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Abstract

We prove that for p-optimal fields (a very large subclass of p-minimal
fields containing all the known examples) cell decomposition and cell
preparation for definable functions follow from methods going back to
Denef’s paper [Den84]. We derive from it that the topological dimension
introduced in [HM97] for P -minimal fields has even better properties in
p-optimal fields, relatively to fundamental operations such as taking the
boundary of a definable set, or the fibers of a definable function. As a con-
sequence the topological dimension coincides with the topological rank,
and every two infinite definable sets are isomorphic if and only if they
have the same dimension.

1 Introduction

This paper is an attempt to continue the road opened by Haskell and MacPher-
son [HM97] toward a p-adic version of o-minimality. More general constructions
have been given in [Sch01], [CL07], [CL12]. Our aim is not to encompass such
a generality but rather to show how the methods introduced by Denef in his
visionary paper [Den84] apply with striking efficiency to a very large subclass
of p-minimal fields.

Recall that a p-adically closed field is a field K elementarily equivalent
to a finite extension of the field Qp of p-adic numbers. Given a language L
containing the language of rings, we say that an L-structure K on K extending
its ring structure is p-minimal if every definable subset of the affine line K
is semi-algebraic. By “definable” we always mean definable in the language L
with parameters from K. For sets and functions definable (with parameters as
always) in the language of rings, we use the locution “semi-algebraic” instead.
The L-structure K is P -minimal (a.k.a. “strongly p-minimal”) if every elemen-
tarily equivalent L-structure is p-minimal. Abusing the notation we will always
identify K and K, and call K itself a p-minimal or P -minimal field.

Haskell and MacPherson introduced P -minimal fields in [HM97] and built
a reasonably good dimension theory for definable sets over P -minimal fields.
They left open several questions, such as the existence of a cell decomposition,
and whether or not their dimension is a “dimension function” in the sense of
[vdD89].

Mourgues proved in [Mou09] that a cell decomposition similar to the one of
[Den84] holds for a P -minimal field K if and only if it has definable Skolem
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functions (or “definable selection” in [Mou09]), that is if for every positive
integers m,n and every definable subset S of Km+n the coordinate projection
of S onto Km has a definable section. It is not known at the moment if every
P -minimal field has definable Skolem functions.

As Cluckers noted in [Clu04], it was lacking in [Mou09] a preparation theorem
for definable functions. He filled this lacuna for subanalytic functions, that
is the functions which are definable in the analytic structure of K, initially
introduced on Zp by Denef and van den Dries in [DvdD88] (see definition 1.3
and further in [Clu04]). We call it the “classical analytic structure” in the
remaining. Cluckers derived from his preparation theorem several important
applications, for parametric integrals and classification of definable sets up to
isomorphism.

In this article we extend these results to a large class of p-minimal fields,
including all the P -minimal fields with definable Skolem functions studied in
[Mou09]. Moreover we get for these fields, we call p-optimal, a dimension the-
ory for definable sets similar to [HM97], with even better properties (see the
paragraph “main results” below).

A basic function f(x1, . . . , xm) is a polynomial function in xm whose coef-
ficients are global definable functions in (x1, . . . , xm−1). Thus unary basic func-
tions are just ordinary polynomial functions in one variable with coefficients in
K. A basic set S ⊆ Km of order N is a set of the form

S =
{
x ∈ Km : f(x) ∈ PN

}
with f a basic function, N ≥ 1 an integer and

PN =
{
x ∈ K :∃y ∈ K, x = yN

}
.

We say that an L-structure on a p-adically closed field K extending its ring
structure is p-optimal if every definable subset of Km (for every m) is a boolean
combination of basic sets. When this happens we callK itself a p-optimal field.

P -minimality versus p-optimality. Basic subsets of the affine line K are
semi-algebraic, because unary basic functions are polynomial, hence every
p-optimal field is p-minimal. On the other hand, the starting point of this
paper is the easy observation that every P -minimal field with definable Skolem
functions is p-optimal (proposition 2.3). Conversely we will prove that every
p-optimal field has definable Skolem functions (theorem 5.3), hence a P -minimal
field has definable Skolem functions if and only if it is p-optimal.

It is important to keep in mind that although p-optimality might seem at
first glance a much stronger assumption than P -minimality, p-optimal fields are
indeed p-minimal but are not supposed to be P -minimal. Moreover it is difficult
to imagine any proof of p-minimality which does not involve in a way or another
a quantifier elimination result similar to Macintyre’s theorem 2.1. The condition
defining p-optimality is actually very close to such kind of elimination. So close
that it might be expectable that it can be proved simultaneously in most cases,
if not all, without additional effort.

Examples. In the classical analytic structure, p-minimality was derived from
the quantifier elimination theorem 1.1 in [DvdD88], the proof of which is based
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on the Weierstrass preparation and division theorem for analytic functions.
Then P -minimality was proved later in [vdDHD99] by mean of a non-trivial
improvement of this same Weierstrass division. But a detailed study of the
original proof of theorem 1.1 in [DvdD88] shows that it directly proves (a strong
form of) p-optimality for the classical analytic structure, without going through
P -minimality.

The same holds true for the non-standard analytic structure on Qp((t
Q))

studied in [Ble10], and for the expansions of Qp with Weierstrass systems of
[Mar08]: all of them are indeed examples of p-optimal fields (although the last
ones would require a more precise examination).

Question 1.1 Does there exist a P -minimal (or at least p-minimal) field which
is not p-optimal?

In the remaining of this paper K will always denote a p-optimal field. Topo-
logical notions such as continuity, interior, closure and so on refer to the topology
of the p-valuation. We let A denote the topological closure of A.

Main results. This paper is threefold. Firstly, we present Denef’s method
and explain how it provides a cell decomposition (theorem 3.7) and a cell prepa-
ration result for definable functions (theorem 4.3) valid in every p-optimal field,
and conversely (corollary 5.4). Secondly, we apply it in sections 5 and 6 in or-
der to prove the existence of definable Skolem functions (theorem 5.3) and the
following result of “continuity almost everywhere”.

Theorem 1.2 Every m-ary function f definable over a p-optimal field is con-
tinuous on a definable set which is dense and open in the domain of f .

Finally we present in sections 7 and 8 a dimension theory for definable sets in
p-optimal fields similar to, and inspired by, the analogous dimension theory for
P -optimal fields in [HM97]. It not only keeps the nice properties of its ancestor,
but has in addition several others of importance such as the following ones.

Theorem 1.3 Let f : A ⊆ Km → Kn be a definable map, and B = f(A).
Then for every positive integer d the set B(d) defined by

B(d) =
{
b ∈ B : dim f−1({b}) = d

}
is definable and dim f−1(B(d)) = d+ dimB(d).

Theorem 1.4 Two infinite subsets of Km and Kn are isomorphic if and only
if they have the same dimension.

Theorem 1.5 For every definable subset A of Km, dimA \A < dimA.

Combining theorems 1.2 and 1.5 we get1:

Corollary 1.6 For every definable map f : X ⊆ Km → Kn, let C(f) denotes
the set of points x in X such that f is continuous on a neighbourhood2 of x in
X. Then we have dimX \ C(f) < dimX.

1See footnote 3.
2Of course, as for “open” in theorem 1.2, “neighbourhood” refers here to the topology

induced on X by Km, whose open sets are the sets U ∩X with U an open subset of Km. In
general the sets open in X are not open in Km, unless X itself is open in Km.
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It follows immediately that every definable function is piecewise continuous.
As a consequence, all the cells involved in the cell decomposition and cell prepa-
ration theorems can be chosen with continuous center and bounds (corollary 8.6.

We also derive from theorem 1.5 that our dimension coincides in P -optimal
fields with the so-called “topological rank” (proposition 8.7).

Remark 1.7 All the results presented here are well known for the semi-
algebraic and the classical analytic structure of p-adically closed fields, and new
for p-optimal fields. Most of them are new also for the subclass of P -minimal
fields with definable Skolem functions, and apparently yet unknown for general
P -minimal fields3. The concept of p-optimal field itself seems to be new, al-
though implicit in many papers on p-adic fields (specially [Den86], which was
also a source of inspiration for us).

Acknowledgement. This paper is based on [Den84], with which the reader
is expected to be familiar. Indeed we will constantly refer to Denef’s proofs
in sections 3 and 4. Apart of this it is essentially self-contained. However we
borrowed ideas from papers of many other authors, specially Dreidre Haskell
and Dugald Macpherson in [HM97], Lou van den Dries in [vdD84] and [vdD98],
and Raf Cluckers in [Clu04].

Terminology and notation. For every a in K, v(a) and |a| denote the
p-valuation of a and its norm. The norm is nothing but the valuation, but with
a multiplicative notation so that |0| = 0, |ab| = |a|.|b|, |a+ b| ≤ max(|a|, |b|) and
of course |a| ≤ |b| if and only if v(a) ≥ v(b). The valuation ring of v is R, and
we fix some π in R such that πR is the maximal ideal of R.

