
AN ORDERED STRUCTURE OF RANK TWO RELATED TO
DULAC'S PROBLEM

A. DOLICH AND P. SPEISSEGGER

Abstract. For a vector �eld ξ on R2 we construct, under certain assump-
tions on ξ, an ordered model-theoretic structure associated to the �ow of
ξ. We do this in such a way that the set of all limit cycles of ξ is rep-
resented by a de�nable set. This allows us to give two restatements of
Dulac's Problem for ξ�that is, the question whether ξ has �nitely many
limit cycles�in model-theoretic terms, one involving the recently developed
notion of Uþ-rank and the other involving the notion of o-minimality.

Introduction

Let ξ = a1
∂
∂x

+ a2
∂
∂y

be a vector �eld on R2 of class C1, and let

S(ξ) :=
{
(x, y) ∈ R2 : a1(x, y) = a2(x, y) = 0

}
be the set of singularities of ξ. By the existence and uniqueness theorems
for ordinary di�erential equations (see Camacho and Lins Neto [1, p. 28] for
details), ξ induces a C1-foliation F ξ on R2 \ S(ξ) of dimension 1. Abusing
terminology, we simply call a leaf of this foliation a leaf of ξ. A cycle of ξ is
a compact leaf of ξ; a limit cycle of ξ is a cycle L of ξ for which there exists
a non-compact leaf L′ of ξ such that L is contained in the closure of L′.
Dulac's Problem is the following statement: �if ξ is polynomial, then ξ has

�nitely many limit cycles�. It is a weakening of the second part of Hilbert's
16th problem, which states that �there is a function H : N −→ N such that for
all d ∈ N, if ξ is polynomial of degree d then ξ has at most H(d) limit cycles�.
Both problems have an interesting history, and while Dulac's problem was
independently settled in the 1990s by Ecalle [3] and Ilyashenko [5], Hilbert's
16th problem remains open; see [5] for more details.
In this paper, we attempt to reformulate Dulac's Problem in model-theoretic

terms. Our motivation to do so is twofold: we want to
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2 A. DOLICH AND P. SPEISSEGGER

(i) �nd a model-theoretic structure naturally associated to ξ in which the
�ow of ξ and the set of limit cycles of ξ are represented by de�nable
sets;

(ii) know to what extent the geometry of such a structure is determined
by Dulac's Problem.

Our starting point for (i) is motivated by the piecewise triviality of Rolle
foliations associated to analytic 1-forms as described by Chazal [2]. Let U ⊆ R2

be open; a leaf L of ξ|U is a Rolle leaf of ξ|U if for every C1-curve δ : [0, 1] −→
U with δ(0) ∈ L and δ(1) ∈ L, there is a t ∈ [0, 1] such that δ′(t) is tangent
to ξ(δ(t)). Based on Khovanskii theory [6] over an o-minimal expansion of the
real �eld [12], we establish (Proposition 1.5 and Theorem 3.4):

Theorem A. Assume that ξ is de�nable in an o-minimal expansion of the

real �eld. Then there is a cell decomposition C of R2 compatible with S(ξ)
such that, with Creg := {C ∈ C : C ∩ S(ξ) = ∅},

(1) every 1-dimensional C ∈ Creg is either transverse to ξ or tangent to ξ;
(2) for every open C ∈ Creg, every leaf of ξ|C is a Rolle leaf of ξ|C ;
(3) for every open C ∈ Creg, the �ow of ξ in C is represented by a lexico-

graphic ordering of C.

Part (3) of this theorem needs some explanation, as it represents our under-
standing of the �triviality� of the �ow of ξ in C. Given an open C ∈ Creg, it
follows from part (2) that the direction of ξ induces a linear ordering <Γ on
every leaf L of ξ|C . We can furthermore de�ne a relation on the set L(C) of all
leaves of ξ|C as follows: given a leaf L of ξ|C , the fact that L is a Rolle leaf of
ξ|C implies (see Remark 1.2 below) that L separates C \L into two connected
components UL,1 and UL,2 such that the vector ξ⊥(z) := (a2(z),−a1(z)) points
into UL,2 for all z ∈ L. Thus, for a leaf L′ of ξ|C di�erent from L, we de�ne
L �C L′ if L′ ⊆ UL,2 and L′ �C L if L′ ∈ UL,1. In general, though, the
relation �C does not always de�ne an ordering, even if every leaf of ξ|C is
Rolle; see Example 2.2 below.
Part (3) now means that the cell decomposition C may be chosen in such a

way that for every open C ∈ Creg, the ordering�C on L(C) is a linear ordering.
(See Example 3.2 for such a decomposition in the situation of Example 2.2.)
This leads to lexicographic orderings as follows: given C ∈ Creg and z ∈ C,
we denote by Lz the leaf of ξ|C containing z. If C ∈ Creg is open, we de�ne a
linear ordering <C on C by x <C y if and only if either Lx �C Ly, or Lx = Ly

and x <Lx y. Letting EC be a set of representatives of L(C), it is not hard
to see that the structures (C,<C , EC) and (R2, <lex, {y = 0}) are isomorphic,
where <lex is the usual lexicographic ordering of R2.
To complete the picture, we also de�ne an ordering<C on each 1-dimensional

C ∈ Creg: if C is tangent to ξ, we let <C be the linear ordering induced on
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C by the direction of ξ, and if C is transverse to ξ, we let <C be the linear
ordering induced on C by the direction of ξ⊥. For each open C ∈ Creg, we
also let <EC

be the restriction of <C to EC . Each of these orderings induces
a topology on the corresponding set that makes it homeomorphic to the real
line. Finally, for each 1-dimensional C ∈ Creg tangent to ξ, we �x an element
eC ∈ C.
In the situation of Theorem A, we reconnect the pieces of C according to

the �ow of ξ as follows: let B be the union of

• all 1-dimensional cells in Creg transverse to ξ,
• the sets EC for all open cells C ∈ Creg,
• all 0-dimensional cells in Creg, and
• the singletons {eC} for all 1-dimensional C ∈ Creg tangent to ξ.

We de�ne the forward progression map f : B ∪ {∞} −→ B ∪ {∞} by
(roughly speaking) putting f(x) equal to the next point in B on the leaf of ξ
through x if x 6= ∞ and if such a point exists, and otherwise we put f(x) := ∞.
In this situation, a point x ∈ B belongs to a cycle of ξ if and only if there is a
nonzero n ∈ N such that fn(x) = x, where fn denotes the n-th iterate of f.
In fact, only �nitely many iterates of f are necessary to capture all cycles of

ξ (Proposition 5.3): since a cycle of ξ is a Jordan curve in R2, it is a Rolle leaf
of ξ and therefore intersects each C ∈ C of dimension at most 1 in at most
one connected component. Hence there is an N ∈ N such that for all x ∈ B,
x belongs to a cycle of ξ if and only if fN(x) = x.
To see how we can use this to detect limit cycles of certain ξ, we �rst

de�ne a cycle L of ξ to be a boundary cycle, if for every x ∈ L and every
neighborhood V of x, the set V intersects some non-compact leaf of ξ. One
of Poincaré's theorems [10] (see also Perko [9, p. 217]) implies that if ξ is
real analytic, then the limit cycles of ξ are exactly the boundary cycles of
ξ. On the other hand, it follows from the previous paragraph that for every
x ∈ B, the point x belongs to a boundary cycle of ξ if and only if x is in the
boundary (relative to B considered with the topology induced on it by the
various orderings de�ned above) of the set of all �xed points of fN .
Based on the observations mentioned in the preceding paragraphs (and a

few related observations), we associate to each decomposition C as in Theorem
A a �ow con�guration Φξ = Φξ(C) of ξ, intended to code how the cells in C
are linked together by the �ow of ξ. To each �ow con�guration Φ, we associate
in turn a unique �rst-order language L(Φ), in such a way that the situation
described in the preceding paragraphs naturally yields an L(Φξ)-structureMξ

in which the lexicographic orderings of Theorem A, the associated forward
progression map f : B ∪ {∞} −→ B ∪ {∞} and the set of all x ∈ B that
belong to some boundary cycle of ξ are de�nable.
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If, in the situation of Theorem A, there is an open C ∈ Creg, then the induced
structure on C in Mξ is not o-minimal (because the structure (C,<C , EC)
described above is de�nable in Mξ). Thus, to answer (ii) we need to work
with notions weaker than o-minimality. A natural weakening that includes
lexicographic orderings is provided by the rosy ordered theories introduced
by Onshuus [8]: the theory Tlex of the structure (R2, <lex, {y = 0}) is rosy
of Uþ-rank two, while every o-minimal structure is rosy of Uþ-rank one. (We
refer the reader to [8] for the relevant de�nitions; for a structure M, we write
Uþ(M) for the Uþ-rank of the theory of M.)
Note that our discussion above implies Uþ(Mξ) ≥ 2. The main result of

this paper is the following restatement of Dulac's problem:

Theorem B. Assume that ξ is de�nable in an o-minimal expansion of the real

�eld, and letMξ be the L(Φξ)-structure associated to some �ow con�guration

Φξ of ξ. Then

(1) ξ has �nitely many boundary cycles if and only if Uþ(Mξ) = 2;
(2) if ξ is real analytic, then ξ has �nitely many limit cycles if and only if

Uþ(Mξ) = 2.

The proof of Theorem B is lengthy, but straightforward: we prove that
Mξ admits quanti�er elimination in a certain expanded language (Theorem
9.11). The main ingredient in this proof is a reduction�modulo the theory
of Mξ in the expanded language, roughly speaking�of general quanti�er-free
formulas to certain quanti�er-free order formulas, which allows us to deduce
the quanti�er elimination for Mξ from quanti�er elimination of the theory of
(R2, <lex, {y = 0}, π), where π : R2 −→ {y = 0} is the canonical projection
on the x-axis. Under the assumption of having only �nitely many boundary
cycles, the new predicates of the expanded language are easily seen to de�ne
subsets of the various cells obtained by Theorem A that are �nite unions of
points and intervals. Theorem B then follows by general Uþ-rank arguments.
As a corollary of Theorem B, Ecalle's and Ilyashenko's solutions of Dulac's

Problem imply the following:

Corollary. Assume that ξ is polynomial, and let Mξ be the L(Φξ)-structure
associated to some �ow con�guration Φξ of ξ. Then Uþ(Mξ) = 2. �

It remains an open question whether, in the situation of the corollary, the
structures are de�nable in some o-minimal expansion of the real line. An
answer to this question, however, seems to go far beyond our current knowledge
surrounding Dulac's Problem.
Finally, our proof of Theorem B gives rise to a second restatement of Dulac's

problem that does not involve Uþ-rank: let G be the union of all 1-dimensional
C ∈ Creg that are transverse to ξ, all 0-dimensional C ∈ Creg and {∞}. Let Gξ
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be the expansion of G by all corresponding orderings <C and by the map f2|G.
(Note that f2|G maps G into G.) We may view Gξ as a graph whose vertices
are the elements of G and whose edges are de�ned by f2.

Theorem C. Assume that ξ is de�nable in an o-minimal expansion of the

real �eld, and let Gξ be as above. Then

(1) ξ has �nitely many boundary cycles if and only if the structure induced

by Gξ on each 1-dimensional C ⊆ G is o-minimal;

(2) if ξ is real analytic, then ξ has �nitely many limit cycles if and only if

the structure induced by Gξ on each 1-dimensional C ⊆ G is o-minimal.

Our paper is organized as follows: in Sections 1�5, we establish Theorem
A and its consequences. Based on the latter, we de�ne the notion of a �ow
con�guration and the associated �rst-order language in Section 6, where we
also give an axiomatization of the crucial properties satis�ed by the models
Mξ above. Some basic facts about the iterates of the forward progression
map are deduced from these axioms in Section 7. In Section 8, we extend our
axioms to re�ect the additional assumption that there are only �nitely many
boundary cycles, and we introduce additional predicates for certain de�nable
sets related to the sets of �xed points of the iterates of the forward progression
map. The quanti�er elimination result is then given in Section 9, and we prove
Theorems C and B in Section 10. We �nish with a few questions and remarks
in Section 11.

Acknowledgements. We thank Lou van den Dries and Chris Miller for their
suggestions and comments on the earlier versions of this paper.

Global conventions. We �x an o-minimal expansion R of the real �eld;
�de�nable� means �de�nable in R with parameters�.
For 1 ≤ m ≤ n, we denote by Πm : Rn −→ Rm the projection on the �rst

m coordinates.
Given (x, y) ∈ R2, we put (x, y)⊥ := (y,−x).
For a subset A ⊆ Rn, we let cl(A), int(A), bd(A) := cl(A) \ int(A) and

fr(A) := cl(A) \A denote the topological closure, interior, boundary and fron-
tier, respectively.
For n ∈ N, we de�ne the analytic di�eomorphism φn : Rn −→ (−1, 1)n by

φn(x1, . . . , xn) :=
(
x1/
√

1 + x2
1, . . . , xn/

√
1 + x2

n

)
. Given X ⊆ Rn, we write

X∗ := φn(X), and given a vector �eld η on Rn of class C1, we write η∗ for the
push-forward (φn)∗ η of η to (−1, 1)n.

1. Rolle decomposition

Let U ⊆ R2 be open and p ≥ 1 be an integer. Let ξ = a1
∂
∂x

+ a2
∂
∂y

be a

de�nable vector �eld on U of class Cp (that is, the functions a1, a2 : U −→ R
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are de�nable and of class Cp), and let

S(ξ) := {z ∈ U : a1(z) = a2(z) = 0}
be the set of singularities of ξ. By the existence and uniqueness theorems
for ordinary di�erential equations [1, p. 28], ξ induces a Cp-foliation F ξ on
U \ S(ξ) of dimension 1. Abusing terminology, we simply call a leaf of this
foliation a leaf of ξ.

Remark. Put ω := a2dx− a1dy; then S(ξ) is the set of singularities of ω, and
the foliation F ξ is exactly the foliation on U \ S(ξ) de�ned by the equation
ω = 0. Below, we will use this observation (mainly in connection with some
citations) without further mention.

De�nition 1.1. Let γ : I −→ U of class Cp, where I ⊆ R is an interval.
We call γ a Cp-curve in U and usually write Γ := γ(I). If t ∈ I is such
that ξ⊥(γ(t)) · γ′(t) 6= 0, we say that γ is transverse to ξ at t; otherwise,
γ is tangent to ξ at t. The curve γ is transverse (tangent) to ξ if γ is
transverse (tangent) to ξ at every t ∈ I.
A leaf L of ξ is a Rolle leaf of ξ if for every C1-curve γ : [0, 1] −→ U with

γ(0) ∈ L and γ(1) ∈ L, there is a t ∈ [0, 1] such that ξ⊥(γ(t)) · γ′(t) = 0.
A cycle of ξ is a compact leaf of ξ. A cycle L of ξ is a limit cycle of ξ if

there is a non-compact leaf L′ of ξ such that L ⊆ cl(L′). A cycle L of ξ is a
boundary cycle of ξ if for every open set V ⊆ R2 with V ∩L 6= ∅, there is a
non-compact leaf L′ of ξ such that V ∩ L′ 6= ∅.

