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Abstract

The notion of a weak generic type in a group was introduced in [4]. In this
paper we continue to examine its properties, focussing on groups definable in
o-minimal structures. Moreover, some applications of weak generic types to
the model theory of groups are given.1

Introduction

In this paper we continue the analysis of the notion of a weak generic type in a group
introduced by Newelski in [4]. Our results may be divided into three parts.

First of all, we take a closer look at weak generic sets and types in some particular
groups. Note that in a stable group genericity and weak genericity of a definable set
are equivalent and the structure of (weak) generic types is well-known. Therefore we
focus on cartesian powers of o-minimal groups. Section 2 provides a characterization
of their definable weak generic subsets.

Secondly, we give examples where properties of weak generic types are related
to well-known model-theoretic properties. In Section 3 we introduce the notion of
stationarity of a weak generic type and show (in some special cases) its equivalence
with power boundedness.

Finally, in the last section of the paper we use weak generic types to prove some
combinatorial properties of countable coverings of ℵ0-saturated groups consisting of
0-type-definable sets. We thus obtain new proofs for some theorems in [4], as well as
some new results.
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1 Preliminaries

In this paper G always denotes a group, possibly with some additional structure, or
more generally a definable group in a model M of a complete first order theory T in
a language L. We denote the group product of a, b ∈ G by a · b and the group inverse
of a by a−1. For the convenience of the reader we recall two definitions from [4].

Definition 1.1 We say that a set X ⊆ G is (left) generic if some finitely many left
G-translates of X cover G. We say that a formula ϕ(x) is (left) generic if the set
ϕ(G) of elements of G realizing ϕ is (left) generic. Finally, we call a type p(x) of
elements of G (left) generic if every formula ϕ(x) with p(x) ` ϕ(x) is (left) generic.

Definition 1.2 We say that a set X ⊆ G is weak generic if for some non-generic
set Y ⊆ G the set X ∪ Y is generic. We say that a formula ϕ(x) is weak generic if
the set ϕ(G) is weak generic. Finally, a type p(x) of elements of G is weak generic
if every formula ϕ(x) with p(x) ` ϕ(x) is weak generic.

Basic properties of weak generic sets and types have been established in [4]. Below we
prove some more lemmas that will be used later in the paper. Before doing it we have
to make some notational remarks. First of all, for the sake of notational simplicity
we shall sometimes assume that |G| = |M | (i.e. the universes of the group G and
the model M are the same), especially in Sections 1 and 4. Secondly, for A ⊆ M we
denote the set {p ∈ S(A) : p is weak generic in G} by WGen(A). Finally, if g ∈ G,
ϕ(x) is a formula and p(x) is a type, then g · ϕ(x) stands for the formula ϕ(g−1 · x)
and g · p(x) denotes the type {g · ψ(x) : ψ(x) ∈ p(x)}.

Lemma 1.3 If X ⊆ G is (left) generic, then X is right weak generic.

Proof. Suppose that X is generic. Then we have G =
⋃n

i=1 gi · X for some finitely
many g1, . . . , gn ∈ G. Since the set G is right weak generic, for some i ∈ {1, . . . , n}
the set gi ·X is right weak generic. But this implies that the set X is also right weak
generic and we are done. ¤

Lemma 1.4 Assume that G ≺ H are groups and ϕ(x) ∈ L(G).
(1) If ϕ(G) is weak generic in G, then ϕ(H) is weak generic in H.
(2) If G is ℵ0-saturated and ϕ(H) is weak generic in H, then ϕ(G) is weak generic
in G.

Proof. (1) If the set ϕ(G) is weak generic in G, then there is a non-generic formula
ψ(x) ∈ L(G) such that the set ϕ(G) ∪ ψ(G) is generic in G. Since G ≺ H, the set
ψ(H) is not generic in H and the set ϕ(H) ∪ ψ(H) is generic in H. Thus ϕ(H) is
weak generic in H.

(2) There exists a formula ψ(x) ∈ L(H) such that ψ(H) is not generic in H
and ϕ(H) ∪ ψ(H) is generic in H. We have ψ(x) = ψ(x, b̄), where b̄ ⊆ H are all
parameters occurring in ψ(x). Let A ⊆ G be a finite set containing all parameters
of ϕ(x).
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By ℵ0-saturation of G we are able to find a tuple ā ⊆ G with tp(ā/A) = tp(b̄/A).
Then ψ(x, ā) ∈ L(G) has properties which suffice to obtain weak genericity of the
set ϕ(G) in G.

Namely, ψ(G, ā) is not generic in G and ϕ(G)∪ψ(G, ā) is generic in G. We shall
show the first assertion only, the second one may be proved in a similar way. For
the sake of contradiction assume that the set ψ(G, ā) is generic in G. Then for some
n < ω we have

G |= ∃x1, . . . , xn∀y∃z(ψ(z, ā) ∧
n∨

k=1

y = xk · z)

and the same holds in H since G ≺ H. As tp(ā) = tp(b̄), we have

H |= ∃x1, . . . , xn∀y∃z(ψ(z, b̄) ∧
n∨

k=1

y = xk · z).

But then ψ(H) = ψ(H, b̄) is generic in H, a contradiction. ¤

Lemma 1.5 Assume that A ⊆ G. If for every p, q ∈ WGen(G) there is some g ∈ G
with g · p = q, then all weak generic types r ∈ S(A) are generic.

Proof. If not, then we can find a formula ϕ(x) ∈ L(A) which is weak generic but not
generic. Note that {¬g ·ϕ(x) : g ∈ G} is a partial weak generic type over G (because
for each m < ω and g1, . . . , gm ∈ G the set

⋃m
i=1 gi ·ϕ(G) is not generic, which implies

that the set
⋂m

i=1(G\gi ·ϕ(G)) is weak generic). Extend the type {¬g ·ϕ(x) : g ∈ G}
to some q(x) ∈ WGen(G) and the formula ϕ(x) to some p(x) ∈ WGen(G). Then
(∀g ∈ G)g · p 6= q, a contradiction. ¤

Lemma 1.6 If for some type p ∈ S(G) the orbit {g · p : g ∈ G} is finite, then p is
weak generic.

Proof. For the sake of contradiction assume that the type p is not weak generic.
Let {g · p : g ∈ G} = {p1, . . . , pn}. We can find pairwise inconsistent non-weak
generic formulas ϕ1(x), . . . , ϕn(x) such that ϕi ∈ pi for each i ∈ {1, . . . , n}. Put
ψ = ϕ1 ∨ . . . ∨ ϕn. Then for every g ∈ G and i ∈ {1, . . . , n} we have g · ψ ∈ pi. On
the other hand, the formula ¬ψ is generic (since ψ is not weak generic) and for some
finitely many g1, . . . , gk ∈ G we have G =

⋃k
j=1 gj ·¬ψ(G). Hence

⋂k
j=1 gj ·ψ(G) = ∅,

contradicting the fact that gj · ψ ∈ p1 for every j ∈ {1, . . . , k}. ¤

Assume that (X, <) is a totally ordered set and a, b ∈ X. We denote the open
interval with the endpoints a and b by (a, b) and the closed one by [a, b]. In contrast,
〈a, b〉 stands for the pair of elements a and b. If Y ⊆ X, then (a, b)Y denotes the set
{c ∈ Y : a < c ∧ c < b}.

