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Abstract. We define the notion of Euler characteristic for defin-
able quotients in an arbitrary o-minimal structure and prove some
fundamental properties.

1. Introduction

Let M be an arbitrary o-minimal structure expanding a dense lin-
ear order without end points. Given a definable set X in M and a
definable equivalence relation E on X, we call X

E
a definable quotient.

As was pointed out in [6], o-minimal structures in general do not ad-
mit elimination of imaginaries. However, in [2] the following was asked:

Question Is it true that for every definable quotient X
E

there exist
a definable set D, possibly over additional parameters, and a defin-
able surjection f : X → D such that for every x1, x2 ∈ X, x1Ex2 iff
f(x1) = f(x2)? We call such a D a coding set for X

E
.

As we know, ifM expands an ordered group and at least one nonzero
element is named then every definable quotient has a coding set defined
over the same set of parameters. It was also shown in [2] that if X

E
ad-

mits a definable group structure then it has a coding set (possibly, over
additional parameters). Recently, Johnson found an ingenious exam-
ple which shows that not every definable quotient has a coding set (see
[3]), so o-minimal structures in general do not eliminate imaginaries,
even in this weaker sense.

Thus, there is a need to develop a better understanding ofMeq which
goes beyond the study of definable sets.

Two important integral invariants in o-minimal structures, associ-
ated to definable sets are dimension and Euler characteristic (see for
example [7] for its beautiful applications for definable groups). The def-
inition of dimension for definable quotients was carried out in [5] and
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[4]. The goal of this note is to treat Euler characteristic in a similar
fashion.

Recall, [1], that in o-minimal structures, the definition of the Euler
characteristic, χ(U), for a definable set U is based on the cell decom-
position theorem, and is defined by

χ(U) =
∑
C∈C

(−1)dim(C).

where C is any partition of U into cells.

Notation Given a definable quotient U
E

, and u ∈ U , we write [u]E
(or sometimes just [u]) for its E-equivalence class. We will denote by
χeq(U

E
) its Euler characteristic, whose definition we describe below.

The main idea. Our initial expectation was that the extension
of the definition of Euler characteristic from definable sets to definable
quotients will be purely combinatorial, based on the following expected
equality, in the simplest case, where all classes in U have the same Euler
characteristic k.

χ(U) = χeq(
U

E
) · k

However, this equality (which indeed, we prove in 3.1) does not help
us to determine χeq(U

E
) in the case k = 0. We will bypass this difficulty

by applying first a uniform version of the cell decomposition theorem
and replacing the original quotient U

E
by another one, in which every

class is a cell, so has nonzero Euler characteristic.

Our goal then in this note is to define χeq and prove its fundamental
properties. First some definitions:

Definition 1.1. For a definable quotient U
E

, a subset Y ⊆ U
E

is called
definable if its pullback

Y = {x ∈ U : [x]E ∈ X}
definable set.

For X
E

and Y
F

definable quotients, a function f : X
E
→ Y

F
is called

definable if its pull-back to X × Y ,

f = {(x, y) ∈ X × Y : f([x]) = [y]}
is a definable set.

For U
E

a definable quotient and Y ⊆ U
E

a definable set, we will write

χeq(Y ) to mean χeq( Y
E′

) where E ′ is the restriction of E to the set Y .
We will prove:
1. If every E-class is a singleton then χeq(U

E
) = χ(U). Namely, our

definition of χeq extends that of χ.
2. If U

E
is a definable quotient and |U

E
| = 1 then χeq(U

E
) = 1.
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3. If U
E

is a definable quotient, Y1, Y2 ⊆ U
E

definable sets, then

χeq(Y1 ∪ Y2) = χeq(Y1) + χeq(Y2)− χeq(Y1 ∩ Y2)
4. Let U

E
and V

F
be definable quotients and let f : U

E
→ V

F
be

definable surjective function, such that for every [v] ∈ V
F

we have

χeq(f−1([v̄]F )) = e, then χeq(U
E

) = χeq(V
F

) · e. In particular, χeq is
invariant under definable bijections.

We also prove additional properties of χeq such as definability in
parameters..

2. Euler Characteristic of Imaginaries

2.1. Preliminaries. We fix an o-minimal expansionM = 〈M,<, · · · 〉
of a dense linear order without endpoints. All definability below is
taken in M.