Remark 1.2. Since ξ is integrable in U \ S(ξ), every Rolle leaf L of ξ is an
embedded submanifold of U \ S(ξ) that is closed in U \ S(ξ). In particular,
by Theorem 4.6 and Lemma 4.4 of Chapter 4 in [4], if U \ S(ξ) is simply
connected, then U \ (S(ξ) ∪ L) has exactly two connected components such
that L is equal to the boundary in U \ S(ξ) of each of these components.

Lemma 1.3 (Khovanskii [6]). (1) Assume that U \ S(ξ) is simply con-

nected, and let L ⊆ U \ S(ξ) be an embedded leaf of ξ that is closed

in U \ S(ξ). Then L is a Rolle leaf of ξ in U .
(2) Let L be a cycle of ξ. Then L is a Rolle leaf of ξ.

Sketch of proof. (1) Arguing as in the preceding remark, the set U \ S(ξ) has
exactly two connected components U1 and U2, such that bd(Ui)∩(U\S(ξ)) = L
for i = 1, 2. The argument of Example 1.3 in [12] now shows that L is a Rolle
leaf of ξ.
(2) Since L is compact, L is an embedded and closed submanifold of R2.

Now conclude as in part (1). �

De�nition 1.4. We call ξ Rolle if S(ξ) = ∅, ξ is of class C1 and every leaf
of ξ is a Rolle leaf of ξ.
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We now let C be a Cp-cell decomposition of R2 compatible with U and S(ξ),
and we put CU := {C ∈ C : C ⊆ U}. Re�ning C, we may assume that ξ|C is
of class Cp for every C ∈ CU , and that every C ∈ CU of dimension 1 is either
tangent or transverse to ξ. Re�ning C again, we also assume that

(I) a1 and a2 have constant sign on every C ∈ CU .

Such a decomposition C is called a Rolle decomposition for ξ, because of
the following:

Proposition 1.5. Let C ∈ CU be open such that C ∩ S(ξ) = ∅. Then ξ|C is

Rolle. Moreover, if both a1 and a2 have nonzero constant sign on C, then either

every leaf of ξ|C is the graph of a strictly increasing Cp function f : I −→ R, or

every leaf of ξ|C is the graph of a strictly decreasing Cp-function f : I −→ R,

where I ⊆ R is an open interval depending on f .

Proof. If a1|C = 0 or a2|C = 0, the conclusion is obvious. So we assume that
a1|C and a2|C have constant positive sign, say; the remaining three cases are
handled similarly. Let L be a leaf of ξ|C ; we claim that L is the graph of a
strictly increasing Cp-function f : I −→ R, where I := Π1(L).
To see this, assume �rst that there are x, y1, y2 ∈ R such that (x, yi) ∈ L for

i = 1, 2 and y1 6= y2. Since ξ|C is of class Cp, the leaf L is a Cp-curve, so by
Rolle's Theorem, there is an a ∈ L such that L is tangent at a to ∂/∂y. But
this means that a1(a) = 0, a contradiction. Thus, L is the graph of a strictly
increasing Cp-function f : I −→ R.
It follows from the claim that L is an embedded submanifold of C and, since

C ∩ S(ξ) = ∅, that L is a closed subset of C. Thus by Lemma 1.3(1), L is a
Rolle leaf of ξ|C . �

2. Rolle foliations and Hausdorff limits of Rolle leaves

We continue working with ξ as in Section 1, and we �x a Rolle decomposition
C for ξ. We �x an open C ∈ CU such that C ∩ S(ξ) = ∅.
To simplify notation, we write ξ in place of ξ|C throughout this section.
Let L be a leaf of ξ. Since L is a Rolle leaf of ξ, C \ L has two connected

components UL,1 and UL,2, and L is the boundary of UL,i in C for i = 1, 2.
Since ξ⊥(z) 6= (0, 0) for all z ∈ C and L is connected, there is an i ∈ {1, 2}
such that ξ⊥(z) points inside UL,i for all z ∈ L; reindexing if necessary, we
may assume that ξ⊥(z) points inside UL,2 for every leaf L of ξ.

De�nition 2.1. For a point z ∈ C, we let Lξ
z be the unique leaf of ξ such that

z ∈ Lξ
z. For any subset X ⊆ C, we de�ne

F ξ(X) :=
⋃
z∈X

Lξ
z,
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called the ξ-saturation of X, and we put

Lξ(X) :=
{
Lξ

z : z ∈ X
}
.

For X ⊆ C, we de�ne a relation �ξ
X on the set Lξ(X) as follows: L�ξ

X M if
and only if L ⊆ UM,1 (if and only if M ⊆ UL,2).
Whenever ξ is clear from context, we omit �ξ� in the de�nitions and nota-

tions above.

Note that in general the relation �C may not de�ne an order relation on
L(C):

Example 2.2. Let ζ := −y ∂
∂x

+ x ∂
∂y
, and let g : R2 −→ R be de�ned by

g(x, y) := (y − (x − 2))2. Then gζ is a real analytic vector �eld on R2 and
S(gζ) = {0} ∪ {(x, y) : y = x − 1}. Let also C be the cell (α, β), where
α, β : (0, 1) −→ R are de�ned by α(x) := x− 2 and β(x) := x− 1.
Then C ∩S(gζ) = ∅, and since every leaf of ζ is a Rolle leaf of ζ, the vector

�eld gζ|C is Rolle. However, �gζ
C is not an ordering of L(C): pick a leaf L of

ξ (that is, a circle with center (0, 0)) such that L ∩ gr(α) contains two points.
Then L ∩ C consists of two distinct leaves L1 and L2 of gζ|C . Since ζ⊥(z)
points outside the circle L for every z ∈ L, we get L1 ⊆ UL2,1 and L2 ⊆ UL1,1,

that is, L1 �gζ
C L2 and L2 �gζ

C L1.

However, for certain X the relation �X is a linear ordering of L(X), as
discussed in the following lemma. For a curve γ : I −→ C, we write

L(t) := Lγ(t) for all t ∈ I;
in this situation, we have F (Γ) =

⋃
t∈I L(t).

Lemma 2.3. Let γ : I −→ C be a Cp-curve transverse to ξ, where I ⊆ R is

an interval.

(1) If I is open, then F (Γ) is open.
(2) The relation �Γ is a linear ordering of L(Γ), and the map t 7→ L(t) :

I −→ L(Γ) is order-preserving if ξ⊥(γ(t)) · γ′(t) > 0 for all t ∈ I and

order-reversing if ξ⊥(γ(t)) · γ′(t) < 0 for all t ∈ I.

Proof. (1) Assume that I is open, and let t ∈ I. Because ξ is Cp and nonsingu-
lar and γ is transverse to ξ, by Picard's Theorem there is an open set Bt ⊆ C
containing γ(t) such that Bt ⊆ F (Γ). Put B :=

⋃
t∈I Bt; then Γ ⊆ B ⊆ F (Γ),

so F (Γ) = F (B). Since B is open, it follows from Theorem III.1 in [1] that
F (Γ) is open.
(2) Since γ is transverse to ξ and each L(t) is Rolle, the map t 7→ L(t) :

I −→ L(Γ) is injective. It therefore su�ces to show that either

s < t ⇔ L(s) �Γ L(t) for all s, t ∈ I,
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or
s < t ⇔ L(t) �Γ L(s) for all s, t ∈ I.

Since γ is transverse to ξ, the continuous map t 7→ ξ⊥(γ(t)) · γ′(t) : I −→ R
has constant positive or negative sign. Assume it has constant positive sign;
the case of constant negative sign is handled similarly. Then for every t ∈ I,
the set

Γ<t := {γ(s) : s ∈ I, s < t}
is contained in UL(t),1. Hence L(s) ⊆ UL(t),1 for all s ∈ I with s < t, that is,
L(s) �Γ L(t) for all s ∈ I with s < t. Similarly, L(t) �Γ L(s) for all s ∈ I
with s > t, and since t ∈ I was arbitrary, the lemma follows. �

We assume for the rest of this section that C is bounded. Let ξC be the
1-form on C de�ned by

ξC :=
ξ|C
‖ξ|C‖

.

Then ξC is a bounded, de�nable Cp-map on C, so by o-minimality, there is
a �nite set FC ⊆ fr(C) such that ξC extends continuously to cl(C) \ FC ; we
denote this continuous extension by ξC as well.
Let c, d ∈ R and α, β : (c, d) −→ R be de�nable and Cp such that C = (α, β).

By o-minimality and because C is bounded, the limits α(c) := limx→c α(x),
α(d) := limx→d α(x), β(c) := limx→c β(x) and β(d) := limx→d β(x) exist in R.
The points of the set

VC := {(c, α(c)), (d, α(d)), (c, β(c)), (d, β(d))}
are called the corners of C.

Example 2.4. In Example 2.2, we have FC ⊆ VC and both gζ · (∂/∂x) and
gζ ·(∂/∂y) have constant nonzero sign. The next proposition shows that under
the latter assumptions, the situation of Example 2.2 is as bad as it gets.

Proposition 2.5. Suppose that FC ⊆ VC , a1|C 6= 0 and a2|C 6= 0. Let

γ : [0, 1] −→ C be a Cp-curve transverse to ξ, and let ti ∈ (0, 1) be such that

t0 < t1 < t2 < · · · and ti → 1. Then the sequence
(
cl(L(ti))

)
converges in the

Hausdor� metric to a compact set K := lim cl(L(ti)) ⊆ cl(C), such that

(i) Π1(K) = [a, b] with c ≤ a < b ≤ d;
(ii) each component of K ∩ C is a leaf of ξ;
(iii) K ∩ Π−1

1 (a, b) = gr(f) for some continuous function f : (a, b) −→ R.

Proof. By Proposition 1.5, we may assume that for every t ∈ [0, 1], the leaf
L(t) is the graph of a strictly increasing Cp-function ft : (a(t), b(t)) −→
R (the other cases are handled similarly). Since C is bounded, the limits
ft(a(t)) := limx→a(t) ft(x) and ft(b(t)) := limx→b(t) ft(x) exist, and we also
denote by ft : [a(t), b(t)] −→ R the corresponding continuous extension of
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ft. Then cl(L(t)) = gr(ft). By Lemma 2.3, we may also assume that the
map t 7→ L(t) : [0, 1] −→ L(Γ) is order-preserving (again, the other case is
handled similarly). Finally, since each ft is strictly increasing and the map
t 7→ L(t) : [0, 1] −→ L(Γ) is order-preserving, it follows that fs(x) > ft(x) for
all s, t ∈ [0, 1] such that s < t and x ∈ (a(s), b(s)) ∩ (a(t), b(t)).
Since each cl(L(ti)) is connected, the set K is connected, so Π1(K) is an

interval [a, b], which proves (i). It follows in particular that for every x ∈ (a, b),
there is an open interval Ix ⊆ (a, b) containing x such that Ix ⊆ (a(ti), b(ti))
for all su�ciently large i. Thus by our assumptions,

(∗) for every x ∈ (a, b) we have fti|Ix > fti+1
|Ix for su�ciently large i.

Next, we show that K ∩C is an integral manifold of ξ. Fix a point (x, y) ∈
K ∩ C; it su�ces to show that there is an open box B ⊆ C containing (x, y)
such that K ∩ B is an integral manifold of ξ. Let B = I × J be an open box
containing (x, y) such that I ⊆ Ix. Since a1(x, y) 6= 0, we may also assume
(after shrinking B) that there is an ε > 0 such that |a1(x

′, y′)| ≥ ε for all
(x′, y′) ∈ B; in particular, there is an M > 0 such that fti|I is M -Lipshitz
for all su�ciently large i. Hence by (∗), the function f : I −→ R de�ned by
f(x′) := limi→∞ fti(x

′) is Lipshitz and satis�es K ∩ (I ×R) = K ∩B = gr(f).
Finally, shrinking B again if necessary, the fact that F ξ is a foliation gives
that K ∩B is an integral manifold of ξ, as required.
Since K is compact and K∩C is an integral manifold of ξ, every component

of K ∩C is a leaf of ξ. It also follows from the previous paragraph that K ∩C
is the graph of a continuous function g : Π1(K ∩ C) −→ R, which proves (ii).
Let now x ∈ (a, b) be such that x /∈ Π1(K ∩C). Then (x, α(x)) or (x, β(x))

belongs to K, because (a, b) ⊆ Π1(K); by (∗) we have (x, β(x)) /∈ K, so
(x, α(x)) ∈ K. If (ξC · ∂

∂x
)(x, α(x)) 6= 0, then by the same arguments as

used for (ii), we conclude that there are open intervals I, J ⊆ R such that
(x, α(x)) ∈ I×J and K ∩ (I×J) is the graph of a continuous function de�ned
on I. Therefore, part (iii) is proved once we show that (ξC · ∂

∂x
)(x, α(x)) 6= 0

for all x ∈ (a, b) \ Π1(K ∩ C).
Assume for a contradiction that there is an x ∈ (a, b) \Π1(K ∩C) such that

(ξC · ∂
∂x

)(x, α(x)) = 0. Let M > |α′(x)|, and let I, J ⊆ R be open intervals
such that I ⊆ Ix and |a2/a1| > M on B := I × J . Since fti(x) → α(x), it
follows from the fundamental theorem of calculus for all su�ciently large i
that fti(xi) = α(xi) for some xi ∈ I, a contradiction. �

3. Piecewise trivial decomposition

We continue working with ξ as in Section 1, and we adopt the notations used
there. Note that ξ∗ (as de�ned at the end of the introduction) is a de�nable
vector �eld on U∗ of class Cp, and that C is a Rolle decomposition of R2 for ξ
if and only if C∗ := {C∗ : C ∈ C} is a Rolle decomposition of (−1, 1)2 for ξ∗.
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Let C ⊆ U be a bounded, open, de�nable Cp-cell such that ξ|C is Rolle.
To detect situations like the one described in Example 2.2, we associate the
following notations to such a C: there are real numbers c < d and de�nable
Cp functions α, β : (c, d) −→ R such that C = (α, β). Given a C1-function
δ : (c, d) −→ R such that α(x) ≤ δ(x) ≤ β(x) for all x ∈ (c, d), we de�ne
σδ : C −→ R by

σδ(x, y) := ξ⊥(x, y) ·
(

1
δ′(x)

)
.

Note that for each x ∈ (c, d), there are by o-minimality a maximal αC
0 (x) ∈

(α(x), β(x)] and a minimal βC
0 (x) ∈ [α(x), β(x)) such that the function σα has

constant sign on {x} × (α(x), αC
0 (x)) and the function σβ has constant sign

on {x}× (βC
0 (x), β(x)); we omit the superscript �C� whenever C is clear from

context. Note that α0, β0 : (c, d) −→ R are de�nable.

De�nition 3.1. A Cp-cell decomposition of R2 compatible with U , bd(U) and
S(ξ) is called almost piecewise trivial for ξ if

(I) every C ∈ CU of dimension 1 is either tangent or transverse to ξ;
(II) the components of ξ have constant sign on every C ∈ CU ;

and for every open, bounded C ∈ CU such that C ∩ S(ξ) = ∅, the following
hold:

(III) FC ⊆ VC ;
(IV) the maps α0, β0 : (c, d) −→ R are continuous;
(V) the map σα has constant sign on the cell (α, α0), and the map σβ has

constant sign on the cell (β0, β).

We call C piecewise trivial for ξ if C∗ is almost piecewise trivial for ξ∗.

