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Abstract. We give uniform companions for theories of partial differential and large fields of characteristic
0 that are expanded by relations and constants which are independent from the derivations. This is done by

generalising the techniques presented in [Tre05] and the notion of large fields. As applications we provide an
alternative uniform companion for partial differential henselian valued fields as well giving model companions
for theories of partial differential with several orderings and valuations. We also apply our results to provide

model complete theories of partial differential valued fields enriched by a predicate for a subfield of the
residue field.

1. Terminology, Notation and Conventions

Let LRi := {+,−, ·, 0, 1} and L an extension of LRi by constant and relation symbols. Let also N ∈ N,
∂1, . . . , ∂N be unary function symbols and ∂̄ := (∂1, . . . , ∂N ).

We shall denote Lval := LRi(|).
By an partial differential field (in N ∈ N derivations) we mean a differential field with N ∈ N

commuting derivations.

Definition 1.1. By a L-field we mean a L-structure that expands a field. Similarly, a differential L-field
is a L(∂̄)-structure that expands a differential field.

For any given language L′, a L′-formula is a formula of the language of L and an ∃-L′-formula is a
formula which,in prenex normal form, has only one block of quantification which are existential. Also for
any L′-theory T , we denote by Mod(T ) the class of models of T . Given a structure N in some language
L′′ extending L′ we write N �L′ for the reduct of N to L′. If M is substructure of N (in L′′), we write
M ≺L′ N to mean that M �L′ embeds elementarily into N �L′ .

1.1. Algebraic Geometry Terminology. The terminology from algebraic geometry shall be that used
in [FJ08]. Therefore, for any field K, a K-variety shall be a separated reduced irreducible scheme of finite
type over K. A K-variety V is absolutely irreducible if for each V ×K K is a K-variety where K is the
algebraic closure of K. We denote by An the affine n-space (n ∈ N) over the algebraic closure of K. Also
for any K-variety V let VReg denote the regular of V . For moer information on K-varieties the reader is
referred to [FJ08] although note that there K-varieties are also irreducible.

2. Introduction

In [Tre05] M. Tressl presented what he called an uniform companion of all model complete theories of
large and partial differential (i.e. in several commuting derivations) fields in characteristic 0. Recall that a
large field K is one such that every smooth K-curve with K-rational point has infinitely many K-rational
points. An uniform companion can be defined in the following way

Definition 2.1. Let M be a class of fields in some language L extending LRi and let MDiff,N be the class
of all partial differential L(∂̄)-fields whose L-reducts are in M. We say that a theory UN in a language
extending L(∂̄) is a uniform companion for MDiff,N if for each model complete L-theory T such that
Mod(T ) ⊆ M and each extension T1 by definitions and constants of T that contains T we have

• If there T1 a model companion of another theory T0 in the language of T1, then T1 ∪ UN a model
companion of T0 ∪DFN .

• Moreover if T1 a model completion of T0, then T1 ∪ UN a model companion of T0 ∪DFN .
• If T1 has quantifier elimination then so does T1 ∪ UN
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• If T is complete and M |= T , then T1 ∪ UN ∪ diag(C) is complete, where C is the L(∂̄)-substructure
generated by ∅ in M (so C is the L(∂̄)-substructure of M generated by cM, c a constant symbol of
L).

Then the theorem proved by Tressl in [Tre05] is the following

Theorem 2.2. [Tre05, Th. 7.2] For each N ∈ N, there exists a uniform companion UCN in the language
LRi(∂̄) := LRi(∂1, . . . , ∂N ) for the large and partial differential fields with N commuting derivations in
charactersitic 0.

This work was followed by N. Guzy who, in [Guz06], found an uniform companion for the class of partial
differential henselian valued fields with N commuting derivations for each N ∈ N (where the valuation is
independent from the derivations) in the language Lval(∂1, . . . , ∂N ) where | is a binary relation symbol.
He and F. Point subsequently also found uniform methods for companioning theories of topological field
structures with one derivative (known as ordinary differential fields) in [GP10] which satisfy a condition that
generalises the henselian property for a more general class of definable field topologies.

One may notice that henselian valued fields are themselves large fields (cf. [Pop00, 1.1]). It can also
be shown that the fields to which the results of [GP10] apply are also large. This leads to the question of
whether there is general over-arcing method that would subsume all three of these cases using simply large
fields.

This paper presents work in that direction. We show that the methods presented by Tressl in [Tre05] and
the notion large fields can be generalised to expansions of large fields by relations and constants to obtain
uniform companions for certain classes of such field structures. Henselian valued fields and the other examples
(of t-theories) covered in [GP10] shall all fit into our framework. Therefore, the results here generalise both
[Tre05] and [Guz06] as well generalising the applications mentioned in [GP10]. It maybe possible that the
results presented here may generalise [GP10] for topological fields entirely but this is yet to be proved (or
refuted for that matter).

The main idea in [Tre05] is to construct UCN in such a way that for any model K, satisfiability certain ∃-
LRi(∂̄)-sentences with parameters from K can be reduced to where it has a ”regular algebraic realization” in
K. These certain ∃-LRi-sentences are in fact those that assert the existence of vanishing points of differential
prime ideals of differential polynomials. More precisely, the axioms of UCN state that for a model K the
following holds:

(∗) Let G := {f1, . . . , fm} ⊆ K{Ȳ } (Ȳ := (Y1, . . . , Yn)) be a characteristic set of a differential
prime ideal p and VG the irreducible K-variety defined by the system

f1 = . . . = fm = 0,H(f1, . . . , fm) ̸= 0

where the terms ∂i11 . . . ∂iNN Yj (1 ≤ j ≤ N, i1, . . . , iN ∈ N) have been replaced by standard
variables. If VG has a regular K-rational point, then there exists a vanishing point of p in
K.

That UCN is a uniform companion for large differential fields is deduced in [Tre05] from the following
theorem.

Theorem 2.3. [Tre05, Theorem 6.2]

(I) Given two differential fields K and L of characteristic 0 who both model UCN and that have a
common differential subring A such that K ≡∃,A,LRi

L. Then K ≡∃,A,LRi(∂̄) L.

(II) If K is a differential field of characteristic 0 that is large as a pure field then there exists a differential
field extension L of K that is an elementary extension in LRi and L |= UCN

Part (I) of this theorem follows by reducing the satisfiability of quantifier free formulae LRi (respectively
LRi(∂̄)) to those that define vanishing locus of (respectively, differential) prime ideal of (respectively, differ-
ential) polynomials. By Robinson’s test for model completeness (and similar for quantifier elimination), 2.3
gives that UCN transfers model completeness and quantifier elimination.