For convenience we will sometimes add to K one more element ∞, with the
property that |x| < |∞| for every x in K. We also denote∞ any partial function
with constant value ∞.

For every subset X of K we let X× = X \ {0}. Note the difference between
R× = R \ {0} and R∗ = the set of units in R.

Recall that K0 is a one-point set. When a tuple a = (x, t) is given in Km+1

it is understood that x = (x1, . . . , xm) and t is the last coordinate. We let â = x
denote the projection of a onto Km. Similarly, the projection of a subset S of
Km+1 onto Km is denoted Ŝ. We let also:

‖x‖ = max
(
|x1|, . . . , |xm|

)
B(x, ρ) =

{
y ∈ Km : ‖y − x‖ < |ρ|

}
For every integer e ≥ 1, Ue denotes the group of e-th roots of 1 in K.
Analogously to Landau’s notation O(xn) of calculus, we let Ue,n(x) denote

any definable function in the multi-variable x with values in Ue.(1 + πnR).

3I take this opportunity to mention that Remark 5.5 in [HM97] which outlines an argument
proving corollary 1.6 in P -minimal fields is probably misleading. By mean of Lemma 7.1 in
[Den84] it seems to prove it only piecewise: there is a finite partition of X in definable pieces
A on each of which the restriction f|A of f satisfies dimA \ C(f|A) < dimA. But in the
lack of theorem 1.5 one can not ensure that the pieces A of dimension dimX are open in X,
hence that C(f) contains C(f|A). Thus corollary 1.6 does not follow from this argument, and
Theorem 5.4 of [HM97] (which asserts that dimX \ C(f) < m) seems to be the best we can
say at the moment for P -minimal fields.
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So, given a family of functions fi, gi on the same domain X, we write that
fi = Ue,ngi for every i, when there are definable functions ωi : X → R and
χi : X → Ue such that for every x in X

fi(x) = χi(x)
(
1 + πnωi(x)

)
gi(x).

U1,n(x) is simply denoted Un(x).

If K̃ is a finite extension of Qp to which K is elementarily equivalent as a

ring, and R̃ is the p-valuation ring of K̃, then the following set is semi-algebraic
(see lemma 2.1, point 4, in [Den86])

Q̃N,M = {0} ∪
⋃
k∈Z

πkN (1 + πM R̃).

For every M > v(N) we let QN,M denote the semi-algebraic subset of K corre-

sponding4 by elementary equivalence to Q̃N,M in K̃. The condition M > v(N)
implies by Hensel’s lemma that 1+πMR is contained in P×N . Note that Q×N,M is

then a clopen subgroup of P×N with finite index. The next property also follows
from Hensel’s lemma (see for example lemma 1 and corollary 1 in [Clu01]).

Lemma 1.8 The function x 7→ xe is a group endomorphism of Q×N0,M0
. If

M0 ≥ 1 + v(e) this endomorphism is injective and its image is Q×eN0,v(e)+M0
.

In particular x 7→ xe defines a continuous bijection from Q1,v(e)+1 to

Qe,2v(e)+1. We let x 7→ x
1
e denote the reverse continuous bijection. Note that

it is defined on QN,M for every N , M such that e divides N and M > 2v(e).
So Un(x) = (Ue,n−v(e)(x))e whenever n > 2v(e).

2 Basic sets

Recall the following celebrated result, stated for Qp by Macintyre [Mac76]. The
generalization to p-adically closed fields can be found in [PR84].

Theorem 2.1 (Macintyre) Let F be a p-adically closed field. The semi-
algebraic subsets of Fm are exactly the boolean combination of sets of the form{

x ∈ Fm : f(x) ∈ PN
}

with f a polynomial function.

Remark 2.2 By the argument of lemma 2.1 in [Den84], the following sets are
basic sets, for every basic functions f , g in m variables:{

x ∈ Fm : f(x) = 0
}

{
x ∈ Fm : |g(x)| ≤ |f(x)|

}
Moreover, since P×N is a subgroup of finite index in F×, the complement of a
basic set in Fm is then a finite union of basic sets. Hence every (finite) boolean
combination of basic sets is the union of intersections of finitely many basic sets.
All of them can be taken the same larger order, because P×N ′ is a subgroup of
P×N of finite index for every N ′ which is divisible by N .

4For a more intrinsic definition of QN,M inside K, see [CL12].
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Note also that if S is any definable subset of Fm then S×F is a basic subset
of Fm+1 by the above remark. Indeed the m-ary function c0(x) which equals 0
on S and 1 outside S determines on Km+1 a basic function f(x, t) = c0(x) of
degree 0 in t, whose zero set it precisely S × F .

Proposition 2.3 Let F be a P -minimal field with m-ary definable Skolem func-
tions, for some positive integer m. Then every definable subset of Fm+1 is a
boolean combination of basic sets.

Thus every P -minimal field with definable Skolem functions (for every m) is
p-optimal.

Proof: Let S be a definable subset of Fm+1, and S′ the corresponding definable
set in an elementary extension F ′ of F . For every x′ in F ′m let S′x′ denote the

fiber of Ŝ′ over x′:
S′x′ =

{
t′ ∈ F :(x′, t′) ∈ S′

}
For every x′ in Ŝ′ the p-minimality of F ′ gives a tuple z′x′ of coefficients of a
description of S′x′ as a boolean combination of basic sets. The model-theoretic
compactness theorem then gives definable subsets S1, . . . , Sq of Fm and for every
i ≤ q an L–formula ϕi(x, t, z) with m+ 1 + ni free variables which is a boolean
combination of formulas f(x, t, z) ∈ PN with f ∈ Z[x, t, z], such that for every
x in Si there is a list of coefficients zx such that

Sx =
{
t ∈ T :F |= ϕ(x, t, zx)

}
.

With other words, for every x in Si

F |= ∃z ∀t
(
(x, t) ∈ S ↔ ϕi(x, t, z)

)
.

Our assumption then gives for each i ≤ q a definable Skolem function ζi : Si →
Fni such that for every x ∈ Si

F |= ∀t
[
(x, t) ∈ S ↔ ϕi

(
x, t, ζi(x)

)]
.

Let Bi = {(x, t) ∈ Fm+1 :F |= ϕi(x, t, ζi(x))}. By construction this is a boolean
combination of basic subsets of Fm+1, hence so is Ci = Bi ∩ (Si × F ). The
conclusion follows, since S is the union of these Ci’s.

It is worth mentioning that deriving p-optimality from P -minimality with
Skolem functions is probably an unnecessary work-around in general (see the
discussion in section 1 on P -minimality versus p-optimality).

3 Cell decomposition

Recall that, until the end of this paper, K always denotes a p-adically closed
field endowed with a p-optimal structure. A large subgroup of K× is a subgroup
of finite index and5 there is a positive integer n0 such that 1 + πn0 ⊆ G. For
instance, P×N and Q×N,M are large.

5Of course the second condition follows from the first when K is a finite extension of Qp

or if G is semi-algebraic.
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The cells which usually appear in the literature on p-adic fields are non
empty subsets of Km+1 of the form:

{(x, t) ∈ X ×K : |ν(x)|�1|t− c(x)|�2|µ(x)| and t− c(x) ∈ λG} (1)

where X ⊆ Km is a definable set, c, µ, ν are definable functions from X to K,
�1,�2 are ≤, < or no condition, λ ∈ K and G is a large definable subgroup of
K×. The interesting cases are when G is K× (theorem 3.5), P×N (theorem 3.7)
or Q×N,M (theorem 4.3).

In its simplest form, Denef’s cell decomposition theorem asserts that every
semi-algebraic subset of Km is the disjoint union of finitely many cells. It will
be convenient to fix a few more conditions on our cells, but most of all we want
to pay attention on how the functions defining the output cells depend on the
input data.

So we define presented cells in Km+1 as tuples A = (cA, νA, µA, λA, GA)
with cA a definable function on a non-empty domain X ⊆ Km with values in
K, νA and µA either definable functions on X with values in K× or constant
functions on X with values 0 or∞, λA an element of K and GA a large definable
subgroup of K× such that for every x ∈ X there is t ∈ K such that:

|νA(x)| ≤ |t− cA(x)| ≤ |µA(x)| and t− cA(x) ∈ λAGA (2)

We call it a presented cell mod G when GA = G. Of course the set of tuples
(x, t) ∈ X ×K satisfying (2) is then a cell of Km+1 in the usual sense of (1).
We call it the underlying cellular set of A. Abusing the notation we will
also denote it A most often. The existence, for every x ∈ X, of t satisfying (2)

simply means that X is exactly Â. We call it the basement of A. The function
cA is called its center, µA and νA its bounds, GA its modulo.