Example 3.2. Let ζ := −y ∂
∂x

+x ∂
∂y
, and let C be the cell decomposition of R2

consisting of the sets of the form {(x, y) : x ∗ 0, y ? 0} with ∗, ? ∈ {=, <,>}.
Then C is piecewise trivial for ζ.

Remarks 3.3. (1) Any piecewise trivial decomposition for ξ is a Rolle
decomposition for ξ.

(2) If U is bounded, then C is almost piecewise trivial for ξ if and only if
C is piecewise trivial for ξ.

(3) We obtain a piecewise trivial decomposition for ξ in the following way:
�rst, obtain a Cp-cell decomposition C compatible with U , bd(U) and
S(ξ) satisfying (I) and (II). Then, to satisfy (III)�(V), we only need to
re�ne Π1(C) := {Π1(C) : C ∈ C}.

We now �x a piecewise trivial decomposition C of R2 for ξ. The name
�piecewise trivial� is justi�ed by:
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Theorem 3.4. Let C ∈ CU be open such that C∩S(ξ) = ∅. Then the relation

�C on L(C) is a linear ordering.

To prove the theorem, we �x a bounded, open C ∈ CU such that C∩S(ξ) = ∅.
Establishing the theorem for this C su�ces: if the theorem holds for every
bounded, open D ∈ C such that D ∩ S(ξ) = ∅, then the theorem holds with
C∗ and ξ∗ in place of C and ξ (because every D ∈ C∗ is bounded). Since φ2 is
an analytic di�eomorphism, it follows that the theorem holds for every open
D ∈ C such that D ∩ S(ξ) = ∅.
We need quite a bit of preliminary work (see the end of this section for

the proof of the theorem). For Lemma 3.5 and Corollary 3.6 below, we �x a
Cp-curve γ : [0, 1] −→ C transverse to ξ.

Lemma 3.5. Let ti ∈ (0, 1), for i ∈ N, such that ti → t ∈ [0, 1]. Then

C ∩ lim cl(L(ti)) = L(t).

Proof. From Proposition 2.5 we know that C ∩K is a union of leaves of ξ|C ,
where K := lim cl(L(ti)). Thus, since γ(ti) → γ(t) and γ(t) ∈ L(t), it follows
that L(t) ⊆ C∩K. To prove the opposite inclusion, we may assume by Propo-
sition 1.5 that every leaf of ξ|C is the graph of a strictly increasing function
(the other case is handled similarly). By Proposition 2.5 again, Π1(K) = [a, b]
with c ≤ a < b ≤ d, and there is a continuous function f : (a, b) −→ R such
that K ∩

(
(a, b)× R

)
= gr(f).

Assume for a contradiction that there is a leafM of ξ|C such thatM 6= L(t)
and M ⊆ C ∩K. Then L(t) and M are disjoint subsets of gr(f); say L(t) =
gr(ft), where ft : (a(t), b(t)) −→ R, and M = gr(g), where g : (a′, b′) −→
R. We assume here that a′ < b′ ≤ a(t) < b(t); the other case is again
handled similarly. By our assumption, c < a(t) and hence limx→a(t)+ ft(x) ∈
{α(a(t)), β(a(t))}. We assume here that limx→a(t)+ ft(x) = α(a(t)), the other
case being handled similarly. Then by the Mean Value Theorem, for every ε >
0 there is an x ∈ (a(t), a(t)+ ε) such that f ′t(x) > α′(x), that is, σα(x, ft(x)) <
0. It follows from (V) that

(∗) the map σα has constant negative sign on (α, α0).

On the other hand, b′ < d, and we may assume that limx→b′− g(x) = α(b′):
otherwise, limx→b′− g(x) = β(b′), and since limx→a(t) f(x) = limx→a(t)+ ft(x) =
α(a(t)), we can replace M by a leaf of ξ|C that is contained in gr(f) and
has the desired property. But limx→b′− g(x) = α(b′) means (as above) that
for every ε > 0 there is an x ∈ (b′ − ε, b′) such that g′(x) < α′(x), that is,
σα(x, g(x)) > 0. This contradicts (∗), so the lemma is proved. �

Put F := F (γ((0, 1))); note that F is open by Lemma 2.3(1).

Corollary 3.6. C ∩ bd(F ) = L(0) ∪ L(1); in particular, there are distinct

j0, j1 ∈ {1, 2} such that C \ cl(F ) = UL(0),j0 ∪ UL(1),j1 .
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Proof. Let z ∈ cl(F ) ∩ C, and let zi ∈ F be such that zi → z. Let ti ∈ (0, 1)
be such that zi ∈ L(ti); passing to a subsequence if necessary, we may assume
that ti → t ∈ [0, 1]. Then z ∈ C ∩ lim cl(L(ti)), so z ∈ L(t) by Lemma 3.5.
Since F is open by Lemma 2.3(1), it follows that C∩bd(F ) ⊆ L(0)∪L(1). On
the other hand, by Lemma 2.3(2), there is a j ∈ {1, 2} such that L(t) ⊆ UL(0),j

for all t ∈ (0, 1] and L(t) ⊆ U1,j′ for all t ∈ [0, 1), where j′ ∈ {1, 2} \ {j}.
Hence L(0) ∪ L(1) ⊆ C ∩ bd(F (Γ)), and the corollary is proved. �

De�nition 3.7. Let τ : [0, 1] −→ U be continuous. We call τ piecewise
Cp-monotone in ξ if there are t0 := 0 < t1 < t2 < · · · < tk < tk+1 := 1
and ∗ ∈ {<,>} such that for all i = 0, . . . , k, the restriction τ |(ti,ti+1) is C

p,
and either ξ⊥(τ(t)) · τ ′(t) = 0 for all t ∈ (ti, ti+1) or ξ⊥(τ(t)) · τ ′(t) ∗ 0 for
all t ∈ (ti, ti+1). In this situation, we also say that τ is ∗-piecewise Cp-
monotone in ξ. We call such a τ tangent to ξ if each τ |(ti,ti+1) is tangent to
ξ.

Lemma 3.8. Let v, w ∈ C. Then there is a curve τ : [0, 1] −→ C that is

piecewise Cp-monotone in ξ and satis�es τ(0) = v and τ(1) = w.

Proof. If Lv = Lw, then there is a Cp-curve τ : [0, 1] −→ Lv such that τ(0) = v
and τ(1) = w, and we are done. So we assume from now on that Lv 6= Lw.
Let jvw ∈ {1, 2} be such that w ∈ ULv ,jvw , and put

∗vw :=

{
< if jvw = 1,

> if jvw = 2.

By o-minimality, there is a de�nable Cp-curve τ : [0, 1] −→ C such that

(I) τ(0) = v and τ(1) = w.

Again by o-minimality, there are t0 := 0 < t1 < · · · < tk < tk+1 := 1 such that
for each i = 0, . . . , k,

(II) the map t 7→ ξ⊥(τ(t)) · τ ′(t) has constant sign on (ti, ti+1).

By Khovanskii theory [12], we may also assume that for every i = 0, . . . , k,

(III) either τ((ti, ti+1)) ∩ (Lv ∪ Lw) = ∅ or τ((ti, ti+1)) ⊆ Lv ∪ Lw.

We now proceed by induction on k, simultaneously for all v, w ∈ C and τ
satisfying (I)�(III), to prove that τ can be changed into a curve that is ∗vw-
piecewise Cp-monotone in ξ. If k = 0, then τ is ∗vw-piecewise C

p-monotone in
ξ, so we are done. Therefore, we assume that k > 0 and that the claim holds
for lower values of k.
Since τ(1) = w /∈ Lv and Lv is closed in C, there is a maximal t ∈ [0, 1)

such that τ(t) ∈ Lv, and by our choice of t1, . . . , tk, we have t = ti for some
i ∈ {0, . . . , k}. If i > 1, we replace τ |[0,ti] by a Cp curve τ1 : [0, ti] −→ Lv such
that τ1(0) = v and τ1(ti) = τ(ti), and we reindex ti, . . . , tk+1 as t1, . . . , tk−i+2.
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Hence by the inductive hypothesis, we may assume that i ≤ 1 and τ([0, 1]) ⊆
Lv ∪ ULv ,jvw . Put v

′ := τ(t1); we now distinguish two cases:

Case 1: v′ ∈ Lv. Then ∗v′w = ∗vw, so by the inductive hypothesis (and
rescaling), there is a curve τ1 : [t1, 1] −→ C that is ∗vw-piecewise C

p-monotone
in ξ and satis�es τ1(t1) = v′ and τ1(1) = w. Now replace τ |[t1,1] by τ1.

Case 2: v′ /∈ Lv. Then we must have ξ⊥(τ(t)) · τ(t) ∗vw 0 for all t ∈ (0, t1). If
v′ ∈ Lw, the lemma follows by a similar argument as in Case 1, so we assume
that v′ /∈ Lw. We claim again that ∗v′w = ∗vw in this situation, from which
the lemma then follows from the inductive hypothesis as in Case 1.
To see the claim, note that by Corollary 3.6, the complement of F (τ([0, t1]))

in C has two connected components ULv ,j and ULv′,j′
, where j, j′ ∈ {1, 2} are

distinct. By the above, j must be di�erent from jvw, so w ∈ ULv′,j′
, that is,

j′ = jv′w, which implies jvw = jv′w as required. �

Lemma 3.9. Let τ : [0, 1] −→ C be piecewise Cp-monotone in ξ such that τ
is not tangent to ξ. Then there is a Cp curve γ : [0, 1] −→ C such that γ is

transverse to C, γ(0) = τ(0) and γ(1) = τ(1).

Proof. Let t0 := 0 < t1 < t2 < · · · < tk < tk+1 := 1 be as in De�nition 3.7. We
work by induction on k; if k = 0, then by hypothesis τ is transverse to ξ, and
we take γ := τ . So we assume that k > 0; for the inductive step, it su�ces to
consider the the case k = 1. The hypothesis on τ then implies that at least
one of τ |(0,t1) and τ |(t1,1) is transverse to ξ; so we distinguish three cases:

Case 1: both τ |(0,t1) and τ |(t1,1) are transverse to ξ. By Picard's theorem,
there are an open neighborhood W ⊆ C of τ(t1) and a Cp-di�eomorphism
f : R2 −→ W such that f(0) = τ(t1) and f

∗ξ = ∂/∂x, where f ∗ξ is the pull-
back of ξ via f . Then for some ε > 0, the continuous curve f−1 ◦ τ |(t1−ε,t1+ε) is
Cp and transverse to ∂/∂x on (t1−ε, t1)∪(t1, t1+ε). Using standard smoothing
arguments from analysis, we can now �nd a Cp-curve η : (t1− ε, t1 + ε) −→ R2

that is transverse to ∂/∂x and satis�es η(t) = f−1(τ(t)) for all t ∈ (t1− ε, t1−
ε/2) ∪ (t1 + ε/2, t1 + ε). Now de�ne γ : [0, 1] −→ C by

γ(t) :=

{
τ(t) if 0 ≤ t < t1 − ε or t1 + ε < t ≤ 1,

f(η(t)) if t1 − ε ≤ t ≤ t1 + ε.

Case 2: τ |(0,t1) is transverse to ξ and τ |(t1,1) is tangent to ξ. Since τ([t1, 1])
is compact, there are (by Picard's theorem again) s0 := t1 < s1 < · · · <
sl < sl+1 := 1, open neighborhoods Wi ⊆ U of τ(si) and C

p-di�eomorphisms
fi : R2 −→ Wi, for i = 0, . . . , l + 1, such that τ([t1, 1]) ⊆ W0 ∪ · · · ∪Wl+1,
fi(0) = τ(si) and f

∗
i ξ = ∂/∂x for each i. We assume that l = 0, so that s0 = t1

and s1 = 1; the general case then follows by induction on l.



AN ORDERED STRUCTURE OF RANK TWO 15

Let u ∈ (t1, 1) be such that τ(u) ∈ W0 ∩W1. Working with f0 similarly as
in Case 1, we can replace τ |[0,u] by a Cp-curve η : [0, u] −→ C transverse to
ξ such that η(0) = τ(0) and η(u) = τ(u). De�ne η(t) := τ(t) for t ∈ (u, 1];
repeating the procedure with η and f1 in place of τ and f0, we obtain a Cp-
curve γ : [0, 1] −→ C that is transverse to ξ and satis�es γ(0) = τ(0) and
γ(1) = τ(1), as desired.

Case 3: τ |(0,t1) is tangent to ξ and τ |(t1,1) is transverse to ξ. This case is
similar to Case 2. �

Combining Lemmas 3.8 and 3.9, we obtain:

Corollary 3.10. Let u, v ∈ C be such that Lu 6= Lv. Then there is a Cp curve

γ : [0, 1] −→ C such that γ(0) = u, γ(1) = v and γ is transverse to ξ. �

Proof of Theorem 3.4. Let M,L ∈ L(C) be distinct and choose v ∈ M and
w ∈ L. By Corollary 3.10, there is a Cp-curve γ : [0, 1] −→ C such that
γ(0) = v, γ(1) = w and γ is transverse to ξ. Hence t 7→ ξ⊥(γ(t)) · γ′(t) has
constant nonzero sign on [0, 1]; this shows that �C is irre�exive. Transitivity
follows by a similar argument. �

4. Foliation orderings

Let ξ = a1
∂
∂x

+ a2
∂
∂y

be a de�nable vector �eld of class C1 on R2. We �x a

piecewise trivial decomposition C of R2 for ξ; re�ning C if necessary, we may
assume that C is a strati�cation. To simplify statements, we put

Creg := {C ∈ C : C ∩ S(ξ) = ∅} .
For instance in Example 3.2, the piecewise trivial decomposition C is a strati-
�cation and Creg = C \ {0}.

Remark 4.1. C being a strati�cation has the following consequence: for every
1-dimensional C ∈ C, there are exactly two distinct open D ∈ C such that
C ∩ fr(D) 6= ∅, and for each of these D we have C ⊆ fr(D).

Let V ⊆ R2 \ S(ξ) be an integral manifold of ξ, that is, a 1-dimensional

manifold tangent to ξ. Given u, v ∈ V , we de�ne u <ξ
V v if and only if there is

a C1 path γ : [0, 1] −→ V such that γ(0) = u, γ(1) = v and ξ(γ(t)) · γ′(t) > 0
for all t ∈ [0, 1].

Lemma 4.2. Assume that V is connected and not a compact leaf. Then the

relation <ξ
V de�nes a dense linear ordering of V without endpoints.

Proof. Let u, v ∈ V be such that u 6= v. Since V is connected, we get u <ξ
V v or

v <ξ
V u. On the other hand, if there are C1-paths γ, δ : [0, 1] −→ V such that

γ(0) = δ(1) = u, γ(1) = δ(0) = v and ξ(γ(t)) · γ′(t) > 0 and ξ(δ(t)) · δ′(t) > 0
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for all t ∈ [0, 1], then γ([0, 1]) ∪ δ([0, 1]) is a compact leaf of ξ contained in V ;
since V is connected, it follows that V is a compact leaf, a contradiction. �

We now �x a C ∈ Creg such that dim(C) > 0.

De�nition 4.3. The foliation of ξ induces an ordering <ξ
C on C as follows:

• Suppose that C is open, and let u, v ∈ C. Then every leaf of ξ|C is

non-compact by Proposition 1.5. Thus, we de�ne u <ξ
C v if and only

if Lu �ξ
C Lv or Lu = Lv and u <ξ

Lu
v.