As we shall mainly consider groups definable in o-minimal structures, we conclude
this section with a few words about the notion of o-minimality. We call an infinite
totally ordered first order structure (M, <, . . .) o-minimal if every definable subset
of M is a union of finitely many intervals and points.
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Let (M, <, . . .) be an o-minimal structure. If a ∈ M ∪ {−∞}, b ∈ M ∪ {+∞},
a < b and f : (a, b) → M is a definable function, then there are a = a1 < . . . < an = b
such that on each interval (ai, ai+1) f is either constant or strictly monotone and
continuous in the order topology. In particular, every definable function f : M → M
is ultimately continuous and monotone. Every definable subset A of Mn (n < ω) has
a finite partition into pairwise disjoint cells, which are definable sets of an especially
simple nature. For more details on o-minimal structures see [1].

Lemma 1.7 Assume that M is an o-minimal structure, a, b ∈ M and C ⊆ M . If
tp(a/C) 6= tp(b/C), then [a, b] ∩ dcl(C) 6= ∅.
Proof. As tp(a/C) 6= tp(b/C), there is a formula ϕ(x) ∈ L(C) such that M |= ϕ(a)
and M |= ¬ϕ(b). By o-minimality of M the set ϕ(M) is a union of some intervals
I1, . . . , Im and points p1, . . . , pn (where m,n < ω). Both the points p1, . . . , pn and
the endpoints of the intervals I1, . . . , Im belong to the definable closure of the set C.
Since a ∈ ϕ(M) and b /∈ ϕ(M), one of them must also belong to the interval [a, b]
and we are done. ¤

Lemma 1.8 Assume G is a definable group in an o-minimal structure M and X is
a definable weak generic subset of G. Then the o-minimal dimensions of X and G
are equal.

Proof. For the sake of contradiction suppose that dim(X) < dim(G). Take a generic
set A and a non-generic set B such that A = B ∪X (where A and B are definable
subsets of G, apply Lemma 1.3 from [4]). Choose a finite set S ⊆ G with S ·A = G.
Then G \ (S ·B) ⊆ S ·X and

dim(G \ (S ·B)) ≤ dim(S ·X) = dim(X) < dim(G).

Hence the set S ·B is large in the sense of [5] and it must be generic by Lemma 2.4
there (a subset Y of a group H is said to be large if the o-minimal dimension of the
set H \ Y is strictly smaller than that of the group H). But then B is generic too,
a contradiction. ¤

2 A characterization of weak genericity

In this section we consider o-minimal structures of the form (G,<, +, . . .) where
(G,<, +) is an ordered group. We are going to characterize definable weak generic
sets in groups (Gn, +), n < ω.

We begin with a lemma on weak generic sets. Assume G is a group and X, Y ⊆ G.
The set X is said to be translation disjoint from the set Y if for some a ∈ G the
sets a ·X and Y are disjoint.

Lemma 2.1 Assume G is a group and X is a weak generic subset of G. Then for
some finite A ⊆ G there is no finite covering of X by sets that are translation disjoint
from the set A ·X.
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Proof. By weak genericity of X we can find a generic superset Y ⊇ X such that the
set Y \X is not generic. We have G = A · Y for some finite A ⊆ G. We shall prove
that the set A meets the conditions of the lemma. For the sake of contradiction
assume that for some X1, . . . , Xn ⊆ G and a1, . . . , an ∈ G we have

X =
⋃
i≤n

Xi and
∧
i≤n

(ai ·Xi) ∩ (A ·X) = ∅.

Then for each i ≤ n we have ai · Xi ⊆ G \ A · X ⊆ A · (Y \ X) and consequently
Xi ⊆ a−1

i ·A · (Y \X). This implies that X ⊆ {a−1
1 , . . . , a−1

n } ·A · (Y \X) and finally

G = A · Y = A · (Y \X) ∪ A ·X ⊆ (A ∪ (A · {a−1
1 , . . . , a−1

n } · A)) · (Y \X).

Thus finitely many left translates of the set Y \X cover G , a contradiction. ¤
The corollary below shows that weak genericity is related to generating G. A more
detailed analysis of this connection appears in Section 4.

Corollary 2.2 Assume G is a group and X is a weak generic subset of G. Then
G = A ·X ·X−1 for some finite A ⊆ G.

Proof. Take a finite A ⊆ G such as in Lemma 2.1. Then for each a ∈ G we have
a ·X ∩ A ·X 6= ∅, which implies that a ∈ A ·X ·X−1. Therefore G = A ·X ·X−1

and we are done. ¤
From now on, let (G,<, +,−, 0, . . .) be an o-minimal expansion of an ordered group
(G,<, +,−, 0). By Theorem 2.1 from [7] the group (G, +) is commutative, divisible
and torsion-free. This justifies denoting the group action by +. By (Gn, +) we mean
the product of groups (G, +) × . . . × (G, +) (n times). The ordering of G is dense
since for every a, b ∈ G with a < b we have a < a+b

2
< b.

Theorem 2.3 Assume that (G,<, +, . . .) is an o-minimal expansion of an ordered
group (G,<, +), n < ω and ϕ(x1, . . . , xn) ∈ L(G). The following are equivalent:
(1) the formula ϕ(x1, . . . , xn) is weak generic in (Gn, +),
(2) the formula ¬ϕ(x1, . . . , xn) is not generic in (Gn, +),
(3) the set ϕ(Gn) contains arbitrarily large n-dimensional boxes:

(∀R > 0)(∃a1, . . . , an ∈ G)[a1, a1 + R]× . . .× [an, an + R] ⊆ ϕ(Gn).

Proof. (3)⇒ (2) Assume that the condition (3) holds and for the sake of contradiction
suppose that for some k < ω and 〈g1

1, . . . , g
1
n〉, . . . , 〈gk

1 , . . . , g
k
n〉 ∈ Gn we have

Gn =
k⋃

j=1

(〈gj
1, . . . , g

j
n〉+ (Gn \ ϕ(Gn))).

Put M = max{|gj
i | : 1 ≤ i ≤ n, 1 ≤ j ≤ k}. Using (3) for R = 2M we are able to

find a1, . . . , an ∈ G such that

[a1 −M, a1 + M ]× . . .× [an −M, an + M ] ⊆ ϕ(Gn).
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But then

〈a1, . . . , an〉 /∈
k⋃

j=1

(〈gj
1, . . . , g

j
n〉+ (Gn \ ϕ(Gn))),

a contradiction.
(2) ⇒ (1) Since the set Gn = ϕ(Gn)∪ (Gn \ϕ(Gn)) is generic in (Gn, +) and the

set Gn \ ϕ(Gn) is not generic in (Gn, +), the set ϕ(Gn) is weak generic in (Gn, +).
(1) ⇒ (3) Suppose that n = 1. By o-minimality of G the set ϕ(G) is a union of

finitely many intervals and points. Corollary 2.2 implies that the set ϕ(G)−ϕ(G) is
generic in G so one of these intervals must be of the form (−∞, a) or (b, +∞) and
we are done. Therefore we can assume that n ≥ 2.