A is said to be of type 0 if λA = 0, and of type 1 otherwise. Contrary to its
center, bounds, and modulo, the type of A only depends on its underlying set.

The word “cell” will usually refer to presented cells. However, for sake of
simplicity, we will freely talk of disjoint cells, bounded cells, families of cells
partitioning some set and so on, meaning that the underlying cellular sets of
these (presented) cells have the corresponding properties. For instance, it is clear
that every cellular set as in (1) is in that sense the disjoint union of finitely many
(presented) cells mod G.

Lemma 3.1 (Denef) Let S be a definable subset of Km+n. Assume that there
is an integer α ≥ 1 such that for every x in Km the fiber

Sx =
{
y ∈ Kn :(x, y) ∈ S

}
has cardinality ≤ α. Then the coordinate projection of S on Km has a definable
section.

Proof: Identical to the proof of lemma 7.1 in [Den84].

Remark 3.2 The conclusion of the lemma remains true under the slightly
weaker assumption that all the fibers Sx are finite. Indeed we are going to see
that every definable subset S of Km+1 is the union of a finite family A of disjoint
presented cells mod P×N for some N . As a consequence, if Sx is finite for every

x ∈ Ŝ then all the cells in A must be of type 0, hence the cardinality of Sx is
bounded uniformly in x by the cardinality of A.
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Lemma 3.3 (Denef) Let f be a basic function in (x, t) = (x1, . . . , xm, t). Let
n ≥ 1 be a fixed integer. Then there exists a partition of Km+1 into sets A of
the form

A =
⋂
j∈S

⋂
l∈Sj

{
(x, t) ∈ Km+1 :x ∈ C and |t− cj(x)|�j,l|aj,l(x)|

}
where S and Sj are finite index sets, C is a definable subset of Km, and cj, aj,l
are definable functions from Km to K, such that for all (x, t) in A we have

f(x, t) = Un(x, t)h(x)
∏
j∈S

(
t− cj(x)

)ej
with h : Km → K a definable function and ej ∈ N.

It is sufficient to check it for every n large enough so we can assume that:

1 + πnR ⊆ PN ∩R∗ (3)

Thus Un(x, t) in the conclusion could be replaced by u(x, t)N with u a definable
function from A to R∗. This is indeed how this result is stated in lemma 7.2
of [Den84]. However it is the above equivalent (but slightly more precise) form
which appears in Denef’s proof, and which we retain in this paper.

Proof: Follow the proof of lemma 7.2 of [Den84], using the p-minimality as-
sumption and basic functions in place of Macintyre’s quantifier elimination and
polynomial functions. Of course, lemma 7.1 used in Denef’s proof has to be
replaced with the analogous lemma 3.1.

Remark 3.4 (co-algebraic functions) A remarkable by-product of Denef’s
proof is that the functions cj and aj,l in the conclusion of lemma 3.3 belong to
coalg(f), which we define now.

Given a basic function f in m + 1 variables, we say that function h : X ⊆
Km → K belongs to coalg(f) if there exists a finite partition of X in definable
pieces H, on each of which the degree in t of f(x, t) is constant, say eH , and
such that the following holds. If eH ≤ 0 then h(x) is identically equal to 0 on
H. Otherwise there is a family (ξ1, . . . , ξrH ) of K-linearly independent elements
in an algebraic closure of K and a family of definable functions bi,j : H → K
for 1 ≤ i ≤ eH and 1 ≤ j ≤ rH , such that for every x in H

f(x, T ) = aeH (x)
∏

1≤i≤eH

(
T −

∑
1≤j≤rH

bi,j(x)ξj

)
and

h(x) =
∑

1≤i≤eH

∑
1≤j≤rH

αi,jbi,j(x)

With the αi,j ’s in K. If F is any family of basic functions in m+ 1 variables we
let coalg(F) denote the set of linear combinations of functions in coalg(f) for f
in F .
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Theorem 3.5 (Denef) Let F be a finite family of basic functions in m + 1
variables. Let n ≥ 1 be a fixed integer. Then there exists a finite partition of
Km+1 into presented cells H mod K× such that the center and bounds of H
belong to coalg(F) ∪ {∞} and for every (x, t) in H and every f in F

f(x, t) = Un(x, t)hf,H(x)
(
t− cH(x)

)αf,H (4)

with hf,H : Ĥ → K a definable function and αf,H ∈ N.

Proof: Follow the proof of theorem 7.3 in [Den84], using once again the
p-minimality assumption and basic functions in place of Macintyre’s quantifier
elimination and polynomial functions.

Given two families A, B of subsets of Km, recall that B refines A if B is a
partition of

⋃
A such that every A in A which meets some B in B contains it.

Corollary 3.6 (Denef) Let F be a finite family of m-ary basic functions, N ≥
1 an integer and A a family of boolean combinations of subsets of Km defined
by f(x) ∈ PN with f in F . Then there exists a finite family H of cells mod P×N
with center and bounds in coalg(F) which refines A.

Proof: Theorem 3.5 applies to F with n > v(N), so that 1 +πn ⊆ PN . It gives
a partition of Km into presented cells B mod K×. Every such cell B is the
disjoint union of finitely many presented cells H mod P×N , whose centers and

bounds are the restrictions to Ĥ of the center and bounds of A (hence belong to
coalg(F)), on which hf,B(x)P×N and (t−cB(x))P×N are constant, simultaneously
for every f in F . Thus every A in A either contains H or is disjoint from H by
(4) and our choice of n, which proves the result.

The following simpler statement, which follows directly from corollary 3.6
by p-minimality, is sufficient in most cases.

Theorem 3.7 (Denef’s cell decomposition) For every finite family A of
definable subsets of Km there is for some N a finite family of presented cells
mod P×N refining A.

Remark 3.8 Recall that Q×N,M is a subgroup of finite index in P×N (because

M > v(N) is assumed), and P×N is itself a subgroup of finite index in K×.
It follows that every cell mod K× or P×N is obviously the union of finitely
many disjoint cells mod Q×N,M . So the cells mod Q×N,M which are required in
theorem 4.3 could have been used as well in all the results of the present section.

Boolean combination of cells. Denef derives theorem 3.5 (theorem 7.2 in
[Den84]) from lemma 3.3 (lemma 7.1 in [Den84]) by proving that the intersection
of a finite family A of presented cells mod K× is the union of a finite family H
of disjoint presented cells mod K×. Moreover, given an arbitrary integer n ≥ 1,
he builds the cells in H so that:

(I) The center and bounds of each H are linear combinations of the restric-

tions to Ĥ of the center and bounds of the cells in A (except that µH can
also be constantly equal to ∞, of course).
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(IIn) For every H ∈ H, every A ∈ A containing H and every (x, t) ∈ H

t− cA(x) = Un(x, t)h(x)α
(
t− cH(x)

)1−α
with h : Ĥ → K a definable function and α ∈ {0, 1} (both depending on
H and A).

Let us quote that the same holds true for presented cells mod large groups.

Corollary 3.9 Let A be a finite family of presented cells mod G, for some
large definable subgroup G of K×. Then for every integer n ≥ 1 there exists
a finite family H of presented cells mod G refining A and satisfying the above
conditions (I) and (IIn) for every H in H and every A in A containing H.

Proof: It suffices to prove the result for n large enough, so that 1 + πnR ⊆ G.
Let X be any atom of the finite boolean algebra generated by A among the
subsets of Km. It is the intersection of a finite family B of cells mod G whose
centers are either 0 or cA for some A in A, and whose bounds are either 0, ηνA,
ηµA or ∞, for some A in A and some η in K× (here we use that G has finite
index in K×). Thus it suffices to prove that X is the union of a finite family H
of disjoint cells mod G which satisfy conditions (I) and (IIn), with B in place

of A. By partitioning X̂ if necessary and refining A accordingly we can even
assume that all the cells in B have the same basement.

For every B in B let B∗ = (cB , νB , µB , λB ,K
×). Let B∗ be the family of all

these cells mod K× as B ranges over B. As already said, it appears in Denef’s
proof of theorem 3.5 that

⋂
B∗ is the union of a finite family C∗ of disjoint

presented cells mod K× which satisfy conditions (I) and (IIn) with B∗, C∗ in
place of A, H. Each cell C∗ in C∗ splits into cells C mod G with the same center
and bounds as C∗. For each B in B, B∗ contains C∗ hence by (IIn) there is an

exponent αC,B in {0, 1} and a definable map hC,B : Ĉ → K such that

t− cB(x) = Un(x, t)hC,B(x)αC,B
(
t− cC(x)

)1−αC,B
(5)

for every (x, t) in C∗ hence a fortiori when (x, t) ∈ C. There is a finite partition
Y of X in definable pieces on which hC,B(x) has constant residue class modulo
G, simultaneously for every C, B as above. It only remains to check that every
cell H = C ∩ (Y ×K) which meets X is contained in X, so that the family of
all these cells, which obviously covers X, gives the conclusion.