The first clause of the claim below is just [1, Prop. 4.2.10].

Claim 2.1. Let {Xt : t ∈ T} be definable family of subsets of Mn,
e ∈ Z, then set Te := {t ∈ T : χ(Xt) = e} is definable. Moreover, there
exists a bound k such that for every t ∈ T , |χ(Xt)| ≤ k

Let us prove the last clause: Consider a cell decomposition C of the
set

X = {(t, x) ∈ T ×Mn : x ∈ Xt}.
Note that if C ⊆ T × Mn is a cell, then for each t ∈ T , the set
Ct = {x ∈ Mn : (t, x) ∈ C} is either a cell or empty. Thus, for
every t ∈ T the decomposition C induces a decomposition of Xt into
(possibly empty) cells {Ct : C ∈ C}, with at most as many cells as in
C. By definition, it follows that |χ(Xt)| ≤ |C|. �

Corollary 2.2. Let f : U →Mk be a definable function for a definable
set U ⊆Mn. If χ(f−1(a)) = e for each a ∈ f(U), then

χ(U) = e · χ(f(U)).

Proof. Define π1 : graph(f) → f(U). For every a ∈ f(U), π−1(a) =
f−1(a)× {a}. We have

χ(π−1(a)) = χ(f−1(a)× {a}) = χ(f−1(a)) = e.

So by [1, 4.2.11] χ(graph(f)) = e · χ(f(U)). Since U and graph(f) are
in definable bijection we get χ(U) = e · χ(f(U)). �

Now if we define π2 : graph(f) → U , π2 is a bijection hence, by
[1, Th. 4.2.4] we get that χ(U) = χ(graph(f)) = e · χ(f(U)). �

Definition 2.3. For a definable quotient U
E

we define

UE
(k) = {u ∈ U |χ([u]E) = k}

and omit the superscript E when it is clear from the context.
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We will use a uniform version of cell decomposition theorem (see
[2, Lemma 9.1]).

Theorem 2.4. Let {Xt : t ∈ T} be a definable family of subsets of
Mn. Then there are k ∈ N and definable families of sets in Mn

{X1,t : t ∈ T}, ..., {Xk,t : t ∈ T}
such that:
(i) Each Xit is either a cell or the empty set.
(ii) For every a ∈ T , Xa = X1,a t ... tXk,a, and
(iii) For every a, b ∈ T , if Xa = Xb then Xi,a = Xi,b for i = 1, . . . , k.

By applying the above proposition to the family of equivalence classes
in a definable quotient we obtain:

Corollary 2.5. Let E be a definable equivalence on a definable set
U ⊆Mn. Then there are k ∈ N and definable families of sets

{C1,u : u ∈ U}, ..., {Ck,u : u ∈ U}
such that:
(i) Each Ci,u is either a cell or the empty set
(ii) For every u ∈ U , [u]E = C1,u t ... t Ck,u, and
(iii)For every u, v ∈ U , if [u]E = [v]E then C1u = C1,v, ..., Ck,u = Ck,v.

2.2. The definition of Euler characteristic for imaginaries. In
order to motivate our definition, assume first that the quotient E

U
has

a coding set D. Namely we have a definable surjection f : U → D
s.t. f(u1) = f(u2) iff u1Eu2. Our definition should imply χeq(U

E
) =

χ(D). Assume in addition that every E-class has Euler characteristic
k. Then, by Theorem 2.2, we have k · χ(D) = χ(U) and hence we
expect χeq(U

E
) = χ(D) = χ(U)/k. We would have liked to use this

simple calculation as a basis for our definition of χeq and define

χeq(
U

E
) =

∑
k

χ(U(k))

k

but a problem arises when k = 0, namely if U(0) 6= ∅.
To bypass this problem we will use the uniform cell decomposition

theorem and replace each definable quotient by one in which all classes
are cells and hence of nonzero Euler characteristic.

Theorem 2.6. Let U
E

be a definable M-quotient. Then there is a de-

finable quotient V
F

and a definable bijection f : U
E
→ V

F
such that every

equivalence class of F is a cell in V .

