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Abstract

We prove that for p-optimal fields (a very large subclass of p-minimal
fields containing all the known examples) cell decomposition and cell
preparation for definable functions follow from methods going back to
Denef’s paper [Den84]. We derive from it that the topological dimension
introduced in [HM97] for P-minimal fields has even better properties in
p-optimal fields, relatively to fundamental operations such as taking the
boundary of a definable set, or the fibers of a definable function. As a con-
sequence the topological dimension coincides with the topological rank,
and every two infinite definable sets are isomorphic if and only if they
have the same dimension.

1 Introduction

This paper is an attempt to continue the road opened by Haskell and MacPher-
son [HM97] toward a p-adic version of o-minimality. More general constructions
have been given in [Sch01], [CL07], [CL12]. Our aim is not to encompass such
a generality but rather to show how the methods introduced by Denef in his
visionary paper [Den84] apply with striking efficiency to a very large subclass
of p-minimal fields.

Recall that a p-adically closed field is a field K elementarily equivalent
to a finite extension of the field Q, of p-adic numbers. Given a language £
containing the language of rings, we say that an L-structure I on K extending
its ring structure is p-minimal if every definable subset of the affine line K
is semi-algebraic. By “definable” we always mean definable in the language £
with parameters from K. For sets and functions definable (with parameters as
always) in the language of rings, we use the locution “semi-algebraic” instead.
The L-structure K is P-minimal (a.k.a. “strongly p-minimal”) if every elemen-
tarily equivalent L-structure is p-minimal. Abusing the notation we will always
identify K and K, and call K itself a p-minimal or P-minimal field.

Haskell and MacPherson introduced P-minimal fields in [HM97] and built
a reasonably good dimension theory for definable sets over P-minimal fields.
They left open several questions, such as the existence of a cell decomposition,
and whether or not their dimension is a “dimension function” in the sense of
[vdD89].

Mourgues proved in [Mou09] that a cell decomposition similar to the one of
[Deng&4] holds for a P-minimal field K if and only if it has definable Skolem



functions (or “definable selection” in [Mou09]), that is if for every positive
integers m,n and every definable subset S of K™*" the coordinate projection
of S onto K™ has a definable section. It is not known at the moment if every
P-minimal field has definable Skolem functions.

As Cluckers noted in [CIu04], it was lacking in [Mou09] a preparation theorem
for definable functions. He filled this lacuna for subanalytic functions, that
is the functions which are definable in the analytic structure of K, initially
introduced on Z, by Denef and van den Dries in [DvdD88] (see definition 1.3
and further in [Clu04]). We call it the “classical analytic structure” in the
remaining. Cluckers derived from his preparation theorem several important
applications, for parametric integrals and classification of definable sets up to
isomorphism.

In this article we extend these results to a large class of p-minimal fields,
including all the P-minimal fields with definable Skolem functions studied in
[MouQ9]. Moreover we get for these fields, we call p-optimal, a dimension the-
ory for definable sets similar to [HM97], with even better properties (see the
paragraph “main results” below).

A basic function f(x1,...,2,,) is a polynomial function in x,, whose coef-
ficients are global definable functions in (z1, ..., 2y —1). Thus unary basic func-
tions are just ordinary polynomial functions in one variable with coefficients in
K. A basic set S C K™ of order N is a set of the form

S={zxeK":f(z)€ Py}
with f a basic function, N > 1 an integer and
PN:{IEK:EIyEK, x:yN}.

We say that an L-structure on a p-adically closed field K extending its ring
structure is p-optimal if every definable subset of K™ (for every m) is a boolean
combination of basic sets. When this happens we call K itself a p-optimal field.

P-minimality versus p-optimality. Basic subsets of the affine line K are
semi-algebraic, because unary basic functions are polynomial, hence every
p-optimal field is p-minimal. On the other hand, the starting point of this
paper is the easy observation that every P-minimal field with definable Skolem
functions is p-optimal (proposition . Conversely we will prove that every
p-optimal field has definable Skolem functions (theorem, hence a P-minimal
field has definable Skolem functions if and only if it is p-optimal.

It is important to keep in mind that although p-optimality might seem at
first glance a much stronger assumption than P-minimality, p-optimal fields are
indeed p-minimal but are not supposed to be P-minimal. Moreover it is difficult
to imagine any proof of p-minimality which does not involve in a way or another
a quantifier elimination result similar to Macintyre’s theorem The condition
defining p-optimality is actually very close to such kind of elimination. So close
that it might be expectable that it can be proved simultaneously in most cases,
if not all, without additional effort.

Examples. In the classical analytic structure, p-minimality was derived from
the quantifier elimination theorem 1.1 in [DvdD88|, the proof of which is based



on the Weierstrass preparation and division theorem for analytic functions.
Then P-minimality was proved later in [vdDHD99] by mean of a non-trivial
improvement of this same Weierstrass division. But a detailed study of the
original proof of theorem 1.1 in [DvdD88] shows that it directly proves (a strong
form of ) p-optimality for the classical analytic structure, without going through
P-minimality.

The same holds true for the non-standard analytic structure on Q,((t<))
studied in [BlelQ], and for the expansions of Q, with Weierstrass systems of
[Mar08]: all of them are indeed examples of p-optimal fields (although the last
ones would require a more precise examination).

Question 1.1 Does there exist a P-minimal (or at least p-minimal) field which
is not p-optimal?

In the remaining of this paper K will always denote a p-optimal field. Topo-
logical notions such as continuity, interior, closure and so on refer to the topology
of the p-valuation. We let A denote the topological closure of A.

Main results. This paper is threefold. Firstly, we present Denef’s method
and explain how it provides a cell decomposition (theorem and a cell prepa-
ration result for definable functions (theorem valid in every p-optimal field,
and conversely (corollary . Secondly, we apply it in sections |5| and |§| in or-
der to prove the existence of definable Skolem functions (theorem and the
following result of “continuity almost everywhere”.

Theorem 1.2 Fvery m-ary function f definable over a p-optimal field is con-
tinuous on a definable set which is dense and open in the domain of f.

Finally we present in sections[7]and [§a dimension theory for definable sets in
p-optimal fields similar to, and inspired by, the analogous dimension theory for
P-optimal fields in [HM97]. It not only keeps the nice properties of its ancestor,
but has in addition several others of importance such as the following ones.

Theorem 1.3 Let f : A C K™ — K" be a definable map, and B = f(A).
Then for every positive integer d the set B(d) defined by

B(d) = {b € B:dim f~'({b}) = d}
is definable and dim f~1(B(d)) = d + dim B(d).

Theorem 1.4 Two infinite subsets of K™ and K" are isomorphic if and only
if they have the same dimension.

Theorem 1.5 For every definable subset A of K™, dim A\ A < dim A.
Combining theorems [1.2] and [L.5] we get[]

Corollary 1.6 For every definable map f: X C K™ — K™, let C(f) denotes
the set of points x in X such that f is continuous on a neighbourhooﬂ of x in
X. Then we have dim X \ C(f) < dim X.

1See footnote

20f course, as for “open” in theorem [1.2] “neighbourhood” refers here to the topology
induced on X by K™, whose open sets are the sets U N X with U an open subset of K. In
general the sets open in X are not open in K™ unless X itself is open in K™.



It follows immediately that every definable function is piecewise continuous.
As a consequence, all the cells involved in the cell decomposition and cell prepa-
ration theorems can be chosen with continuous center and bounds (corollary [8.6]

We also derive from theorem [I.5 that our dimension coincides in P-optimal
fields with the so-called “topological rank” (proposition .

Remark 1.7 All the results presented here are well known for the semi-
algebraic and the classical analytic structure of p-adically closed fields, and new
for p-optimal fields. Most of them are new also for the subclass of P-minimal
fields with definable Skolem functions, and apparently yet unknown for general
P-minimal ﬁeldsﬂ The concept of p-optimal field itself seems to be new, al-
though implicit in many papers on p-adic fields (specially [Den86], which was
also a source of inspiration for us).