In the proof of part (II) the importance of the K-rational point of VG being regular in (∗) is seen. Indeed
if K is also a large field then the K-rational points are the K-rational points of VG be Zariski-dense. Hence
the compactness theorem and the structure theorem [Tre05, Theorem 1] give us a differential field extension
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L of K which is LRi-elementary and K{Ȳ }/p ⊆ L. Then, since large fields are LRi-axiomatisable, (II)
is obtained by transfinite induction. (II) ensures the consistency of UCN and transference of embeddings
required for model companions and completions. Thus Theorem 2.3 gives Tressl’s Main Theorem 2.2.

Similarly to [Tre05], the main idea in this paper will be to construct uniform companions for classes of
differential L-fields in which certain ∃-L(∂̄)-sentences with parameters are satisfied if they have a ”regular
algebraic” realisation. For such theories we shall prove a generalisation of Theorem 2.3. These certain ∃-
L(∂̄)-sentences are ones that say that “there exists a vanishing point of a given differential prime ideal of
differential polynomials in a given ∃-L-definable set”. More precisely, give a set B of ∃-L-formulae we define
an L(∂̄)-theory UCN (B) that says for any model M |= UCN (B) expanding some differential field K the
following holds

(†) Let λ(x1, . . . , xn) ∈ B and G and p as in (∗). If VG has a regular K-rational point whose
coordinate that correspond to (Y1, . . . , Yn) satisfy λ in M are Zariski-dense then p has a
vanishing point in M which satisfies λ.

To obtain an analogy of Theorem 2.3 we need to be able to reduce any ∃-L-formula to one that defines
a the (regular) vanishing points of a (respectively, differential) prime ideal that also satisfying some λ ∈ B.
To do this we need to be able to reduce the new relations and their complements to sets defined by formulae
from B. To do this we introduce the following notion of covers.

Definition 2.4. Let C be the set of constants in L and B a set of L-formulae. We say B induces a cover
in a class M on differential L-fields if for any two M1,M2 ∈ M and any relation symbol R(x̄) ∈ L there
exists a set AR (resp. A¬R) of tuples (ψ,φ) where ψ is a ∃-LRi(C)-formula and φ ∈ B such that

RMi =
∪

(ψ,φ)∈AR
∃ȳ(ψ(Mi, ȳ) ∩ φ(Mi, ȳ)) (resp. (RMi)c =

∪
(ψ,φ)∈A¬R

∃ȳ(ψ(Mi, ȳ) ∩ φ(Mi, ȳ)))

for i = 1, 2 (here (RMi)c is the complement of RMi).

For example, in section 5.1 we show that certain sets of formulae that define basic open sets of valued
fields and ordered fields induce covers for the class of these structures (cf. 5.1). This notion of covers gives
us the following analogy of 2.3.

Theorem 2.5 (Theorem I). Whenever M,N are two differential L-fields that model UCN (B) and A a
common L(∂̄)-substructure with universe A, if M ≡∃,A,L N and B induces a cover on {M,N}, then
M ≡∃,A,L(∂̄) N .

The purpose of requiring the K-rational point to be regular in (†) is similar to that in [Tre05]. Indeed,
as we shall see in sections 6.2, 1 and ??, (cartesian products of) open sets of a henselian valued fields and
pseudo real closed fields satisfy the following generalised notion of largeness.

Definition 2.6. Let K be a field. A subset A ⊆ Km (m ∈ N) is large over K if for each absolutely
irreducible affine K-variety V ⊆ An with n ≥ m and each natural number r ∈ N, where rm ≤ n, with a
regular K-rational ā such that ā ∈ Ar ×Kn−rm then the set V ∩ (Ar ×Kn−rm) is Zariski-dense in V . If
L is a language extending LRi, M an L-structure extending K. If each formula λ of a set B of L-formulae
defines a large set in M over K, then we shall say that B is large in M.

Thus by using compactness, [Tre02, Theorem 1] and transfinite induction in the same way that Tressl did
we shall obtain the following analogy of Theorem 2.3.

Theorem 2.7 (Theorem II’). Every differential L-field M of characteristic 0 in which B is large can be
extended to a model N of UCN (B) (expanding a partial differential field), such that N is an elementary
extension of M in the language L.

Putting 2.5 and 2.7 shall give us a uniform companion in the following sense.

Theorem 2.8 (Main Theorem). Let L be a language extending LRi by relations and constants and let B be
a set of ∃-L-formulae. Then UCN (B) is an uniform companion for any class M of differential L-fields in
characteristic 0 in which B induces a cover and is large in each M ∈ M

In practice all of our sets B of formulae that we shall consider can be thought of as being “generated” by
smaller set S of L-formulae in the following sense: if for each φ ∈ S we introduce a new predicate symbol
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Pφ of arity equal to the number of free variables in φ which is interpreted as the set defined φ, then B can
be thought of as the is the set of positive conjunctions

∧n
i=1 ψi(x̄) (n ∈ N) where for each 1 ≤ i ≤ n is either

x = x or a literal involving Pφ for some φ ∈ S. We shall denote the set generated by S by ⟨S⟩. With this
notation it is clear that UCN (⟨∅⟩) = UCN and so indeed 2.8 does generalise 2.2.

We shall show that 2.8 generalises [Guz06], by showing that UCN (⟨1|x,¬1|x⟩) is a uniform companion
for henselian valued fields in 8.2. This shall be because the set ⟨1|x,¬1|x⟩ induces a cover for the class of
henselian valued fields and since these define open sets they are also large in henselian valued fields.

We shall also apply our results to obtain model companions for theories of differential fields with several
independent valuations and/or orderings (which are also independent from the derivations). Such theories
were already handled in [GP10] in case of one derivations and case of differential fields with several orderings
and one derivative was initially addressed by C. Rivière in [Riv06].

We shall give one more application of the main theorem which shall concern certain two-sorted valued
field structure where the second sort has the residue field and a subfield. Such a structure we shall call a
valued field with a residual subfield. In section 8.3 we use our main result is provide model companions
for certain partial differential valued fields with a residual subfield whose valued field sort and field pair sort
are models of model complete theories.

We shall only consider (differential) fields of characteristic 0 in this paper and, hence, all (differential) fields
in this paper shall be assumed to be of characteristic 0.

We note that these are results that were obtained in the author’s PhD thesis [Sol14]. However, the
terminology from [Sol14] has been slightly modified here for better exposition

3. Preliminaries For Differential Algebra

In this section we recall notions from basic differential algebra; mainly we explain what a characteristic
set is in the differential setup. Our main source here is Kolchin’s book [Kol73] on differential algebra and
algebraic groups.

Let R be a differential ring in N pairwise commuting derivations ∂1, ..., ∂N . Let Ȳ := (Y1, ..., Yn) be a
tuple of n ∈ N indeterminates over R and let

D := {∂i11 ...∂
iN
N | i1, ..., iN ∈ N0}

be the free abelian monoid generated by {∂1, ..., ∂N}, which we denote multiplicatively. For each Θ ∈ D and
i ∈ {1, ..., n} let ΘYi be an indeterminate, where ΘYi = Yi if Θ = ∂01 ...∂

0
N by definition. Moreover let

DȲ := {ΘYi | Θ ∈ D, 1 ≤ i ≤ n}.