Proof. By 2.5 there are k definable families

{C1,u : u ∈ U}, ..., {Ck,u : u ∈ U}
such that:
(i) Each Ciu, i = 1, ..., k is either a cell or the empty set
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(ii) For every u ∈ U , [u] = C1u t ... t Cku and
(iii) For every u, v ∈ U , if [u]E = [v]E then Ci,u = Ci,v, for i = 1, . . . , k.

We now choose, for each u ∈ U , the first i = 1, . . . , k for which Ci,u
is nonempty, and let V be the union of all these Ci,u’s, and F be the
restriction of E to V . Notice that the choice of Ci,u depends only on
[u], so each class [u] will contain a single cell. The map which sends
a class [u] to the first Ci,u which is nonempty is a definable bijection
between U

E
and V

F
. �

We will also need a uniform version of the above.

Definition 2.7. Assume that {Ut : t ∈ T}, {Et : t ∈ T} are definable
families, such that Et is an equivalence relation on Ut for all t ∈ T .
Then we say that {Ut

Et
: t ∈ T} is definable family of quotients.

Similarly to the proof of Theorem 2.6 one obtains:

Theorem 2.8. Let {Ut

Et
: t ∈ T} be a definable family of M-quotients.

Then there exists a definable family of quotients {Vt
Ft

: t ∈ T} and a

definable family of functions {ft : t ∈ T} such that
(1) For each t ∈ T , every Ft-class is a cell.
(2) For each t ∈ T , ft : Ut

Et
→ Vt

Ft
is a definable bijection.

We are now ready to formulate the definition of χeq(U
E

).

Definition 2.9. Euler characteristic for definable quotients.

(1) Let V
F

be a definable M-quotient such that every F -class is a
cell, then define:

χeq(
V

F
) := χ(V(1))− χ(V(−1)).

(2) Let U
E

be a definable quotient. Take some definable bijection

f : U
E
→ V

F
such that [v]F is cell for every v ∈ V and define:

χeq(
U

E
) := χeq(

V

F
).

Note, the above definition agrees with our initial intuition since

χ(U(1))− χ(U(−1)) =
χ(U(1))

1
+

χ(U(−1))

−1 =
∑

k=1,−1
χ(U(k))

k
.

It is left to see that Clause (2) gives a well defined notion of χeq(U
E

),
independent of the choice of V and F . This is the content of the next
section.

2.3. χeq is well defined. We first prove a result about the Euler char-
acteristic of definable sets.

Proposition 2.10. Assume V
F
, W
H

are definable M-quotients, such that
for every v ∈ V χ([v]F ) = m, for every w ∈ W , χ([w]H) = n and
G : V

F
→ W

H
is a definable bijection. Then χ(V ) · n = χ(W ) ·m
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Proof. Let

Ḡ := {(v, w) ⊆ V ×W | G([v]F ) = [w]H}
If we define π1 : Ḡ→ V, π1(v, w) = v, then

π−11 (v0) = {(v0, w) | G([v0]F ) = [w]H} ⊆ {v0} ×W.
Then, we have (v0, w) ∈ π−11 (v0) iff [w]H ∈ G([v0]F ), hence
π−11 (v0) = {v0} ×G([v0]F ). By assumption we get

χ(π−11 (v0)) = χ(G([v0]F )) = n.

This equality is true for all v0 ∈ V , so by 2.2, applied to π1,

(1) χ(Ḡ) = n · χ(V ).

Now if we look at G−1, then by symmetry we obtain

(2) χ(Ḡ) = m · χ(W ).

By (1) and (2) we get

n · χ(V ) = χ(Ḡ) = m · χ(W ).

�
The following clearly implies that our notion of χeq is well defined.

Theorem 2.11. Assume that V ⊆Mn and W ⊆M r are definable sets.
Let V

F
and W

H
be definable quotients, such that every E-equivalence class

and every F -equivalence class is a cell. Assume that G : V
F
→ W

H
is a

definable bijection, then

χ(V(1))− χ(V(−1)) = χ(W(1))− χ(W(−1))

Proof. Since every class is a cell, then by definition of Euler charac-
teristic for sets we have: χ([v]F ) = ±1 and χ([w]H) = ±1. Then
V = V(1)

⊔
V(−1) and W = W(1)

⊔
W(−1). For k, l ∈ {±1} define:

V l
k := {v ∈ V |χ([v]F ) = k ∧ χ(G([v]F )) = l}.