• Suppose that dim(C) = 1 and C is tangent to ξ. Then C is a connected,

non-compact integral manifold of ξ, so we de�ne <ξ
C as before Lemma

4.2.
• Suppose that dim(C) = 1 and C is transverse to ξ. Let u, v ∈ C; we

de�ne u <ξ
C v if and only if there is a C1-curve γ : [0, 1] −→ C such

that ξ⊥(γ(t)) · γ′(t) > 0 for all t ∈ [0, 1].

As before, we omit the superscript ξ whenever it is clear from context.
A <C-interval is a set A of the form (a, b) := {c ∈ C : a ∗1 c ∗2 b} with

a, b ∈ C, or (a,∞) := {c ∈ C : a ∗ c} with a ∈ C, or (−∞, b) := {c ∈ C : c ∗ c}
with b ∈ C, where ∗, ∗1, ∗2 ∈ {<C ,≤C}; we call A open if ∗ = ∗1 = ∗2 =<C .

Lemma 4.4. The ordering <C is a dense linear ordering on C without end-

points. Moreover, if dim(C) = 1, then every <C-bounded subset of C has a

least upper bound.

Proof. It is clear from the de�nition that C has no endpoints with respect to
<C . Density and linearity follow from Lemmas 2.3 and 4.2 if dim(C) = 1, and
if C is open, they follow from Lemma 4.2 and Theorem 3.4.
For the second statement, assume that dim(C) = 1 and let α : (0, 1) −→ R2

be C1 and injective such that C = α((0, 1)). If C is tangent to ξ, then the map
t 7→ ξ(α(t)) · α′(t) has constant nonzero sign, and if C is transverse to ξ, then
the map t 7→ ξ⊥(α(t))·α′(t) has constant nonzero sign. Thus in both cases, the
map α :

(
(0, 1), <

)
−→ (C,<C) is either order-preserving or order-reversing;

the second statement follows. �

We assume for the remainder of this section that either C is open, or C is
1-dimensional and tangent to ξ.

De�nition 4.5. For each leaf L of ξ|C , it follows from Proposition 1.5 that
fr(L) consists of exactly two points P>

L , P
<
L ∈ fr(C) ∪ {∞}, where, for ∗ ∈

{>,<}, P ∗L is the unique of these two points with the property that for every
C1-curve γ : [0, 1) −→ L satisfying γ(0) ∈ L and limt→1 γ(t) = P ∗L, we have
ξ(γ(t)) · γ′(t) ∗ 0 for all t ∈ [0, 1). In this situation, we de�ne the forward
projection fC : C −→ fr(C) ∪ {∞} and the backward projection bC :
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C −→ fr(C) ∪ {∞} as

fC(z) := P>
Lz

and bC(z) := P<
Lz
, for all z ∈ C.

From now on we assume that C is open, and we let D ∈ Creg be of dimension
1 and contained in fr(C) such that D is transverse to ξ.

Lemma 4.6. Either D ⊆ fC(C) and D ∩ bC(C) = ∅, or D ⊆ bC(C) and

D ∩ fC(C) = ∅.

Proof. Let α : (0, 1) −→ R2 be a de�nable C1-map such that D = α((0, 1))
and ξ⊥(α(t)) · α′(t) > 0 for all t ∈ (0, 1). Thus, either ξ(α(t)) points into
C for all t, or ξ(α(t)) points out of C for all t. In the �rst case, we have
fC(C)∩D = ∅, and in the second case bC(C)∩D = ∅. Moreover by Picard' s
Theorem, for every w ∈ D there is an integral manifold V ⊆ R2 of ξ such that
V ∩D = {w}; hence, either w ∈ fC(C) or w ∈ bC(C). �

Lemma 4.7. The maps fC |f−1
C (D) and bC |b−1

C (D) are increasing.

Proof. We prove the lemma for fC . Let u, v ∈ C with u <C v be such that
fC(u), fC(v) ∈ D; we may clearly assume that Lu �C Lv, and hence (by
Picard's Theorem) that fC(u) 6= fC(v).
We assume here that D = gr(α), where α : (a, b) −→ R is a de�nable C1-

function; the caseD = {a}×(b, c) is handled similarly. Let also β : (a, b) −→ R
be a de�nable C1-function such that C = (α, β) or C = (β, α); we assume here
the former, the latter being handled similarly. For s ∈ [0, 1], we put

αs(t) := (1− s)α(t) + sβ(t), a < t < b.

Then for every t ∈ (a, b), we have lims→0 αs(t) = α(t) and lims→0 α
′
s(t) = α′(t).

Let now a < a′ < b′ < b be such that fC(u), fC(v) ∈ grα|(a′,b′). Since D
is transverse to ξ, there is an ε > 0 such that grαs|(a′,b′) is transverse to ξ
for all s ∈ [0, ε). It follows from the previous paragraph that the map t 7→
σα(t, α(t)) has the same constant nonzero sign as the map t 7→ σαs(t, αs(t)),
for all s ∈ (0, ε). Therefore by Lemma 2.3(2) and the de�nition of <D, we
have fC(u) <D fC(v), as required. �

Corollary 4.8. Let I ⊆ C be a <C-interval. Then each of fC(I) ∩ D and

bC(I) ∩D is either empty, a point or an open <D-interval.

Proof. Assume that a, b ∈ fC(I) ∩ D are such that a <D b, and let c ∈ D be
such that a <D c <D b; it su�ces to show that c ∈ fC(I). By Lemma 4.6,
c ∈ fC(C). Let u, v, w ∈ C be such that a = fC(u), b = fC(v), c = fC(w) and
u, v ∈ I. Then u <C w <C v by Lemma 4.7, as required. �
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We �x a set EC ⊆ C such that |EC ∩ L| = 1 for every L ∈ L(C) and put
<EC

:=<C |EC
, and we denote by eL the unique element of E ∩ L, for every

L ∈ L(C).

Remark. The map L 7→ L∩EC : (L(C),�C) −→ (EC , <EC
) is an isomorphism

of ordered structures.

Proposition 4.9. Let g ∈ {f, b}. If D ⊆ gC(C), then Dg := g−1
C (D) ∩ EC

is an <EC
-interval, and the map gC |Dg : (Dg, <EC

|Dg) −→ (D,<D) is an

isomorphism of ordered structures.

Proof. The transversality of D to ξ implies that if u ∈ D and L1, L2 ∈ L(C)
are such that u = P>

L1
= P>

L2
or u = P<

L1
= P<

L2
, then L1 = L2. Thus by

Lemma 4.7, the map gC |Df
is strictly increasing, so the lemma follows. �

5. Progression map

We continue working with ξ and C as in Section 4, and we adopt all corre-
sponding notations. We let

(i) Copen be the collection of all open cells in Creg;
(ii) Ctan be the collection of all cells in Creg that are of dimension 1 and

tangent to ξ;
(iii) Ctrans be the collection of all cells in Creg that are of dimension 1 and

transverse to ξ; and
(iv) Csingle the collection of all p ∈ R2 such that {p} ∈ Creg.
By Lemma 4.6 and since C is a strati�cation, there are, for each C ∈ Ctrans,

distinct and unique cells Cb, C f ∈ Copen such that C∩cl(Cb) 6= ∅, C∩cl(C f) 6= ∅
and

C ⊆ fCb(Cb) and C ⊆ bCf(C f).

Similarly, there are, for each p ∈ Csingle, distinct and unique cells pb, pf ∈
Copen ∪ Ctan such that p ∈ cl(pb), p ∈ cl(pf) and

p ∈ fpb(pb) and p ∈ bpf(pf).

(For p ∈ Csingle, we use the fact that there is an open box B containing p such
that the leaf of ξ|B passing through p is a Rolle leaf.) For each C ∈ Ctan, we
�x an arbitrary element eC ∈ C; note that for each z ∈ C, C is the unique
leaf Lz of ξ|C containing z.
We now de�ne f′, b′ : R2 −→ R2 ∪ {∞} by

f′(z) :=


fC(z) if z ∈ C ∈ Copen ∪ Ctan and eLz ≤Lz z,

eLz if z ∈ C ∈ Copen ∪ Ctan and z <Lz eLz ,(
bCf|E

Cf

)−1
(z) if z ∈ C ∈ Ctrans ∪ Csingle,

z if z ∈ S(ξ)
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and

b′(z) :=


bC(z) if z ∈ C ∈ Copen ∪ Ctan and z ≤Lz eLz ,

eLz if z ∈ C ∈ Copen ∪ Ctan and eLz <Lz z,(
fCb|E

Cb

)−1
(z) if z ∈ C ∈ Ctrans ∪ Csingle,

z if z ∈ S(ξ).

De�nition 5.1. We de�ne f, b : R2 ∪ {∞} −→ R2 ∪ {∞} by

f(z) :=

{
f′(z) if z ∈ R2 and f′(z) /∈ S(ξ),

∞ otherwise

and

b(z) :=

{
b′(z) if z ∈ R2 and b′(z) /∈ S(ξ),

∞ otherwise.

We call f a progression map associated to ξ and b a reverse progression
map associated to ξ. We put

C1 = Ctrans ∪ Csingle ∪
⋃
{EC : C ∈ Copen} ∪ {{eC} : C ∈ Ctan}

and let B :=
⋃
C1; note that f(R2) ⊆ B∪{∞} and b(R2) ⊆ B∪{∞}. Finally,

we de�ne f0 : R2 ∪ {∞} −→ R2 ∪ {∞} by f0(x) := x, and for k > 0 we de�ne
fk : R2 ∪ {∞} −→ R2 ∪ {∞} inductively on k by fk(x) := f(fk−1(x)).

Proposition 5.2. Let X ∈ C1 and L be a compact leaf of ξ. Then |X∩L| ≤ 1.

Proof. If X ∈ Csingle or X = {eC} for some C ∈ Ctan, the conclusion is trivial.
By Lemma 1.3(2), L is a Rolle leaf of ξ; in particular, |X∩L| ≤ 1 if X ∈ Ctrans.
So we may assume that X = EC for some C ∈ Copen. Then there is at most
one L′ ∈ L(C) contained in L: otherwise by Corollary 3.10, there is a C1-curve
γ : [0, 1] −→ C transverse to ξ such that γ(0), γ(1) ∈ L, a contradiction. It
follows again that |X ∩ L| ≤ 1. �

Proposition 5.3. There is an N ∈ N such that for every x ∈ B, the leaf of ξ
through x is compact if and only if fN(x) = x.

Proof. Let x ∈ B; if fk(x) = x for some k > 0, then the leaf of ξ through
x is compact. For the converse, we assume that the leaf L of ξ through x is
compact. Since L is compact, we have L∩S(ξ) = ∅, that is, fk(x) ∈ B for every
k > 0. Thus with n := |Creg|+1, there are a C ∈ Creg and 0 ≤ k1 < k2 ≤ n such
that fk1(x), fk2(x) ∈ C. It follows from Proposition 5.2 that fk1(x) = fk2(x),
and hence that

x = bk1 ◦ fk1(x) = bk1 ◦ fk2(x) = fk2−k1(x).

Since n is independent of x ∈ B, the number N := n! will do. �
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6. Flow configuration theories

Inspired by the previous sections, we now de�ne a �rst-order theory as
described in the introduction. Our main goal, reached in Section 9, is to show
that this theory admits quanti�er elimination in a language suitable to our
purposes.

De�nition 6.1. A �ow con�guration is a tuple

Φ = (Φopen,Φtan,Φtrans,Φsingle, φ
b, φf,min,max, NΦ)

such that Φopen, Φtan, Φtrans and Φsingle are pairwise disjoint, �nite sets,

φb, φf : Φtrans ∪Φsingle −→ Φopen ∪ Φtan,

min,max : Φopen ∪ Φtan ∪ Φtrans −→ Φsingle ∪ {∞}

and NΦ ∈ N. In this situation, we shall write ab and af instead of φb(a) and
φf(a), for a ∈ Φtrans ∪Φsingle.

Example 6.2. Let ξ be a vector �eld on R2 of class C1 and de�nable in
an o-minimal expansion of the real �eld, and let C be a piecewise trivial cell
decomposition of R2 that is also a strati�cation. We de�ne Copen, Ctan, Ctrans,
Csingle and b, f : Ctrans∪Csingle −→ Copen∪Ctan as in Section 5, and we let N ∈ N
be as in Proposition 5.3.
Let C ∈ Copen ∪ Ctan ∪ Ctrans. If there is a point in Csingle that is contained

in the closure of every set
{
x ∈ C : x <ξ

C a
}
with a ∈ C, we let min(C) be

any such point; otherwise, we put min(C) := ∞. Similarly, if there is a point

in Csingle that is contained in the closure of every set
{
x ∈ C : a <ξ

C x
}
with

a ∈ C, we let max(C) be any such point; otherwise, we put max(C) := ∞.
Then the tuple

Φξ = Φξ(C) := (Copen, Ctan, Ctrans, Csingle, b, f,min,max, N)

is a �ow con�guration associated to ξ.

For the remainder of this section, we �x a �ow con�guration Φ.

De�nition 6.3. Let L(Φ) be the �rst-order language consisting of

(i) a unary predicate C and a binary predicate <C , for each C ∈ Φopen ∪
Φtan ∪ Φtrans;

(ii) a unary predicate EC for each C ∈ Φopen and a constant symbol eC for
each C ∈ Φtan;

(iii) a constant symbol s, and a constant symbol c for each c ∈ Φsingle;
(iv) unary function symbols f and b;
(v) constant symbols rg

C and sg
C for each C ∈ Φtrans and g ∈ {f, b}.
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Throughout the rest of this paper, for m ∈ N we write fm for the L(Φ)-word
consisting of m repetitions of the symbol f, and similarly for bm.

Example 6.4. Let ξ and C be as in Example 6.2; we adopt the notations used
there. We associate to ξ a unique L(Φξ)-structure Mξ = Mξ(C) as follows:

(i) the universe Mξ of Mξ is R2 \ S(ξ) ∪ {∞};
(ii) for each C ∈ Copen ∪ Ctan ∪ Ctrans, the predicate C is interpreted by

the corresponding cell in C, and the predicate <C is interpreted by the
union of <ξ

C with {(min(C), a) : a ∈ C}, and {(a,max(C)) : a ∈ C};
(iii) for each C ∈ Copen, the predicate EC is interpreted by the set EC

described in Section 5, and for each C ∈ Ctan, the constant eC is inter-
preted by the element eC ∈ C picked in Section 5;

(iv) the constant s is interpreted as∞, and for each c ∈ Csingle, the constant
c is interpreted as the corresponding element of Csingle;

(v) the functions f and b are interpreted by the corresponding forward
progression and reverse progression maps;

(vi) for each C ∈ Ctrans and g ∈ {f, b}, the constants rg
C and sg

C are inter-
preted as the lower and upper endpoints, respectively, of the interval
g(C) in ECg ∪ {min(Cg),max(Cg)}.

De�nition 6.5. We put Φ0 := Φopen ∪ Φtan ∪ Φtrans; intending to capture the
theory of the previous example, we let T (Φ) be the L(Φ)-theory consisting of
the universal closures of the formulas in the axiom schemes (F1)�(F15) below.