Acknowledgement. This paper is based on [Den84], with which the reader
is expected to be familiar. Indeed we will constantly refer to Denef’s proofs
in sections [B|and [l Apart of this it is essentially self-contained. However we
borrowed ideas from papers of many other authors, specially Dreidre Haskell
and Dugald Macpherson in [HM97], Lou van den Dries in [vdD84] and [vdD98],
and Raf Cluckers in [Clu04].

Terminology and notation. For every a in K, v(a) and |a| denote the
p-valuation of a and its norm. The norm is nothing but the valuation, but with
a multiplicative notation so that |0| = 0, |ab| = |al.|b|, |a +b| < max(|al, |b|) and
of course |a| < |b] if and only if v(a) > v(b). The valuation ring of v is R, and
we fix some 7 in R such that 7R is the maximal ideal of R.

For convenience we will sometimes add to K one more element oo, with the
property that |z| < |oo| for every z in K. We also denote oo any partial function
with constant value oo.

For every subset X of K we let X* = X \ {0}. Note the difference between
R* = R\ {0} and R* = the set of units in R.

Recall that K° is a one-point set. When a tuple a = (z,t) is given in K™*!
it is understood that © = (z1, ..., %) and ¢ is the last coordinate. We let @ = x
denote the projection of a onto K™. Similarly, the projection of a subset S of
K™+ onto K™ is denoted S. We let also:

||Z’H = max (|J31|, SR |xm|)

Bz, p)={ye K™:|ly—z| < |p|}

For every integer e > 1, U, denotes the group of e-th roots of 1 in K.
Analogously to Landau’s notation O(z") of calculus, we let U, ,,(x) denote
any definable function in the multi-variable x with values in U..(1 + 7™ R).

31 take this opportunity to mention that Remark 5.5 in [FIM97] which outlines an argument
proving corollary in P-minimal fields is probably misleading. By mean of Lemma 7.1 in
[Den84] it seems to prove it only piecewise: there is a finite partition of X in definable pieces
A on each of which the restriction f|4 of f satisfies dim A\ C(fj4) < dim A. But in the
lack of theorem [I[5] one can not ensure that the pieces A of dimension dim X are open in X,
hence that C(f) contains C(f|4). Thus corollary does not follow from this argument, and
Theorem 5.4 of [HM97] (which asserts that dim X \ C(f) < m) seems to be the best we can
say at the moment for P-minimal fields.



So, given a family of functions f;, g; on the same domain X, we write that
fi = Ueng; for every i, when there are definable functions w; : X — R and
xi : X — U, such that for every x in X

fil@) = xi(2) (14 7"wi(2)) gi ().
Uy () is simply denoted U, (z).
If K is a finite extension of Q, to which K is elementarily equivalent as a

ring, and R is the p-valuation ring of K, then the following set is semi-algebraic
(see lemma 2.1, point 4, in [Den86])

Q. = {0} U U TN (1 + 7MR).
keZ
For every M > v(N) we let Qn s denote the semi- algebralc subset of K corre-

spondm‘ by elementary equivalence to Q N,M in K. The condition M > v(N)
implies by Hensel’s lemma that 1+ R is contained in P. Note that Qx NS

then a clopen subgroup of Py with finite index. The next property also follows
from Hensel’s lemma (see for example lemma 1 and corollary 1 in [Clu01]).

Lemma 1.8 The function x — z€ is a group endomorphism of Q1>\<f0,M0' If
My > 1+ wv(e) this endomorphism is injective and its image is Q:NO w(e)+ Mo

In particular x + x¢ defines a continuous bijection from Qi ()41 to

Qe,gv(e)_‘_l. We let o +— ¢ denote the reverse continuous bijection. Note that
it is defined on Qn,a for every N, M such that e divides N and M > 2v(e).
So Un(7) = (Ue,p—u(e)(7))¢ whenever n > 2v(e).

2 Basic sets

Recall the following celebrated result, stated for Q,, by Macintyre [Mac76]. The
generalization to p-adically closed fields can be found in [PR84].

Theorem 2.1 (Macintyre) Let F' be a p-adically closed field. The semi-
algebraic subsets of F™ are exactly the boolean combination of sets of the form

{zeF": f(z) € Py}
with f a polynomial function.

Remark 2.2 By the argument of lemma 2.1 in [Den84], the following sets are
basic sets, for every basic functions f, g in m variables:

{ze F™: f(z) =0}

{z e F™ilg(a) < [f(2)]}

Moreover, since Py is a subgroup of finite index in F'*, the complement of a
basic set in F™ is then a finite union of basic sets. Hence every (finite) boolean
combination of basic sets is the union of intersections of finitely many basic sets.
All of them can be taken the same larger order, because Py, is a subgroup of
P of finite index for every N’ which is divisible by N.

4For a more intrinsic definition of Qn, s inside K, see [CLI2].



Note also that if S is any definable subset of F"* then S x F is a basic subset
of F™*1 by the above remark. Indeed the m-ary function co(z) which equals 0
on S and 1 outside S determines on K™*! a basic function f(z,t) = co(x) of
degree 0 in ¢, whose zero set it precisely S x F.

Proposition 2.3 Let F' be a P-minimal field with m-ary definable Skolem func-
tions, for some positive integer m. Then every definable subset of F™ 1 is a
boolean combination of basic sets.

Thus every P-minimal field with definable Skolem functions (for every m) is
p-optimal.

Proof: Let S be a definable subset of F™ %1 and S’ the corresponding definable
set in an elementary extension F’ of F. For every 2’ in F'™ let S, denote the
fiber of S over z':

S.o={t'eF:(a',t') €S}

For every 2/ in S’ the p-minimality of F’ gives a tuple 2zl of coefficients of a
description of S!, as a boolean combination of basic sets. The model-theoretic
compactness theorem then gives definable subsets Sy, ..., S, of F" and for every
1 < g an L—formula ¢;(z,t, z) with m + 1+ n; free variables which is a boolean
combination of formulas f(z,t,2) € Py with f € Z[x,t, z], such that for every
r in S; there is a list of coefficients z, such that

Se={teT:Fl ot z)}
With other words, for every x in S;
F =32Vt ((2,t) € S pi(w,t,2)).

Our assumption then gives for each ¢ < ¢ a definable Skolem function ¢; : S; —
F™i such that for every = € .S;

F Vvt [(z,t) € S < ¢i(z,t,¢(2))].

Let B; = {(z,t) € F™*": F |= p;(x,t,(i(x))}. By construction this is a boolean
combination of basic subsets of F™*1 hence so is C; = B; N (S; x F). The
conclusion follows, since S is the union of these C}’s.

(]

It is worth mentioning that deriving p-optimality from P-minimality with
Skolem functions is probably an unnecessary work-around in general (see the
discussion in section [1jon P-minimality versus p-optimality).

3 Cell decomposition

Recall that, until the end of this paper, K always denotes a p-adically closed
field endowed with a p-optimal structure. A large subgroup of K> is a subgroup
of finite index ancﬂ there is a positive integer ng such that 1 4+ 7™ C G. For
instance, Py and Qy ,, are large.

50f course the second condition follows from the first when K is a finite extension of Q,
or if G is semi-algebraic.



The cells which usually appear in the literature on p-adic fields are non
empty subsets of K™ %1 of the form:

{(z,t) € X x K:|v(x)|01]t — c(x)|Os|p(z)| and t — c(z) € A\G} (1)

where X C K™ is a definable set, ¢, i, v are definable functions from X to K,
01,05 are <, < or no condition, A € K and G is a large definable subgroup of
K. The interesting cases are when G is K* (theorem , P (theorem (3.7)
or Qx s (theorem [4.3).

In its simplest form, Denef’s cell decomposition theorem asserts that every
semi-algebraic subset of K™ is the disjoint union of finitely many cells. It will
be convenient to fix a few more conditions on our cells, but most of all we want
to pay attention on how the functions defining the output cells depend on the
input data.