Since G is a bijection, for every w ∈ W , G−1([w]H) is a single F -class
so we can define:

W l
k := {w ∈ W |χ(G−1([w]H)) = k ∧ χ([w]H) = l}.

Notice that the restriction of G to
V l
k

F
induces a bijection with

W l
k

H
. Let

Gk,l denote this restriction.

Gk,l :
V l
k

F
→ W l

k

H
.

By Proposition 2.10

l · χ(V l
k) = k · χ(W l

k),

so χ(V l
k) = χ(W l

k) if and only if k = l (and otherwise they are opposite).
Now, V(k) = V 1

k t V −1k and W(k) = W k
1 tW k

−1, so we obtain.

χ(V(1))− χ(V(−1)) = χ(V 1
1 ) + χ(V −11 )− (χ(V 1

−1) + χ(V −1−1 )) =
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χ(W 1
1 )− χ(W−1

1 ) + χ(W 1
−1)− χ(W−1

−1 ) = χ(W(1))− χ(W(−1)).

�
This ends the proof that χeq is well defined.
We may now conclude:

Proposition 2.12. If f : U1

E1
→ U2

E2
is a definable bijection then

χeq(
U1

E1

) = χeq(
U2

E2

)

Proof. By definition of χeq we associate to each Ui

Ei
quotients whose

classes are cells, and apply Theorem 2.11. �
We end this section with the following simple observation:

Claim 2.13. Let U
E

be a definable quotient such that every class is a
cell. Then:

χeq(
U

E
) =

∑
k=±1

k · χ(U(k)).

2.4. Uniform definability of χeq.

Proposition 2.14. Let {Ut

Et
: t ∈ T} be a definable family of quotients.

Then, for every integer e the set {t ∈ T : χeq(Ut

Et
) = e} is definable.

In particular, if {Xt ⊆ U
E
, t ∈ T} is definable family of subsets of U

E
,

then for every integer number e the set {t ∈ T : χeq(Xt) = e} is
definable.

Proof. Using Theorem 2.8, we may assume that every equivalence class
in Ut is a cell.

Claim 2.15. Let {Ut

Et
: t ∈ T} be family of definable quotients where

every equivalence class is a cell, then there is p ∈ Z such that for every
t ∈ T, |χeq(Ut

Et
)| ≤ p

Proof. By definition, the families {Ut : t ∈ T} and {Et : t ∈ T} are
definable, hence by Claim 2.1, {Ut(1) | t ∈ T}, {Ut(−1) | t ∈ T} are defin-
able families of sets. Hence by 2.1 there exist bound k1 for |χ(Ut(1))|
and bound k2 for |χ(Ut(−1))|, hence k1 +k2 is a bound for |χeq(Ut

Et
)|. �

We now return to the proposition:
By using the construction from previous claim let us build exactly

the formula that define the set {t ∈ T : χeq(Ut

Et
) = e}. Let us define

ϕ+
e (t) := {t ∈ T : χ(Ut(1)) = e},

ϕ−r (t) := {t ∈ T : χ(Ut(−1)) = r},
then

µe(t) :=
∨

−p≤k,k−e≤p

ϕ+
k (t) ∧ ϕ−k−e(t)

is the desired formula.
This ends the proof of Proposition 2.14. �
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2.5. Properties of χeq. Note that if E is the equality relation on U
then every class is a singleton, so U = U(1) and hence χeq(U

E
) = χ(U).

This shows that our definition of χeq is indeed an extension of χ. More
generally we can now conclude:

Lemma 2.16. If U
E

is a definable M-quotient and Y is coding set of
U
E

, then χeq(U
E

) = χ(Y ).

Proof. Since have a definable bijection between U
E

and Y
=

, we can apply
Proposition 2.12 together with the above observation and conclude
χeq(U

E
) = χ(Y ). �

In particular, we have:

Claim 2.17. Let U
E

be a definable M-quotient. If U
E

is a singleton then

χeq(U
E

) = 1.

Theorem 2.18. Assume U
E

definable quotient. Y1, Y2 ⊆ U
E

definable
sets. Then

χeq(Y1 ∪ Y2) = χeq(Y1) + χeq(Y2)− χeq(Y1 ∩ Y2).

Proof. It is sufficient to prove the result when Y1 ∩ Y2 = ∅. By 2.6, we
may assume that every class is a cell.