(F1) The formulas

(a)
∧

c,d∈Φsingle,c 6=d

¬c = d ∧
∧

c∈Φsingle,C∈Φ0

¬Cc,

(b)
∧

c∈Φsingle

¬c = s ∧
∧

C∈Φ0

¬Cs,

(c) x = s ∨
∨

c∈Φsingle

x = c ∨
∨

C∈Φ0

(
Cx ∧

∧
D∈Φ0,D 6=C

¬Dx

)
.

(F2) For each C ∈ Φ0 the sentences stating that<C is a dense linear ordering
of C, together with Cx→ (x <C max(C) ∧min(C) <C x).

Remark. We do not wish to state that <C is a linear order on all of C ∪
{min(C),max(C)}, because it is possible that min(C) = max(C). The axioms
(F2) su�ce for our purpose, which is to be able to refer to C as the <C-interval
between min(C) and max(C).

(F3) The formula
∧

C∈Φtan

CeC ∧
∧

C∈Φopen

ECx→ Cx.

(F4) For each C ∈ Φopen the sentences stating that the restriction of <C to
EC is a dense linear ordering.
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(F5) For each (g, h) ∈ {(f, b), (b, f)} and ∗ ∈ {≤,≥} the formulas
(a) gs = s ∧ (¬x = s→ ¬gx = x),

(b)
∧

c∈Φsingle

(¬gc = s→ hgc = c),

(c)
∧

C∈Φopen

Cgx→ ECgx ∧
∧

C∈Φtan

Cgx→ gx = eC ,

(d)
∧

C∈Φtan

(Cx ∧ eC ∗C x ∗C geC) → gx = geC ,

(e)
∧

C∈Φtan

(Cx ∧ eC ∗C x ∗C heC) → gx = eC .

(F6) For each C ∈ Copen and g ∈ {f, b} the formula
(ECx ∧ ECy ∧ gx = gy) → (gx = s ∨ x = y).

(F7) For each c ∈ Φsingle and g ∈ {f, b}, the sentences gc = ecg if cg ∈ Φtan
and Ecggc if cg ∈ Φopen.

(F8) For each C ∈ Φtrans and (g, h) ∈ {(f, b), (b, f)} the sentences stating
that g(C) is an interval I1 in ECg and g|C : C −→ I1 is an order-
isomorphism.

(F9) For each C ∈ Φopen and (g, h) ∈ {(f, b), (b, f)} the formula

ECx→

gx = s ∨
∨

D∈Φtrans, C=Dh

Dgx ∨
∨

d∈Φsingle, C=dh

gx = d

 .

We need more axioms describing the ordering <C and the behavior of f and
b on C, for C ∈ Φopen. For example, if x ∈ C \EC , we want that x has either
a unique predecessor or a unique successor in EC . Also, for any y ∈ EC , the
set of points x for which y is either the predecessor or successor is in�nite and
densely ordered by <C . For convenience, we let φ

f
C(x, y) and φb

C(x, y) be the
following formulas:

φf
C(x, y) is Cx ∧ ¬ECx ∧ ECy ∧ x <C y ∧ ¬∃z(ECz ∧ x <C z <C y),

φb
C(x, y) is Cx ∧ ¬ECx ∧ ECy ∧ y <C x ∧ ¬∃z(ECz ∧ y <C z <C x).

(F10) For each C ∈ Φopen the formulas

(a) Cx ∧ ¬ECx→ ∃y(φf
C(x, y) ∨ φb

C(x, y)),

(b) ∃yφf
C(x, y) → ¬∃yφb

C(x, z),

(c) ∃yφb
C(x, y) → ¬∃yφf

C(x, y),

and the formula scheme ECy → ∃∞xφf
C(x, y) ∧ ∃∞xφb

C(x, y).
(F11) For each C ∈ Φopen the sentences stating that for every y ∈ EC , the

restriction of <C to the set Cy := {x : φb
C(x, y) ∨ φf

C(x, y) ∨ x = y} is
a dense linear ordering, together with Cyx→ (x <C fy ∧ gy <C x).

(F12) For each C ∈ Φopen and (g, h) ∈ {(f, b), (b, f)} the formulas
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(a) Cx ∧ ¬ECx ∧ ∃yφg
C(x, y) → ∀z(φg

C(x, z) → gx = z),

(b) Cx ∧ ¬ECx ∧ ∃yφh
C(x, y) → ∀z(φh

C(x, z) → gx = gz).
(F13) For each C ∈ Φtrans and (g, h) ∈ {(f, b), (b, f)} the formulas

(a) ECgrg
C ∨ r

g
C = min(Cg) ∨ rg

C = max(Cg),
(b) ECgsg

C ∨ s
g
C = min(Cg) ∨ sg

C = max(Cg),
(c) rg

C ≤Cg sg
C ,

(d) ECgx→ (Chx↔ rg
C <Cg x <Cg sg

C).
(F14) For each m,n ∈ N, C ∈ Φopen, D ∈ Φtrans and g ∈ {f, b} the formulas

(a) ECx ∧ ECgmx ∧ gnx = x→ gmx = x,
(b) Dx ∧Dgmx ∧ gnx = x→ gmx = x.

(F15) For each m ∈ N and g ∈ {f, b} the formula gm(x) = x→ gNΦ(x) = x.

This completes our list of axioms for T (Φ).

Our choice of axioms above and Sections 4 and 5 imply the following:

Proposition 6.6. Let ξ be a vector �eld on R2 of class C1 and de�nable in

an o-minimal expansion of the real �eld, and let Mξ be an L(Φξ)-structure
associated to ξ as in Example 6.4. Then Mξ |= T (Φξ). �

De�nition 6.7. We write

Φ1 := Φtrans ∪{EC : C ∈ Φopen} .
The following L(Φ)-formulas are of particular interest: for C ∈ Φ1, we let
FixC(x) be the formula Cx ∧ fNΦx = x and FixC(x, y) be the formula

∃z((x ≤C z ≤C y ∨ y ≤C z ≤C x) ∧ FixC(z)).

Next, we let BdC(x) be the formula

FixC(x) ∧ ∀y∀z
(
y <C x <C z → ∃w(y <C w <C z ∧ ¬FixC(w))

)
,

and let LimC(x) be the formula

FixC(x) ∧ ∃y(Cy ∧ y 6= x ∧ ¬FixC(x, y)).

Example 6.8. Let ξ be a vector �eld on R2 of class C1 and de�nable in
an o-minimal expansion of the real �eld, and let Mξ be an L(Φξ)-structure
associated to ξ as in Example 6.4. Let also C ∈ C1 := Ctrans∪{EF : F ∈ Copen}.
Then the set FixC(M) is the set of points in C that belong to a cycle of ξ,
the set BdC(M) is the set of points in C that belong to a boundary cycle of
ξ, and the set LimC(M) is the set of points in C that belong to a limit cycle
of ξ. Note that if ξ is analytic, then the set BdC(M) is discrete by Poincaré's
Theorem [10] (see also [9, p. 217]); in particular, BdC(M) = LimC(M) in this
case.
In general, by Proposition 5.3, the cardinality of BdC(M) is equal to the

number of boundary cycles of ξ that intersect C. Since every cycle of ξ inter-
sects the set

⋃
Ctan ∪

⋃
Ctrans ∪

⋃
Csingle, it follows that, with b(ξ) denoting the
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cardinality of the set of all boundary cycles of ξ, we have

|BdC(M)| ≤ b(ξ) ≤ |Ctan|+ |Csingle|+
∑

D∈Ctrans

|BdD(M)|.

7. Iterating the progression maps

We continue to work with a �ow con�guration Φ as in De�nition 6.1.
Throughout this section, we �x (g, h) ∈ {(f, b), (b, f)}.
For the next lemma, we denote by Θ(g,h) the universal closure of the con-

junction of the formulas (
∧

C∈Φ0
¬Cx) → ghx = x,

(Cx ∧ EChx) → ghx = gx and (ECx ∧ hx 6= s) → ghx = x

for each C ∈ Φopen,

(Cx ∧ hx = eC) → ghx = gx and (x = eC ∧ hx 6= s) → ghx = x

for each C ∈ Φtan, and Cx→ ghx = x for each C ∈ Φtrans ∪Φsingle.

Lemma 7.1. T (Φ) ` Θ(g,h).

Proof. Let M |= T (Φ), and let a ∈ M be such that a /∈
⋃

C∈Φ0
C. Then

by (F1), either a = c for some c ∈ Φsingle, or a = s. In the latter case, we
have g(h(a)) = h(g(a)) = a by (F5), so we may assume that a = c for some
c ∈ Φsingle. Then h(g(a)) = g(h(a)) = a by (F7)�(F9).
The proofs of the other conjuncts is similar, using also (F12); we leave the

details to the reader. �

Corollary 7.2. Let φ be any quanti�er-free L(Φ)-formula. Then φ is equiva-

lent in T (Φ) to a quanti�er-free formula φ′ such that no term occurring in φ′

contains both the symbols f and b.

Proof. By induction on l := max{length(t) : t is a term occurring in φ}, using
Lemma 7.1. �

For the remainder of this section, we �x an arbitrary model M of T (Φ).
To simplify notation, we omit the superscript M below and write C := C ∪
{min(C),max(C)} for C ∈ Φ1.

De�nition 7.3. Let C ∈ Φ1 and k ∈ N. We de�ne

Gk
C := {gl(z) : z is a constant, 0 ≤ l ≤ k and gl(z) ∈ C},

and we let Ok
C be the collection of all possible order types of pairs (a, b) ∈ C 2

over Gk
C . In addition, for ζ0, ζ1 ∈ C and D ∈ Φ1, we put

g−k
D (ζ0, ζ1) :=

{
x ∈ D : ζ0 <C gk(x) <C ζ1

}
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and

Hk
D(ζ0, ζ1) := {hl(z) : z ∈ {ζ0, ζ1} or z is a constant,

0 ≤ l ≤ k and hl(z) ∈ D}.

Note that Gk
C and Hk

D(ζ0, ζ1), and hence Ok
C , are �nite sets whose cardinality is

bounded by a number depending only on the language and k, but independent
of M, C, D, ζ0 or ζ1.

Proposition 7.4. Let C,D ∈ Φ1, ζ0, ζ1 ∈ C and k ∈ N.

(1) The set g−k
D (ζ0, ζ1) is a union of points in Hk

D(ζ0, ζ1) and open intervals

with endpoints in Hk
D(ζ0, ζ1).

(2) For each ϑ ∈ Ok
C , there is a conjunction σϑ(x, y0, y1) of atomic formulas

with free variables x, y0 and y1 such that whenever (ζ0, ζ1) have order
type ϑ overGk

C , the set g−k
D (ζ0, ζ1) is de�ned by the formula σϑ(x, ζ0, ζ1).

(3) gk restricted to g−k
D (ζ0, ζ1) is continuous.

Proof. Note that for every x ∈ g−k
D (ζ0, ζ1), there is a sequence E = (E0, . . . , Ek)

of elements of Φ2 := Φ1 ∪ {{c} : c ∈ Φsingle} ∪ {{eC} : C ∈ Φtan} such that
E0 = D, Ek = C and gi(x) ∈ Ei for i = 0, . . . , k. Thus, we �x a sequence
E = (E0, . . . , Ek) ∈ Φk+1

2 with Ek = C, and we de�ne the set

g−k
E (ζ0, ζ1) :=

{
x ∈M : gi(x) ∈ Ei for i = 0, . . . , k, ζ0 <C gk(x) <C ζ1

}
;

it su�ces to prove the proposition with g−k
E (ζ0, ζ1) and H

k
E0

(ζ0, ζ1) in place of

g−k
D (ζ0, ζ1) and H

k
D(ζ0, ζ1).

Next, we note that if Ei ∈ {{c} : c ∈ Φsingle} ∪ {{eC} : C ∈ Φtan} for some
i ∈ {1, . . . , k−1}, then a ∈ g−k

E (ζ0, ζ1) if and only if g
i(a) is the unique constant

in Ei and ζ0 <C gk(a) <C ζ1, so the proposition follows in this case.
We therefore assume from now on that Ei ∈ Φ1 for each i = 0, . . . , k, and

in this case we prove the proposition with part (1) replaced by

(1)' The set g−k
E (ζ0, ζ1) is an open interval with endpoints in Hk

E0
(ζ0, ζ1).

We proceed by induction on k. The case k = 0 is trivial, so we assume that k >
1. By Axiom (F8), the set g−1

(Ek−1,Ek)(ζ0, ζ1) is an open interval whose endpoints

η0, η1 belong to the set H1
Ek−1

(ζ0, ζ1) and are determined by the order type of

(ζ0, ζ1) over G
1
Ek
. In fact, we claim that the order type of (η0, η1) over G

k−1
Ek−1

is

determined by the order type of (ζ0, ζ1) over G
k
Ek
; together with the inductive

hypothesis applied to gk−1
(E0,...,Ek−1)(η0, η1), the proposition then follows, because

Hk−1
E0

(c, d) is contained in Hk
E0

(ζ0, ζ1) for all c, d ∈ H1
Ek−1

(ζ0, ζ1).
To see the claim, assume �rst that Ek = EC for some C ∈ Φopen. Then by

Axiom (F8), the set {g(z) : z ∈ Gk−1
Ek−1

} is contained in Gk
Ek

and the claim
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follows in this case. So we assume that Ek ∈ Φtrans. Then by Axiom (F13),
Ek−1 = EC for some C ∈ Φopen and there are constants a and b such that

(η0, η1) ⊆ (a, b) = g−1(Ek) = h(Ek) (as intervals).

Hence the order type of (η0, η1) over G
k−1
EC

is determined by the order type of

(η0, η1) over the set G′ :=
{
z ∈ Gk−1

EC
: a <C z <C b

}
. Then again by Axiom

(F8), the set {g(z) : z ∈ G′} is contained in Gk
Ek

and the claim also follows in
this case. �

Corollary 7.5. Let C ∈ Φ1 and put G := g−N
C (min(C),max(C)).

(1) The set BdC(M) is a closed and nowhere dense subset of G.
(2) Assume that Φ = Φξ and M ≡ Mξ for some de�nable vector �eld ξ

of class C1 on R2. Then for every c ∈ G \ BdC(M), there are a, b ∈ C
such that

a = sup
{
x ∈ BdC(M) ∪ (C \G) : x <C c

}
and

b = inf
{
x ∈ BdC(M) ∪ (C \G) : c <C x

}
.