So we define presented cells in K™*! as tuples A = (ca,va, pta,Aa,Ga)
with ¢4 a definable function on a non-empty domain X C K™ with values in
K, vy and pua either definable functions on X with values in K™ or constant
functions on X with values 0 or co, A4 an element of K and G 4 a large definable
subgroup of K* such that for every x € X there is t € K such that:

a(@)] <[t —ca(r)] < |pa(z)| and t—ca(z) € AaGa (2)

We call it a presented cell mod G when G4 = G. Of course the set of tuples
(z,t) € X x K satistying is then a cell of K™*! in the usual sense of .
We call it the underlying cellular set of A. Abusing the notation we will
also denote it A most often. The existence, for every z € X, of ¢ satisfying
simply means that X is exactly A. We call it the basement of A. The function
cy is called its center, 4 and vy its bounds, G4 its modulo.

A is said to be of type 0 if Ay = 0, and of type 1 otherwise. Contrary to its
center, bounds, and modulo, the type of A only depends on its underlying set.

The word “cell” will usually refer to presented cells. However, for sake of
simplicity, we will freely talk of disjoint cells, bounded cells, families of cells
partitioning some set and so on, meaning that the underlying cellular sets of
these (presented) cells have the corresponding properties. For instance, it is clear
that every cellular set as in is in that sense the disjoint union of finitely many
(presented) cells mod G.

Lemma 3.1 (Denef) Let S be a definable subset of K™T™. Assume that there
is an integer o > 1 such that for every x in K™ the fiber

Se={ye K":(z,y) €5}

has cardinality < a. Then the coordinate projection of S on K™ has a definable
section.

Proof: Identical to the proof of lemma 7.1 in [Den8&4].
[

Remark 3.2 The conclusion of the lemma remains true under the slightly
weaker assumption that all the fibers S, are finite. Indeed we are going to see
that every definable subset S of K™% is the union of a finite family A of disjoint
presented cells mod Py for some N. As a consequence, if S, is finite for every
z € S then all the cells in A must be of type 0, hence the cardinality of S, is
bounded uniformly in 2 by the cardinality of A.



Lemma 3.3 (Denef) Let f be a basic function in (z,t) = (x1,...,Tm,t). Let
n > 1 be a fized integer. Then there exists a partition of K™% into sets A of
the form

A= ﬂ ﬂ {(z,t) e K™ 2 € C and |t — c;(2)|0;1laj(x)]}

jeSIeS,;

where S and S; are finite index sets, C' is a definable subset of K™, and c;, a;,
are definable functions from K™ to K, such that for all (z,t) in A we have

Fla,t) =Un(z, )h(x) [ (¢ = ¢;(2)”

jes
with b : K™ — K a definable function and e; € N.
It is sufficient to check it for every n large enough so we can assume that:
1+7"RC PyNR* 3)

Thus U, (x,t) in the conclusion could be replaced by u(x,t)" with u a definable
function from A to R*. This is indeed how this result is stated in lemma 7.2
of [Den84]. However it is the above equivalent (but slightly more precise) form
which appears in Denef’s proof, and which we retain in this paper.

Proof:  Follow the proof of lemma 7.2 of [Den84], using the p-minimality as-
sumption and basic functions in place of Macintyre’s quantifier elimination and
polynomial functions. Of course, lemma 7.1 used in Denef’s proof has to be
replaced with the analogous lemma (3.1

]

Remark 3.4 (co-algebraic functions) A remarkable by-product of Denef’s
proof is that the functions ¢; and a;,; in the conclusion of lemma [3.3] belong to
coalg(f), which we define now.

Given a basic function f in m 4 1 variables, we say that function h : X C
K™ — K belongs to coalg(f) if there exists a finite partition of X in definable
pieces H, on each of which the degree in ¢ of f(x,t) is constant, say ey, and
such that the following holds. If ey < 0 then h(zx) is identically equal to 0 on
H. Otherwise there is a family (&1,...,&., ) of K-linearly independent elements
in an algebraic closure of K and a family of definable functions b; ; : H — K
for 1 <i<egandl<j<rgyg,such that for every x in H

fen =@ I (1= X ns)

1<i<en 1<j<rm

W)= > Y i)

1<i<em 1<j<rpm

and

With the o ;’s in K. If F is any family of basic functions in m + 1 variables we
let coalg(F) denote the set of linear combinations of functions in coalg(f) for f
in F.



Theorem 3.5 (Denef) Let F be a finite family of basic functions in m + 1
variables. Let n > 1 be a fized integer. Then there exists a finite partition of
K™t into presented cells H mod K> such that the center and bounds of H
belong to coalg(F) U {oco} and for every (z,t) in H and every f in F

F(@,t) = Un(z, )y (2) (t — cp(z)) ™" @
with hy - H—>Ka definable function and oy g € N.

Proof:  Follow the proof of theorem 7.3 in [Den84], using once again the
p-minimality assumption and basic functions in place of Macintyre’s quantifier
elimination and polynomial functions.

]

Given two families A, B of subsets of K™, recall that B refines A if B is a
partition of | J.A such that every A in A which meets some B in B contains it.

Corollary 3.6 (Denef) Let F be a finite family of m-ary basic functions, N >
1 an integer and A a family of boolean combinations of subsets of K™ defined
by f(z) € Py with f in F. Then there exists a finite family H of cells mod Py
with center and bounds in coalg(F) which refines A.

Proof: Theoremapplies to F with n > v(N), so that 1 + 7™ C Py. It gives
a partition of K™ into presented cells B mod K*. Every such cell B is the
disjoint union of finitely many presented cells H mod Py;, whose centers and
bounds are the restrictions to H of the center and bounds of A (hence belong to
coalg(F)), on which hy p(z) Py and (t —cp(z)) Py are constant, simultaneously
for every f in F. Thus every A in A either contains H or is disjoint from H by
and our choice of n, which proves the result.

]

The following simpler statement, which follows directly from corollary
by p-minimality, is sufficient in most cases.

Theorem 3.7 (Denef’s cell decomposition) For every finite family A of
definable subsets of K™ there is for some N a finite family of presented cells
mod Py refining A.

Remark 3.8 Recall that Q]fh s 1s a subgroup of finite index in Py (because
M > u(N) is assumed), and Py is itself a subgroup of finite index in K*.
It follows that every cell mod K™ or Py is obviously the union of finitely
many disjoint cells mod Q]XV - So the cells mod Q ,, which are required in
theorem [A-3] could have been used as well in all the results of the present section.

Boolean combination of cells. Denef derives theorem (theorem 7.2 in
[Dens4]) from lemmal3.3|(lemma 7.1 in [Den84]) by proving that the intersection
of a finite family A4 of presented cells mod K * is the union of a finite family H
of disjoint presented cells mod K *. Moreover, given an arbitrary integer n > 1,
he builds the cells in H so that:

(I) The center and bounds of each H are linear combinations of the restric-
tions to H of the center and bounds of the cells in A (except that pg can
also be constantly equal to oo, of course).



(I1,,) For every H € H, every A € A containing H and every (z,t) € H

11—«

t—ca(x) =Up(z, t)h(x)*(t — cy(x))

with i : H — K a definable function and o € {0,1} (both depending on
H and A).

Let us quote that the same holds true for presented cells mod large groups.

Corollary 3.9 Let A be a finite family of presented cells mod G, for some
large definable subgroup G of K*. Then for every integer n > 1 there exists
a finite family H of presented cells mod G refining A and satisfying the above
conditions (I) and (II,) for every H in H and every A in A containing H.

Proof: Tt suffices to prove the result for n large enough, so that 1 + 7" R C G.
Let X be any atom of the finite boolean algebra generated by A among the
subsets of K™. It is the intersection of a finite family B of cells mod G whose
centers are either 0 or c4 for some A in A, and whose bounds are either 0, nv 4,
nua or oo, for some A in A and some 7 in K* (here we use that G has finite
index in K*). Thus it suffices to prove that X is the union of a finite family H
of disjoint cells mod G which satisfy conditions (I) and (IL,), with B in place
of A. By partitioning X if necessary and refining A accordingly we can even
assume that all the cells in B have the same basement.