Since E is equivalence relation and Y1, Y2 ⊆ U
E

, are disjoint sets,

the corresponding subsets of U , Y1 and Y2 are also disjoint. It easily
follows, for k = ±1, that

Y1(k) ∪ Y2(k) = (Y1 ∪ Y2)(k).
By definition of χeq (and Claim 2.13) we can write:

χeq(Y1) + χeq(Y2) =
∑

k=1,−1

kχ(Y1(k)) +
∑

k=1,−1

kχ(Y2(k)) =

=
∑

k=1,−1

k(χ(Y1(k)) + χ(Y2(k))) =
∑

k=1,−1

k(χ(Y1 ∪ Y2)(k)) = χeq(Y1 ∪ Y2).

�
The following is an analogue of Theorem 2.2 for Euler characteristic

in quotients.

Theorem 2.19. Assume U
E
, V
F

are definable quotients. Assume f :
U
E
→ V

F
is a definable surjective function, such that for every [v]F ∈

f(U
E

), χeq(f−1([v]F )) = e, then

χeq(
U

E
) = χeq(

V

E
) · e.

Proof. Because definable bijections between quotients preserve χeq we
may assume from now on that each E-class in U and F -class in V is a
cell.
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Remark: Assume every E-class is a cell of Euler characteristic k ∈
{±1} (same k for all classes). Then, by definition

χeq(
U

E
) = k · χ(U(k)) = k · χ(U).

We first prove the following special case.

Claim 2.20. For U, V and f as in the theorem, assume in addition
that every E-class is a cell of Euler characteristic k (so U = U(k)) and
every F -class is a cell of Euler characteristic l (so V = V(l)).
Then

χeq(
U

E
) = χeq(

V

F
) · e.

Proof. By definition χeq(f−1([v]F )) = χeq(f
−1([v]F )

E′
) where E

′
is the re-

striction of E to f−1([v]F ). By the remark above,

χeq(f−1([v]F )) = k · χ(f−1([v]F )),

hence for every v ∈ V , χ(f−1([v]F )) = k · e.
Consider f ⊆ U × V . For every u ∈ U , we have

{v ∈ V : (u, v) ∈ f} = f([u]E)

(the set of elements in the class f([u]E)). Also, for every v ∈ V we
have

{u ∈ U : (u, v) ∈ f} = f−1([v]F ).

By applying 2.2 to both projection maps (from f onto U and V ) we
have

χ(f) = χ(U) · χ(f([u]E)) = χ(U) · l
and

χ(f) = χ(V ) · χ(f−1[v]F ) = χ(V ) · k · e.
We therefore have: χ(U) · l = χ(V ) · k · e, hence (k, l = ±− 1)

k · χ(U) = l · χ(V ) · e.

Applying the Remark above once more we conclude

χeq(
U

E
) = χeq(

V

F
) · e.

This ends the proof the Claim 2.20. �
As a corollary one gets another special case of the theorem:

Claim 2.21. For U, V and f as in the theorem, assume in addition
that U = U(k), for a fixed k ∈ {±1}. Then

χeq(
U

E
) = χeq(

V

F
) · e.
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Proof. Denote U ′ = f−1(
V(1)
F

), U ′′ = f−1(
V(−1)

F
). By 2.20 and 2.18 we

get

χeq(
U

E
) = χeq(U ′) + χeq(U ′′) =

= e·χeq(
V(1)
F

)+e·χeq(
V(−1)
F

) = e·(χeq(
V(1)
F

)+χeq(
V(−1)
F

)) = e·(χeq(V
F

)).

�
Proof of Theorem 2.19: Consider first f−1([v]F ) for some v ∈ V and
let

p = χeq(f−1([v]F ) ∩
U(1)

E
).

Because χeq(f−1([v]F )) = e and U
E

=
U(1)

E
t U(−1)

E
, we get

χeq(f−1([v]F ) ∩
U(−1)

E
) = e− p.

By 2.15, there exist T ∈ Z s.t. |χeq(f−1([v]F ) ∩ U(1)

E
)| ≤ T, for all

v ∈ V.
For all −T ≤ p ≤ T , let

V p := {v ∈ V |χeq(f−1([v]F ) ∩
U(1)

E
) = p}

Up
(1) := {u ∈ U(1)|f([u]E) ∈ V p}

Let fp1 :
Up
(1)

E
→ V p

F
be the restriction of f to

Up
(1)

E
. By 2.21 we get

χeq(
Up
(1)

E
) = p · χeq(V

p

F
).