Proof. Part (1) follows from the continuity of gN |G and the de�nition of the set
BdC(M). Part (2) follows from part (1) and the fact that CMξ is complete. �

Finally, for each C ∈ Φ1 we let Cx abbreviate Cx ∨ x = min(C) ∨ x =
max(C). We let Gk be the set of all L(Φ)-terms gjc such that 0 ≤ j ≤ k and
c is a constant symbol, and we let Ok be the set of all formulas of the form

(Cy0 ∧ Cy1) ∧
∧

{τ,ρ}⊆Gk∪{y0,y1}

(τ ∗{τ,ρ} ρ),

where C ∈ Φ1 and ∗{τ,ρ} ∈ {<C , >C ,=, 6=}. The cardinalities of Gk and Ok

are bounded by a number depending only on k (and on L(Φ)). Moreover in
M, each formula ϑ ∈ Ok determines an order type in Ok

C , for some C ∈ Φ1;
and conversely, every order type in Ok

C with C ∈ Φ1 is determined by some
formula ϑ ∈ Ok. Thus we obtain the following from Proposition 7.4:

Corollary 7.6. Let k ∈ N. Then there are l = l(k) ∈ N and quanti�er-free

formulas ϑk
1(y0, y1), . . . , ϑ

k
l (y0, y1) with free variables y0 and y1 such that

(1) T (Φ) `
l∨

i=1

ϑk
i (y0, y1) ↔

∨
C∈Φ1

(Cy0 ∧ Cy1);

(2) for every D ∈ Φ1 there are quanti�er-free formulas σD,k
i (x, y0, y1) with

free variables x, y0 and y1, i = 1, . . . , l, such that if M |= ϑk
i (ζ0, ζ1)

for ζ0, ζ1 ∈ M and some i, then the set g−k
D (ζ0, ζ1) is de�ned by the

formula σD,k
i (x, ζ0, ζ1). �
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Remark 7.7. We obtain analogous statements to Proposition 7.4 and Corol-
lary 7.6 if we replace the open interval (ζ0, ζ1) by a half-open or closed interval.

8. Dulac flow configurations

It is clear from Remark 6.8 that, for a vector �eld ξ on R2 de�nable in R,
the set of boundary cycles of ξ is represented in Mξ by the de�nable sets
BdC(M). The following example shows that the theory T (Φ) has hardly any
implications for the nature of these sets.

Example 8.1. Consider the vector �eld ζ of Example 3.2, and let C be the
piecewise trivial decomposition obtained there. We denote by Φζ the �ow con-
�guration corresponding to this C, and write C0 := {(x, y) : x > 0, y = 0} ∈
C. We show here how to de�ne, given any closed and nowhere dense subset
F of C0, a vector �eld ζ ′ of class C∞ for which Φζ is still a �ow con�guration
and such that BdC0(Mζ′) = F .
First, given 0 < a < b < ∞, we let d(a,b) : R2 −→ R be the function

d(a,b)(x, y) := (b2 − (x2 + y2))((x2 + y2) − a2), and we let e(a,b) : R2 −→ R be
the C∞ function de�ned by e(a,b)(x, y) := exp(−1/d(a,b)(x, y)). We let ζ(a,b) be

the vector �eld of class C∞ on the annulus A(a,b) :=
{
(x, y) : d(a,b)(x, y) > 0

}
de�ned by

ζ(a,b) := −
(
y + e(a,b)(x, y)x

) ∂

∂x
+
(
x− e(a,b)(x, y)y

) ∂
∂y
.

Second, let F ⊆ C0 be an arbitrary closed and nowhere dense subset. Then
C0 \ F is open in C0 and hence the union of countably many disjoint open
intervals I0, I1, I2, . . . . We let ζ ′ be the vector �eld on R2 of class C∞ de�ned
by

ζ ′(x, y) :=

{
ζIj

(x, y) if (x, y) ∈ AIj
for some j ∈ N,

ζ(x, y) otherwise.

(Note that by Wilkie's Theorem [13], ζ ′ is de�nable in some o-minimal expan-
sion of the real �eld if and only if F is �nite.)

In view of the previous example, we now introduce a strengthening of the
setting described in Section 6.

De�nition 8.2. A Dulac �ow con�guration Ψ is a pair (Φ, ν) such that Φ
is a �ow con�guration and ν ∈ N.

Example 8.3. Let ξ be a de�nable vector �eld on R2 of class C1. Let Φ = Φξ

be a �ow con�guration associated to ξ as in Example 6.2 and let Mξ be the
associated L(Φξ)-structure described in Example 6.4. Assume that there is a
ν ∈ N such that for each C ∈ Φ1, the set BdC(Mξ) has cardinality at most ν.
Then Ψξ := (Φξ, ν) is called a Dulac �ow con�guration associated to ξ.
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For the remainder of this section, we �x a Dulac �ow con�guration Ψ =
(Φ, ν).

De�nition 8.4. The language L(Ψ) consists of the symbols of L(Φ) together
with the following symbols for each C ∈ Φ1:

(i) binary predicates RC and Sf
m,C , B

f
m,C , S

b
m,C and Bb

m,C for each m ∈ N;
(ii) constant symbols γ1

C , . . . , γ
ν
C .

We put Γ = Γ(Ψ) :=
{
γj

C : C ∈ Φ1, j = 1, . . . , ν
}
.

Example 8.5. Let ξ be a de�nable vector �eld on R2 of class C1, and let
Mξ be an L(Φξ)-structure associated to ξ as in Example 6.4. Assume that
there is a ν ∈ N such that for each C ∈ Ctrans ∪ Copen, the set BdC(Mξ) has
cardinality at most ν, and let Ψξ be a Dulac �ow con�guration associated to
ξ as in Example 8.3. We expand Mξ into an L(Ψξ)-structure MD

ξ as follows:
for each C ∈ Φ1,

(i) RC is interpreted as the set{
(x, y) ∈ C 2

: ∃z(x <C z <C y ∧ FixC(z)) ∨ (x = y ∧ FixC(x))
}

;

(ii) for m ∈ N, g ∈ {f, b} and G ∈ {Sg
m,C , B

g
m,C}, we put

∗ :=

{
<C if G is Sg

m,C ,

>C if G is Bg
m,C ,

and we interpret G as the union of the sets{
(x, y) ∈ C 2

: ∃z
(
Cz ∧ x <C z <C y ∧ Cgm(z) ∧ gm(z) ∗ z

)}
and the set {(x, x) : Cx ∧ Cgm(x) ∧ gm(x) ∗ x};

(iii) if a1 <C · · · <C am are the points in C that lie on boundary cycles of
ξ, we interpret γj

C as aj if 1 ≤ j ≤ m and as max(C) if m < j ≤ ν.

This completes the description of MD
ξ .

De�nition 8.6. Inspired by the previous example, we let T (Ψ) be the L(Ψ)-
theory consisting of T (Φ) and the universal closures of the formulas in the
axiom schemes (D1)�(D6) below.

(D1) For each C ∈ Φ1, m ∈ N and G ∈ {RC , S
f
m,C , B

f
m,C , S

b
m,C , B

b
m,C}, the

formulas
(a) Gxy →

(
Cx ∧ Cy

)
,

(b) Gxy → (x ≤C y ∨ (x = min(C) ∧ y = max(C))).
(D2) For each C ∈ Φ1 the formulas

(a) RCxy ↔ ∃z(x <C z <C y ∧ FixC(z)), and
(b) RCxx↔ FixC(x).

(D3) For each m ∈ N, C ∈ Φ1 and g ∈ {f, b} the formulas
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(a) (Sg
m,Cxy) ↔ ∃z(x <C z <C y ∧ gm(z) <C z),

(b) (Sg
m,Cxx) ↔ (Cx ∧ gmx <C x),

(c) (Bg
m,Cxy) ↔ ∃z(x <C z <C y ∧ z <C gm(z)),

(d) (Bg
m,Cxx) ↔ (Cx ∧ x <C gmx).

(D4) For each m ∈ N, C ∈ Φ1, g ∈ {f, b} and G ∈ {RC , B
g
m,C , S

g
m,C} the

formula(
Gxy ∧ ∀z

(
x <C z <C y → Cgmz

)
∧ ¬∃z (x <C z <C y ∧ BdC(z))

)
→ ∀z(x <C z <C y → Gzz).

(D5)ν For each C ∈ Φ1 the formulas
(a) Cγj

C ∧
(
Cγj

C → FixC(γj
C)
)
for j = 0, . . . , ν,

(b) γj
C ≤C γj+1

C ∧
(
γj

C = γj+1
C → γj

C = max(C)
)
for j = 0, . . . , ν − 1.

(D6)ν For each C ∈ Φ1 the formula

(Cx ∧ BdC(x)) ↔
ν∨

j=1

(
x = γj

C ∧ Cγ
j
C

)
.

This completes the description of the axioms.

Proposition 8.7. If ξ is a de�nable vector �eld on R2 of class C1 with �nitely

many boundary cycles, then MD
ξ |= T (Ψξ).

Proof. This is almost immediate from the de�nition of MD
ξ and Proposition

6.6, except perhaps for Axiom (D4), which follows from Proposition 7.4 and
the fact that every bounded subset of R has an in�mum. �

Remark 8.8. Let T (Φ)′ be the union of T (Φ) with Axioms (D1)�(D4) only.
Since (D1)�(D3) just extend T (Φ) by de�nitions in the sense of Section 4.6 in
Shoen�eld [11], the argument in the proof of the previous proposition shows
that any L(Φξ)-structure Mξ as de�ned in Example 6.4 can be expanded to
a model M′

ξ of T (Φ)′.

9. Quantifier elimination for T (Ψ)

We �x a Dulac �ow con�guration Ψ = (Φ, ν); our ultimate goal is to show
that T (Ψ) eliminates quanti�ers. Most of the work in this section goes towards
showing that, in order to eliminate quanti�ers, we need only consider formulas
of the form ∃yφ(x, y) where φ is of a special form.

Terminology. Let x = (x1, . . . , xm) be a tuple of variables and y and z single
variables. To simplify terminology, we write �term� and �formula� for �L(Ψ)-
term� and �L(Ψ)-formula�. For a formula φ, we write φ(x, y) to indicate that
the free variables of φ are among x1, . . . , xm and y. A binary atomic formula
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is a formula of the form At1t2, where A is a binary relation symbol in L(Ψ)
and t1 and t2 are terms.

For this section �x an arbitrary model M of T (Ψ); again, we omit the
superscript M when interpreting predicates in M.

De�nition 9.1. An order formula is a quanti�er-free L(Φ) ∪ Γ-formula.
A z-order formula is a quanti�er-free formula φ such that every atomic
subformula of φ containing z is an L(Φ) ∪ Γ-formula.
A z-order formula φ is minimal if the only subterm of φ containing z is z

itself and every binary atomic subformula At1t2 of φ is such that at most one
of t1 and t2 contains z.

Our �rst goal is to show that we may, in order to prove quanti�er elimination,
restrict our attention to y-order formulas. This argument is based on the
following lemma, which will also be of use later.

Lemma 9.2. Let G ∈ L(Ψ) \ L(Φ).

(1) The formula Gyy is equivalent in T (Ψ) to a minimal y-order formula

ψ(y).
(2) The formula Gyz is equivalent in T (Ψ) to a formula ψ(y, z) that is

both a minimal y-order formula and a minimal z-order formula.

Proof. Let C ∈ Φ1, m ∈ N and g ∈ {f, b} be such that G ∈ {RC , S
g
m,C , B

g
m,C}.

In this proof, we write < instead of <C ; if G is RC , we assume m = N = NΦ.
By Corollary 7.6(1), any formula φ is equivalent in T (Ψ) to the conjunc-
tion of the formulas ϑi → φ, where i ∈ {1, . . . , l(m)} and ϑi is the for-
mula ϑm

i (min(C),max(C)). Hence it su�ces to prove the lemma with each
ϑi → Gyy in place of Gyy and each ϑi → Gyz in place of Gyz; so we also
�x an i below and write ϑ in place of ϑi. Now by Corollary 7.6(2), there are
�nitely many terms α0

j , α
1
j for 1 ≤ j ≤ r, built up exclusively from constants,

such that whenever M |= ϑ the set {z ∈ C : gm(z) ∈ C} is the union of the
open intervals Ij = (α0

j , α
1
j ) and points α0

j = α1
j .

(1) We claim that the formula ϑ→ Gyy is equivalent to ϑ→ ψG, where ψG

is of the form

Cy ∧

( ∨
1≤j≤r

(α0
j < y < α1

j ∨ α0
j = y = α1

j )

)
∧

(∨
β∈Y

ψG
β ∨

∨
β0,β1∈Y

ψG
β0,β1

)
with Y := Γ∪{αl

j : l ∈ {0, 1} and 1 ≤ j ≤ r}, and for each β ∈ Y , the formula
ψG

β is Cy ∧ ((y = β ∧Gββ) ∨ y = tG) with

tG the term


y if G is RC ,

hm min(C) if G is Sg
m,C ,

hm max(C) if G is Bg
m,C ,
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and for each β0, β1 ∈ Y , the formula ψG
β0,β1

is of the form

(Cβ0 ∨ β0 = min(C)) ∧ (Cβ1 ∨ β1 = max(C)) ∧ β0 < y < β1 ∧ ηG
β0,β1

,

where

ηG
β0,β1

is


¬Sg

N,Cβ0β1 ∧ ¬Bg
N,Cβ0β1 if G is RC ,

¬Bg
m,Cβ0β1 ∧ ¬RCβ0β1 if G is Sg

m,C ,

¬Sg
m,Cβ0β1 ∧ ¬RCβ0β1 if G is Bg

m,C .

Note that ϑ→ ψG is a minimal y-order formula; thus, the proof of part (1) is
�nished once we prove the claim.
We prove the claim for RC ; the other cases of G are similar and left to

the reader. Suppose that M |= ϑ and pick an a ∈ M such that M |=
RCaa. Then M |= α0

j ≤ a ≤ α1
j for some j ∈ {1, . . . r}. If a = β for some

β ∈ Y , we are done, so we assume a 6= β for all β ∈ Y . Then there are
β0, β1 ∈ Y such that M |= β0 < a < β1 and M |= ¬(β0 < β < β1) for
every β ∈ Y . Hence by Axiom (D4), M |= RCbb for every b ∈ (β0, β1),
so M |= ¬Sg

m,Cβ0β1 ∧ ¬Bg
m,Cβ0β1 as required. The converse of the claim is

immediate.
(2) The formula ϑ→ Gyz is in turn equivalent in T (Ψ) to

ϑ→ (Gyz ∧ (y = min(C) ∨ y = max(C) ∨ Cy));
since the lemma is immediate for the formulas ϑ → (Gyz ∧ y = min(C)) and
ϑ→ (Gyz ∧ y = max(C)), we need only consider ϑ→ (Gyz ∧ Cy). We claim
that the latter is equivalent to ϑ→ ψG, where ψG is of the form

Cy ∧ (Cz ∨ z = max(C)) ∧ y ≤ z ∧
(
(y = z ∧Gyy) ∨

(
y < z ∧ ηG

))
,

ηG is the formula∨
β∈Y

(y = β ∧Gβz) ∨
∨
β∈Y

(y < β < z ∧Gββ) ∨
∨

βo,β1∈Y, 1≤j≤r

ηG
β0,β1,j

and for each β0, β1 ∈ Y and j ∈ {1, . . . , r}, the formula ηG
β0,β1,j is

β0 < y ∧ z < β1 ∧ α0
j ≤ β0 ∧ β1 ≤ α1

j ∧Gβ0β1 ∧ ηG
β0,β1

with ηG
β0,β1

de�ned as for part (1).
We again prove the claim for RC , leaving the other cases of G to the reader.

Suppose thatM |= ϑ andM |= RCab∧Cb and work insideM. Suppose that
a 6= β for all β ∈ Y and that M |= ¬(a < β < b ∧ RCββ) for every β ∈ Y .
Then fN(d) = d for some d ∈ (a, b), and d ∈ (α0

j , α
1
j ) for some j. Moreover,

there are β0, β1 ∈ Y such that d ∈ (β0, β1) and β /∈ (β0, β1) for every β ∈ Y .
Hence by Axiom (D4), we getM |= ¬Sg

N,Cβ0β1∧¬Bg
N,Cβ0β1, as required. The

converse of the claim is straightforward.
By symmetry, a similar claim holds with ϑ → (Gyz ∧ Cz) in place of ϑ →

(Gyz∧Cy). Combining these two claims with part (1) now yields part(2). �
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Corollary 9.3. Every quanti�er-free formula φ(x, y) is equivalent in T (Ψ) to
a y-order formula ψ(x, y).