Take p(x1, . . . , xn) ∈ Sn(G) such that p is a weak generic type in (Gn, +) and
ϕ ∈ p. Extend G to a |G|+-saturated group H Â G. Choose a tuple 〈a1, . . . , an〉 ∈ Hn

realizing p and fix a positive R ∈ G. We shall show that the following condition holds:

(∗) (∀a ∈ H)(an ≤ a ∧ a ≤ an + R ⇒ tp(a/Ga<n) = tp(an/Ga<n)),

where a<n stands for 〈a1, . . . , an−1〉.
For the sake of contradiction assume that for some a ∈ [an, an + R]H we have

tp(a/Ga<n) 6= tp(an/Ga<n). By Lemma 1.7 there is b ∈ [an, an + R]H ∩ dcl(Ga<n).
Let ψ(x1, . . . , xn−1, y) ∈ L(G) be such that H |= ψ(a<n, b) ∧ ∃!yψ(a<n, y). Since
b−R ≤ an ≤ b, we have χ ∈ p where

χ(x1, . . . , xn) = ∃!yψ(x<n, y) ∧ ∀y(ψ(x<n, y) → (y −R ≤ xn ∧ xn ≤ y)).

As χ ∈ p, the set χ(Gn) is weak generic in (Gn, +).
We define a function f : Gn−1 → G as follows. Take 〈c1, . . . , cn−1〉 ∈ Gn−1.

If there is cn ∈ G such that G |= χ(c1, . . . , cn), then there exists just one d ∈ G
with G |= ψ(c1, . . . , cn−1, d) and we put f(c1, . . . , cn−1) = d − R. Otherwise we put
f(c1, . . . , cn−1) = 0 (the neutral element of G). Then the map f is definable over G
and we consider the following formula over G:

δ(x1, . . . , xn) = f(x1, . . . , xn−1) ≤ xn ∧ xn ≤ f(x1, . . . , xn−1) + R.

Since χ(Gn) ⊆ δ(Gn), the set δ(Gn) is weak generic in (Gn, +). Let A ⊆ Gn be a
finite set chosen for δ(Gn) as in Lemma 2.1. Consider any 〈h1, . . . , hn−1〉 ∈ Hn−1.
Choose Mh<n ∈ G such that

{〈h1, . . . , hn〉 : f(h<n) + Mh<n ≤ hn ≤ f(h<n) + Mh<n + R} ∩ (A + δ(Hn)) = ∅.

If tp(〈h1, . . . , hn−1〉/G) = tp(〈h′1, . . . , h′n−1〉/G), then Mh<n is appropriate also for
〈h′1, . . . , h′n−1〉. Thus for each q(x1, . . . , xn−1) ∈ Sn−1(G) we can find a formula
ϕq(x1, . . . , xn−1) ∈ L(G) and Mq ∈ G such that for every 〈h1, . . . , hn−1〉 ∈ Hn−1

with H |= ϕq(h1, . . . , hn−1) we have

{〈h1, . . . , hn〉 : f(h<n) + Mq ≤ hn ≤ f(h<n) + Mq + R} ∩ (A + δ(Hn)) = ∅.
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By compactness Sn−1(G) = [ϕq1 ]∪. . .∪[ϕqk
] for some k < ω and q1, . . . , qk ∈ Sn−1(G).

For each i ∈ {1, . . . , k} put Xi = (ϕqi
(Gn−1) × G) ∩ δ(Gn) and ei = 〈0, . . . , 0,Mqi

〉
(ei ∈ Gn). Then δ(Gn) = X1 ∪ . . . ∪ Xk and for every i ∈ {1, . . . , k} we have
(ei + Xi) ∩ (A + δ(Gn)) = ∅. This contradicts the choice of A and finishes the proof
of (∗).

By (∗) we have

H |= ∀y((an ≤ y ∧ y ≤ an + R) → ϕ(a1, . . . , an−1, y)).

Therefore the formula

∀y((xn ≤ y ∧ y ≤ xn + R) → ϕ(x1, . . . , xn−1, y))

belongs to p(x1, . . . , xn) = tp(〈a1, . . . , an〉/G). More generally, for every R ∈ G and
formula ψ(x1, . . . , xn) ∈ p(x1, . . . , xn), k ∈ {1, . . . , n} the formula

∀y((xk ≤ y ∧ y ≤ xk + R) → ψ(x1, . . . , xk−1, y, xk+1, . . . , xn))

belongs to p(x1, . . . , xn).
We inductively create formulas ϕk(x1, . . . , xn) ∈ p(x1, . . . , xn), k ∈ {1, . . . , n}.

Provided that ϕ1(x1, . . . , xn),. . . ,ϕk−1(x1, . . . , xn) have already been defined, we let
ϕk(x1, . . . , xn) be the formula

∀y((xk ≤ y ∧ y ≤ xk + R) → (ϕ ∧ ϕ1 ∧ . . . ∧ ϕk−1)(x1, . . . , xk−1, y, xk+1, . . . , xn)).

Finally, we take any 〈g1, . . . , gn〉 ∈ (ϕ ∧ ϕ1 ∧ . . . ∧ ϕn)(Gn) and see that

[g1, g1 + R]× . . .× [gn, gn + R] ⊆ ϕ(Gn),

which finishes the proof. ¤

We conclude this section with two corollaries of Theorem 2.3.

Corollary 2.4 Assume that (G,<, +, . . .) is an o-minimal expansion of an ordered
group (G,<, +), n, k < ω and ϕ(x1, . . . , xn, y1, . . . , yk) ∈ L.
(1) There is ψ1(y1, . . . , yk) such that for every 〈a1, . . . , ak〉 ∈ Gk we have G |= ψ1(ā)
if and only if the set ϕ(Gn, ā) is weak generic in (Gn, +).
(2) There is ψ2(y1, . . . , yk) such that for every 〈a1, . . . , ak〉 ∈ Gk we have G |= ψ2(ā)
if and only if the set ϕ(Gn, ā) is generic in (Gn, +).
(3) There exists N < ω such that for every ϕ-definable X ⊆ Gn the set X is generic
in (Gn, +) if and only if Gn may be covered by at most N left translates of X.

Proof. (1) We let ψ1(y1, . . . , yk) be the formula

∀r∃z1, . . . , zn∀x1, . . . , xn((
n∧

i=1

zi ≤ xi ∧ xi ≤ zi + r) → ϕ(x1, . . . , xn, y1, . . . , yk))

and apply Theorem 2.3.
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(2) By Theorem 2.3 the set ϕ(Gn, ā) is generic in (Gn, +) if and only if the set
¬ϕ(Gn, ā) is not weak generic in (Gn, +). Now it suffices to make use of (1).

(3) To simplify the notation assume that n = 1. Let ψ2(y1, . . . , yk) be such
as in (2). For the sake of contradiction suppose that for every N < ω we can find
〈a1, . . . , ak〉 ∈ Gk such that the set ϕ(G, a1, . . . , ak) is generic in G but not N -generic.
Then the set of formulas

⋃
N<ω

{ψ2(y1, . . . , yk) ∧ ∀z1, . . . , zN∃t∀x(ϕ(x, y1, . . . , yk) →
N∧

i=1

t 6= zi · x)}

is a consistent type in variables y1, . . . , yk and has a realization 〈b1, . . . , bk〉 ∈ Hk in
some ℵ0-saturated elementary extension H of G. We reach a contradiction as the
set ϕ(H, b1, . . . , bk) is simultaneously generic and not generic in H. ¤

Corollary 2.5 Assume that (G,<, +, . . .) is an o-minimal expansion of an ordered
group (G,<, +), n < ω and p(x1, . . . , xn) ∈ Sn(G). The following are equivalent:
(1) the type p(x1, . . . , xn) is weak generic in (Gn, +),
(2) 〈g1, . . . , gn〉+ p(x1, . . . , xn) = p(x1, . . . , xn) for every 〈g1, . . . , gn〉 ∈ Gn.