In order to do so, it suffices to prove that for every B in B, t−cB(x) ∈ λB .G
for every (x, t) in C such that x ∈ Y . Pick any point (y, s) in H ∩ X. By
construction s−cB(y) belongs to λB .G and one of the following happens. Either
αC,B = 0 and by (5) applied to (y, s), hC,B(y) belongs to λB .G (because 1+πnR
is contained inG by assumption). Then hC,B(x) belongs to λB .G as well because
y, x ∈ Y , so t − cB(x) belongs to λB .G by (5) applied to (x, t). Otherwise
αC,B = 1 and by (5) applied to (y, s), s − cC(y) belongs to λB .G. It is then a
common point of λB .G and λC .G, hence λB and λC have the same residue class
modulo G. But t− cC(x) belongs to λC .G = λB .G hence t− cB(x) belongs to it
as well by (5). In both cases we conclude that t− cB(x) belongs to λB .G, hence
(x, t) ∈ B. So H is contained in every B ∈ B, thus H ⊆

⋂
B = X.
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4 Cell preparation for definable functions

Lemma 4.1 (Denef) For every definable function f : X ⊆ Km → K there is
an integer e ≥ 1 and a partition of X in finitely many definable sets A such that
for every x in A ∣∣f(x)

∣∣e =

∣∣∣∣pA(x)

qA(x)

∣∣∣∣
with pA, qA a pair of basic functions such that qA(x) 6= 0 for every x in A.

Proof: The proof of Denef’s theorem 6.3 in [Den84] applies word-for-word, with
basic functions instead of polynomial functions, and the reference to Macintyre’s
theorem 2.1 replaced by our assumption that K is p-optimal.

Remark 4.2 Given an integer n0 ≥ 1, the set 1 +πn0R is a definable subgroup
of R∗ with finite index. Thus in lemma 4.1 we can always assume, refining the
partition of X if necessary (but keeping the same integer e independently of
n0), that for every x in A

f(x)e = Un0
(x)

pA(x)

qA(x)

Moreover, since P×N has finite index in P×N0
whenever N0 divides N , we can

assume as well that A is a boolean combination of basic sets of the same power
N , with N a multiple of any fixed N0.

Theorem 4.3 (Cell preparation) Let (θi : Ai ⊆ Km+1 → K)i∈I be a finite
family of definable functions and N0 ≥ 1 an integer. Then there exists an integer
e ≥ 1 and, for every n ∈ N×, a pair of integers M , N and a finite family H
of presented cells mod Q×N,M such that M > 2v(e), eN0 divides N , H refines
(Ai)i∈I , and for every (x, t) ∈ H,

θi(x, t) = Ue,n(x, t)h(x)
[
λ−1H

(
t− cH(x)

)]α
e

for every i ∈ I and every H ∈ H contained in Ai, with h : Ĥ → K a definable
function and α ∈ Z (both depending on i and H)6.

Proof: For each i let ei be an integer, Ai a partition of Ai and Fi a family of
basic functions, all given by lemma 4.1 applied to θi. By replacing each ei with
a common multiple we can assume that all of them are equal to some integer
e ≥ 1. Given an integer n ≥ 1 we can refine the partition Ai as in remark 4.2
with n0 = n+ 2v(e).

Let A be a finite family of definable sets refining
⋃
i∈I Ai. We can assume

that each of them is a boolean combination of basic sets of the same power N ,
with N a multiple of eN0. For every A in A, every i ∈ I such that Ai contains
A and every (x, t) in A we have

θi(x, t)
e = Un0(x, t)

pi,A(x, t)

qi,A(x, t)
(6)

6If H is of type 0 then it is understood that α = 0 and we use the conventions that in this
case λ−1

H = 0 and 00 = 1.
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with pi,A and qi,A a pair of basic functions such that qi,A(x, t) 6= 0 on A.
For each A in A let FA be the set of basic functions involved in a description

of A as a boolean combination of basic sets of power N . Theorem 3.5 applies
to the family F of all the basic functions pi,A, qi,A and the functions in FA,
for every possible A’s and i’s. It gives a partition of Km+1 in finitely many
presented cells B mod K× such that for every f in F and every (x, t) in B

f(x, t) = UM (x, t)hf,B(x)
(
t− cB(x)

)βf,B (7)

with M = n0 + v(N), hf,B : B̂ → K a definable function and βf,B a positive
integer.

Partitioning B̂ if necessary, we can assume that the cosets hf,B(x)Q×N,M is

constant on B̂. Since M > v(N), 1 + πMR is contained in Q×N,M , so B itself

can be partitioned into cells H mod Q×N,M such that Ĥ = B̂, cH = cB and

f(x, t)Q×N,M is constant on H by (7), for every f in F . A fortiori f(x, t)P×N
is constant on H for every f in F hence each A in A either contains H or is
disjoint from H, for every A in A. So the family H of all among these cells H
which are contained in

⋃
A refines A, hence refines {Ai : i ∈ I} as well.

For every cell H in H there is a unique cell B as above containing H. For
every i ∈ I such that H is contained in Ai, the unique A in A containing B is
also contained in Ai. By (7) applied to f = pi,A and to f = qi,A, and by (6) we
have for every (x, t) ∈ H

θi(x, t)
e = Un0

(x, t)
UM (x, t)hpi,A,B(x)

(
t− cB(x)

)βpi,A,B
UM (x, t)hqi,A,B(x)

(
t− cB(x)

)βqi,A,B (8)

The Un0
and UM factors simplify in a single Un0

since M ≥ n0. By construction

cH = cB and Ĥ = B̂. So, for every (x, t) in H we get

θi(x, t)
e = Un0

(x, t)g(x)
[
λ−1H

(
t− cH(x)

)]α
(9)

with g : Ĥ → K a definable function and α ∈ Z (both depending on i and H).
In turn Un0

= Uee,n0−v(e) because n0 > 2v(e) (see lemma 1.8). The later can be

replaced by Uen because n0 − v(e) = n+ v(e) ≥ n. So (9) becomes

θi(x, t)
e = Ue,n(x, t)eg(x)

([
λ−1H

(
t− cB(x)

)]α
e

)e
(10)

This implies that g takes values in Pe, hence g = he for some definable function
h : Ĥ → K, from which the conclusion follows.

Remark 4.4 From theorem 4.3 it follows by a straightforward induction that
the norm of every definable function f on a p-optimal field is piecewise contin-
uous.

5 Skolem functions

Lemma 5.1 Let (θi : A ⊆ Km → K)i∈I be a finite family of definable functions
with the same domain. Then for every integer n ≥ 1, there exists an integer e,
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a semi-algebraic set Ã ⊆ Km and a definable bijection ϕ : Ã→ A such that for
every i ∈ I and every x in Ã

θi ◦ ϕ(x) = Ue,n(x)θ̃i(x)

with θ̃i : Ã ⊆ Km → K a semi-algebraic functions.

Proof: The proof goes by induction on m. Let us assume that it has been
proved for some m ≥ 0 (it is trivial for m = 0) and that a finite family (θi)i∈I of
definable functions is given with domain A ⊆ Km+1. If A is a disjoint union of
sets B it suffices to prove the result for the restrictions of the θi’s to B. So, for
any given integer n ≥ 1, theorem 4.3 with N0 = 1 reduces to the case when A is
a presented cell mod Q×N,M for some N , M such that for some e0 ≥ 1 dividing
N , M > 2v(e0) and for every i ∈ I and every (x, t) in A

θi(x, t) = Ue0,n(x, t)hi(x)
[
λ−1A

(
t− cA(x)

)]αi
e0 (11)

with hi : Â→ K a definable function and αi ∈ Z.
Let e1 ≥ 1 be an integer, Y ⊆ Km a semi-algebraic set, ψ : Y → Â a

definable bijection, f̃ : Y → K a semi-algebraic function for each f in F , all of
this given by the induction hypothesis applied to F = {µA, νA} ∪ {hi}i∈I . Let
Ã be the set of (y, s) ∈ Y ×K such that

|ν̃A(y)| ≤ |s| ≤ |µ̃A(x)| and s ∈ λAQ×N,M .

Then ϕ : (y, s) 7→ (ψ(y), cA(ψ(y)) + s) defines a bijection from Ã to A. For
every i ∈ I and every (y, s) ∈ Ã we have

θi ◦ ϕ(y, s) = Ue0,n(y, s)Ue1,n(y, s)h̃i(y)(λ−1A s)
αi
e0

The first two factors can be replaced by Ue,n with e any common multiple of e0

and e1. Since θ̃ : (y, s) 7→ h̃i(y)(λ−1A s)
αi
e0 is a semi-algebraic function on Ã the

conclusion follows.