For every B in B let B* = (¢p,vp, 5, Ag, K*). Let B* be the family of all
these cells mod K* as B ranges over 3. As already said, it appears in Denef’s
proof of theorem that (| B* is the union of a finite family C* of disjoint
presented cells mod K which satisfy conditions (I) and (II,,) with B*, C* in
place of A, H. Each cell C* in C* splits into cells C mod G with the same center
and bounds as C*. For each B in B, B* contains C* hence by (II,,) there is an
exponent ac, g in {0,1} and a definable map he p : C — K such that

t —cp(x) = Uy (2, t)he p(x)* 7 (t - Cc(x))lfaC’B (5)

for every (z,t) in C* hence a fortiori when (x,t) € C. There is a finite partition
Y of X in definable pieces on which hc p(x) has constant residue class modulo
G, simultaneously for every C, B as above. It only remains to check that every
cell H=CnN(Y x K) which meets X is contained in X, so that the family of
all these cells, which obviously covers X, gives the conclusion.

In order to do so, it suffices to prove that for every B in B, t —cp(x) € Ag.G
for every (z,t) in C such that x € Y. Pick any point (y,s) in H N X. By
construction s—cp(y) belongs to Ap.G and one of the following happens. Either
ac,p = 0 and by (5)) applied to (y, s), he,g(y) belongs to Ap.G (because 1+7" R
is contained in G by assumption). Then h¢ p(z) belongs to Ap.G as well because
y,x € Y, so t — cg(z) belongs to Ap.G by applied to (z,t). Otherwise
ac,p = 1 and by applied to (y,s), s — co(y) belongs to Ag.G. It is then a
common point of Ag.G and A¢.G, hence Ap and A¢ have the same residue class
modulo G. But ¢ — co(z) belongs to Ac.G = Ap.G hence t — cp(z) belongs to it
as well by . In both cases we conclude that ¢ — cp(z) belongs to Ap.G, hence
(x,t) € B. So H is contained in every B € B, thus H C (B = X.

]
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4 Cell preparation for definable functions

Lemma 4.1 (Denef) For every definable function f : X C K™ — K there is
an integer e > 1 and a partition of X in finitely many definable sets A such that
for every x in A

pa(z)
qa(z)
with pa, qa a pair of basic functions such that qa(x) # 0 for every x in A.

()] =

Proof: The proof of Denef’s theorem 6.3 in [Den84] applies word-for-word, with
basic functions instead of polynomial functions, and the reference to Macintyre’s
theorem [2.1] replaced by our assumption that K is p-optimal.

]

Remark 4.2 Given an integer ng > 1, the set 1 + 7™ R is a definable subgroup
of R* with finite index. Thus in lemma [4.1| we can always assume, refining the
partition of X if necessary (but keeping the same integer e independently of
ng), that for every z in A

Moreover, since Py has finite index in P]\X,O whenever Ny divides N, we can
assume as well that A is a boolean combination of basic sets of the same power
N, with N a multiple of any fixed Nj.

Theorem 4.3 (Cell preparation) Let (6; : A; € K™ — K);cr be a finite
family of definable functions and Ny > 1 an integer. Then there exists an integer
e > 1 and, for every n € N>, a pair of integers M, N and a finite family H
of presented cells mod Qx ,; such that M > 2v(e), eNy divides N, H refines
(Ab)ier, and for every (z,t) € H,

olR

0i(x,t) = Ue (2, t)h(z) [N (t — e ()]

for every i € I and every H € ‘H contained in A;, with h : H->Ka definable
function and « € Z (both depending on i and Hﬂ

Proof: For each i let e; be an integer, A; a partition of A; and F; a family of
basic functions, all given by lemma applied to #;. By replacing each e; with
a common multiple we can assume that all of them are equal to some integer
e > 1. Given an integer n > 1 we can refine the partition A; as in remark
with ng = n + 2v(e).

Let A be a finite family of definable sets refining (J;.; A;. We can assume
that each of them is a boolean combination of basic sets of the same power NV,
with V a multiple of eNy. For every A in A, every i € I such that A; contains
A and every (z,t) in A we have

x,t)

e bi,A
91-(%, t) = Z/{no (flf, t)qAEth

(6)

61f H is of type 0 then it is understood that o = 0 and we use the conventions that in this
case )\;11 =0and 0° = 1.
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with p; 4 and g; 4 a pair of basic functions such that ¢; 4(z,t) # 0 on A.

For each A in A let F4 be the set of basic functions involved in a description
of A as a boolean combination of basic sets of power N. Theorem applies
to the family F of all the basic functions p; 4, ¢;,4 and the functions in Fju,
for every possible A’s and i’s. It gives a partition of K™%! in finitely many
presented cells B mod K* such that for every f in F and every (z,t) in B

Fl,t) = Uni (2, t)hy () (t — ep(@) ™" (7)

with M = no +v(N), hyp : B — K a definable function and Br.B a positive
integer. R

Partitioning B if necessary, we can assume that the cosets hy p(z)Qx ,, is
constant on B. Since M > v(N), 1+ 7R is contained in QN.ar» S0 B itself

can be partitioned into cells H mod QXLM such that H = B, cg = c¢p and
f(x,t)Qp p is constant on H by , for every f in F. A fortiori f(x,t)Py
is constant on H for every f in F hence each A in A either contains H or is
disjoint from H, for every A in A. So the family H of all among these cells H
which are contained in [ J.A refines A, hence refines {A;:i € I'} as well.

For every cell H in H there is a unique cell B as above containing H. For
every ¢ € I such that H is contained in A;, the unique A in A containing B is
also contained in A;. By applied to f = p; 4 and to f = ¢; 4, and by @ we
have for every (x,t) € H

uJVI(:Ev t)hpi,A,B(x) (t — CB(x))ﬁpivA’B
Z’{M(xv t)hq'i,A,B(x) (t — CB(x))ﬁqivA’B

The U, and Uy factors simplify in a single U,,, since M > ng. By construction
cg = cp and H = B. So, for every (z,t) in H we get

0;(2,1)° = Up, (2, 8)9(x) [N (t — cr(@))]” 9)

with g : H — K a definable function and o € Z (both depending on i and H).
In turn U, = U° because ng > 2v(e) (see lemma . The later can be

e,no—v(e)

replaced by US because ng — v(e) = n+v(e) > n. So (9) becomes

(2, 1)° = Uo(,0)°g() (A (= ()] F) (10)

This implies that g takes values in P, hence g = h® for some definable function
h: H — K, from which the conclusion follows.
]

0;(x,t)¢ = Up, (2,t) (8)

Remark 4.4 From theorem it follows by a straightforward induction that
the norm of every definable function f on a p-optimal field is piecewise contin-
uous.

5 Skolem functions

Lemma 5.1 Let (0, : AC K™ — K),er be a finite family of definable functions
with the same domain. Then for every integer n > 1, there exists an integer e,
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a semi-algebraic set A C K™ and a definable bijection ¢ : A — A such that for
every i € I and every x in A

0; 0 p(x) = Lle,n(x)éi(m)
with8; : ACK™ - K a semi-algebraic functions.

Proof: The proof goes by induction on m. Let us assume that it has been
proved for some m > 0 (it is trivial for m = 0) and that a finite family (6;);cr of
definable functions is given with domain A C K™+, If A is a disjoint union of
sets B it suffices to prove the result for the restrictions of the 6;’s to B. So, for
any given integer n > 1, theorem [I.3] with Ny = 1 reduces to the case when A is
a presented cell mod Q]XV’ u for some N, M such that for some eg > 1 dividing
N, M > 2v(ep) and for every i € I and every (z,t) in A

&4

0;(z,t) = Uey n(z, t)hi(2) [)\;11 (t —ca(z))] (11)
with h; : A — K a definable function and a; € 7. R

Let e; > 1 be an integer, Y C K™ a semi-algebraic set, ¢ : ¥ — A a
definable bijection, f : Y — K a semi-algebraic function for each f in F, all of
this given by the induction hypothesis applied to F = {pua,va} U {h;}icr. Let
A be the set of (y,s) € Y x K such that

Pa@)] < sl < |pa(@)] and s € AaQR 5-

Then ¢ : (y,5) = (¥(y),ca(y(y)) + s) defines a bijection from A to A. For

every i € I and every (y,s) € A we have

0; 0 0(y,s) = ueo,n(yv 5)”@1,71(9’ S)Bz (y)(/\ZIS)ﬁ

The first two factors can be replaced by U, ,, with e any common multiple of e
and e;. Since 0 : (y,8) = hi(y)(A\;'s)=0 is a semi-algebraic function on A the
conclusion follows.