The differential polynomial ring over R inN derivations and n indeterminates is the polynomial ring R{Ȳ } :=
R[y | y ∈ DȲ ] together with the uniquely determined derivations ∂i such that ∂i(r·ΘYj) = (∂ir)·ΘYj+r·(∂iΘ)Yj
(1 ≤ i ≤ N 1 ≤ j ≤ n, r ∈ R). So R{Ȳ } is a differential ring extension of R and R{Ȳ } is the free object
generated by n elements over R in the category of differential rings with K commuting derivations. The set
of all powers of variables from DȲ is denoted by

DȲ ∗ := {yp | y ∈ DȲ , p ∈ N}.

Definition 3.1. The rank on DȲ ∗ is the map rk : DȲ ∗ −→ N0 × {1, ..., n} × NN0 × N defined by

rk(∂j11 ...∂
jN
N Yi)

p := (j1 + ...+ jN , i, jN , ..., j1, p).

The set O := N0 × {1, ..., n} × NK0 × N equipped with the lexicographic order (hence the first component is
the dominating one) is well ordered.

Definition 3.2. We say a variable y ∈ DȲ appears in f ∈ R{Ȳ } if y appears in f considered as an ordinary
polynomial (hence Y1 does not appear in ∂1Y1). The leader uf of f ∈ R{Ȳ } \ R is the variable y ∈ DȲ of

highest rank which appears in f . Moreover u∗f := u
deguf

f

f ∈ DȲ ∗ denotes the highest power of uf in f . We

extend the rank to polynomials f ∈ R{Ȳ } by

rk(f) := rk(u∗f ) ∈ O.
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Definition 3.3. If g, f ∈ R{Ȳ }, g ̸∈ R, are differential polynomials, then f is called weakly reduced
with respect to g if no proper derivative of ug (i.e. any element v ∈ DȲ such that v = Θug where
Θ ∈ D\{∂01 . . . ∂0N}) appears in f . f is called reduced with respect to g if f is weakly reduced with respect
to g and if degug

f < degug
g.

The polynomial f is called (weakly) reduced with respect to a nonempty set G ⊆ R{Ȳ }\R if f is (weakly)
reduced with respect to every g ∈ G.

A nonempty subset G ⊆ R{Ȳ } \ R is called autoreduced if every f ∈ G is reduced with respect to all
g ∈ G, g ̸= f . If G consists of a single element, then G is autoreduced.

It easy to see that uf ̸= ug — hence rk f ̸= rk g — if f, g are different polynomials from an autoreduced
set. Moreover, by [Kol73], Chap. O, Section 17, Lemma 15(a), we have

Proposition 3.4. Every autoreduced set is finite. �
Let∞ be an element bigger than every element in O and let (O∪{∞})N be equipped with the lexicographic

order. We define the rank of an autoreduced set G to be an element of (O ∪ {∞})N as follows. Let
G = {g1, ..., gl} with rk g1 < ... < rk gl. Then

rkG := (rk g1, ..., rk gl,∞,∞, ...).

Proposition 3.5. There is no infinite sequence G1, G2, ... of autoreduced sets with the property rkG1 >
rkG2 > ....

Proof. [Kol73], Chap. I, Section 10, Proposition 3. �

Definition 3.6. If M ⊆ R{Ȳ } is a set not contained in R, then by Proposition 3.5 the set {rkG | G ⊆
M is autoreduced} has a minimum. Every autoreduced subset G of M with this rank is called a charac-
teristic set of M .

Proposition 3.7. If G is a characteristic set of M ⊆ R{Ȳ } and f ∈ M \ R, then f is not reduced with
respect to G.

Proof. If f ∈M \R is reduced with respect to G, then the set {g ∈ G | rk g < rk f}∪{f} is an autoreduced
subset of M of rank strictly lower than the rank of G, which is impossible. �

Throughout the rest of this chapter assume that R is a differential domain in N derivations
containing Z.

Definition 3.8. Let f ∈ R{Ȳ } \R, f = fdu
d
f + ...+ f1uf + f0 with polynomials fd, ..., f0 ∈ R[y ∈ DȲ | y ̸=

uf and y ̸= Θuf forall Θ ∈ D] and fd ̸= 0. The initial I(f) of f is defined as

I(f) := fd.

The separant S(f) of f is defined as

S(f) :=
∂

∂uf
f = d·fdud−1

f + ...+ f1.

Moreover, for every subset G = {g1, ..., gl} of R{Ȳ } \R we define

H(G) :=
l∏
i=1

I(gi)·S(gi) and HG := {
l∏
i=1

I(gi)
niS(gi)

mi | ni,mi ∈ N0}.

Since R is a domain and Z ⊆ R, the set HG does not contain 0. Moreover, S(g) and I(g) are reduced
with respect to G (g ∈ G), if G is an autoreduced set.

Theorem 3.9. Let G ⊆ R{Ȳ } be an autoreduced set and let f ∈ R{Ȳ }. Let [G] denote the differential
ideal generated by G in R{Ȳ } and let (G) denote the ideal generated by G in R{Ȳ }. Then there is some

f̃ ∈ R{Ȳ } which is reduced with respect to G and some H ∈ HG such that H ·f ≡ f̃ mod [G]. If f is weakly

reduced with respect to G, then we can take H such that H ·f ≡ f̃ mod (G).

Proof. [Kol73], Chap. I, Section 9, Proposition 1. �
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Notation. For any ring A, ideal a of A and element a ∈ A, we denote

a : a := {b ∈ A | a·b ∈ a}

and

a : a∞ = {b ∈ A | an ·b ∈ afor somen ∈ N}
Also, if A is a differential domain and G a subset of A then [G] denotes differential ideal generated by G or,
in other words, the smallest differential ideal containing G.

Corollary 3.10. If G is a characteristic set of a differential prime ideal p of R{Ȳ } with p ∩R = 0, then

p = {f ∈ R{Ȳ } | H(G)n ·f ∈ [G] for some n ∈ N0}.

Moreover if f ∈ p is weakly reduced with respect to G, then H(G)n ·f ∈ (G) for some n ∈ N0.

Proof. From Theorem 3.9 and Proposition 3.7, since HG ∩ p = ∅. �

Finally we collect some facts, which will be used later on.

Proposition 3.11. Let K ⊆ L be an extension of fields of characteristic 0 and let K be equipped with N
commuting derivations. Then there are N commuting derivations on L extending those on K.