Proof. It su�ces to prove the proposition for all atomic formulas; the relevant
atomic formulas are handled in Lemma 9.2. �

Our second goal of this section is to show that we only need consider, for
quanti�er elimination, y-order formulas in which the complexity of any term
involving y is as low as possible. Minimal y-order formulas are examples of such
y-order formulas; but we cannot always reduce to minimal y-order formulas.

De�nition 9.4. Let t be a term. The z-height hz(t) of t is de�ned as follows:

(i) if z does not occur in t, then hz(t) := 0;
(ii) hz(z) := 1;
(iii) if t is ft′ or bt′ for some term t′ and z occurs in t′, then hz(t) := hz(t

′)+1.

Let At1t2 be a binary atomic formula; the z-height hz(At1t2) of At1t2 is
de�ned as the pair (a, b) ∈ N2, where

a :=

{
1 if z occurs in both t1 and t2,

0 otherwise,

and

b :=

{
min{hz(t1), hz(t2)} if z occurs in both t1 and t2,

max{hz(t1), hz(t2)} otherwise.

Let Bt be a unary atomic formula; the z-height hz(Bt) of Bt is de�ned by
hz(Bt) := (0, hz(t)) ∈ N2.
Let φ be a quanti�er-free formula; the z-height hz(φ) of φ is the maxi-

mum of the set {hz(ψ) : ψ is an atomic subformula of φ} with respect to the
lexicographic ordering of N2. We write hz(φ) = (h1

z(φ), h2
z(φ)) below.

Finally, a term t is mixed if it contains both function symbols f and b;
otherwise t is called unmixed.

Example 9.5. Let φ be a z-order formula. Then hz(φ) ≤ (0, 1) if and only if
φ is minimal.

Lemma 9.6. Let φ(x, y) be a y-order formula. Then there is a y-order formula

ψ(x, y) that contains no mixed terms such that φ and ψ are equivalent in T (Ψ)
and hy(ψ) ≤ hy(φ).

Proof. Let φ′ be the L(Φ)-formula obtained from φ by replacing each constant
γj

C by a new variable zj
C , for C ∈ Φ1 and j = 1, . . . , ν. By Lemma 7.1, φ′ is

equivalent in T (Φ) to a quanti�er-free L(Φ)-formula ψ′ that is a disjunction of
formulas of the form η∧ξ, where ξ is obtained from φ′ by replacing each mixed
subterm by an unmixed term of lower y-height, and where η is a conjunction of
some of the premises of the implications occurring in Θ(f,b) and in Θ(b,f) with x
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there replaced by various unmixed subterms of φ′. Clearly hy(ξ) ≤ hy(φ
′) for

every such ξ; since h1
y(η) = 0 for every such η, it follows that hy(ψ

′) ≤ hy(φ
′)

if h1
y(φ

′) = 1. On the other hand, if h1
y(φ

′) = 0, then every subterm t of φ′

satis�es hy(t) ≤ h2
y(φ

′); so hy(η) ≤ hy(φ
′) for every such η. Therefore, we

always have hy(ψ
′) ≤ hy(φ

′) = hy(φ), and we let ψ be the y-order formula

obtained from ψ′ by replacing each variable zj
C again by γj

C . �

Below we let ι(y) denote the formula
∧

C∈Φopen Cy → ECy and we put

T ′ := T (Ψ) ∪ {ι(y)}.

Lemma 9.7. Let φ(x, y) be a y-order formula. Then there is a y-order formula

ψ(x, y) such that φ is equivalent in T ′ to ψ and h2
y(ψ) ≤ 1.

Proof. By induction on hy(φ); the case where h2
y(φ) ≤ 1 is trivial, so we assume

that h2
y(φ) > 1 and we prove that

(∗) there exists an order formula ψ(x, y) such that φ is equivalent in T ′ to
ψ and hy(ψ) < hy(φ).

To do so, we �x arbitrary (g, h) ∈ {(f, b), (b, f)}, a unary predicate P , a C ∈ Φ0

and terms t1 and t2, and we assume that y occurs in t1, and either y does not
occur in t2 or hy(t1) < hy(t2). By the de�nition of hy(φ) and Axiom (F5), it
su�ces to prove (∗) with each of the atomic formulas Pgt1, gt1 = t2, gt1 <C t2
and t2 <C gt1 in place of φ.

Case 1: φ is Pgt1. By Axioms (F7)�(F9), the formula φ is equivalent in T ′

to ψ, where ψ is the formula depending on P de�ned as follows:

• if P ∈ Φopen or P is EF for some F ∈ Φopen, then ψ is∨
D∈Φtrans, P=Dh

Dt1 ∨
∨

d∈Φsingle, P=dh

t1 = d;

• if P ∈ Φtan, then ψ is the formula t1 = heP ;
• if P ∈ Φtrans, then ψ is the formula EP ht1.

In each case of ψ above, we have hy(ψ) < hy(φ), as required.

Case 2: φ is gt1 = t2. Then by Axioms (F5), (F7)�(F9) and (F13) the formula
φ is equivalent in T ′ to ψ, where ψ is the conjuction of the formulas

(i) t2 = s ∨
∨

C∈Φ1

Ct2 ∨
∨

c∈Φsingle

t2 = c ∨
∨

C∈Φtan

t2 = eC ,

(ii) t2 = c→ t1 = hc for each constant c di�erent from s,

(iii) t2 = s→

(
(t1 = s)∨∨

C∈Φopen

(
ECt1 ∧

∧
D∈SC

¬(rh
D <C t1 <C sh

D) ∧
∧

c∈Φsingle

(¬t1 = hc)
)
∨
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∨
C∈Φtan

(geC <C t1 ≤C eC ∨ eC ≤C t1 <C geC) ∧ geC = s)

)
with SC := {D ∈ Φtrans : Dh = C},

(iv) Ct2 → t1 = ht2 for C ∈ Φ1.

If y does not occur in t2, then hy(ψ) < hy(φ); so we assume that y occurs
in t2. In this case, the only atomic subformula ξ of ψ with h1

y(ξ) = 1 is
t1 = ht2, and hy(t1 = ht2) = (1, hy(t1)) < (1, hy(gt1)) = hy(φ) by hypothesis,
so hy(ψ) < hy(φ) as well.

Case 3: φ is gt1 <C t2. There are various subcases depending on C.

• If C ∈ Φtrans, we write D := Ch; then by Axioms (F8) and (F13) the
formula φ is equivalent in T ′ to ψ, where ψ is the conjunction of the
formulas

(Ct2 ∨ t2 = max(C)) ∧ ((EDt1 ∧ rh
C <D t1 <D rh

C) ∨ t1 = h min(C))

and

(EDt1 ∧ rh
C <D t1 <D rh

C) → (t1 <D ht2 ∨ t2 = max(C)).

• If C ∈ Φopen, then by Axioms (F2), (F9), (F10), (F12) and (F13) the
formula φ is equivalent in T ′ to ψ, where ψ is the conjunction of the
formulas
(i)

∨
D∈Φtrans, Dg=C

Dt1 ∨
∨

d∈Φsingle, P=dh

t1 = d,

(ii) ECt2 ∨ (Ct2 ∧ ¬ECt2 ∧ ECgt2) ∨ (Ct2 ∧ ¬ECt2 ∧ ECht2) ∨ (t2 =
max(C)),

(iii) (Dt1 ∧ ECt2) → ((rg
D <C t2 <C sg

D ∧ t1 <D ht2) ∨ (sg
D ≤C t2)) for

each D ∈ Φtrans with D
g = C,

(iv) (Dt1∧¬ECt2∧ECgt2) → ((rg
D <C gt2 <C sg

D∧t1 <D ht2)∨(sg
D ≤C

gt2)) for each D ∈ Φtrans with D
g = C,

(v) (Dt1∧¬ECt2∧ECht2) → ((rg
D <C ht2 <C sg

D∧t1 ≤D hht2)∨(sg
D ≤C

ht2)) for each D ∈ Φtrans with D
g = C,

(vi) t1 = d→ gd <C t2 for d ∈ Φsingle with P = dh.
• If C ∈ Φtan, then by Axioms (F2) and (F7) the formula φ is equivalent
in T ′ to ψ′, where ψ′ is

(Ct2 ∨ t2 = max(C)) ∧
(
(t1 = heC ∧ eC <C t2) ∨ gt1 = min(C)

)
.

In this case we let ψ be the formula obtained from ψ′ by replacing the
subformula gt1 = min(C) by the corresponding formula obtained in
Case 2.

We leave it to the reader to verify that hy(ψ) < hy(φ) in each of these subcases.
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Case 4: φ is t2 <C gt1. This case is similar to Case 3; we leave the details to
the reader. �

Proposition 9.8. Let φ(x, y) be a quanti�er-free formula. Then there is a

minimal y-order formula ψ(x, y) such that φ is equivalent in T ′ to ψ.

Proof. By Corollary 9.3 and Lemma 9.7, we may assume that φ is a y-order
formula such that h2

y(φ) ≤ 1. By Lemma 9.6, there is a y-order formula
ψ′(x, y) such that φ is equivalent in T ′ to ψ′, ψ′ contains no mixed terms and
hy(ψ) ≤ hy(φ).
In particular, for every binary atomic subformula η of ψ′ in which both

terms contain y, one of the terms is y itself and the other is either fmy or bmy
for some m = m(η) ∈ N. We now replace each such binary atomic subformula
η of ψ′ with m(η) > 1 by the formula η′ de�ned as follows:

• if η is y = gmy with g ∈ {f, b}, then η′ is the disjunction of the formulas
y = c ∧ gmc = c, for each constant symbol c, and Cgmy ∧ RCyy, for
each C ∈ Φ1;

• if η is y <C gmy with g ∈ {f, b}, then η′ is Bg
m,Cyy;

• if η is gmy <C y with g ∈ {f, b}, then η′ is Sg
m,Cyy.

We also replace each occurrence of y = y by s = s and each occurrence of
y <C y by s 6= s, and we denote by ψ′′ be the resulting formula. Clearly
hy(ψ

′′) ≤ hy(ψ
′), and every binary atomic subformula of ψ′′ in which both

terms contain y is of the form Gyy for some G ∈ L(Ψ) \ L(Φ). Moreover by
Axioms (D1)�(D4), (D5)ν and (D6)ν , the formula ψ

′ is equivalent in T ′ to ψ′′.
Next, we replace each subformula of ψ′′ of the form Gyy, where G ∈ L(Ψ) \

L(Φ), by the corresponding minimal y-order formula ψ(y) obtained in Lemma
9.2(1). If ψ′′′ is the resulting y-order formula, then ψ′′ is equivalent in T (Ψ)
to ψ′′′ and h1

y(ψ
′′′) = 0.

Finally by Lemmas 9.7 and 9.6, there is a y-order formula ψ such that
hy(ψ) ≤ (0, 1), ψ contains no mixed terms and ψ is equivalent in T ′ to ψ′′′. �

Finally, note that

T (Φ) ∪ {Cy} |= ¬ECy ↔ (Cfy ∨ Cby)

for each C ∈ Φopen, by Axioms (F5), (F10) and (F12). Hence, for each C ∈
Φopen and each g ∈ {f, b}, we put TC,g := T (Ψ)∪ {Cy ∧Cgy}; by the previous
proposition, it remains to reduce quanti�er-free formulas in each TC,g. It turns
out, however, that we cannot entirely reduce to minimal y-order formulas in
these situations.
Instead, given g ∈ {f, b}, we call a formula φ g-almost minimal if φ is

quanti�er-free, the only subterms of φ containing z are z and gz and every
binary atomic subformula At1t2 of φ is such that at most one of t1 and t2
contains z.
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Proposition 9.9. Let φ(x, y) be a quanti�er-free formula, C ∈ Φopen and

g ∈ {f, b}. Then there is a g-almost minimal y-order formula ψC,g(x, y) such

that φ is equivalent in TC,g to ψC,g.

Proof. By Corollary 9.3 and Lemma 9.6, we may assume that φ is a y-order
formula containing no mixed terms. On the other hand, we have T |= ι(fy)
and T |= ι(by) by Axiom (F5). Let η(x, y) be an atomic subformula of φ; it
su�ces to show that there is a g-almost minimal y-order formula ξη(x, y) such
that η and ξη are equivalent in TC,g. If h2

y(η) = 0, there is nothing to do, so
we assume h2

y(η) > 0, and we distinguish two cases to de�ne ξη.

Case 1: h2
y(η) > 1. We �rst replace each occurrence of gy in η by a new

variable z and each occurrence of hy in η by hz. Denote the resulting atomic
formula by η′(x, z); by Axiom (F12), η′(x, gy) is equivalent in TC,g to η(x, y).
By Proposition 9.8, the formula η′(x, z) is equivalent in T ′ to a minimal z-order
formula η′′(x, z). Since T (Ψ) |= ι(gy), it follows that η is equivalent in TC,g to
the g-almost minimal y-order formula ξη given by η′′(x, gy).

Case 2: h2
y(η) = 1. In this case, we take ξη equal to η if η contains a unary

predicate symbol; so we assume that η is a binary atomic formula At1t2. If η
is y = y, we take ξη to be s = s, and if η is y <D y for some D ∈ Φ0, we take ξη
to be s 6= s; so we also assume from now on that max{h2

y(t1), h
2
y(t2)} > 1. By

Axiom (F5), the formulas y = gmy, y = hmy, y <D gmy, y <D hmy, gmy <D y
and hmy <D y, for m > 0 and D ∈ Φ0 \ {C}, are all equivalent in TC,g to
s 6= s, so we are left with four subcases:

(i) if η is y <C gmy for some m > 0, then we let η′ be the formula
(y <C gy ∧ Cgmy ∧RCgygy) ∨Bg

m−1,Cgygy;
(ii) if η is y <C hmy for some m > 0, then we let η′ be the formula

(y <C gy ∧ Chmy ∧RCgygy) ∨Bh
m,Cgygy;

(iii) if η is gmy <C y for some m > 0, then we let η′ be the formula
(gy <C y ∧ Cgmy ∧RCgygy) ∨ Sg

m−1,Cgygy;
(iv) if η is hmy <C y for some m > 0, then we let η′ be the formula

(gy <C y ∧ Chmy ∧RCgygy) ∨ Sh
m,Cgygy.