Proof. (1) ⇒ (2) For the sake of contradiction suppose that

〈g1, . . . , gn〉+ p(x1, . . . , xn) 6= p(x1, . . . , xn)

for some tuple 〈g1, . . . , gn〉 ∈ Gn. Then for some ϕ(x1, . . . , xn) ∈ p(x1, . . . , xn) we
have (〈g1, . . . , gn〉 + ϕ(Gn)) ∩ ϕ(Gn) = ∅. The set ϕ(Gn) is weak generic in (Gn, +)
and hence contains arbitrarily large n-dimensional boxes (by Theorem 2.3).

Take any R ∈ G with R > max(|g1|, . . . , |gn|) and choose a1, . . . , an ∈ G such
that

B = [a1, a1 + R]× . . .× [an, an + R] ⊆ ϕ(Gn).

We obtain

∅ 6= (〈g1, . . . , gn〉+ B) ∩B ⊆ (〈g1, . . . , gn〉+ ϕ(Gn)) ∩ ϕ(Gn) = ∅,

a contradiction.
(2) ⇒ (1) This follows from Lemma 1.6. ¤

3 Stationarity

In this section we introduce and examine the notion of stationarity of a weak generic
type in a group.

Recall that in a stable group all weak generic types are generic. Moreover, all of
them are stationary over any model M . This means that every (weak) generic type
p ∈ S(M) has a unique extension to a (weak) generic type q ∈ S(A) for each A ⊇ M .
Stationarity of generic types plays an important role in the theory of stable groups.

8



Definition 3.1 We call a weak generic type p over a set A stationary if for every
B ⊇ A the type p has just one extension to a complete weak generic type over B.

As in the previous section we assume (G,<, +,−, 0, . . .) to be an o-minimal expansion
of an ordered group (G,<, +,−, 0). We are going to discuss stationarity of weak
generic types in the groups (G, +) and (G, +)× (G, +).

Example 3.2 We shall prove that the types p1(x) = {x < a : a ∈ G} and p2(x) =
{x > a : a ∈ G} are the only two weak generic types in (G, +) complete over G and
that both of them are stationary.

By o-minimality of (G,<, +, . . .) every definable subset of G is a union of finitely
many points and intervals. By Theorem 2.3 for every a, b ∈ G the interval (a, b) is
not weak generic in (G, +). Thus no type in S1(G) but p1 and p2 is weak generic in
(G, +).

On the other hand, all intervals of the form (−∞, a) or (b, +∞) are weak generic
in (G, +) since their complements in G are not generic in (G, +). This gives us weak
genericity of the types p1 and p2.

If H is any elementary extension of G, then there are also two complete (over H)
weak generic types in (H, +). This means that p1 and p2 are stationary.

In general, weak generic types need not be stationary. Later in this section we
shall give examples of groups where some weak generic types are not stationary (see
Theorem 3.9 and Corollary 3.11).

Definition 3.3 We call an o-minimal structure (M, <, . . .) stationary if for every
elementary extension N of M and N-definable function g : N → N there exists an
M-definable function f : N → N such that g(x) ≤ f(x) for all sufficiently large
x ∈ N .

Remark 3.4 Assume (M, <, . . .) is a stationary o-minimal structure and N Â M .
For every N-definable map g : N → N with limx→+∞ g(x) = +∞ we can find an
M-definable map f : N → N such that limx→+∞ f(x) = +∞ and f(x) ≤ g(x) for all
sufficiently large x ∈ N .

Proof. First of all, assume that g is a bijection. Then g−1 (the compositional inverse
of g) exists and by stationarity of (M, <, . . .) we can find an M -definable function
f : N → N such that ultimately g−1 ≤ f . We have limx→+∞ g−1(x) = +∞, which
implies that limx→+∞ f(x) = +∞. By o-minimality of M we can choose a ∈ M such
that f ¹ M is strictly increasing on (a, +∞)M . Since M ≺ N , f is strictly increasing
on (a, +∞)N . We define a function f1 : N → N as follows:

f1(x) =

{
f(x) , when x > a
f(a) + x− a , otherwise.

Then f1 is an M -definable bijection so f−1
1 exists and is also M -definable. Moreover,

limx→+∞ f−1
1 (x) = +∞ and ultimately f−1

1 ≤ g so f−1
1 has the desired properties.
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If g is not a bijection, then proceeding as above we can find an N -definable
bijection g1 : N → N such that ultimately g1 = g. The rest of the proof remains the
same. ¤

Now we turn our attention to weak generic sets and types in the group (G, +)×(G, +).
By o-minimality of (G,<, +, . . .) every definable subset of the set G× G is a union
of finitely many cells of dimension 0, 1 or 2. By Lemma 1.8 we are interested only
in cells of dimension 2. They are of the form

Cf,g
a,b = {〈x, y〉 ∈ G×G : a < x ∧ x < b ∧ f(x) < y ∧ y < g(x)},

where {−∞} ∪ G 3 a < b ∈ G ∪ {+∞} and f, g : (a, b) → G ∪ {−∞, +∞} are
definable maps such that f(x) < g(x) for each x ∈ (a, b). If a, b ∈ G, then the cell
Cf,g

a,b is not weak generic in (G, +)× (G, +) by Theorem 2.3. Since we shall consider
only weak generic types p(x, y) in (G, +)×(G, +) such that {x > a : a ∈ G} ⊆ p(x, y),
we shall be interested only in weak generic cells of the form Cf,g

a,b , where a ∈ G and
b = +∞.

Definition 3.5 Assume that functions f, g : G → G are definable.
(1) We say that f ¿ g if f(x) < g(x) for all sufficiently large x ∈ G and the set

{〈x, y〉 ∈ G×G : x > 0 ∧ f(x) < y ∧ y < g(x)}
is weak generic in (G, +)× (G, +).
(2) We say that f ∼ g if the set

{〈x, y〉 ∈ G×G : x > 0 ∧ f(x) < y ∧ y < g(x)}
is not weak generic in (G, +)× (G, +).

Replacing 0 by any other element of the group G does not change the meaning of
the definition above since for every a, b ∈ G the cell Cf,g

a,b is not weak generic in
(G, +)× (G, +).

It is easy to see that ∼ is an equivalence relation on the set of all definable
functions from G to G and that equivalence classes of ∼ are convex (i.e. if f, g, h :
G → G are definable, f ∼ h and ultimately f(x) ≤ g(x) ≤ h(x), then f ∼ g and
g ∼ h). Moreover, for all definable maps f, g : G → G either f ∼ g or f ¿ g or
f À g.

Definition 3.6 Let f : G → G be a definable function.
1) Let p+

f (x, y) denote the only extension of the type

{x > a : a ∈ G} ∪ {y > f(x)} ∪ {y < g(x) : g À f}
to a type which is complete over G and weak generic in (G, +)× (G, +).
2) Let p−f (x, y) denote the only extension of the type

{x > a : a ∈ G} ∪ {y < f(x)} ∪ {y > g(x) : g ¿ f}
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to a type which is complete over G and weak generic in (G, +)× (G, +).
3) Let p+∞(x, y) denote the only extension of the type

{x > a : a ∈ G} ∪ {y > f(x) : f : G → G definable}

to a complete type over G.
4) Let p−∞(x, y) denote the only extension of the type

{x > a : a ∈ G} ∪ {y < f(x) : f : G → G definable}

to a complete type over G.