Remark 5.2 In the above proof, given a presented cell A mod Q×N,M of Km+1

with basement X, a semi-algebraic set Y ⊆ Km and a definable bijection ψ :
Y → X, we have constructed a semi-algebraic set S ⊆ Km+1 definable bijection
ϕ : S → A such that

ϕ̂(y, s) = ψ(y) (12)

for every (y, s) in S. Of course the same construction holds for a cell mod P×N .
It is known since [vdD84] that the projection of S onto Y has a semi-algebraic
section, say ζ. Then (12) proves that ϕ ◦ ζ ◦ ψ−1 is a definable section of the

projection of A onto Â.

Theorem 5.3 K has m-ary definable Skolem functions for every m.

Proof: By a straightforward induction it suffices to prove that for every defin-
able subset A of Km+1 the coordinate projection of A onto Â has a definable
section. If A is a union of finitely many definable sets B and if a definable
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section σBB̂ → B has been found for each projection of B onto B̂ we are done,
because using lemma 3.1 we can choose definably for each x in Â one element
among the finitely many σB(x)’s such that x ∈ B. Thus it suffices to prove the
result when A is a cell mod P×N for some N , which has been done in remark 5.2.

Of course theorem 5.3 could as well be proved in a more constructive way by
using the cell decomposition theorem 3.7), just as it is done for semi-algebraic
sets in the appendix of [DvdD88].

Corollary 5.4 The cell preparation theorem 4.3 for definable functions holds
in an expansion F of a p-adically closed field F if and only if F is p-optimal.

Proof: One direction has been proved. For the converse, the case of subsets of
F 0 being trivial, let A be a definable subset of Fm+1. We have to prove that
A is a boolean combination of basic sets. By p-optimality and theorem 3.7 we
can assume that A is a presented cell (c, ν, µ, λ, P×N ) for some N .

Let Y be a semi-algebraic subset of Km and ψ : Y → Â a definable bijection
given by lemma 5.1 (which follows directly from theorem 4.3) applied to (c, ν, µ)

with n = 1. Let Ã be the set of tuples (y, s) in Y ×K such that

|ν̃(y)| ≤ |s| ≤ |µ̃(y)| and s ∈ λP×N . (13)

This is a semi-algebraic subset of Fm+1. By Macintyre’s theorem 2.1 Ã is
then defined by a boolean combination of conditions f(y, s) ∈ PN ′ with f a
polynomial function and N ′ ≥ 1 an integer. Since |ν ◦ψ| = |ν̃| and |µ◦ψ| = |µ̃|,
for every (x, t) in Km ×K we have by (13):

(x, t) ∈ A ⇐⇒
(
ψ−1(x), t− c(x)

)
∈ Ã.

So (x, t) belongs to A if and only it satisfies a boolean combination of conditions
f(ψ−1(x), t− c(x)) ∈ PN ′ , and every such condition defines a basic set since f
is polynomial.

6 Continuity

For every definable subsets B ⊆ A of Km let IntAB denote the relative interior
of B inside A, that is the largest set U ∩ A contained in B with U an open
subset of Km. We simply note IntB for IntKm B.

Theorem 6.1 Let A1, . . . , Ar ⊆ A be a family of definable subsets of Km. If
the union of the Ak’s has non empty interior in A then at least one of them has
non empty interior in A.

The argument below is adapted from [HM97], Theorem 3.2.

Proof: It suffices to prove the result under the additional hypothesis that the
Ak’s are disjoint, and for r = 2. Assume that it has been done in Km (it is
obvious for m = 0) and let A1, A2 be two disjoint definable sets whose union
has non empty interior inside a definable subset A0 of Km+1. So there is a box
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U = X × Y with X (resp. Y ) a non empty open subset of Km (resp. K) such
that A0 ∩ U is non empty and contained in A1 ∪ A2. Replacing each Ak by
Ak ∩ U if necessary, we can assume that A0 ⊆ U hence A1 ∪A2 = A.

For k = 0, 1, 2 and every x in X, let Ak,x = {y ∈ K :(x, y) ∈ Ak}. This is
a definable subset of K hence Ak,x \ Int(Ak,x) is finite by p-minimality. So the
coordinate projection of the definable set

B =
⋃
x∈X
k=1,2

{x} ×
(
Ak,x \ Int(Ak,x)

)

onto Km has finite fibres Bx. By cell decomposition, the cardinality of these
fibres is bounded by some integer N (see remark 2.2). Let (yi)0≤i≤N be a
sequence of distinct elements in the open set Y . For each i ≤ N let

Vi = {x ∈ Â0 : yi /∈ Bx}.

For each x in Â0 at least one of the N + 1 elements yi does not belong to Bx
hence Â0 is covered by the Vi’s. By induction hypothesis at least one of them,
say V0, has non empty interior Z0 inside Â0. Then y0 /∈ Bx for every x in Z0,
hence Z0 = W1 ∪W2 where Wk is defined as

Wk =
{
x ∈ Z0 : y0 ∈ IntAk,x

}
.

By induction hypothesis it follows that at least one of the Wk’s, for example
W1, has non empty interior Z1 inside Z0 hence inside Â0. For every x in Z1

there is ρx in K× such that the ball B(y0, ρx) is contained in Int(A1,x). Let
ρ : Z1 → K× be a definable Skolem function corresponding to this property. By
remark 4.4 |ρ| is piecewise continuous, that is Z1 is the disjoint union of finitely
many cells on which the restriction of |ρ| is continuous. By induction hypothesis

at least one of these cells has non empty interior inside Z1 hence inside Â0. Fix
an element a in this interior, and δ in K× such that B(a, δ) ∩ Â0 is contained
in Z1. By continuity of |ρ| there is δ′ ∈ K× such that |ρ| remains constant on

B(a, δ′) ∩ Â0. We can assume that |δ′[≤ |δ| so we have

A ∩
[
B
(
a, δ′

)
×B

(
y0, ρ(a)

)]
⊆ A1.

Thus (a, y0) belongs to IntAA1, which is then non empty.

Remark 6.2 It follows that for every definable function f : X ⊆ Km → K there
is a set U dense and open in X on which |f | is continuous. Indeed by remark 4.4
there is a finite partition A of X in definable pieces on which the restriction
of |f | is continuous, hence |f | itself is continuous on U =

⋃
{IntX(A) :A ∈ A}.

This is a definable set open in X. As A \ IntX(A) has empty interior in X, so
does the union of these sets by theorem 6.1. That is X \ U has empty interior
in X, hence U is dense in X. If moreover f takes values in K× it follows that
|f | is locally constant on U .

Corollary 6.3 Let B1, . . . , Br, B ⊆ A be definable sets in Km.

1. If B is dense in A then IntA(B) is dense in A.
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2. If B1, . . . , Br are dense in A then so is their intersection.

Proof: For the first point consider A \B, B \ IntA(B), IntA(B) and note that
the two firsts of them have empty interior in A. It follows that their union has
empty interior in A by theorem 6.1 hence their complement IntA(B) is dense in
A. For the second point apply theorem 6.1 to the complements of the Bk’s.

Lemma 6.4 Unary definable functions in K have at most finitely many dis-
continuities.

Proof: Assume that a definable function f : X ⊆ F → F has infinitely many
discontinuities. The set of points at which f is not continuous is definable, hence
by p-minimality it contains a non-empty open set U . For every a in U there is
ε 6= 0 such that

∀δ ∈ K×, ∃x ∈ U, |x− a| < |δ| and |f(x)− f(a)| ≥ ε. (14)

By theorem 5.3 there is a definable Skolem function ε : U → K× corresponding
to this property. By remark 6.2) there exists ε0 in K× and a non-empty open
subset V of U on which |ε(x)| = |ε0|.

Note that f(V ) is infinite, otherwise V would contain on infinite subset on
which f is constant, which will itself contain a non-empty open subset W by
p-minimality. But then f will be continuous on W , contradicting the fact that
W ⊆ U .

So f(V ) is infinite, hence it contains a ball B′ which can be chosen with
radius ρ 6= 0 such that |ρ| ≤ |ε0|. For the same reason f−1(B′) ∩ V contains
a ball B of radius some δ 6= 0. Pick some a in B. For every x in U such that
|x − a| < |δ| we have a, x ∈ B hence f(a), f(x) ∈ B′, so |f(x) − f(a)| < |ε0|
(because B′ has radius |ρ| ≤ |ε0|) which contradicts (14).

For every definable function f : X ⊆ Km → K we let C(f) denote the set of
elements x such that f is continuous on a neighbourhood7 of x in X. This is a
definable set, and the largest set open in X on which f is continuous.

Theorem 6.5 For every definable function f : X ⊆ Km → K, X \ C(f) has
empty interior inside X.