We claim that η and η′ are equivalent in TC,g. We prove this for Case (i);
the other cases are similar and left to the reader. Let b ∈ M be such that
M |= Cb∧Cgb. Assume thatM |= b <C gmb∧¬Bg

m−1,Cgbgb. Then gmb ∈ EC

and gmb ≤C gb by Axioms (F2) and (F5). Hence b <C gb, so M |= φf(b, gb)
by Axioms (F10) and (F12), which implies gmb = gb as required. Conversely,
assume �rst that M |= b <C gb ∧ Cgmb ∧ RCgbgb; then b <C gmb by Axioms
(D2) and (F14). Now assume that M |= Bg

m−1,Cgbgb; then gb <C gmb by
Axiom (D3), and hence b <C gmb by Axioms (F10) and (F12).
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Finally, by Proposition 9.8, the formulas Bg
k,Czz, S

g
k,Czz, Cgkz ∧RCzz and

Chkz ∧RCzz are each equivalent in T ′ to minimal z-order formulas. It follows
from the claim that we are left to dealing with Subcases (i)�(iv) for m =
1. But by Axioms (F5), (F10) and (F12) we have TC,g |= ¬Chy. Hence

TC,g |= ¬φh
C(y, hy), so from Axioms (F10) and (F12) we get TC,g |= φg

C(y, gy).
Therefore, y <C gy is equivalent in TC,g to s = s if g is f, and to ¬s = s if g is
b; the other subcases follow similarly. �

The previous two propositions allow us to reduce the problem of eliminating
quanti�ers in T (Ψ) to that of eliminating quanti�ers in two simpler theories:
for C ∈ Φ1 ∪ Φtan we let LC be the language {<C ,min(C),max(C)} and TC

be the LC-theory consisting of the universal closures of

(A1) the sentences stating that <C is a dense linear ordering on C, together
with the formula x = min(C)∨x = max(C)∨min(C) <C x <C max(C).

For C ∈ Φopen we let LC be the language {<C , πC , EC ,min(C),max(C)}, where
πC a unary function symbol, and we let TC be the LC-theory consisting of the
universal closures of (A1) as well as

(B1) the formula ECπCx ∧ (ECx→ πCx = x);
(B2) the formula πCx <C x→ ¬∃y(ECy ∧ πCx <C y <C x);
(B3) the formula x <C πCx→ ¬∃y(ECy ∧ x <C y <C πCx);
(B4) the sentences stating that for every x ∈ EC , the restriction of <C to

the set {y : πCy = x} is a dense linear ordering without endpoints.

A routine application of a quanti�er elimination test such as Theorem 3.1.4
in Marker [7] gives the following result; we leave the details to the reader.

Proposition 9.10. For each unary predicate symbol C of L(Φ), the theory

TC admits quanti�er elimination in the language LC . �

Theorem 9.11. The theory T (Ψ) admits quanti�er elimination.

Proof. Let φ(x, y) be a quanti�er-free formula; we show that ∃yφ(x, y) is equiv-
alent in T (Ψ) to a quanti�er-free formula. First, note that ∃yφ(x, y) is equiv-
alent in T (Ψ) to the disjunction of the formulas

(1) φ(x, c) for each constant c;
(2) ∃y(Cy ∧ φ(x, y)) for each C ∈ Φ1 ∪ Φtan;
(3) ∃y(Cy ∧ Cgy ∧ φ(x, y)) for each C ∈ Φopen and each g ∈ {f, b}.

We deal with each disjunct separately; since formulas of type (1) are trivial to
handle, we deal with types (2) and (3).

Type (2): Let C ∈ Φ1 ∪ Φtan. Since T (Ψ) |= Cy → ι(y), we may assume by
Proposition 9.8 that φ is a minimal y-order formula. Without loss of generality,
we may also assume that φ is a conjunction of atomic formulas, that y occurs
in each of the atomic subformulas of φ and, by Axiom (F1), that φ contains
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only the relation symbols = and <C . Let t1, . . . , tk be all maximal subterms
of φ that do not contain y, and let φ′(z1, . . . , zk, y) be the formula obtained
from φ by replacing each ti by a new variable zi. Then φ′ is a <C-formula
without parameters; by Proposition 9.10, there is a quanti�er-free LC-formula
ψ′(z1, . . . , zk) such that ∃yφ′ and ψ′ are equivalent in TC . Let ψ(x) be the
L(Ψ)-formula obtained from ψ′ by replacing each zi by ti; then ∃yφ and ψ are
equivalent in T (Ψ), as required.

Type (3): Let C ∈ Φopen and g ∈ {f, b}; by Proposition 9.9, we may assume
that φ is a g-almost minimal y-order formula. Without loss of generality, we
may also assume that φ is a conjunction of atomic formulas, that y occurs in
each of the atomic subformulas of φ and, by Axiom (F1), that φ contains only
the relation symbols =, <C and EC . Let t1, . . . , tk be all maximal subterms
of φ that do not contain y, and let φ′(z1, . . . , zk, y) be the formula obtained
from φ by replacing each ti by a new variable zi. Note that φ′ contains no
parameters. Arguing as for Type (2), it now su�ces to �nd a quanti�er-free
formula ψ′(z1, . . . , zk) equivalent in T (Ψ) to ∃yφ′(z1, . . . , zk, y).
To do so, we let πC be a new unary function symbol and let T (Ψ)C be the

theory T (Ψ) together with the universal closure of the formula

y = πCx↔ ((Cx ∧ Cfx ∧ y = fx) ∨ (Cx ∧ Cbx ∧ y = bx) ∨ (ECx ∧ y = x)) .

Since T (Ψ)C is an extension by de�nitions of T (Ψ) in the sense of [11, Section
4.6], it su�ces to �nd a quanti�er-free L(Ψ)-formula ψ′(z1, . . . , zk) equivalent
in T (Ψ)C to ∃yφ′(z1, . . . , zk, y).
Let φ′′ be the LC-formula obtained from φ′ by replacing each occurrence

of gy by πy; then φ′ and φ′′ are equivalent in T (Ψ)C . Since T (Ψ)C |= TC ,
there is by Proposition 9.10 a quanti�er-free LC-formula ψ

′′(z1, . . . , zk) that is
equivalent in T (Ψ)C to ∃yφ′′(z1, . . . , zk, y); without loss of generality, we may
assume that the only subterms of ψ′′ are zi and πzi for i = 1, . . . , k.
Finally, we let ψ′ be the L(Ψ)-formula obtained from ψ′′ by replacing each

atomic subformula η of ψ′′ by an L(Ψ)-formula η′ determined as follows:

(i) if η is ECπCzi, we let η
′ be Czi ∧ (ECzi ∨ Cfzi ∨ Cbzi);

(ii) if η is πCzi ∗ zj with ∗ ∈ {=, <C , >C}, we let η′ be

Czi ∧ Czj ∧

 ∨
g∈{f0,f,b}

ECgzi ∧ gzi ∗ zj

 ;

(iii) if η is πCzi <C πCzj and ∗ ∈ {=, <C}, we let η′ be

Czi ∧ Czj ∧

 ∨
g,h∈{f0,f,b}

ECgzi ∧ EChzj ∧ gzi ∗ hzj

 ;
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and if η is not of one of the forms (i)�(iii) above, we let η′ be η. This ψ′ is
equivalent in T (Ψ)C to ψ′′ and is of the required form. �

10. Consequences for the Model Theory of T (Ψ)

The quanti�er elimination result established in the previous section allows
us to show that the theory T (Ψ) is very well-behaved: it is a theory of �nite
rank in the sense developed by Onshuus [8].
We �rst rephrase the results from the previous section. For a �ow con�gu-

ration Φ, C ∈ Φopen, M |= T (Ψ) and x ∈ EMC , we put

CMx :=
{
y ∈ CM : y = x ∨ fy = x ∨ by = x

}
and C

M
x := CMx ∪ {f(x), g(x)}. The following corollary implies Theorem C:

Corollary 10.1. Let Ψ be a Dulac �ow con�guration and M |= T (Ψ).

(1) For C ∈ Φ1 ∪ Φtan, every de�nable subset of CM is a �nite union of

points and open <C-intervals with endpoints in C.
(2) For C ∈ Φopen and x ∈ EMC , every de�nable subset of CMx is a �nite

union of points and open <C-intervals with endpoints in C
M
x .

Proof. This follows immediately from Theorem 9.11, Propositions 9.8 and 9.9
and Axioms (F2) and (F11). �

Below we use the terminology of [8].

Theorem 10.2. Let Ψ be a Dulac �ow con�guration and T be any completion

of T (Ψ). Then T is rosy with Uþ(T ) ≤ 2.

Proof. Let p(x) be a complete 1-type in T , M |= T and a ∈ M such that
M |= p(a). If Cx ∈ p for some C ∈ Φtan ∪ Φ1, then by Proposition 10.1(1)
the type p is determined by the <C-order type of x over the constants; hence
Uþ(p) ≤ 1. If Cx∧¬ECx ∈ p for some C ∈ Φopen, then by Proposition 10.1(2)
the type p is determined by the <C-order type o(x) of a over the constants
and πC(a), where πC : C −→ EC is given by

πC(z) :=


z if z ∈ EMC ,

f(z) if f(z) ∈ EMC ,

b(z) if b(z) ∈ EMC .

Again by Proposition 10.1(1), the type of πC(a) over the constants is deter-
mined by the <C-order type of πC(a) over the constants.
Since p either contains one of the above formulas or a formula x = c for

some constant symbol c, it follows from the Coordinatization Theorem in [8,
Theorem 2.2.2] that Uþ(T ) ≤ 2. �

In fact, the Uþ-rank in the previous theorem is actually equal to 2:
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Proposition 10.3. Let Φ be a �ow con�guration andM |= T (Φ), and assume

that Φopen 6= ∅. Then Uþ(M) ≥ 2.

Proof. Let C ∈ Φopen. Replacing M by an elementary extension, we may
assume that M is ℵ1-saturated. Since EC is a dense linear ordering without
endpoints, there are in�nitely many a ∈ EC such that a /∈ acl(∅). For any two
such a, b ∈ EC , the �bers Ca and Cb are disjoint, in�nite de�nable sets. Hence
Uþ(M) ≥ 2. �

There is a certain converse to Theorem 10.2 based on Remark 8.8: we let
Φ be a �ow con�guration and consider the theory T (Φ)+ obtained by adding
the universal closures of the following formulas to T (Φ)′ for each C ∈ Φtrans:

Cx→ ∃y
(
Cy ∧ y = inf{z : x <C z ∧ BdC(z)}

)
Cx→ ∃y

(
Cy ∧ y = sup{z : z <C x ∧ BdC(z)}

)
.

(10.1)

Examples 10.4. (1) Let Ψ be a Dulac �ow con�guration. Then any model
M of T (Ψ) satis�es (10.1).
(2) Let ξ be a de�nable vector �eld on R2, and letMξ be an L(Φξ)-structure

associated to ξ as in Example 6.4. Then Mξ satis�es (10.1) by Corollary 7.5,
and by Remark 8.8 the structure Mξ can be expanded to a model M+

ξ of

T (Φξ)
+.

Below, for each ν ∈ N we abbreviate the formula stating that BdC(x) de�nes
a set with at most ν elements by �|BdC(x)| ≤ ν�.

Proposition 10.5. Let Φ be a �ow con�guration and T be a completion of

T (Φ)+, and assume that Uþ(T ) ≤ 2. Then there is a ν ∈ N such that

(1) T |= |BdC(x)| ≤ ν;
(2) every model M of T can be expanded to a model of T (Φ, ν).

Proof. (1) Assume that T 6|= |BdC(x)| ≤ ν for any ν ∈ N. Then by model
theoretic compactness, there are an M |= T and a C ∈ Φ1 such that the
set BdC(M) is in�nite; we may assume that M is ℵ1-saturated. Moreover by
Axiom (F8), we may assume that C ∈ Φtrans. Also, by Axiom (F8) and an
argument as in the proof of Proposition 10.3, it su�ces to �nd a d ∈ CM such
that Uþ(d) ≥ 2.
SinceM is ℵ1-saturated, there is an interval I ⊆ CM such that I∩acl(∅) = ∅

and I∩BdC(M) is in�nite. By (10.1) and since BdC(M) is nowhere dense, there
is a c ∈ I\BdC(M) such that the elements a := sup {x ∈ I : x <C c ∧ BdC(x)}
and b := inf {x ∈ C : a <C x ∧ BdC(x)} exist in I. Then a <C b, a, b /∈ acl(∅),
b ∈ dcl(a) and

M |= a <C b ∧ BdC(a) ∧ ¬∃x(Cx ∧ a <C x <C b ∧ BdC(x)).
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It follows that the formula φ(x) := a <C x <C b strongly divides over ∅; hence
Uþ(d) ≥ 2 for some d ∈ CM, as required.
Part (2) follows from Proposition 8.7 and part (1). �

We can now prove our restatement of Dulac's Problem:

Proof of Theorem B. (1) If ξ has �nitely many boundary cycles, then by Pro-
position 8.7 the structureMξ can be expanded into a modelMD

ξ of T (Φξ, ν) for

some ν ∈ N. Since (Φξ)open 6= ∅, it follows that 2 ≤ Uþ(Mξ) ≤ Uþ(MD
ξ ) ≤ 2

by Proposition 10.3 and Theorem 10.2. Conversely, if Uþ(Mξ) = 2 then by
Proposition 10.5, the structure Mξ can be expanded into a model of T (Φξ, ν)
for some ν ∈ N, so by Example 6.7 the vector �eld ξ has �nitely many boundary
cycles.
Part (2) follows from part (1) and Poincaré's Theorem [10] (see also [9, p.

217]). The �moreover� clause follows from part(1) and Theorem 10.2. �

11. Final questions and remarks

(1) In the situation of Theorem B, is it possible for Mξ to be rosy of
Uþ-rank strictly greater than 2?

(2) Can a restatement of Hilbert's 16th Problem be obtained in the spirit
of Theorem B?
A naïve approach to this question is as follows: Let {ξa : a ∈ A}

be a family of vector �elds on R2 de�nable in R. Since the arguments
in Sections 1 through 5 are uniform in parameters, we may assume
that there is a �ow con�guration Φ such that Φξa = Φ for all a ∈ A.
In this situation, one can readily reformulate the theory T (Φ) for the
parametric situation; and if one also assumes the existence of a uniform
bound ν ∈ N on the number of boundary cycles of each ξa, such a
reformulation extends to T (Φ, ν). We suspect that under the latter
assumption, the corresponding theory is rosy of Uþ-rank 3; however,
this does not appear to us to be a completely trivial generalization of
the results in Section 10, and we plan to pursue it in a future project.

(3) The structure MD
ξ in Example 8.5 does not de�ne any algebraic oper-

ations (by Theorem 9.11). Assume here that S(ξ) = ∅; is it possible
to expand MD

ξ by some (or all) of the sets de�nable in the original

o-minimal structure R without increasing the Uþ-rank? We know very
little about this question. However, if (a) the x-axis, the projection
from R2 onto the x-axis, and both addition and multiplication are de-
�nable in an expansion M′ of MD

ξ , and if (b) the expansion M′ still

has Uþ-rank two, then M′ (and hence MD
ξ ) would be de�nable in

an o-minimal structure. (The assumption that M′ has Uþ-rank two is
necessary here.) Thus, question (3) is related to the following question:
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(4) Is the structure MD
ξ of Example 8.5 de�nable in some o-minimal ex-

pansion of the real �eld?
(5) Consider a Dulac �ow con�guration Ψ andM |= T (Ψ). Corollary 10.1,

Theorem 10.2 and their respective proofs may be loosely interpreted as
indicating that M is built-up from sets D ⊆ M on which the induced
structure is o-minimal. Is there a theory of structures built-up from sets
with induced o-minimal structure, say in the spirit of Zilber's results
on the �ne structure of uncountably categorical theories [14]?
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