Proof. [Kol73], p. 90. �

Proposition 3.12. Let K be a differential field of characteristic 0 and let Y be a set of differential indeter-
minates. Let a ⊆ K{Ȳ } be a differential ideal. Then:

(i) Every prime ideal p of K{Ȳ }, minimal with the property a ⊆ p, is a differential ideal.
(ii) Let a be radical and differential. Then a is finitely generated as a differential radical ideal. Moreover,

if K ⊆ L is an extension of differential fields, then the ideal generated by a in L{Ȳ } is differential
and radical.

Proof. For (i) see [Kol73], Chap. 1, Sect. 2, Exercise 3. Item (ii) can be found in [Kol73], Chap. 4, Sect. 3
and 4. �

Proposition 3.13. Let K ⊆ L be fields of characteristic 0 and let Y be a set of indeterminates. Let
G ⊆ K[Ȳ ] be a set and let H ⊆ K[Ȳ ] be a multiplicatively closed set. Let a be the ideal (G)K[Ȳ ] : H of K[Ȳ ].

Then the ideal (G)L[Ȳ ] : H of L[Ȳ ] is generated by a and ((G)L[Ȳ ] : H) ∩K[Ȳ ] = a.

Proof. We omit the easy proof. �

Definition 3.14. An autoreduced set G is coherent if for each g1, g2 ∈ G, if v is a common derivative of
ug1 and ug2 , say v = Θ1ug1 = Θ2ug2 where Θ1,Θ2 ∈ D, then S(g2)Θ1g1 − S(g2)Θ2g2 ∈ (Gv) : H(G)∞,
where Gv denotes the set of all differential polynomials Θf with f ∈ G,Θ ∈ D, and Θuf of lower rank than
v.

Theorem 3.15 (The Rosenfeld Lemma). Let K be a differential field of characteristic 0 in N derivations
and let A be the differential polynomial ring of K in Ȳ := (Y1, ..., Yn). Let G ⊆ A be an autoreduced set.
Then the following are equivalent:

1. G is a characteristic set of [G] : H(G)∞ and [G] : H(G)∞ is prime.
2. (a) G is coherent and

(b) the ideal (G)A : H(G)∞ of A is prime and does not contain nonzero elements of A reduced with
respect to G.

3. Let B denote the K-algebra K[y ∈ DȲ | y appears in g for some g ∈ G].
(a) G is coherent and
(b) the ideal (G)B : H(G)∞ of B is prime and does not contain nonzero elements of B, reduced

with respect to G.

Proof. 1⇔2 is [Kol73], IV, 9, Lemma 2, and 2⇔3 can be easily derived. �
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Remark 3.16. Theorem 3.15 tells us that if G ⊆ K{Ȳ } is a characteristic set of a differential prime ideal,
then the prime ideal (G)B : H(G)∞ defines an irreducible K-variety. We shall denote this variety by VG.
If G := {g1, . . . , gm} then VG is precisely the K-variety defined by the system of (standard) polynomial
equations

g1 = . . . = gm = 0,H(G) ̸= 0

Here we view as standard polynomials i.e. g1, . . . , gm,H(G) ∈ A. The fact that VG is irreducible follows
from the following proposition

Proposition 3.17. Let A be a domain, let a be an ideal of A, let h ∈ A and let z be an indeterminate over
A. Then

a : h∞ := {a ∈ A | hn ·a ∈ a for some n ∈ N} = (a, z ·h− 1)A[z] ∩A.
Moreover h ̸∈

√
a ⇐⇒ A ̸= a : h∞, and in this case h is a nonzero divisor of A/(a : h∞). Also, mapping

1
h/(a:h∞) to z/(a, z ·h − 1) induces an isomorphism between the localisation (A/(a : h∞))h/(a:h∞) and the

factor ring A[z]/(a, z ·h− 1). In particular, a : h∞ is prime if and only if (a, z ·h− 1)A[z] is prime, provided

that h ̸∈
√
a.

Proof. We omit the easy proof. �

Proposition 3.18. Let K ⊆ L be differential fields of characteristic 0. If G ⊆ K{Ȳ } is a characteristic set
of K{Ȳ }, then G is a characteristic set of L{Ȳ }, too.

Proof. Again, this is easy and left to the reader. �

4. Definition of UCN (S)

Let B be a set of L-formulae. The method by which we shall axiomatise the theory UCN (B), as described
in the introduction, in the language L(∂̄) shall closely followed that presented in [Tre05] to axiomatise UCN .
There Tressl defines UCN using what he calls algebraically prepared systems.Here we shall generalise these
systems using B in the following way-

Definition 4.1. AB-algebraically prepared system of a differential L-fieldM a sequence (f1, . . . , fm, λ)
of differential polynomials f1, . . . , fm ∈ K{Ȳ }\K, where K is the field M expands and Ȳ := (Y1, . . . , Yn),
and a formula λ ∈ B in n free variables such that

(1) {f1, . . . , fm} is a characteristic set, thus {f1, . . . , fm} is a reduced and coherent set and the ideal
(f1, . . . , fm) : H(f1, . . . , fm)∞ of

A(f1, . . . , fm) := {y ∈ DȲ |y y appears in some f1, . . . , fm}

does not contain nonzero elements, reduced with respect to f1, . . . , fm.
(2) VG has a regular K-rational point ā such that (a1, . . . , an) (i.e. the coordinates corresponding to the

Ȳ ) satisfies λ in M.

Note that algebraically prepared systems are simply S-algebraically prepared systems where S = {x = x}
or even S = ⟨∅⟩.

We say that an B-algebraically prepared system (f1, . . . , fm, λ) of M is solvable in some differential L-
field extension N if there exists an n-tuple ā in N such that f1(ā) = 0, . . . , fm(ā) = 0,H(f1, . . . , fm)(ā) ̸= 0
and N |= λ(ā). We call ā a solution of (f1, . . . , fm, λ).

Remark 4.2. Keeping with the notation of 4.1, suppose that (f1, . . . , fm, λ) is a B-algebraically prepared
system of M. Then since the variety Vf1,...,fm has a regular K-rational point, then [Jar11, 5.1.1] tells us
that V{f1,...,fm} is absolutely irreducible. Thus, for any field extension L ⊇ K, Vf1,...,fm can be thought of
as an irreducible L-variety. In particular, a solution of (f1, . . . , fm, λ) in an extension of M can be thought
of as a point in Vf1,...,fm .

We now construct UCN (S) as the axiomatisation of the class of all differential L-fields that solve all their
own B-algebraically prepared systems. The following proposition, which is an analogue of [Tre05, Prop.
4.1], shall enable us to do this.
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Proposition 4.3. Let n,m,N ∈ N. Let Ȳ = (Y1, . . . , Yn) and let f1(t̄, Ȳ ), . . . , fm(t̄, Ȳ ) ∈ Z{Ȳ }[t̄] be general
polynomials in indeterminates {ΘYj |Θ ∈ D, 1 ≤ j ≤ n} and in the indeterminate coefficients t̄ = (t1, . . . , tr).
Let also λ ∈ B. Then there is a sentence φ in the language L(∂̄) such that for all differential L-field M of
characteristic 0 in N commuting derivations we have

M |= φ⇐⇒ for all r-tuples c̄ from M, if (f1(c̄, Ȳ ), . . . , fm(c̄, Ȳ ), λ)) is an B-algebraically prepared system
of M then it is solvable in M.