The next theorem shows that stationarity of the weak generic types defined above is
equivalent to stationarity of the o-minimal group G. It also provides us with many
examples of stationary weak generic types.

Theorem 3.7 Assume that (G,<, +, . . .) is an o-minimal expansion of an ordered
group (G,<, +). The following are equivalent:
(1) the types p+

f (x, y) and p−f (x, y) are stationary for each definable map f : G → G,
(2) the type p+∞(x, y) (or p−∞(x, y)) is stationary,
(3) the structure (G,<, +, . . .) is stationary.

Proof. (1)⇒ (2) Let z : G → G denote the map constantly equal to 0. It follows from
(1) that the type p+

z (x, y) (and thus p+
z (y, x)) is stationary. But p+∞(x, y) = p+

z (y, x)
and therefore p+∞(x, y) is stationary as well.

(2)⇒ (3) For the sake of contradiction suppose that the structure (G,<, +, . . .) is
not stationary. Then there exist an H Â G and an H-definable function g : H → H
such that no G-definable map f : H → H dominates g.

Consider the following partial types over H:

p1(x, y) = p+∞(x, y) ∪ {y < g(x)}

and
p2(x, y) = p+∞(x, y) ∪ {y > g(x)}.

In order to reach a contradiction, it is sufficient to prove that both of the types above
are weak generic in (H, +)× (H, +).

Let us begin with p1. We have to show that each formula of the form

(
m∧

i=1

x > ai) ∧ (
n∧

j=1

y > fj(x)) ∧ y < g(x)

is weak generic in (H, +)× (H, +), where a1, . . . , am ∈ G and f1, . . . , fn are functions
from H to H definable over G. Taking a = max(a1, . . . , an) and f = max(f1, . . . , fn),
we can confine our attention to the sets of the form

X = {〈x, y〉 ∈ H ×H : x > a ∧ y > f(x) ∧ y < g(x)},
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where a ∈ G and f : H → H is definable over G. Without loss of generality we can
assume that f is ultimately non-decreasing.

Consider the map h : H → H defined as follows: h(a) = f(2a) + a for each
a ∈ H. Since h is G-definable, g dominates h. Therefore for every sufficiently large
M ∈ H the region between the graphs of f and g in H × H contains the square
whose vertices are

〈M, f(2M)〉, 〈M, f(2M) + M〉, 〈2M, f(2M)〉 and 〈2M, f(2M) + M〉.

By Theorem 2.3 the set X is weak generic in (H, +)× (H, +). As a result, the type
p1 is weak generic in (H, +)× (H, +).

It is not difficult to prove that so is p2, which contradicts stationarity of the type
p+∞(x, y).

(3) ⇒ (1) Assume stationarity of the structure (G,<, +, . . .) and consider any
definable function f : G → G. We shall show that both p+

f and p−f are stationary
weak generic types.

By o-minimality of G the map f is either ultimately non-negative or ultimately
non-positive. It is easy to see that p+

f is stationary if and only if p−−f is stationary and

p−f is stationary if and only if p+
−f is stationary. Therefore without loss of generality

we can assume that f is ultimately non-negative. Moreover, f is either ultimately
non-increasing or ultimately non-decreasing. If f is ultimately non-increasing (and
non-negative), then p+

f = p+
z and p−f = p−z , where z : G → G is constantly equal to 0.

Since z is ultimately non-decreasing, we can confine our attention to the case where
f is ultimately non-decreasing (and non-negative).

Consider the following definable sets:

A = {a ∈ G : (∃b > a)(∀c ∈ (a, b))f(c)− f(a) ≤ c− a}

and
B = {a ∈ G : (∃b > a)(∀c ∈ (a, b))f(c)− f(a) > c− a}.

Note that by o-minimality of G we have G = A ∪ B and for some M ∈ G either
(M, +∞) ⊆ A or (M, +∞) ⊆ B. Enlarge M in order to ensure that f is continuous
on (M, +∞).

Case 1. (M, +∞) ⊆ A. Then f grows “slowly” on (M, +∞):

(∗) (∀a > M)(∃b > 0)(∀c ∈ (0, b))f(a + c) ≤ f(a) + c.

By (∗) and continuity of f we have

(∗∗) (∀a > M)(∀c > 0)f(a + c) ≤ f(a) + c.

Because if not, then the opposite holds: (∃a > M)(∃c > 0)f(a+ c) > f(a)+ c. Fix a
and let Ca = {c > 0 : f(a+c) > f(a)+c}. Then Ca 6= ∅ so we can define c0 = inf(Ca).
Assertion (∗) implies that c0 > 0. We have (∀c ∈ (0, c0))f(a + c) ≤ f(a) + c. Since
f is continuous at a + c0, f(a + c0) ≤ f(a) + c0 and c0 /∈ Ca. By o-minimality of G
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we can choose d > c0 with (c0, d) ⊆ Ca. So (∀c ∈ (c0, d))f(a + c) > f(a) + c and
continuity of f at a+c0 implies that f(a+c0) ≥ f(a)+c0. Hence f(a+c0) = f(a)+c0

and for every e ∈ (0, d− c0) we have

f(a + c0 + e) > f(a) + c0 + e = f(a + c0) + e,

which implies that a + c0 /∈ A. But a + c0 ∈ (M, +∞) ⊆ A, a contradiction. Thus
(∗∗) holds.

Now for the sake of contradiction assume that p+
f is not stationary. Then for

some H Â G and H-definable g : H → H we have f ¿ g and g ¿ h for each G-
definable h : H → H with f ¿ h. Since limx→+∞(g(x) − f(x)) = +∞, there exists
an increasing to +∞ G-definable function h : H → H such that ultimately h ≤ g−f
(Remark 3.4). Enlarging M we can assume that h is increasing on (M, +∞).

Fix any positive R ∈ H and choose a ∈ H with a > M and h(a) ≥ 2R. By (∗∗)
we have f(a + R) ≤ f(a) + R. So the region between the graphs of f and f + h
contains the square whose vertices are

〈a, f(a) + R〉, 〈a, f(a) + 2R〉, 〈a + R, f(a) + R〉 and 〈a + R, f(a) + 2R〉.

As R was arbitrary, we can use Theorem 2.3 to conclude that the region between
the graphs of f and f + h is weak generic in (H, +)× (H, +). Since f ¿ f + h and
f + h is G-definable, we have g ¿ f + h, which contradicts the fact that ultimately
g ≥ f + h. Hence the type p+

f is stationary.

The proof that the type p−f is stationary is analogous and we omit it.