Since T is an upper bound on |χeq(f−1([v]F ) ∩ U(1)

E
)| we get

U(1)

E
=

⊔
−T≤p≤T

(
Up
(1)

E
).

χeq(
U(1)

E
) =

T∑
p=−T

χeq(
Up
(1)

E
) =

T∑
p=−T

p · χeq(V
p

F
)

For every p ∈ T and v ∈ V we have

χeq(f−1([v]F ) ∩
U(−1)

E
) = e− p⇔ χeq(f−1([v]F ) ∩

U(1)

E
) = e.

Thus, the set of all v ∈ V such that χeq(f−1([v]F ) ∩ U(−1)

E
) = e − p is

exactly V p. Again, by Claim 2.21,

χeq(
Up
(−1)

E
) = (e− p) · χeq(V

p

F
).
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Finally,

χeq(
U

E
) = χeq(

U(1)

E
) + χeq(

U(−1)

E
) =

T∑
p=−T

χeq(
Up
(1)

E
) +

T∑
p=−T

χeq(
Up
(−1)

E
) =

=
T∑

p=−T

p · χeq(V
p

F
) +

T∑
p=−T

(e− p) · χeq(V
p

F
) =

= e · (
T∑

p=−T

χeq(
V p

F
)) = e · χeq(V

F
)

This ends the proof of Theorem 2.19 �

Definition 2.22. Let U ⊆ M r, V ⊆ M r. E, F definable equivalence
relations on U and V , respectively. We define E × F on U × V by

(u, v), (u′, v′) ∈ E × F ⇔ uEu′ ∧ vFv′.
Note that U

E
× V

F
is in definable bijection with U×V

E×F , so we identify

the two objects, and view U
E
× V

F
as a definable quotient.

Using this identification, Theorem 2.19 immediately implies:

Theorem 2.23. Assume U
E
, V
F

are definable M-quotients with V ⊆M t

and U ⊆M r. Then

χeq(
U

E
× V

F
) = χeq(

U

E
) · χeq(V

F
)

3. Additional properties of χeq

Proposition 3.1. Assume U
E

is a definable quotient. If every E-class

has Euler characteristic k, then χ(U) = k ·χeq(U
E

). In particular, χ(U)
is a multiple of k.

Note that the “in particular” statement in the proposition concerns
only the Euler characteristic of definable sets, but does not seem to
immediately follow from the existing theory, without assuming that U

E
has a coding set.

Proof. There is definable bijection f : U
E
→ V

F
such as every equivalence

class [v]F is a cell, and

χeq(
U

E
) = χ(V(1))− χ(V(−1)).

We will show
χ(U) = (χ(V(1))− χ(V(−1))) · k.

Consider the following restrictions of f:

1. f1 : U ′

E
→ V(1)

F
when U ′ = {u ∈ U | f([u]E) ∈ V(1)

F
}
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2. f2 : U ′′

E
→ V(−1)

F
when U ′′ = {u ∈ U | f([u]E) ∈ V(−1)

F
} .

Since V
F

=
V(1)
F
t V(−1)

F
, it follows that

U

E
=
U ′

E
t U

′′

E
.

By 2.10 we get

χ(U ′) · 1 = χ(V(1)) · k and χ(U ′′) · (−1) = χ(V(−1)) · k,
so

χ(U) = χ(U ′)+χ(U ′′) = χ(V(1))·k−χ(V(−1))·k = (χ(V(1))−χ(V(−1)))·k
as desired. �

Finally, we note that our originally intended definition of χ(U
E

), works
well in the case where no class had Euler characteristic 0.

Proposition 3.2. Let U
E

be a definable quotient. If there is no equiv-
alence class [u]E such that χ([u]E) = 0, (i.e. U(0) = ∅), then

χeq(
U

E
) =

∑ χ(U(k))

k

Proof. Since U
E

= tk 6=0
U(k)

E
it is enough to show for each k 6= 0 that

χeq(
U(k)

E
) =

χ(U(k))

k
. This is immediate from Proposition 3.1. �
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