Thus, for all N ∈ N, the class of all differential L-fields of characteristic 0 in N commuting derivations,
which solve all their B-algebraically prepared systems, is first order axiomatisable in the language L(∂̄)

Proof. We firstly we claim that there is a formula ϕ(v̄), v̄ = (v1, . . . , vr), such that for all differential L-fields
M of characteristic 0 in N commuting derivations and c̄ ∈ dom(M)r we have

M |= ϕ(c̄) ⇐⇒ (f1(c̄, Ȳ ), . . . , fn(c̄, Ȳ ), λ)) is an B-algebraically prepared system of M.

In [Tre05, 4.3], Tressl shows that there exists some LRi-formula ϕ(t̄) such that such that for any field K and
any r-tuple c̄ from K K |= ϕ(c̄) if and only if “{f1(c̄, Ȳ ), . . . , fn(c̄, Ȳ )} is a characteristic set of differential
prime ideal pc̄ of K{x̄}”. Also in [Tre05, 4.3], Tressl shows that there exists an LRi-formula ψ(x̄, t̄), where
x̄ enumerates the variables ΘYj that occur in some fi(t̄, Ȳ ) (with xi = Yi for 1 ≤ i ≤ N), such that for any
field K and all tuples ā, c̄ from K of the same lengths as x̄ and t̄,

M |= ψ(ā, c̄) if and only if ā is a regular K-rational point of VG

Thus we may take ν(t̄) to be the formula ϕ(t̄)∧∃x̄(ψ(x̄, t̄)∧λ(x1, . . . , xn)) which proves the claim. But now
the proof of the theorem is now completed by taking φ to be the sentence

∀v̄(ν(v̄) → ∃ȳ(
m∧
i=1

fi(v̄, ȳ) = 0 ∧ λ(ȳ)))

�

Definition 4.4. Let UCN (B) be the theory of differential L-fields of characteristic 0 in N commuting
derivations, which solves all its B-algebraically prepared systems.

5. Proof of (I’)

5.1. Covers. Before we proceed to prove (I’) we shall first develop the idea of covers that we presented in
the introduction (definition 2.4). Firstly we shall generalise the notion.

Throughout this section let L an extension of LRi by relation and constant symbols only and let C be
the set of constant symbols in L. Let also B be a set of L-formulae.

Definition 5.1. Let M be a class of differential L-fields and φ(x̄) an L(∂̄)-formula. We say B induces a
cover of φ in M if for any two M1,M2 ∈ M there exists a set Aφ of tuples (ψ(x̄, ȳ), φ(x̄, ȳ)) where ψ is a
∃-LRi(∂̄, C)-formula and φ ∈ B such that

φMi =
∪

(ψ,φ)∈AR
∃ȳ(ψ(Mi, ȳ) ∩ φ(Mi, ȳ)).

for i = 1, 2. We call the set Aφ a cover of φ in M1 and M2 (induced by B).
We shall say that B induces a cover on a L-theory T of fields if it induces a cover on Mod(T ).

We immediately obtain the following results.

Proposition 5.2. (1) For any class M of L-fields the following are equivalent-
(a) B induces a total cover of M.
(b) For every ∃-L(∂̄)-formula, B induces a cover of φ in M.

(2) If B induces a cover on a model complete L-theory T of fields then it also induces a cover on any
extension by definitions of T .

Example 5.3. (1) Clearly ⟨∅⟩ induces a cover on the class of fields in the language LRi.
(2) Let L′ := L\LRi ∪ {=}, we can take the BL is the set of L′-literals. Then clearly B induces a cover

on the class of L-fields.
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(3) taking Sval to be the set {1|x,¬1|x} of Lval formulae, then Bval := ⟨Sval⟩ induces a cover on the
class of valued fields in the language Lval.

(4) Then (2) of 5.2 along with example (1) above tells us that ⟨∅⟩ induces a cover the L<-theory RCF
of the class of real closed fields.

(5) Similarly, ⟨∅⟩ induces a cover of the theory pCF in the language Lval(Pn)n∈N (for each n ∈ N Pn is
a unary predicate).

(6) Generalising (4), consider the theory OFn of n-ordered fields (that is, a field with n ∈ N independent
orderings) in the language LRi(<1, . . . , <1). Then Bn−ord := ⟨0 <1 x, . . . , 0 <n x⟩ induces a cover
on OFn. Indeed, for each 1 ≤ i ≤ n

OFn ⊢ ∀x1, x2(¬x1 <i x2 ↔ x2 − x1 = 0 ∨ ∃y(x2 − x1 = y ∧ 0 <i y))

Remark 5.4. Notice that in all the examples mentioned above all covers are finite. Indeed, all the examples
that we shall consider throughout this paper shall be finite. However, the definition allows for infinite covers
for the sake of proving 2.5 in more general terms.

5.2. Proof of (I’). We shall prove an analogue of [Tre05, Th. 3.3] from which 2.5 will clearly be a corollary.

Notation. Give two L-structures M1,M2 with universes M1,M2 respectively and A ⊆ M1 ∩M2, then the
notation

M1 V∃,A,L M2

means that every ∃-L(∂̄)-formula with parameters form A which holds in M1 also holds in M2.

Theorem 5.5. Let M1,M2 be two differential L-fields expanding partial differential fields L1, L2 (of char-
acteristic 0 in N commuting derivations). Let B be a set of ∃-L-formulae that induces a cover {M1,M2}.
Let A be a common differential subring of L1, L2 such that the elements of CM1 , CM2 ⊆ Quot(A) =: K0,
where C is the set of constants in L. Let Ki be the algebraic closure of K0 in Li. Suppose

(1) M1 ≡∃,A,L M2.
(2) M2 solves all B-algebraically prepared systems of M2 defined over K2.

Then M1 V∃,K0,L(∂̄) M2.

Proof. Clearly, condition (1) implies L1 ≡∃,K0,LRi
L2 as pure fields. By standard arguments we get that

K1 and K2 are isomorphic as fields over K0. This isomorphism maps respective interpretations of constants
to each other and respects the derivations (observe that Ki is a differential subfield of Li). Hence we may
assume that K = K1 = K2 is the algebraic closure of K0 in Li for each i = 1, 2 and CM1 = CM2 ⊆ K.

Let φ(x̄1, v̄) be a quantifier free formula in the language L(∂̄) where x̄1 and v̄ are tuples of variables of
lengths n1, q ∈ N respectively. Suppose there is some c̄ ∈ Kq

0 such that M1 |= ∃x̄φ(x̄, c̄). We have to show
that M2 |= ∃x̄φ(x̄, c̄).