Proof: We have to show that C(f) is dense in X. By the second point of
corollary 6.3 we can prove it separately for each coordinate function of f hence
we can assume that n = 1. In order to do so it suffices to prove, by induction on
m, that there is a set U dense and open in X on which f is continuous. Assume
that it has been done for some m ≥ 1 (it is obvious for m = 0, and true for
m = 1 by lemma 6.4). Let f be a definable function with domain X ⊆ Km+1.
For every (a, b) ∈ X we let Xb (resp. Xa) be the set of elements x in Km (resp.
t in K) such that (x, b) (resp. (a, t)) belongs to X. Define f b : Xb → K and
fa : Xa → K by f b(x) = f(x, b) and fa(t) = f(a, t) respectively, and let

Z1 =
{

(a, b) ∈ X : f b is continuous on neighbourhood of a in Xb
}

7Of course “a neighbourhood of x in X” refers to the topology induced on X by Km, that
is a set V = U ∩X with U an open subset of Km containing x. In general V will not be open
in Km.
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Z2 =
{

(a, b) ∈ X : fa is continuous on neighbourhood of b in Xa

}
.

Pick any (a, b) ∈ X and any ε ∈ K×. By induction hypothesis C(f b) is dense
in Xb so there is a′ in C(f b) such that ‖a− a′‖ < |ε|. Then (a′, b) belongs to Z1

and to the ball of center (a, b) and radius ε. Thus Z1 is dense in X, and so is
Z2 by a symmetric argument. By corollary 6.3 Z1 ∩ Z2 has a dense interior Z
in X. Thus, replacing f by its restriction to Z if necessary we can assume that
Z1 = Z2 = X.

Under this assumption there is a definable Skolem function ζ1 : X ×K× →
K× such that for every (a, b) in X and every non zero ε, for every x in Km

‖x− a‖ < |ζ1(a, b, ε)| ⇒
(
x ∈ Xb and |f b(x)− f b(a)| < |ε|

)
. (15)

Symmetrically there is a definable Skolem function ζ2 : X×K× → K× such
that for every (a, b) in X and every non zero ε, for every t in K

|t− b| < |ζ2(a, b, ε)| ⇒
(
t ∈ Xa and |fa(t)− fa(b)| < |ε|

)
. (16)

By remark 6.2 there is a definable set W dense and open in X×K× on which
|ζ1| and |ζ2| are continuous. Let C be a partition of W into cells mod P×N for
some N . Refining C if necessary we can assume that the center of each cell in C
either is constantly equal to 0 or takes values only in K×. Using remark 4.4 we
can even refine C so that the center and bounds of every cell in C have continuous
norms. Moreover, as Ŵ is dense and open in X, restricting f to Ŵ if necessary
we can assume that Ŵ = X.

Let D = {Ĉ :C ∈ C}. By refining D if necessary and then C accordingly, we
can assume that D is a partition of X and that every D in D either is open in X
or lacks interior in X. Now let D◦ be the family of sets D in D which are open
in X and Z3 be their union. It is open in X, and its complement X \ Z3 lacks
interior by theorem 6.1 (because X \ Z3 is the union of the sets D in D \ D◦
and each of them lacks interior in X). Thus it suffices to find for each D in D◦
a definable set UD dense and open in D on which f is continuous: the union of
the UD’s will then be dense and open in Z3 hence in X.

So pick any D in D◦ and let CD = {C ∈ C : Ĉ = D}. Let C0D be the
family of cells C in CD such that cC = νC = 0, and C1D = CD \ C0D. Note that⋃
CD = W ∩ (D ×K) is dense in D ×K× because W is dense in X ×K× and

D is open in X. As every C in C0D is closed in D ×K× (because cC = 0 and
the norm of the bounds of C are continuous) we have

D ×K× =
⋃

C∈CD

C ∩ (D ×K×) ⊆
⋃

C∈C0D

C ∪
⋃

C∈C1D

C. (17)

We claim that there is a set UD dense and open in D and a definable map
ρD : UD → K× with continuous norm such that the cell WD = (0, 0, ρD, 1,K

×)
is contained in W . Indeed, for every z = (x, t) in D and every C in CD,
Cz = C ∩ ({z}×K) is closed except if C is of type 1 and νC = 0, in which case
its closure is Cz ∪ {cC(z)}. Thus (z, 0) belongs to the closure of Cz if and only
if C belongs to C0D. So there is a definable Skolam function ρ : D → K× such
that {z} × B(0, ρ(z)) is disjoint from Cz for every C in D1

D and every z in D.
By remark 6.2 there is a definable set UD dense and open in D on which |ρ| is
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continuous. Let ρD be the restriction of ρ to UD and WD be the corresponding
cell mod K× as above. WD is open (because |ρD| is continuous), and disjoint
from every C in C1D hence also disjoint from their closure. On the other hand
WD is contained in D×K× so by (17) it must be contained in the union of C0D,
hence in W .

It only remains to check that f is continuous on UD. In order to do so,
choose any (a, b) in UD and fix any non zero ε. Without loss of generality we
can assume that |ε| < |ρ(a, b)|. By continuity of |ρ| there is a neighbourhood
V of (a, b) in UD on which |ε| < |ρ(x, t)|, so V × {ε} is contained in W . The
continuity of |ζ1| and |ζ2| on W , hence on V ×{ε}, then gives a non zero δ such
that |ζ1(x, t, ε)| and |ζ2(x, t, ε)| are constant on B((a, b), δ)∩V . Without loss of
generality we can assume that B((a, b), δ) ∩ UD ⊆ V and

0 < |δ| ≤ min
(
|ζ1(a, b, ε)|, |ζ2(a, b, ε)|

)
.

For every (x, t) in B((a, b), δ) ∩ UD we have then

‖x− a‖ < |ζ1(a, b, ε)| = |ζ1(x, t, ε)|

hence by (15), x belongs to Xt and∣∣f(x, t)− f(a, t)
∣∣ =

∣∣f t(x)− f t(a)
∣∣ < |ε|. (18)

On the other hand we have |t− b| < |ζ2(a, b, ε)| hence by (16), t belongs to Xa

and ∣∣f(a, t)− f(a, b)
∣∣ =

∣∣fa(t)− fa(b)
∣∣ < |ε|. (19)

Combining (18) and (19) we get |f(x, t)−f(a, b)| < |ε|. This being true for every
(x, t) in B((a, b), δ) ∩ UD and every non zero ε, it follows that f is continuous
at (a, b).

7 Dimension

As in [HM97] for P -minimal fields we define over every p-optimal field K the
dimension (the “topological dimension” in [HM97]) of a non-empty definable
subset S of Km, denoted dimS, as the greatest integer d such that there exists
a subset I of {1, . . . ,m} such that πmI (S) has non-empty interior, where πmI :
Fm → F d is defined by

πmI : (xi)1≤i≤m 7→ (xik)1≤k≤d

with i1 < · · · < id an enumeration of I. This projection will be denoted πI
when m is clear from the context. By convention dim ∅ = −∞.

Note that every definable subset of K with dimension 0 has empty interior
hence is finite by p-minimality, and conversely.

Proposition 7.1 For every definable subsets A1, . . . , Ar of Km

dim
(
A1 ∪ · · · ∪Ar

)
= max

(
dimA1, . . . ,dimAr

)
.
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Proof: It suffices to prove it for r = 2. That dimA1∪A2 ≥ max(dimA1,dimA2)
follows immediately from the definition. Conversely let d = dimA1 ∪ A2 and
I be a subset of {1, . . . ,m} with d elements such that πI(A1 ∪ A2) has non
empty interior in Kd. Since πI(A1 ∪A2) is the union of πI(A1) and πI(A2), by
theorem 6.1 at least one of them must have non empty interior in Kd. Thus
dimA1 ≥ d or dimA2 ≥ d and the conclusion follows.

Given a permutation σ of {1, . . . ,m}, for every x = (x1, . . . , xm) in Km

we let xσ = (xσ(1), . . . , xσ(m)). Similarly we let Sσ = {xσ :x ∈ S} for every
definable subset S of Km. Note that πI(S

σ) has non empty interior if and only
if πσ(I)(S) has non empty interior hence

dimSσ = dimS (20)

Following [vdD89], a dimension function on the definable sets of a first-order
structure A is a function d with values in N∪{−∞} such that for every positive
integer m and every definable sets S, S1, S2 of Am we have:

(Dim 1) d(S) = −∞⇔ S = ∅, d({a}) = 0 for each a ∈ A, d(A) = 1.

(Dim 2) d(S1 ∪ S2) = max(d(S1), d(S2)).

(Dim 3) d(Sσ) = d(S) for each permutation σ of {1, . . . ,m}.

(Dim 4) For k = 0, 1 and every definable set T ⊆ Km+1 the set T (k) of x in T̂
such that d(Tx) = k, where Tx denotes the fiber of T over x, is definable
and

d
(
{(x, t) ∈ T :x ∈ T (k)}

)
= dim

(
T (k)

)
+ k.