]

Remark 5.2 In the above proof, given a presented cell A mod Qf,’M of Km+!
with basement X, a semi-algebraic set Y C K™ and a definable bijection 1 :
Y — X, we have constructed a semi-algebraic set S C K™*! definable bijection
@S — A such that

—

o(y,s) =Y(y) (12)

for every (y,s) in S. Of course the same construction holds for a cell mod Py .
It is known since [vdD84] that the projection of S onto Y has a semi-algebraic
section, say . Then ((12)) proves that ¢ o ( 0o9~! is a definable section of the

projection of A onto A.

Theorem 5.3 K has m-ary definable Skolem functions for every m.

Proof: By a straightforward induction it suffices to prove that for every defin-
able subset A of K™*! the coordinate projection of A onto A has a definable
section. If A is a union of finitely many definable sets B and if a definable
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section O’B§ — B has been found for each projection of B onto §A we are done,
because using lemma we can choose definably for each x in A one element
among the finitely many op(z)’s such that € B. Thus it suffices to prove the
result when A is a cell mod Py for some N, which has been done in remark
]

Of course theorem could as well be proved in a more constructive way by
using the cell decomposition theorem [3.7)), just as it is done for semi-algebraic
sets in the appendix of [DvdDS8S].

Corollary 5.4 The cell preparation theorem [{.3 for definable functions holds
in an expansion F of a p-adically closed field F if and only if F is p-optimal.

Proof: One direction has been proved. For the converse, the case of subsets of
FO being trivial, let A be a definable subset of F™*!. We have to prove that
A is a boolean combination of basic sets. By p-optimality and theorem [3.7] we
can assume that A is a presented cell (¢, v, i, A, Py) for some N.

Let Y be a semi-algebraic subset of K™ and ¢ : Y — A a definable bijection
given by lemma (which follows directly from theorem applied to (¢, v, p)
with n = 1. Let A be the set of tuples (y,s) in Y x K such that

()] < ls| < |f(y)| and s € APY. (13)

This is a semi-algebraic subset of F™*!. By Macintyre’s theorem A is
then defined by a boolean combination of conditions f(y,s) € Pns with f a
polynomial function and N’ > 1 an integer. Since |vo)| = || and |pov| = |g],
for every (z,t) in K™ x K we have by (L3):

(z,1) € A <= (v~ x),t — c(x)) € A.

So (x,t) belongs to A if and only it satisfies a boolean combination of conditions
f(p=(x),t — c(x)) € Py, and every such condition defines a basic set since f
is polynomial.

|

6 Continuity

For every definable subsets B C A of K™ let Int 4 B denote the relative interior
of B inside A, that is the largest set U N A contained in B with U an open
subset of K™. We simply note Int B for Intxm B.

Theorem 6.1 Let Aqy,...,A. C A be a family of definable subsets of K™. If
the union of the Ay ’s has non empty interior in A then at least one of them has
non empty interior in A.

The argument below is adapted from [HM97], Theorem 3.2.

Proof: 1t suffices to prove the result under the additional hypothesis that the
Ay’s are disjoint, and for » = 2. Assume that it has been done in K™ (it is
obvious for m = 0) and let A;, As be two disjoint definable sets whose union
has non empty interior inside a definable subset Ay of K™+, So there is a box
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U=X xY with X (resp. Y) a non empty open subset of K™ (resp. K) such
that Ag N U is non empty and contained in A; U A;. Replacing each Ay by
A N U if necessary, we can assume that Ay C U hence A; U A; = A.

For k = 0,1,2 and every = in X, let Ay, = {y € K:(z,y) € Ax}. Thisis
a definable subset of K hence Ay, \ Int(Ayg ;) is finite by p-minimality. So the
coordinate projection of the definable set

B= | {z} x (Ak,m\Int(Ak,z))
rzeX
k=1,2
onto K™ has finite fibres B,. By cell decomposition, the cardinality of these
fibres is bounded by some integer N (see remark . Let (yi)o<i<n be a
sequence of distinct elements in the open set Y. For each i < N let

V;Z{Z‘EA\Oyl%Bm}

For each z in ;1\0 at least one of the IV 4 1 elements y; does not belong to B,
hence Ay is covered by the V;’s. By induction hypothesis at least one of them,
say Vp, has non empty interior Zj inside Ag. Then yo ¢ B, for every x in Zy,
hence Zg = W1 U W5 where Wy, is defined as

Wy = {(E S Z():y() S IIltAk’z}.

By induction hypothesis it follows that at least one of the Wy’s, for example
W1, has non empty interior Z; inside Zy hence inside Ag. For every x in 73
there is p, in K such that the ball B(yo, p;) is contained in Int(A; ;). Let
p: Z1 — K* be a definable Skolem function corresponding to this property. By
remark |p| is piecewise continuous, that is Z; is the disjoint union of finitely
many cells on which the restriction of |p| is continuous. By induction hypothesis
at least one of these cells has non empty interior inside Z; hence inside A\o. Fix
an element ¢ in this interior, and § in K such that B(a,d) N Ap is contained
in Z;. By continuity of |p| there is ¢’ € K* such that |p| remains constant on
B(a,8') N Ay. We can assume that |0'[< |d] so we have

AN [B(a,é') X B(yo,p(a))] C A

Thus (a,yo) belongs to Int4 Ay, which is then non empty.
[

Remark 6.2 It follows that for every definable function f : X C K™ — K there
is a set U dense and open in X on which |f| is continuous. Indeed by remark
there is a finite partition A of X in definable pieces on which the restriction
of |f| is continuous, hence |f| itself is continuous on U = |J{Intx (4): A € A}.
This is a definable set open in X. As A\ Intx(A) has empty interior in X, so
does the union of these sets by theorem m That is X \ U has empty interior
in X, hence U is dense in X. If moreover f takes values in K* it follows that
|f] is locally constant on U.

Corollary 6.3 Let By,...,B,, B C A be definable sets in K™.
1. If B is dense in A then Int4(B) is dense in A.
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2. If By,..., B, are dense in A then so is their intersection.

Proof: For the first point consider A\ B, B\ Int4(B), Int4(B) and note that
the two firsts of them have empty interior in A. It follows that their union has
empty interior in A by theorem [6.1) hence their complement Int 4(B) is dense in
A. For the second point apply theorem to the complements of the By'’s.

|

Lemma 6.4 Unary definable functions in K have at most finitely many dis-
continuities.

Proof: Assume that a definable function f : X C F — F' has infinitely many
discontinuities. The set of points at which f is not continuous is definable, hence
by p-minimality it contains a non-empty open set U. For every a in U there is
€ # 0 such that

Voe KX, 3z e U, |v—a|l<|d| and |f(z) — f(a)| > ¢. (14)

By theorem there is a definable Skolem function € : U — K * corresponding
to this property. By remark there exists € in K* and a non-empty open
subset V of U on which |e(x)| = |eg|-

Note that f(V) is infinite, otherwise V' would contain on infinite subset on
which f is constant, which will itself contain a non-empty open subset W by
p-minimality. But then f will be continuous on W, contradicting the fact that
W CU.