Since B is induces a cover on {M1,M2}, (1) of 5.2 tells us that there exists a cover Aφ of φ in {M1,M2}
induced by B. So there exists some (ϕ, λ) ∈ Aφ,{M1,M2}, where ϕ(x̄) is an ∃-LRi(∂̄, C)-formula abd λ ∈ B

such that M1 |= ∃x̄1ϕ(x̄1, c̄)wedgeλ(x1, . . . , xn). It then suffices to show that there exists b̄ ∈ Ln2 such that
M2 |= ϕ(b̄, c̄) ∧ λ(b̄). Since CM1 = CM2 ⊆ K0 we can assume that ϕ is a LRi(∂̄)-formula by subsuming
the all constants that occur in ϕ into c̄. We can also assume without any loss of generality that ϕ of the
form ∃x̄2(

∧r
i=1 pi(x̄1, x̄2) = 0) where p1, . . . , pr ∈ K0{Ȳ } and Ȳ := (Y1, . . . , Yn) is a tuple of differential

indeterminates of over K0 of length n = n1 + n2. Thus, writing x̄ = (x̄1, x̄2) and λ(x̄) for λ(x̄2), we get that
there exists some ā ∈ Ln1 such that p1(ā) = . . . = pr(ā) = 0 and M1 |= λ(ā). Then it suffices to show that
there exists b̄ ∈ Ln2 such that p1(b̄) = . . . = pr(b̄) = 0 and M2 |= λ(b̄).

From here the proof follows analogously to the proof of Thereom 3.3 in [Tre05]. �

6. Large Sets

Throughout this section let K be a field.
In the introduction we defined the notion of large sets to be “over K” but as we now show that this is

redundant since a set can only be large over the smallest field containing it. Given a subset A ⊆ KM , the
smallest field containing A is the smallest subfield K0 ⊆ K such that A ⊆ KM

0 .
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Proposition 6.1. Let A ⊆ Km for some m ∈ N. If A is large over K then K is the smallest field containing
A.

Proof. Suppose that the smallest field containing A is not K. Then it must be some field K0 ( K. Thus
there exists some element α ∈ K\K0. Consider the firstly the case when A ⊆ Kn

0 ( Kn where n ≥ 2. Let
b̄ = (b1, b2, . . . , bn) ∈ A and consider the K-curve C defined by the equation α(b1 − x1) − (b2 − x2) = 0
considered as a curve embedded into (the first two coordinates of) An. Then b̄ is a regular point of C. Since
A is large over K, C ∩A is Zariski-dense in C. In particular, there is some c̄ = (c1, c2, . . . , cn) ∈ A such that
c̄ ∈ C ∩ U where U := {x̄ ∈ An|b1 − x1 ̸= 0}. Then α = b2 − c2/(b1 − c1) ∈ K0 which is a contradiction.

In the case that A ⊆ K0 we simply replace A by A×A and follow the same argument. �

Thus from here on we shall drop the “over K” and just simply say a set is large.
The definition of largeness for sets was in regards to absolutely irreducible affine K-varieties. How-

ever, by [Jar11, Lemma 4.1.1.] any K-variety with a regular K-rational point is absolutely irreducible.
Therefore, we shall no longer assume that our varieties are absolutely irreducible unless otherwise stated.

We now note that the classical reduction down to curves for large fields also can be generalised for sets of
relations over a field-

Proposition 6.2. Let B ⊆ Km and n ≥ m. The following are equivalent-

(1) B is large.
(2) For every affine K-curve C ⊆ An for n ≥ m, one has: If ā ∈ CReg, then C ∩A is infinite.

Proof. Proof follows analogously to [Jar11, Lemma 5.3.1]. �

6.1. First Order Largeness. Now we consider large sets that are definable in a language L extending LRi.
Let B be a set of L-formulae. We now show that we can axiomtise the class of L-fields in which B defines
large sets.

Proposition 6.3. The class of L-fields in which B defines large sets is axiomatisable in the language L.

Proof. We show that there exists an axiom schema in L that will say if a model M expands a field K and
C ⊆ An is a K-curve with a regular K-rational point that satisfies some λ ∈ B then there infinitely many
K-rational points satisfying λ in M. Then condition (2) of 6.2 tells us such a schema axiomatises the class
of L-fields in which B defines large sets.

Let f1, ..., fm(Ū , X̄) ∈ Z[Ū , X̄], with X̄ = (X1, . . . , Xn1) and Ū = (U1, . . . , Un2). Then there exists an
LRi-formula φ(f1,...,fm)(x̄, ū) such that for every field and all ā ∈ Kn1 and c̄ ∈ Kn2

K |= φ(f1,...,fm)(ā, c̄) if and only if the system f1(c̄, X̄) = 0, ..., fm(c̄, X̄) = 0 defines an K-curve and ā is a
regular (K-rational) point of that curve.

Now fix some λ ∈ B. Now let ψ(f1,...,fm,λ)(ū) denote the L-formula ∃x̄(φ(f1,...,fm)(x̄, ū) ∧ λ(x̄)). Then for
any L-structure M expanding a field K and c̄ ∈ Kn2 ,

M |= ψ(f1,...,fm,λ)(c̄)), if and only if f1(c̄, X̄) = 0, ..., fm(c̄, X̄) = 0 defines an K-curve that has c̄ as a
regular K-rational point satisfying λ in M.

Therefore by varying over all r,m, n1, n2 ∈ N and all f1, . . . , fr ∈ Z[Ū , X̄], the set of all formulas

∀ū

ψ(f1,...,fm,λ)(ū) → ∃x̄1, ..., x̄r (
∧
i ̸=j

x̄i ̸= x̄j ∧
r∧
i=1

f1(ū, x̄i) = 0 ∧ ... ∧ fn(ū, x̄i) = 0 ∧
r∧
i=1

λ(x̄i))


gives the desired axiom schema. �

6.1.1. Extensions of L-fields in which B defines large sets. Recall that for a large field and K and an
K-variety V with a regular K-rational point we have that K elementarily embeds into a field containing
K(V ). This can be proved using the compactness theorem. Similarly, the compactness theorem gives us a
generalisation of this property for large sets. Before we give this generalisation we establish some notation.
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Notation. K is the algebraic closure of K. Let n ∈ N and Z ⊆ K
n
. Then we denote-

IK(Z) := {f ∈ K[X1, . . . , Xn]|∀ā ∈ Z(f(ā) = 0)}
Given an ideal p ⊆ K[X1, . . . , Xn] then we shall denote X̄ + p := (X1 + p, . . . , Xn + p).
Recall that given an affine K-variety V ⊆ An with p := IK(V ) ⊆ K[X̄] it is common notation in algebraic

geometry to write K[V ] := K[X̄]/p and when V is irreducible, K(V ) := Quot(K[V ]). We use this notation
here.

