and Theorem 10.2. O

11. FINAL QUESTIONS AND REMARKS

(1) In the situation of Theorem B, is it possible for M, to be rosy of
UP-rank strictly greater than 27

(2) Can a restatement of Hilbert’s 16th Problem be obtained in the spirit
of Theorem B?

A naive approach to this question is as follows: Let {{, : a € A}
be a family of vector fields on R? definable in R. Since the arguments
in Sections 1 through 5 are uniform in parameters, we may assume
that there is a flow configuration ® such that &, = & for all a € A.
In this situation, one can readily reformulate the theory T'(®) for the
parametric situation; and if one also assumes the existence of a uniform
bound v € N on the number of boundary cycles of each &,, such a
reformulation extends to T'(®,r). We suspect that under the latter
assumption, the corresponding theory is rosy of UP-rank 3; however,
this does not appear to us to be a completely trivial generalization of
the results in Section 10, and we plan to pursue it in a future project.

(3) The structure M? in Example 8.5 does not define any algebraic oper-
ations (by Theorem 9.11). Assume here that S(§) = 0; is it possible
to expand M{ by some (or all) of the sets definable in the original
o-minimal structure R without increasing the UP-rank? We know very
little about this question. However, if (a) the z-axis, the projection
from R? onto the z-axis, and both addition and multiplication are de-
finable in an expansion M’ of MP, and if (b) the expansion M’ still

has UP-rank two, then M’ (and hence M{) would be definable in
an o-minimal structure. (The assumption that M’ has UP-rank two is
necessary here.) Thus, question (3) is related to the following question:
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(4) Is the structure M{ of Example 8.5 definable in some o-minimal ex-
pansion of the real field?

(5) Consider a Dulac flow configuration ¥ and M | T'(¥). Corollary 10.1,
Theorem 10.2 and their respective proofs may be loosely interpreted as
indicating that M is built-up from sets D C M on which the induced
structure is o-minimal. Is there a theory of structures built-up from sets
with induced o-minimal structure, say in the spirit of Zilber’s results
on the fine structure of uncountably categorical theories [14]7
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