So f(V) is infinite, hence it contains a ball B’ which can be chosen with
radius p # 0 such that |p| < |go|. For the same reason f~1(B’) NV contains
a ball B of radius some § # 0. Pick some a in B. For every x in U such that
|z — a|] < |6] we have a,x € B hence f(a), f(z) € B, so |f(z) — f(a)| < |eo|
(because B’ has radius |p| < |gg|) which contradicts ([14]).

]

For every definable function f : X C K™ — K we let C(f) denote the set of
elements x such that f is continuous on a neighbourhoodm of x in X. This is a
definable set, and the largest set open in X on which f is continuous.

Theorem 6.5 For every definable function f: X C K™ — K, X \ C(f) has
empty interior inside X .

Proof: ~ We have to show that C(f) is dense in X. By the second point of
corollary we can prove it separately for each coordinate function of f hence
we can assume that n = 1. In order to do so it suffices to prove, by induction on
m, that there is a set U dense and open in X on which f is continuous. Assume
that it has been done for some m > 1 (it is obvious for m = 0, and true for
m = 1 by lemmal6.4). Let f be a definable function with domain X C K™*1.
For every (a,b) € X we let X° (resp. X,) be the set of elements x in K™ (resp.
t in K) such that (x,b) (resp. (a,t)) belongs to X. Define f*: X® — K and
fa: X4 — K by f2(x) = f(z,b) and f,(t) = f(a,t) respectively, and let

Zy = {(a,b) € X : f* is continuous on neighbourhood of a in X"}

70f course “a neighbourhood of x in X” refers to the topology induced on X by K™, that
isaset V =UNX with U an open subset of K" containing z. In general V' will not be open
in K™.
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Zy = {(a, b) € X : f, is continuous on neighbourhood of b in Xa}.

Pick any (a,b) € X and any ¢ € K*. By induction hypothesis C(f?) is dense
in X° so there is a’ in C(f*) such that ||a —a’|| < |¢|]. Then (a’,b) belongs to Z;
and to the ball of center (a,b) and radius e. Thus Z; is dense in X, and so is
Zy by a symmetric argument. By corollary Z1 N Z3 has a dense interior Z
in X. Thus, replacing f by its restriction to Z if necessary we can assume that
Zy =7y = X.

Under this assumption there is a definable Skolem function ¢; : X x K* —
K* such that for every (a,b) in X and every non zero ¢, for every x in K™

o~ all < [Gi(a,be) = (v € X" and |f() = f*(@)] < el (15)

Symmetrically there is a definable Skolem function (5 : X x K* — K> such
that for every (a,b) in X and every non zero ¢, for every ¢ in K

£ bl < [Ga(a,b,)| = (£ € Xy and [fult) = £u0) <Jel). (16)

By remarkthere is a definable set W dense and open in X x K* on which
|C1| and |(2| are continuous. Let C be a partition of W into cells mod Py for
some N. Refining C if necessary we can assume that the center of each cell in C
either is constantly equal to 0 or takes values only in K *. Using remark we
can even refine C so that the center and bounds of every cell in C have continuous
norms. Moreover, as W is dense and open in X, restricting f to W if necessary
we can assume that W = X.

Let D = {C:C € C}. By refining D if necessary and then C accordingly, we
can assume that D is a partition of X and that every D in D either is open in X
or lacks interior in X. Now let D° be the family of sets D in D which are open
in X and Z3 be their union. It is open in X, and its complement X \ Z3 lacks
interior by theorem (because X \ Zs3 is the union of the sets D in D\ D°
and each of them lacks interior in X'). Thus it suffices to find for each D in D°
a definable set Up dense and open in D on which f is continuous: the union of
the Up’s will then be dense and open in Z3 hence in X.

So pick any D in D° and let Cp = {C € C:C = D}. Let C% be the
family of cells C' in Cp such that cc = ve = 0, and C}, = Cp \ C%. Note that
UCp =W N (D x K) is dense in D x K* because W is dense in X x K* and
D is open in X. As every C in C% is closed in D x K* (because cc = 0 and
the norm of the bounds of C' are continuous) we have

DxK*=|J CnxK9c |Jcu ] C (17)
CeCp cecy, CecCy

We claim that there is a set Up dense and open in D and a definable map
pp : Up — K* with continuous norm such that the cell Wp = (0,0, pp, 1, K*)
is contained in W. Indeed, for every z = (z,t) in D and every C in Cp,
C, =Cn({z} x K) is closed except if C' is of type 1 and vo = 0, in which case
its closure is C, U {cc(2)}. Thus (z,0) belongs to the closure of C, if and only
if C belongs to C%. So there is a definable Skolam function p : D — K* such
that {z} x B(0, p(2)) is disjoint from C, for every C in D} and every z in D.
By remark there is a definable set Up dense and open in D on which |p| is
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continuous. Let pp be the restriction of p to Up and Wp be the corresponding
cell mod K* as above. Wp is open (because |pp| is continuous), and disjoint
from every C in C}, hence also disjoint from their closure. On the other hand
Wp is contained in D x K* so by it must be contained in the union of C%,
hence in W.

It only remains to check that f is continuous on Up. In order to do so,
choose any (a,b) in Up and fix any non zero e. Without loss of generality we
can assume that |e| < |p(a,b)|. By continuity of |p| there is a neighbourhood
V of (a,b) in Up on which |e| < |p(z,t)|, so V x {e} is contained in W. The
continuity of |¢1] and |(2| on W, hence on V x {e}, then gives a non zero § such
that |(1(z,t,¢)| and |(2(z, 1, €)| are constant on B((a,b),d) NV. Without loss of
generality we can assume that B((a,b),0) NUp C V and

0 < [6] < min (|¢1(a, b,€)l, [C2(a, b,e)]).
For every (z,t) in B((a,b),d) N Up we have then
HiC - a’” < |<1(a7b78)| = |C1($,t,€)|

hence by (15)), = belongs to X* and

|f(@,t) = fla,t)] = | () = f(a)] <e]. (18)

On the other hand we have [t — b| < |¢2(a, b, €)| hence by (6], t belongs to X,
and

|fla,t) = f(a,b)| = [fa(t) = fa(®)| < e]- (19)
Combining and we get | f(x,t)— f(a,b)| < |e|. This being true for every
(z,t) in B((a,b),d) N Up and every non zero ¢, it follows that f is continuous
at (a,b).
[

7 Dimension

As in [HMO97] for P-minimal fields we define over every p-optimal field K the
dimension (the “topological dimension” in [HM97]) of a non-empty definable
subset S of K™, denoted dim S, as the greatest integer d such that there exists
a subset I of {1,...,m} such that #7*(S) has non-empty interior, where 77" :
F™ — F? is defined by

T (@i)1<i<m > (T ) 1<k<d

with 47 < -+ < ig an enumeration of I. This projection will be denoted 7
when m is clear from the context. By convention dim ) = —ooc.

Note that every definable subset of K with dimension 0 has empty interior
hence is finite by p-minimality, and conversely.

Proposition 7.1 For every definable subsets Ay, ..., A, of K™

dim (A1 U~~~UAT) = max(dimAl,...,dimAT).
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Proof: Tt suffices to prove it for r = 2. That dim A1UA > max(dim Ay, dim As)
follows immediately from the definition. Conversely let d = dim A; U A, and
I be a subset of {1,...,m} with d elements such that 7;(A; U A3) has non
empty interior in K. Since 7;(A; U Ao) is the union of w7(A;) and 7;(As3), by
theorem at least one of them must have non empty interior in K?. Thus
dim A; > d or dim A5 > d and the conclusion follows.

[

Given a permutation o of {1,...,m}, for every z = (x1,...,2y) in K™
we let 27 = (Zy(1), -+ To(m)). Similarly we let S7 = {27:2 € S} for every
definable subset S of K™. Note that 7;(S) has non empty interior if and only
if 7,(7)(S) has non empty interior hence

dim S° = dim S (20)

Following [vdD89], a dimension function on the definable sets of a first-order
structure A is a function d with values in NU{—o0} such that for every positive
integer m and every definable sets S, S, So of A™ we have:

(Dim 1) d(S)= -0 < S=10,d({a}) =0for each a € A, d(A) = 1.
(Dim 2) d(Sl U SQ) = max(d(Sl),d(Sg))
(Dim 3) d(S7) = d(S) for each permutation o of {1,...,m}.