Proposition 6.4. Let M be an L-structure expanding a field K, λ a set of L-formulae in at most n free
variables, and V ⊆ An an irreducible affine K-variety with a regular K-rational point satisfying λ in M.
Let also IK(V ) = p ⊆ K[X̄] where X̄ = (X1, . . . , Xn). Then the following are equivalent-

(1) The set

Vλ(M) := {ā ∈ K
n|ā ∈ VK ,M |= λ(ā)}

is Zariski-dense in V
(2) There exists an elementary extension M(V ) ≻ M such that THE field M(V ) expands contains

K(V ) and M(V ) |= λ(X̄ + p).

Proof. Easy proof using compactness. �
6.2. Large Topologies. The various applications of our main theorem shall be to topological fields. So
now we consider fields topologies whose open sets are large.

Definition 6.5. We say that a topology τ of a field K is large if each open subset U ⊆ Kn in topology
induced on Kn by τ is large.

When τ is a field topology then the question of whether it is large can simplified in various ways down to
fundamental system neighbourhoods of 0. We firstly define fundamental systems of neighbourhoods.

Definition 6.6. Let τ be a field topology on K. A fundamental system of neighbourhoods (of 0) Fτ is a
subset of τ such each element of Fτ is an open neighbourhood of 0 and for any open neighbourhood U of 0
there exists some B ∈ Fτ such that B ⊆ U .

Proposition 6.7. Let τ be a field topology on a field K with Fτ a fundamental system of neighbourhoods.
Then the following are equivalent.

(1) τ is large.
(2) For each affine K-curve C embedded in affine n-space for some n ∈ N, with 0̄ ∈ CReg, there are

infinitely many K-rational points of C in every open neighbourhood Bn where B ∈ Fτ .
(3) For each plane K-curve C ⊆ A2 with (0, 0) ∈ CReg then there are infinitely many K-rational points

of C in every open neighbourhood B2 where B ∈ Fτ .

Now suppose there exists some subset F0 ⊆ F such that for each B ∈ F and each plane K-curve C with
(0, 0) ∈ CReg, there exists some B0 ⊆ F0 and some K-isomorphism γ : D 7→ C where D is another plane
K-curve regular at the origin such that γ(B2

0) ⊆ B2. Then the above conditions are also equivalent to the
following.

(4) For each irreducible plane K-curve C ⊆ A2 with (0, 0) ∈ CReg then there are infinitely many K-
rational points of C in B2

0 for each B0 ∈ F0.

Proof. (1) implies (2) is trivial. We now prove the converse. Firstly, since for any n ∈ N, any translations of
An is a isomorphism of varieties as wells an isomorphism of the topological space induced by τ on Kn (since
τ is a field topology), we can reduce to considering varieties with 0̄ as a regular K-rational point. Secondly,
use 6.2 to reduce down to K-curves. So now consider a K-curve C ⊆ An with 0̄ ∈ CReg and suppose that
U ⊆ Kn is neighbourhood of 0̄ in the product topology on Kn induced by τ . Without loss of generality we
can assume that U is a basic open set i.e. we can write U = U1 × . . .×Un where for each 1 ≤ i ≤ n Ui ⊆ K
is a neighbourhood of 0. Then for each 1 ≤ i ≤ n there exists some Bi ∈ Fτ such that 0 ∈ Bi ⊆ Ui. Let

B :=
n∩
i=1

Bi. Thus 0̄ ∈ Bn ⊆ U . From here the proof is straightforward.

(2) implies (3) is obvious. We now prove the converse. So suppose C is affine K-curve C embedded
in affine n-space for some n ∈ N, with 0̄ a regular K-rational point and suppose that U ⊆ Kn is a open
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neighbourhood of 0̄ in τ . By [Jar11, Lemma 5.1.2] there is a K-birational correspondence π : C 99K D
to a plane curve D that is regular at (0, 0) that is defined in 0̄ and such that π(0̄) = (0, 0). Thus, the
inverse K-birational map ρ : D 99K C is defined at (0, 0) and moreover ρ((0, 0)) = 0̄. Now notice that on
its domain of definition ρ is defined by rational functions over K. Thus on its domain of definition, ρ is a
continuous map in the (product topology induced by) topology τ . Furthermore, clearly the restrictions of
the domain and codomain of ρ to Kn are open sets in the topology induced by τ . Thus A = ρ−1(U) is an
open neighbourhood of (0, 0) in τ . Without loss of generality we can assume that A is a basic set. Therefore
we may write A = A1 × A2 where A1 and A2 are open neighbourhoods of 0 in τ . Then there exists sets
B1, B2 ∈ Fτ such that Bi ⊆ Ai for each i = 1, 2. Let B = B1∩B2. Then, by assumption, there are infinitely
many K-rational points of D in B2 and hence in A. These get mapped to infinitely many K-rational points
of C in ρ(A) ⊆ U which proves the claim.

If there exists some F0 ⊆ F with the property outlined above then it is clear that (3) is equivalent to
(4). �

These reductions help us to obtain the following examples of large topologies.

Corollary 6.8. (1) If K is a real closed field with ordering <, then the topology τ< induced by < on K
is large.

(2) If v is a henselian valuation of a field K then the topology τv that v induces on K is large.

Proof. (1) is more or less immediate from (2) of 6.7 and [JB98, Theorem 3.25].
We now prove (2). Write Ov for the valuation ring of (K, v). It is clear that the following is fundamental

system of neighbourhood

Fv := {aOv|a ∈ K\{0}}
Thus it suffices to show that (4) of 6.7 is true for F0 := {Ov}. However, this holds by [JD, Theorem 2.4]. �

7. Proof of (II’) and Main Theorem

7.1. Proof of (II’). The proof of 2.7 uses [Tre02, Theorem 1]. Thus we recall this Theorem before proceeding
to the proof of 2.7.

Theorem 7.1. [Tre02, Theorem 1] Let K be a differential field of characteristic 0 in N ∈ N commuting
derivations and let p ⊆ K{Ȳ }, Ȳ := (Y1, . . . , Yn) be a differential prime ideal. Let φ : K{Ȳ } → K{Ȳ }/p =: R
be the residue map and let G be a characteristic set of p. Let H(G) be the product of all initials and separants
of polynomials in G. Let h := φ(H(G))

∆ := {y ∈ DY |y is not a proper derivative of any leader of an element g ∈ G}

∆B := {y ∈ ∆|y appears in some g ∈ G}
B := φ(K[∆B ]) and P := φ(K[∆\∆B ])

then h ∈ BR, h ̸= 0 and

(1) B is a finitely generated K-algebra and P is K-isomorphic to a polynomial ring over K in at most
countably many variables (the case that K = P is not excluded).