The aim of this section is to prove that in p-optimal fields dim is a dimen-
sion function. It satisfies (Dim 1) by definition, (Dim 2) by proposition 7.1,
and (Dim 3) by (20). Moreover, if T is a definable subset of Km+1 then by
p-minimality x ∈ T (0) if and only if the points in Tx are isolated, hence T (0)

is indeed definable and so is T (1) = T̂ \ T (0). Thus we only have to prove the
dimension formula of (Dim 4).

Lemma 7.2 Let A be a definable subset of Km, d = dimA and I a subset of
{1, . . . ,m} with d elements such that πI(A) has non empty interior. Let

Z =
{
y ∈ πI(A) :π−1I ({y}) ∩A is infinite

}
.

Then Z has empty interior.

Proof: Let i1 < · · · < id be an enumeration of I, and σ a permutation of
{1, . . . ,m} such that σ(k) = ik for every k ≤ d. Replacing A by Aσ if necessary
we can assume that I = {1, . . . , d}.

For every d ≤ k ≤ m let Ak = πm{1,...,k}(A). For every y in Ad = πmI (A)

let Ak,y be the set of x in Ak such that πkI (x) = y. We let Zk be the set of y
in Ad such that Ak,y is infinite. Clearly Zd is empty, Zm = Z and Zk ⊆ Zk+1

for every k in between. Assume for a contradiction that Z has non empty
interior. Let k < m be then the greatest index such that Zk lacks interior, and
let J = I ∪ {k + 1}.
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By theorem 6.1 Zk+1 \ Zk has non empty interior, so let U be a non empty
open subset of Kd contained in it. For every y in U , Ak,y is finite and Ak+1,y is
infinite, so there is an element xy in Ak,y and by p-minimality a ball By in K
such that {xy} ×By is contained in Ak+1,y. A fortiori we have

{y} ×By ⊆ πd+1
J (Ak+1,y) ⊆ πd+1

J (Ak+1) = πmJ (A).

By theorem 5.3 their is a pair of definable Skolem functions c : U → K and
ρ : U → K× such that every By contains the ball of center c(y) and radius ρ(y).
As U is open in Kd, by theorem 6.5 there is a non empty open set V in Kd

contained in U such that c and ρ are continuous on V . We have{
(y, t) ∈ V ×K : |t− c(y)| < |ρ(y)|

}
⊆ πmJ (A).

This is a non empty open subset of Kd+1 because c, d are continuous and V is
non empty open in Kd. It follows that dimA ≥ d+ 1, a contradiction.

Lemma 7.3 For every cell A ⊆ Km+1, dimA = dim Â+ tpA.

Proof: Let A be a presented cell mod G in Km+1, for some large definable
subgroup of K×. Let d be its dimension.

We first prove that dimA ≥ dim Â+tpA. Let e = dim Â and J ⊆ {1, . . . ,m}
an index set with e elements such that πmJ (Â) has non empty interior in Ke.

Then πm+1
J (A) = πmJ (Â) so dimA ≥ dim Â. If A is of type 0 we are done.

Otherwise let I = J ∪ {m+ 1}, let σ : πmJ (Â)→ Â be a definable section of πmI
and let B be the presented cell in Kd+1 defined by

B = (cA ◦ σ, νA ◦ σ, µA ◦ σ, λA, G).

This is a cell of type 1 contained in πm+1
I (A). Moreover B̂ = πmJ (Â) has non

empty interior in Ke. Thus by theorem 6.5 the center and bounds of B are
continuous on a non-empty definable set V open in Ke. This continuity implies
that B∩ (V ×K) is open in Ke+1. As it is contained in πm+1

I (A) it follows that
dimA ≥ e+ 1 so we are done.

For the reverse inequality, note first that dim Â + 1 ≥ dimA. Indeed, let I
be a subset of {1, . . . ,m+1} with d elements such that πm+1

I (A) has non empty

interior. If m + 1 /∈ I then πmI (Â) = πm+1
I (A) hence dim Â ≥ d and a fortiori
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dim Â + 1 ≥ d. Otherwise m + 1 ∈ I so J = I \ {m + 1} has d − 1 elements.

Then πmJ (Â) has non empty interior in Kd−1 since

πmJ (Â) = ̂πm+1
I (A).

So dim Â ≥ d− 1 hence dim Â+ 1 ≥ d.
We have proved that dim Â+tpA ≤ dimA ≤ dim Â+1. If A is of type 1 the

conclusion follows. Now assume that A is of type 0. It remains to prove that in
this case dimA ≤ dim Â. So let I be a subset of {1, . . . ,m+ 1} with d elements
such that πm+1

I (A) has non empty interior. Assume for a contradiction that

dim Â < d. This implies that m+ 1 belongs to I (otherwise πmI (Â) = πm+1
I (A)

has non empty interior hence dim Â ≥ d). Let J = I \ {m + 1}, B = πm+1
I (A)

and Y = B̂ = πmJ (Â).
By assumption B contains a non empty open subset U of Kd. Since J has

d− 1 elements and dim Â = d− 1, lemma 7.2 implies that the set

Z =
{
y ∈ Y :π−1J ({y}) ∩ Â is infinite

}
has empty interior. Now Û is a non empty open subset of Kd−1 contained in
Y , so it cannot be contained in Z. Pick any y in Û \ Z. As y /∈ Z there are

finitely many points x1, . . . , xN in Â such that πmJ (xi) = y. For every s in K
such that (y, s) belongs to U there is (x, t) in A such that πm+1

I (x, t) = (y, s).
But this implies that πmJ (x) = y and s = t = cA(x), so s = cA(xi) for some i.
Thus U ∩ ({y} ×K) is finite, contradicting that U is open in Kd.

Theorem 7.4 The function dim, defined for definable sets over a p-optimal
field, is a dimension function.

Proof: Let T be a definable subset of Km+1. By cell decomposition there is
for some N a partition A of T into cells mod P×N . Refining the basements of

the cells in A if necessary, we can assume that {Â :A ∈ A} is a partition of

T̂ refining {T (0), T (1)}. For k = 0, 1 let Ak denote the cells in A such that

Âk ⊆ T (k). Then {(x, t) ∈ T :x ∈ T (k)} is the union of the cells in Ak and
T (k) is the union of their basements, so by proposition 7.1 we have

dim{(x, t) ∈ T :x ∈ T (k)} = max
A∈Ak

dimA (21)

dimT (k) = max
A∈Ak

dim Â (22)

For k = 0, every cell A in A0 is of type 0 hence dimA = dim Â by lemma 7.3.
The conclusion follows from (21) and (22) in that case.

For k = 1, there is at least one cell B in A1 such that dim B̂ = dimT (1) by

(22) and proposition 7.1. Since B̂ ⊆ T (1), A ∩ (B̂ ×K) projects with infinite

fiber onto B̂. Hence there is at least one cell C in A of type 1 such that Ĉ = B̂
(hence C ∈ A1). By lemma 7.3 we have

dimC = dim Ĉ + 1 = dimT (1) + 1.
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Now for every A in A1 we have by lemma 7.3 and (22)

dimA = dim Â+ tpA ≤ dimT (1) + 1 = dimC

So maxA∈Ak dimA = dimC = dimT (1) + 1 as expected.

Corollary 7.5 Let f : A ⊆ Km → Kn be a definable map.

1. dim f(A) ≤ dimA and equality holds when f is injective.

2. For every positive integer d the set S(d) defined by

S(d) =
{
y ∈ f(A) : dim f−1({y}) = d

}
is definable and dim f−1(S(d)) = d+ dimS(d).

Proof: This follows directly from theorem 7.4, as general properties of dimen-
sion functions (see corollary 1.5 in [vdD89]).

It is worth mentioning the following consequence of corollary 7.5, which will
be needed in the next section.

Corollary 7.6 Let f : A ⊆ Km → Kn be a definable map, and B a definable
subset of A. If dimB ∩ f−1({y}) < dim f−1({y}) for every y in f(A) then
dimB < dimA.

Proof: Let S = f(A), g the restriction of f to B and T = g(B). Let S(d) (resp.
T (e)) be as in corollary 7.5 for f (resp. g) and for every positive integers d, e.
As B =

⋃
e≤n g

−1(T (e)) there is some e ≤ n such that dimB = dim g−1(T (e)).

By assumption dim g−1({y}) < dim f−1({y}) for every y in B hence T (e) is
contained in the union of S(d) for d > e. It follows that dimT (e) ≤ dimS(d)
for some d > e by proposition 7.1, hence e+ dimT (e) < d+ dimS(d). Thus by
corollary 7.5, dimB = dim g−1(T (e)) < dim f−1(S(d)) ≤ dimA.