(Dim 4) For k = 0,1 and every definable set 7 C K™+ the set T(k) of z in T
such that d(T,) = k, where T, denotes the fiber of T over z, is definable
and

d({(z,t) € T:x € T(k)}) = dim (T(k)) + k.

The aim of this section is to prove that in p-optimal fields dim is a dimen-
sion function. It satisfies (Dim 1) by definition, (Dim 2) by proposition
and (Dim 3) by (20). Moreover, if T is a definable subset of K™+ then by
p-minimality = € T'(0) if and only if the points in T, are isolated, hence T'(0)
is indeed definable and so is T'(1) = T \ T(0). Thus we only have to prove the
dimension formula of (Dim 4).

Lemma 7.2 Let A be a definable subset of K™, d = dim A and I a subset of
{1,...,m} with d elements such that wr(A) has non empty interior. Let

Z={yemn(A) n ({y}) N A s infinite}.
Then Z has empty interior.

Proof: Let iy < --- < ig be an enumeration of I, and ¢ a permutation of
{1,...,m} such that (k) = iy, for every k < d. Replacing A by A” if necessary
we can assume that I = {1,...,d}.

For every d < k < m let Ay = Wﬁ,...,k}(A)' For every y in Ag = 7" (A)
let A, be the set of z in Ay such that 7%(x) = y. We let Z; be the set of y
in A4 such that Ay, is infinite. Clearly Zg is empty, Z,, = Z and Z, C Zy41
for every k in between. Assume for a contradiction that Z has non empty
interior. Let k& < m be then the greatest index such that Z; lacks interior, and
let J=TU{k~+1}.
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yeU K4

By theorem Zi+1 \ Zi has non empty interior, so let U be a non empty
open subset of K contained in it. For every y in U, Ay, is finite and A1, is
infinite, so there is an element z, in Ay, and by p-minimality a ball B, in K
such that {z,} x By is contained in Ajyq,. A fortiori we have

{y} x B, C 7TLU}Jrl(*’leJrl,y) - 7T§+1(Ak+1) =y (A).

By theorem their is a pair of definable Skolem functions ¢ : U — K and
p: U — K* such that every B, contains the ball of center ¢(y) and radius p(y).
As U is open in K¢, by theorem there is a non empty open set V in K¢
contained in U such that ¢ and p are continuous on V. We have

{(,t) e VX K:|t—c(y)l < |p(y)l} S 75 (A).

This is a non empty open subset of K%t because ¢, d are continuous and V is
non empty open in K?. It follows that dim A > d + 1, a contradiction.
]

Lemma 7.3 For every cell AC K™t dimA = dim A + tp A.

Proof: Let A be a presented cell mod G in K™*!, for some large definable
subgroup of K*. Let d be its dimension. R

We first prove that dim A > dim A+tp A. Lete =dim Aand J C {1,...,m}
an index set with e elements such that WT(A\) has non empty interior in K°.
Then 7'7t1(A) = W’J"(ﬁ) so dimA > dim A. If A is of type 0 we are done.
Otherwise let I = JU{m+ 1}, let o: 713”(;1\) — A be a definable section of s
and let B be the presented cell in K%' defined by

B=(cpao0,va00,uas00A4,G).

This is a cell of type 1 contained in 77""'(A). Moreover B = P (A) has non
empty interior in K°¢. Thus by theorem the center and bounds of B are
continuous on a non-empty definable set V' open in K¢. This continuity implies
that BN (V x K) is open in K°*1. As it is contained in 7***(A) it follows that
dim A > e + 1 so we are done. R

For the reverse inequality, note first that dim A + 1 > dim A. Indeed, let I
be a subset of {1,...,m+ 1} with d elements such that 77! (A) has non empty
interior. If m + 1 ¢ T then 77" (A) = 77" "' (A) hence dim A > d and a fortiori

-~
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dim A + 1 > d. Otherwise m +1 € I so J =1\ {m+ 1} has d — 1 elements.
Then 777 (A) has non empty interior in K¢~1 since

' (A) = 77 (A).

SodimXZd—lhencedimg—i—lZd. R

We have proved that dim A+tp A < dim A < dim A+1. If A is of type 1 the
conclusion follows. Now assume that A is of type 0. It remains to prove that in
this case dim A < dim A. So let I be a subset of {1,...,m+ 1} with d elements
such that 77"**(A) has non empty interior. Assume for a contradiction that
dim A < d. This implies that m + 1 belongs to I (otherwise WT(A\) =77t A)
has non empty interior hence dim A > d). Let J = I\ {m + 1}, B = 7t A)
andY = B = 77}”(;1\)

By assumption B contains a non empty open subset U of K. Since J has
d — 1 elements and dim A = d — 1, lemma mplies that the set

Z={yeY:r;'({y})N Ais infinite }

has empty interior. Now U is a non empty open subset of K d=1 contained in
Y, so it cannot be contained in Z. Pick any y in U \ Z. As y ¢ Z there are
finitely many points z1,...,zyN in A such that 7 (x;) = y. For every s in K
such that (y,s) belongs to U there is (z,t) in A such that 7" (z,t) = (y, s).
But this implies that 777'(z) = y and s =t = ca(z), so s = ca(x;) for some i.
Thus U N ({y} x K) is finite, contradicting that U is open in K¢.

]

Theorem 7.4 The function dim, defined for definable sets over a p-optimal
field, is a dimension function.

Proof: Let T be a definable subset of K™%1. By cell decomposition there is
for some N a partition A of T into cells mod Py;. Refining the basements of

the cells in A if necessary, we can assume that {A\:A € A} is a partition of
T refining {T(0),T(1)}. For k = 0,1 let A, denote the cells in A such that
A, C T(k). Then {(z,t) € T:x € T'(k)} is the union of the cells in Ay and
T'(k) is the union of their basements, so by proposition we have

dim{(z,t) e T:z € T(k)} = max dim A (21)
CAE
dim T'(k) = max dim A (22)
Ac Ay

For k = 0, every cell A in Ay is of type 0 hence dim A = dim A by lemma
The conclusion follows from and in that case.

For k = 1, there is at least one cell B in A; such that dim B = dim T(1) by
and proposition Since B C T(1), AN (B x K) projects with infinite
fiber onto B. Hence there is at least one cell C' in A of type 1 such that C=38
(hence C € A;). By lemma [7.3 we have

dimC = dimC + 1 = dimT(1) + 1.
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Now for every A in A; we have by lemma and
dimA = dimA+tp A < dimT(1) + 1 = dim C

So maxaea, dim A = dimC = dimT'(1) 4+ 1 as expected.
[

Corollary 7.5 Let f : AC K™ — K™ be a definable map.
1. dim f(A) < dim A and equality holds when f is injective.

2. For every positive integer d the set S(d) defined by

S(d) = {y € f(A):dim f~'({y}) = d}
is definable and dim f=1(S(d)) = d + dim S(d).

Proof: This follows directly from theorem [7.4] as general properties of dimen-
sion functions (see corollary 1.5 in [vdD8&9]).
m

It is worth mentioning the following consequence of corollary which will
be needed in the next section.

Corollary 7.6 Let f: A C K™ — K" be a definable map, and B a definable
subset of A. If dim B N f~1({y}) < dim f=*({y}) for every y in f(A) then
dim B < dim A.

Proof: Let S = f(A), g the restriction of f to B and T = g(B). Let S(d) (resp.
T(e)) be as in corollary for f (resp. g) and for every positive integers d, e.
As B=J,., g *(T(e)) there is some e < n such that dim B = dim g~ *(7T'(e)).
By assumption dimg~!({y}) < dim f~!({y}) for every y in B hence T(e) is
contained in the union of S(d) for d > e. It follows that dim7T(e) < dim S(d)
for some d > e by proposition hence e + dimT'(e) < d + dim S(d). Thus by
corollary dim B = dim g~ (T (e)) < dim f~1(S(d)) < dim A.