Case 2. (M, +∞) ⊆ B. Then f grows “quickly” on (M, +∞), which implies
that limx→+∞ f(x) = +∞. Proceeding as in the proof of Remark 3.4, we are able to
find a definable bijection f1 : G → G such that f1(a) = f(a) for each a ∈ (M, +∞).
If g = f−1

1 , then g grows “slowly” on (f1(M), +∞) and from the previous case
we know that the types p+

g and p−g are stationary. The proof is complete since
p+

f (x, y) = p+
f1

(x, y) = p−g (y, x) and p−f (x, y) = p−f1
(x, y) = p+

g (y, x). ¤

Example 3.8 If (G,<, +) is an o-minimal ordered group, then every definable func-
tion f : G → G is ultimately equal to fq(x) + a for some a ∈ G and q ∈ Q, where
fq(x) = q · x for each x ∈ G (see [1], Corollary 1.7.6). Below we list all weak generic
types in (G, +)× (G, +) that are complete over G and contain the formula (x > 0).

(1) p−∞(x, y) and p+∞(x, y).

(2) p−fq
(x, y) and p+

fq
(x, y), q ∈ Q.

(3) {x > a : a ∈ G} ∪ {y > q · x : q ∈ Q ∧ q < r} ∪ {y < q · x : q ∈ Q ∧ q > r},
r ∈ R \Q.

The structure (G,<, +) is stationary since its elementary extensions are all linearly
bounded. By Theorem 3.7 weak generic types of the form (1) and (2) are stationary.
It is easy to see that so are those of the form (3).
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Recently Ramakrishnan has proved that all o-minimal structures are stationary (the
reader is referred to [9] for more details). By Theorem 3.7 the weak generic types
from Definition 3.6 are always stationary.

In the remainder of this section we assume (R, <, +, ·, 0, 1, . . .) to be an o-minimal
expansion of an ordered ring (R,<, +, ·, 0, 1). As noted in [7] (Theorem 2.3), such
a ring must be a real closed field. We shall make use of a result of Miller from [2]
which we briefly describe below.

A power function is a definable endomorphism of the group (R+, ·) (by R+ we
denote the set {a ∈ R : a > 0}). Every power function is differentiable on R+. For
each r ∈ R there is at most one power function f with f ′(1) = r. We denote such a
map by xr and write ar for f(a). The field

K = {f ′(1) : f is a power function} ⊆ R

is called the field of exponents of R. We say that the structure R is power
bounded if for every definable f : R → R there exists an r ∈ K such that ultimately
|f(x)| ≤ xr. An exponential function is an isomorphism of the ordered groups
(R,<, +, 0) and (R+, <, ·, 1).

The main result of [2] says that either R defines (without parameters) an expo-
nential function or R is power bounded and for each ultimately non-zero definable
function f : R → R there exist an a ∈ R \ {0} and a 0-definable power function xr

such that limx→+∞
f(x)
a·xr = 1.

Theorem 3.9 If R = (R,<, +, ·, . . .) is an o-minimal expansion of a real closed
field, then the following are equivalent:
(1) all complete (over R) weak generic types in (R+, ·)× (R+, ·) are stationary,
(2) the structure R is power bounded.

Proof. (1) ⇒ (2) For the sake of contradiction assume that R is not power bounded.
As we mentioned above, this implies that some exponential function exp : R → R+

is 0-definable in R. Thus the map

(exp, exp) : (R, +)× (R, +) → (R+, ·)× (R+, ·)
is a 0-definable isomorphism of groups. Hence the groups (S, +)×(S, +) and (S+, ·)×
(S+, ·) are definably isomorphic for every S Â R and it suffices to show that some
weak generic type in (R, +)× (R, +) is not stationary. To do this, consider arbitrary
S Â R, a ∈ S \ R and let f : S → S be such that f(x) = a · x for every x ∈ S.
We shall prove that the weak generic types p−f and p+

f are extensions of the same
complete weak generic type over R.

Since the structure R does not need to be ℵ0-saturated, Lemma 1.4 itself is not
sufficient to ensure that the restrictions of the types p−f and p+

f to the complete
types over R are weak generic in (R, +)× (R, +). Nevertheless, this follows from the
characterization of definable weak generic sets provided by Theorem 2.3.

It is enough to show that f � g for each g : S → S definable over R. Suppose
otherwise. Then for some R-definable g : S → S we have S |= g ∼ f . Indeed, there
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is a first order formula ϕ ∈ L(S), which expresses the fact that g ∼ f . Namely, ϕ
says that the region defined by the formula

x > 0 ∧ ((f(x) < y ∧ y < g(x)) ∨ (f(x) > y ∧ y > g(x)))

does not contain arbitrarily large squares (we apply Theorem 2.3 again). Since
S |= g(x) ∼ a · x and R ≺ S, we have

S |= ∃c(g(x) ∼ c · x) and R |= ∃c(g(x) ∼ c · x).

Choose b ∈ R such that R |= g(x) ∼ b · x. Then S |= g(x) ∼ b · x. Hence a · x ∼ b · x,
a contradiction (since a 6= b implies that arbitrarily large squares may be put into
the region between the graphs of the linear maps x 7→ a · x and x 7→ b · x).

(2) ⇒ (1) Note that it is enough to examine those weak generic types in (R+, ·)×
(R+, ·) which contain the formula (x ≥ 1 ∧ y ≥ 1). To prove this, consider F, G :
R+ × R+ → R+ × R+ defined as follows: F (x, y) = 〈x, 1

y
〉 and G(x, y) = 〈 1

x
, y〉 for

every x, y ∈ R+. We see that F , G and F ◦G are 0-definable automorphisms of the
group (R+, ·) × (R+, ·) that map the set {〈x, y〉 : x ≥ 1 ∧ y ≥ 1} respectively onto
the sets

(a) {〈x, y〉 : x ≥ 1 ∧ 0 < y ≤ 1},
(b) {〈x, y〉 : 0 < x ≤ 1 ∧ y ≥ 1} and

(c) {〈x, y〉 : 0 < x ≤ 1 ∧ 0 < y ≤ 1}.
The same holds for an arbitrary elementary extension S of R, which enables us to
“translate” an example of a non-stationary weak generic type to the set of types
containing the formula (x ≥ 1 ∧ y ≥ 1).

In order to show that every complete weak generic type in (R+, ·)× (R+, ·) con-
taining the formula (x ≥ 1 ∧ y ≥ 1) is stationary, we shall prove that for every
S Â R and every S-definable function f : S → S ∩ [1, +∞) we are able to find an
R-definable map g : S → S such that the set

{〈x, y〉 ∈ S × S : x ≥ 1 ∧ y ≥ 1 ∧ (f(x) ≤ y ≤ g(x) ∨ f(x) ≥ y ≥ g(x))}
is not weak generic in (S+, ·) × (S+, ·). So take such S and f . Let a, r ∈ S be such

that limx→+∞
f(x)
a·xr = 1. Then a > 0 and r ≥ 0. The power function xr : S → S is

R-definable (as it is definable over ∅) and we put g = xr.
Choose any c ∈ S+ such that 1

c
· xr ≤ f(x) ≤ c · xr for all sufficiently large x ∈ S.

Without loss of generality we can assume that it is so on the whole interval [1, +∞),
because for every M ≥ 1 the set XM = [1,M ] × [1, +∞) is not weak generic in
(S+, ·)× (S+, ·) (otherwise, by Corollary 2.2 the set XM ·X−1

M = [ 1
M

,M ]× S+ would
be generic in (S+, ·)× (S+, ·), which is not the case).