Applications Theorem 4.3 and lemma 5.1 are exactly analogous to theo-
rems 2.8 and 3.1 in [Clu04], except that we obtain a slightly more precise equal-
ity of functions mod (1 + πnR).Ue instead of equality of their norm (which
is the same as equality of functions mod R∗). Thus all the important conse-
quences that are derived from these theorems in [Clu04] for the classical analytic
structure remain valid in every p-optimal field.

For applications to parametric integrals, which require numerous specific
definitions, we refer the reader to the proofs of theorems 4.2 and 4.4 in [Clu04].
For the classification of definable sets up to isomorphisms, we have the following.

Theorem 7.7 There exists a definable bijection between two infinite definable
sets A ⊆ Km and B ⊆ Kn if and only if they have the same dimension.

Proof: If there is a definable bijection (an “isomorphism”) between A and B
they have the same dimension by the first part of corollary 7.5. Conversely, if
A and B have the same dimension d then by lemma 5.1 they are isomorphic to
infinite semi-algebraic sets Ã and B̃ respectively, both of which have dimension
d by corollary 7.5. Then Ã and B̃ are semi-algebraically isomorphic by the main
result of [Clu01], hence A and B are isomorphic.
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8 Boundary and topological rank

Theorem 8.1 For every non empty definable subset A of Km

dimA \A < dimA.

As a consequence dimA = dimA.

Remark 8.2 This result does not follow from proposition 2.23 of [vdD89]
since p-optimal fields are not algebraically bounded in the restricted sense of
[vdD89]. The classical analytic structure on Qp is a counter-example (see
[vdD89], page 191).

The following proof is borrowed from the o-minimal analogous theorem 1.8
in [vdD98].

Notation Given an index i ∈ {1, . . . ,m} we let πi : Km → K denote the
coordinate projection onto the i-th axis. For every S ⊆ Km and z ∈ K we let

S(i)
z =

{
x ∈ Km−1 :(x1, . . . , xi−1, z, xi, . . . , xm−1) ∈ S

}
.

Lemma 8.3 For every definable subset A of Km there are only finitely many
z in K such that

(A)(i)z 6= A
(i)
z .

Proof: Permuting the axes if necessary we can assume that i = 1. For z ∈ K
and S ⊆ Kn with n ≥ 1 we simply write Sz for S

(1)
z .

Let Z be the set of elements z in K such that (A)z 6= Az. Replacing A by
A ∩ π−11 (Z) if necessary we can assume that Z = π1(A). Let C be the set of
(z, x, ρ) in Z ×Km−1 ×K such that

B(x, ρ) ∩ (A)z 6= ∅ and B(x, ρ) ∩Az = ∅

As Az is always contained in (A)z, by construction Cz 6= ∅ for every z in Z.
Moreover, if (x, ρ) belongs to Cz and we fix any element y in B(x, ρ)∩(A)z then
for every (x′, ρ′) in Km−1 ×K such that

‖x′ − y‖ < |ρ′| < |ρ| (23)

we have y ∈ B(x′, ρ′) ⊆ B(y, ρ) = B(x, ρ) hence (x′, ρ′) ∈ Cz. The above con-
dition (23) defines an open subset of Km, hence dimCz = m. By corollary 7.5
it follows that

dimC = m+ dimZ. (24)

On the other hand, let us show that the projection Π : C → Km which maps
(z, x, ρ) to (x, ρ) has finite fibers. Assume the contrary. Then for some (x, ρ)
in Km−1 ×K× there is a ball B0 contained in Z such that (z, x, ρ) belongs to
C for every z in B0. Then B(x, ρ) is disjoint from Az for every z in B0, hence
B0 × B(x, ρ) is disjoint from A ∩ π−1i (B). It is disjoint as well from its closure
since B0×B(x, ρ) is open. On the other hand B(x, ρ) meets (A)z for every z in
Z, and in particular it meets (A)z for some z in B0. Then B0 × B(x, ρ) meets
(A)z, which is contained in the closure of A ∩ π−11 (B0), a contradiction.

So Π : C → Km has finite fibers, which implies that dimC ≤ m. By (24)
we conclude that dimZ = 0 hence Z is finite.

We can turn now to theorem 8.1.
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Proof: (of theorem 8.1). The result is obvious for m ≤ 1 so we can assume, by
induction, that m ≥ 2 and it has been proved for m− 1. For every definable set
S we let FrS = S \ S.

Let A be a definable subset of Km. For each i in {1, . . . ,m} let

Fi =
{
z ∈ K :(A)(i)z 6= A

(i)
z

}
.

Note that for every z in K

(FrA)(i)z \ Fr(A(i)
z ) = (A)(i)z \A

(i)
z (25)

so (FrA)
(i)
z = Fr(A

(i)
z ) for every z ∈ K \ Fi.

Let Hi = π−1i (Fi) and H =
⋂m
i=1Hi = F1 × · · · × Fm. Each Fi is finite by

lemma 8.3 hence so is H. So dim FrA = dim(FrA) \H and moreover

(FrA) \H =

m⋃
i=1

(FrA) \Hi.

Thus it suffices to prove that dim FrA \Hi < dimA for each i. By symmetry
we can assume that i = 1 and remove the exponents (i) in order to ease the
notation. By (25) we have then

(FrA) \H1 =
⋃

z∈K\F1

{z} × (FrA)z =
⋃

z∈K\F1

{z} × Fr(Az). (26)

By induction hypothesis dim Fr(Az) < dimAz for every z. Thus (26) implies
that dim((FrA) \H1)z < dimAz for every z. The conclusion follows by corol-
lary 7.6.

Corollary 8.4 Let Y ⊆ X be a pair of definable subsets of Km. If dimY =
dimX then dim IntX Y = dimX.

Proof: As IntX Y = Y \X \ Y we have Y \IntX Y = Y ∩X \ Y hence Y \IntX Y
is contained in X \ Y \ (X \ Y ). It follows from theorem 8.1 that

dim
(
Y \ IntX Y

)
< dim

(
X \ Y

)
≤ dimX

hence dim IntX Y = dimX by proposition 7.1.

Corollary 8.5 For every definable function f : X ⊆ Km → Kn

dimX \ C(f) < dimX.

Proof: By theorem 6.5 X\C(f) has empty interior in X, hence it has dimension
< dimX by corollary 8.4.

Corollary 8.6 Every definable function is piecewise continuous. As a conse-
quence, the cells involved in the cell decomposition and cell preparation theorems
can be chosen with continuous centers and bounds.
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Proof: Let f : X ⊆ Km → K a definable function. If the restriction g of f to
A \ C(f) is continuous we are done, otherwise repeat the argument for g. By
corollary 8.5 the dimension of the domain decreases at each step, hence it must
stop after at most m steps.

The last point follows by partitioning the cells given by the cell decom-
position and cell preparation theorems via an appropriate refinement of their
basements.

Topological rank For every subsets A, B of Km we write B � A when B is
a subset of A with empty interior in A, that is:

B � A ⇐⇒ B ⊆ A ⊆ A \B.

It is a strict partial order on the non empty sets. We call topological rank
and denote rkA the corresponding rank on the non empty definable subsets of
Km. So rkA = 0 if A is minimal for �, that is if every point of A is isolated;
rkA ≥ k + 1 if A � B for some non empty definable set B of rank ≥ k. Of
course rkA = k if rkA ≥ k but rkA � k + 1. By convention we let rk ∅ = −∞.

Proposition 8.7 For every definable set A ⊆ Km, dimA = rkA.

Proof: We have to prove that for every positive integers m, d and every
definable subset A of Km

dimA ≥ d ⇐⇒ rkA ≥ d.

Assume that it has been proved for every (m, d) with m ≤ n (it is obvious in
K0) or m = n+ 1 and d ≤ e (it is obvious for finite sets). Let A be a definable
subset of Kn+1.

If rkA ≥ e + 1 then A contains a definable set B with rank e such that
IntAB = ∅. Then dimB ≥ e by induction hypothesis and dimA > dimB by
corollary 8.4, so dimA ≥ e+ 1.

Conversely, if dimA ≥ e+1 then A contains a cell C of dimension ≥ e+1. It
can be chosen with continuous center and bounds by corollary 8.6. Let X = Ĉ,
by lemma 7.3 dimX = dimC − tpC. As X is contained in Km the induction
hypothesis gives Y � Y with rank and dimension dimX − 1. Then D =
C∩(Y ×K) is a cell contained in C with the same type as C, hence by lemma 7.3
and the induction hypothesis

dimD = dimY + tpC = (dimX − 1) + tpC = dimC − 1 ≥ e

By induction hypothesis rkD ≥ e. But Y ⊆ X \ Y and the continuity of the
center and bounds of C imply that D ⊆ C \D, hence D � C. A fortiori D � A
so rkA ≥ e+ 1.
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