[

Applications Theorem and lemma [5.1] are exactly analogous to theo-
rems 2.8 and 3.1 in [Clu04], except that we obtain a slightly more precise equal-
ity of functions mod (1 + #™R).U, instead of equality of their norm (which
is the same as equality of functions mod R*). Thus all the important conse-
quences that are derived from these theorems in [Clu04] for the classical analytic
structure remain valid in every p-optimal field.

For applications to parametric integrals, which require numerous specific
definitions, we refer the reader to the proofs of theorems 4.2 and 4.4 in [Clu04].
For the classification of definable sets up to isomorphisms, we have the following.

Theorem 7.7 There exists a definable bijection between two infinite definable
sets A C K™ and B C K™ if and only if they have the same dimension.

Proof: If there is a definable bijection (an “isomorphism”) between A and B
they have the same dimension by the first part of corollary Conversely, if
A and B have the same dimension d then by lemma[5.1] they are isomorphic to
infinite semi-algebraic sets A and B respectively, both of which have dimension
d by corollary Then A and B are semi-algebraically isomorphic by the main
result of [Clu01], hence A and B are isomorphic.

]
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8 Boundary and topological rank

Theorem 8.1 For every non empty definable subset A of K™
dim A\ A < dim A.
As a consequence dim A = dim A.

Remark 8.2 This result does not follow from proposition 2.23 of [vdD&9]
since p-optimal fields are mot algebraically bounded in the restricted sense of
[vdD89]. The classical analytic structure on Q, is a counter-example (see
[vdD89], page 191).

The following proof is borrowed from the o-minimal analogous theorem 1.8
in [vdD98§].

Notation Given an index ¢ € {1,...,m} we let m; : K™ — K denote the
coordinate projection onto the i-th axis. For every S C K™ and z € K we let

Sgi) = {x EK™  i(my, . w1, 2T T1) € S}.

Lemma 8.3 For every definable subset A of K™ there are only finitely many
z in K such that

(@)D # AL,
Proof: Permuting the axes if necessary we can assume that i = 1. For z € K
and S C K™ with n > 1 we simply write S, for S,gl).i o
Let Z be the set of elements z in K such that (A), # A.. Replacing A by

AN 7 Y(Z) if necessary we can assume that Z = m(A). Let C be the set of
(z,7,p) in Z x K™™' x K such that

B(z,p)N(A), #0 and B(x,p)NA, =0

As A, is always contained in (A),, by construction C, # () for every z in Z.

Moreover, if (z, p) belongs to C, and we fix any element y in B(z, p)N(A), then
for every (2/,p') in K™~! x K such that

=" =yl < o'l <ol (23)

we have y € B(z/,p') C B(y,p) = B(x, p) hence (2/,p') € C,. The above con-
dition defines an open subset of K™, hence dim C, = m. By corollary
it follows that
dimC = m 4+ dim Z. (24)

On the other hand, let us show that the projection IT : C' — K™ which maps
(z,z,p) to (z,p) has finite fibers. Assume the contrary. Then for some (z, p)
in K™~1 x K* there is a ball By contained in Z such that (z,z, p) belongs to
C for every z in By. Then B(z, p) is disjoint from A, for every z in By, hence
By x B(z, p) is disjoint from AN ;' (B). It is disjoint as well from its closure
since By x B(z, p) is open. On the other hand B(z, p) meets (A), for every z in
Z, and in particular it meets (A), for some z in By. Then By x B(x, p) meets
(A)., which is contained in the closure of A N7y *(By), a contradiction.

So I : C' — K™ has finite fibers, which implies that dim C < m. By
we conclude that dim Z = 0 hence Z is finite.
[

We can turn now to theorem [R.1]
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Proof:  (of theorem [8.1). The result is obvious for m < 1 so we can assume, by
induction, that m > 2 and it has been proved for m — 1. For every definable set
S welet FrS=S5\S5.

Let A be a definable subset of K™. For each i in {1,...,m} let

F={ze K:(A)9 # F} .
Note that for every z in K
(Fr A)D\ Fr(AD) = (D)D) \ 4D (25)

o (Fr A)(Zi) = Fr(Ag)) for every z € K\ Fj.
Let H; = 7; '(F;) and H = (", H; = F} x --- x F,,,. Each F; is finite by
lemma [8.3 hence so is H. So dimFr A = dim(Fr A) \ H and moreover

(FrA)\H = | J(FrA)\ H
i=1
Thus it suffices to prove that dimFr A\ H; < dim A for each i. By symmetry

we can assume that ¢ = 1 and remove the exponents () in order to ease the
notation. By we have then

(FrA\H = [ {Fx(FA).= [J {z} xF(4A.). (26)

ZEK\Fl ZEK\FI

By induction hypothesis dimFr(A4,) < dim A, for every z. Thus implies
that dim((Fr A) \ Hy). < dim A, for every z. The conclusion follows by corol-

lary
]

Corollary 8.4 Let Y C X be a pair of definable subsets of K™. If dimY =
dim X then dimIntx Y = dim X.

Proof: AsIntxY =Y\ X \'Y we have Y\Intx Y = YNX \ Y hence Y \Intx Y
is contained in X \ Y\ (X \ V). It follows from theorem [8.1] that

dim (Y \ Intx Y) < dim (X \Y) < dim X

hence dimIntx ¥ = dim X by proposition [7.1]
m

Corollary 8.5 For every definable function f: X C K™ — K"
dim X \ C(f) < dim X.

Proof: By theorem[6.5| X \C(f) has empty interior in X, hence it has dimension
< dim X by corollary
|

Corollary 8.6 FEvery definable function is piecewise continuous. As a conse-

quence, the cells involved in the cell decomposition and cell preparation theorems
can be chosen with continuous centers and bounds.
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Proof: Let f: X C K™ — K a definable function. If the restriction g of f to
A\ C(f) is continuous we are done, otherwise repeat the argument for g. By
corollary the dimension of the domain decreases at each step, hence it must
stop after at most m steps.

The last point follows by partitioning the cells given by the cell decom-
position and cell preparation theorems wvia an appropriate refinement of their
basements.

]

Topological rank For every subsets A, B of K™ we write B < A when B is
a subset of A with empty interior in A, that is:

B« A < BCACA\B.

It is a strict partial order on the non empty sets. We call topological rank
and denote rk A the corresponding rank on the non empty definable subsets of
K™. Sork A =0if A is minimal for <, that is if every point of A is isolated;
rtkA > k+1if A> B for some non empty definable set B of rank > k. Of
coursetk A=k ifrk A >k but rtk A ;f k + 1. By convention we let rk ) = —oo.

Proposition 8.7 For every definable set A C K™, dim A = rk A.

Proof: ~ 'We have to prove that for every positive integers m, d and every
definable subset A of K™

dimA>d < rkA>d.

Assume that it has been proved for every (m,d) with m < n (it is obvious in
K% or m=n+1 and d < e (it is obvious for finite sets). Let A be a definable
subset of K"*1,

If rkA > e+ 1 then A contains a definable set B with rank e such that
Int4 B = (). Then dim B > e by induction hypothesis and dim A > dim B by
corollary sodimA >e+1.

Conversely, if dim A > e+ 1 then A contains a cell C' of dimension > e+1. lt
can be chosen with continuous center and bounds by corollary Let X =C,
by lemma dim X = dimC —tpC. As X is contained in K™ the induction
hypothesis gives ¥ <« Y with rank and dimension dim X — 1. Then D =
CN(Y x K) is a cell contained in C with the same type as C, hence by lemma
and the induction hypothesis

dimD =dimY +tpC = (dimX —1)+tpC =dimC —-1>¢

By induction hypothesis tkD > e. But ¥ C X \'Y and the continuity of the
center and bounds of C imply that D C C'\ D, hence D < C. A fortiori D < A
sorkA>e+ 1.

|
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