Now it suffices to prove that the set

X = {〈x, y〉 ∈ S × S : x ≥ 1 ∧ y ≥ 1 ∧ 1

c
· xr ≤ y ∧ y ≤ c · xr}
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is not weak generic in (S+, ·)× (S+, ·). Suppose otherwise. Then the set X ·X−1 is
generic in (S+, ·)× (S+, ·) by Corollary 2.2. We claim that

X ·X−1 ⊆ Y = {〈x, y〉 ∈ S × S : x > 0 ∧ 1

c2
· xr ≤ y ∧ y ≤ c2 · xr}.

To show this, take arbitrary 〈x1, y1〉, 〈x2, y2〉 ∈ X. We have 1
c
· xr

1 ≤ y1 ≤ c · xr
1

and 1
c
· xr

2 ≤ y2 ≤ c · xr
2. Hence

1

c2
· (x1

x2

)r ≤ y1

y2

≤ c2 · (x1

x2

)r

and 〈x1, y1〉 · 〈x2, y2〉−1 = 〈u, v〉, where u = x1

x2
and 1

c2
· ur ≤ v ≤ c2 · ur. Thus

〈u, v〉 ∈ Y and X ·X−1 ⊆ Y .
Finally, since c2 · xr ≤ c2 for each x ∈ (0, 1), we have

Y ⊆ Z = (S+ × S+) \ ((0, 1)× (c2, +∞)).

But this implies that the set Z is generic in (S+, ·)× (S+, ·), a contradiction. ¤

Definition 3.10 We call a structure (R, <, +, ·, . . .) polynomially bounded if for ev-
ery definable function f : R → R there is n ∈ N+ such that |f(x)| ≤ xn for all
sufficiently large x ∈ R.

Corollary 3.11 If R = (R, <, +, ·, . . .) is an o-minimal expansion of an archimedean
real closed field, then the following are equivalent:
(1) all complete (over R) weak generic types in (R+, ·)× (R+, ·) are stationary,
(2) the structure R is polynomially bounded.

Proof. Recall [2] that R is polynomially bounded if and only if R is power bounded
and its field of exponents K is archimedean. But K is archimedean as a subfield of
the archimedean field R. Thus the equivalence stated in the corollary follows from
Theorem 3.9. ¤
The pure field of real numbers (R, <, +, ·) is archimedean and polynomially bounded.
By the corollary above all weak generic types in (R+, ·)×(R+, ·) derived in the theory
Th(R, <, +, ·) are stationary.

On the other hand, the field of reals with exponentation (R, <, +, ·, ex) is an
example of an o-minimal structure where some weak generic types in the group
(R+, ·)× (R+, ·) are not stationary (o-minimality of the structure (R, <, +, ·, ex) was
proved in [10]).

4 Coverings of groups

In this section we assume G to be an ℵ0-saturated group and H to be a |G|+-saturated
elementary extension of G. We begin with new proofs of results from [3] and [4].
They show that weak generic types may be a useful tool in model theory of groups.

For a type or formula s(x), [s(x)] denotes the set of types containing s(x). If V is
a type-definable set defined by a type s(x), then we identify [V ] with the set [s(x)].
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Theorem 4.1 ([3], Theorem 2.1) Assume G is an ℵ0-saturated group covered by
countably many 0-type-definable sets Xn, n < ω. Then G = {g1, . . . , gm} ·Xn ·X−1

n

for some m, n < ω and g1, . . . , gm ∈ G.

Proof. Since

WGen(G) =
⋃
n<ω

(WGen(G) ∩ [Xn])

and each of the sets WGen(G) ∩ [Xn] is closed in WGen(G), by the Baire category
theorem we can find n < ω and ϕ(x) ∈ L(G) such that

(∗) ∅ 6= WGen(G) ∩ [ϕ(x)] ⊆ [Xn].

Since WGen(G)∩ [ϕ(x)] 6= ∅, the formula ϕ(x) is weak generic and there exist a non-
generic formula ψ(x) ∈ L(G) and g1, . . . , gm ∈ G with G = {g1, . . . , gm} · (ϕ∨ψ)(G).

Formulas {¬g · ψ(x) : g ∈ G} form a partial weak generic type over G (see the
proof of Lemma 1.5). We can extend it to some p(x) ∈ WGen(G). Let j ∈ {1, . . . , m}
be such that gj · (ϕ ∨ ψ)(x) ∈ p. Then gj · ϕ(x) ∈ p since gj · ψ(x) /∈ p. As a result,
ϕ(x) ∈ g−1

j ·p ∈ WGen(G) and (∗) implies that q ∈ [Xn] for q = g−1
j ·p. Fix a ∈ q(H).

Choose any g ∈ G. For some i ∈ {1, . . . ,m} the formula gi · (ϕ ∨ ψ)(x) belongs
to the type g · q. If gi · ψ(x) ∈ g · q, then

ψ(x) ∈ g−1
i · g · q = g−1

i · g · g−1
j · p and gj · g−1 · gi · ψ(x) ∈ p,

which contradicts the choice of p. So we have gi · ϕ(x) ∈ g · q. Therefore ϕ(x) ∈
g−1

i ·g ·q ∈ WGen(G), which implies that g−1
i ·g ·q ∈ [Xn] and g−1

i ·g ·a ∈ Xn(H). Now
we write g as gi(g

−1
i · g ·a)a−1 and conclude that g ∈ {g1, . . . , gm} ·Xn(H) ·Xn(H)−1.

So far we proved that G ⊆ {g1, . . . , gm} · Xn(H) · Xn(H)−1 for some m,n < ω
and g1, . . . , gm ∈ G. But this implies that

G ⊆ {g1, . . . , gm} ·Xn(G) ·Xn(G)−1 = {g1, . . . , gm} ·Xn ·X−1
n .

Namely, consider an arbitrary g ∈ G. Let i ∈ {1, . . . ,m} and h1, h2 ∈ Xn(H) be
such that g = gi · h1 · h−1

2 . Then

r(x, y) = Xn(x) ∪Xn(y) ∪ {g = gi · x · y−1}

is a partial type over {g, gi}. By ℵ0-saturation of G we are able to find some 〈h′1, h′2〉 ∈
r(G×G). Finally, g = gi · h′1 · h′−1

2 ∈ {g1, . . . , gm} ·Xn ·X−1
n . ¤

Lemma 4.2 Assume G is an ℵ0-saturated group covered by countably many 0-type-
definable sets Xn, n < ω. Then

G =
m⋃

i=1

gi ·Xn · pi(G) · g−1
i

for some m, n < ω, g1, . . . , gm ∈ G and p1, . . . , pm ∈ S(∅).
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Proof. We proceed as in the proof of Theorem 4.1. Again, for every g ∈ G we can
find i ∈ {1, . . . , m} such that g−1

i · g · a ∈ Xn(H). As g = gi(g
−1
i · g · a)(a−1 · gi)g

−1
i ,

we obtain the inclusion G ⊆ ⋃m
i=1 gi ·Xn(H) · pi(H) · g−1

i where pi = tp(a−1 · gi/∅) for
each i ∈ {1, . . . , m}. Finally, we get

G ⊆
m⋃

i=1

gi ·Xn(G) · pi(G) · g−1
i =

m⋃
i=1

gi ·Xn · pi(G) · g−1
i ,

which completes the proof. ¤

Theorem 4.3 ([4], Theorem 2.4) Assume G is an ℵ0-saturated group covered by
countably many 0-type-definable sets Xn, n < ω. Then

G =
m⋃

i=1

gi ·X≤n ·X−1
≤n · g−1

i =
m⋃

i=1

(X≤n ·X−1
≤n)gi

for some m, n < ω and g1, . . . , gm ∈ G.

Proof. Take m,n < ω, g1, . . . , gm ∈ G and p1, . . . , pm ∈ S(∅) as in the lemma above.
For each i ∈ {1, . . . ,m} find ni < ω such that p−1

i ∈ [Xni
]. Finally, replace n with

max(n, n1, . . . , nm). ¤
For the convenience of the reader we recall two definitions from [3].

Definition 4.4 Assume G is a group, A ⊆ G and k < ω. We say that A generates
G in k steps if every g ∈ G is of the form g = a1 ·. . .·ak for some a1, . . . , ak ∈ A∪A−1.

Definition 4.5 Assume G is an ℵ0-saturated group. Let kG be the minimal number
k such that whenever G is covered by countably many 0-type-definable sets Xn, n < ω,
then finitely many of them generate G in k steps.

It has been shown in [3] that for each ℵ0-saturated group G we have kG ≤ 3 and
there are some groups G with kG = 3. Moreover, it has been proved that kG ≤ 2 for
every group G which is either stable or commutative. In [4] we improved this result
by showing that kG ≤ 2 for each definably amenable group G.

Now we are going to introduce the notion of a generically symmetric group. It is
similar to the notion of a definably amenable group in the following sense: generical
symmetry of a group G implies that kG ≤ 2, and is implied both by stability and by
commutativity of G.

Definition 4.6 A group G is generically symmetric if for every definable X ⊆ G
the set X is left generic if and only if the set X is right generic.

Remark 4.7 If G is generically symmetric, then the following are equivalent for a
definable set X ⊆ G:
(1) X is left generic,
(2) X is right generic,
(3) G = A ·X ·B for some finite sets A,B ⊆ G.
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Proof. (1) ⇒ (2) Straightforward.
(2) ⇒ (3) We have G = X · B for some finite set B ⊆ G and it suffices to put

A = {e}.
(3)⇒ (1) Since G = A·X ·B, the set A·X is right generic. By generical symmetry

of G it is also left generic and we have G = C ·A ·X for some finite C ⊆ G. Finally,
the finite set C · A witnesses that X is left generic. ¤

Theorem 4.8 If G is an ℵ0-saturated generically symmetric group, then kG ≤ 2.

Proof. As in the proof of Theorem 4.1 we find n < ω and a weak generic formula
ϕ(x) ∈ L(G) with

(∗) ∅ 6= WGen(G) ∩ [ϕ(x)] ⊆ [Xn].

Next we choose a non-generic formula ψ(x) ∈ L(G) such that the formula ϕ(x)∨ψ(x)
is (left) generic. By generical symmetry of G it is also right generic and we have

G = {g1, . . . , gm} · (ϕ ∨ ψ)(G) = (ϕ ∨ ψ)(G) · {h1, . . . , hk}
for some g1, . . . , gm, h1, . . . , hk ∈ G.

Formulas {¬g · ψ(x) · h : g, h ∈ G} form a partial weak generic type over G (to
show this we use generical symmetry of G once again). We can extend it to some
p(x) ∈ WGen(G). Let j ∈ {1, . . . , m} be such that gj · (ϕ ∨ ψ)(x) ∈ p. Then
gj · ϕ(x) ∈ p since ¬gj · ψ(x) ∈ p. As a result, ϕ(x) ∈ g−1

j · p ∈ WGen(G) and (∗)
implies that q ∈ [Xn] for q = g−1

j · p. Fix a ∈ q(H).
Choose any g ∈ G. For some i ∈ {1, . . . , k} the formula (ϕ ∨ ψ) · hi belongs to

the type g · q. If ψ(x) · hi ∈ g · q, then

ψ(x) ∈ g · q · h−1
i = g · g−1

j · p · h−1
i and gj · g−1 · ψ(x) · hi ∈ p,

which contradicts the choice of p. So we have ϕ(x) · hi ∈ g · q. Therefore ϕ(x) ∈
g · q · h−1

i ∈ WGen(G), which implies that g · q · h−1
i ∈ [Xn] and g · a · h−1

i ∈ Xn(H).
Now we write g as (g ·a ·h−1

i )(hi ·a−1) and conclude that g ∈ X≤N(H) ·X≤N(H)−1 for
N < ω such that n ≤ N and tp(a · h−1

l /∅) ∈ [X≤N ] for each l ∈ {1, . . . , k}. Finally,
G ⊆ X≤N(H) ·X≤N(H)−1 implies that G = X≤N ·X−1

≤N and we are done. ¤
Lemma 1.6.6.10 from [6] states that every stable group is generically symmetric.
Therefore by the theorem above for each ℵ0-saturated stable group we have kG ≤ 2.
Another proof of this result may be found in [3] (Theorem 2.3). Theorem 4.8 can be
also used to show that for each ℵ0-saturated commutative group G we have kG ≤ 2
([3], Theorem 3.1). Finally, using Theorem 4.8 we can prove that if an ℵ0-saturated
group G has some complete generic types, then kG ≤ 2. It immediately follows from
the lemma below.

Lemma 4.9 If Gen(G) 6= ∅, then G is generically symmetric.

Proof. Suppose that ϕ(x) is a right generic formula in G. Then by Lemma 1.3 the
formula ϕ(x) is left weak generic. Moreover, by Lemma 1.5(1) from [4] we have

Gen(G) 6= ∅ ⇒ WGen(G) = Gen(G).
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Thus ϕ(x) is left generic and we are done. ¤

We shall examine the stable case in more detail. Theorem 2.4 from [3] says that in
the case where the group G is stable with bounded finite weight we get “kG = 1.5”
(which means that whenever G is covered by countably many 0-type-definable sets,
a union of finitely many of them is generic in G). The following example shows that
the assumption on weight is essential.

Example 4.10 We give an example of a stable group H with “kH > 1.5”. Namely,
let G = (Zω, +, {Pn : n < ω}), where Pn(G) = {f ∈ Zω : f(n) = 0}. Put

P∞ = G \
⋃
n<ω

Pn(G) =
⋂
n<ω

(G \ Pn(G))

and note that the set P∞ is 0-type-definable. Let H be an ℵ0-saturated elementary
extension of G. The group H is stable since it is an example of an abelian structure
(see Section 3.A in [8] for more details on abelian structures).

We shall prove that for every N < ω the set P∞(H)∪⋃
n<N Pn(H) is not generic

in H. Note that for each K < ω we have

(∀f0, . . . , fK ∈ G)(∃h ∈ G)
∧

k≤K

(PN+k(fk + h) ∧
∧

n<N

¬Pn(fk + h)).

To show this, choose arbitrary f0, . . . , fK ∈ G. Find an element h ∈ G such that
h(n) > max(|f0(n)|, . . . , |fK(n)|) for n < N and h(N + k) = −fk(N + k) for k ≤ K.
Then h has the required properties.

Since G ≺ H, for every K < ω we have

(∀f0, . . . , fK ∈ H)(∃h ∈ H)
∧

k≤K

(PN+k(fk + h) ∧
∧

n<N

¬Pn(fk + h)),

which implies that the set P∞(H) ∪ ⋃
n<N Pn(H) is not generic in H. Thus there

exists a countable family of 0-type-definable sets covering H such that unions of its
finite subfamilies are all non-generic in H.
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