(2) Rh = (B · P )h is a differentially finitely generated K-algebra.
(3) The homomorphism B ⊗ P → B · P induced from multiplication is an isomorphism of K-algebras.
(4) The restriction of φ to K[∆\∆B ] is injective.

Theorem 7.2. Let B be a set L-formulae. Suppose that M is a differential L-field expanding a field K, in
which the sets defined by B are large. Then there is some differential L-field extension N such that M ≺L N
and N |= UCN (B) i.e. it solves every B-algebraically prepared system over itself.

Proof. Claim: Every B-algebraically prepared system (f1, . . . , fm, λ) of M has a differential solution in some
differential L-field extension N which does not annihilate H(f1, . . . , fm) and such that M ≺L N .

Let (f1, . . . , fm, λ) be a B-algebraically prepared systems of M with f1, . . . , fm ∈ K{Y1, . . . , Yn}. By con-
dition 1 for algebraically prepared systems, {f1, . . . , fm} is a characteristic set. Moreover, by condition 2 and
3.15, f1, . . . , fm is the characteristic set of the differential prime ideal p := [f1, . . . , fm] : H(f1, . . . , fm)∞ ⊆
K{Ȳ }. Define B and P as in 7.1 with respect to p and let A := K[ΛB ]. By 3.15 p̃ := p∩A is a prime ideal of A
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and in fact the ideal of polynomials over K that vanish on the affine K-variety VG. Thus B = A/p̃ = K[VG].
From condition (2) of the definition of B-algebraically prepared systems, we know that VG has a regular
K-rational point ā whose first n coordinates satisfies λ(x̄) in M. So, by 6.4 there exists an elementary
L-extension N0 of M containing Bh and such that N0 |= λ(X1 + p̃, . . . , Xn + p̃) where X̄ is an enumeration
of the variables in ∆B (with Xi = Yi for 1 ≤ i ≤ n). Now we can choose N to be an elementary L-extension
of N0 such that L := N �LRi is of infinite transcendence degree over L0 := N0 �LRi . In particular, L is of
infinite transcendence degree over Quot(B). Thus, there is an K-embedding that fixes K of P into L by
mapping each of the indeterminates of P to elements of L that are algebraically independent over L0. This
gives us an K-embedding of Ah = Bh ⊗ P into L. Notice that by (4) of the structure theorem for each
1 ≤ i ≤ n, Xi + p̃ maps to Yi + p in this embedding. Then since N0 ≺L N , N |= λ(Y1 + p, . . . , Yn + p). We
now extend the derivations of Ah to L to give us a desired differential L-field extension, (N , ∂1, . . . , ∂N ), of
M that solves (f1, . . . , fm, λ). This proves the claim.

From the claim, we get the theorem by transfinite induction. This is possible because any B-algebraically
prepared system of a M is an B-algebraically prepared system over N any differential L-field extension N
where M ≺L N . Moreover, by 6.3 and the fact N |= ThL(M), B is also large in N . So we can iterate
the claim until all B-algebraically prepared systems constructed so far are solvable in the union of all the
differential L-fields. So the union will be a model of UCN (B) and an elementary L-extension of M. �

This also concludes the proof of 2.8.

7.2. Proof of Main Theorem.

Definition 7.3. Given an L-theory T in which B is large and B and induces a covering then we shall
abbreviate and just write that B induces a large cover on T .

Theorem 7.4. Let B be a set of ∃-L-formulae that induces a large cover a model complete L-theory T of
fields.

Let T ∗ be a theory in a language L∗ ⊇ L such that T ∗ contains T and T ∗ is an extension by definitions
of T .

Let A be an L∗(∂̄)-structure with universe A such that A, viewed as an L(∂̄)-structure, is a substructure
of a partial differential L-field.

If T ∗ ∪ diag(A � L∗) is complete, then T ∗ ∪ UCN (B) ∪ diag(A) is complete.

Proof. The proof follows analogously as to that of [Tre05, Theorem 7.1] except easier since the constatns are
included in our language L already. �

By gathering the consequences of 7.4, the next theorem actually proves the main theorem 2.8.
We now show that the theory UCN (B) also preserves NIP

Proposition 7.5. Let T be a model complete L-theory and M |= T . Suppose that M embeds into some
L(∂̄)-structure M∗ whose L-reduct is also a model of T . If ϕ(x, ȳ) is a quantifier free L(∂̄)-formula that has
the independence property in M∗ then the quantifier free L-formula ϕ∗ is has the independence property in
M.

Proof. Assume that, in the L(∂̄)-quantifier free formula ϕ(x, ȳ), with ȳ := (y1, . . . , ys), that x occurs with
order in at most dx := (dx,1, . . . , dx,N ) and for each yj , 1 ≤ j ≤ s, occurs with order at most dy :=
(dy,1, . . . , dy,N ). Let ū := (u(0,...,0), . . . , udx), v̄ := (v1,(0,...,0), . . . , v1,dy , v2,(0,...,0), . . . , vs,dy ) and let θ(ū, v̄) be

the following L(∂̄)-formula:
∧
i1≤dx,1...,iN≤dx,N

∂
dx,1

1 . . . ui1,...,iN = ∂
dx,N

N (u(0,...,0))∧
∧s
j=1

∧
l1≤dy,1,...,lN≤dy,N

vj,(l1,...,lN ) =

∂
dy,1

1 . . . ∂
dy,N

N (vj,(0,...,0)). Then the rest of the proof proceeds as in [GP10, Lemma 4.2]. �

Corollary 7.6. Let T be a complete and model complete L-theory of fields and B a set of ∃-L-formulae that
induces a large cover on T . If T has NIP then so does T ∪ UCN (B).

8. Applications

8.1. Henselian Valued Fields. We now give an alternative uniform companion for henselian valued fields
to that given by N. Guzy [Guz06]. Recall that Sval := {1|x,¬1|x} and Bval := ⟨Sval⟩.
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Lemma 8.1. UCN (Bval) is an uniform companion for the class Mval of all valued fields whose valuation
topology is large.

Proof. By 2.8, it suffices to notice that for each Lval-theory such that each model of T is a henselian valued
field, (3) of 5.3 tells us that Bval induces a cover of Mval. Since the sets of Bval define open sets in (the
product topology of) any valued field, they are also define a set of large sets in any member of Mval. �
Corollary 8.2. UCN (Bval) is an uniform companion for the class of henselian valued fields.

Proof. By (2) of 6.8, the class of henselian valued fields is a subclass of Mval �
Remark 8.3 (Open Question). Is each member of Mval a henselain valued field?

8.2. Fields with Several Valuations and Orderings. In this subsection we apply our results to theories
of fields with several independent orderings and valuations hence generalising work in [GP10]. In his PhD
thesis L. van den Dries proved that such theories have a model companion (cf. [vdD78, Chapter 3]). Given a
theory T of fields with several independent orderings and valuations with a model companion T̄ as presented
van den Dries, Guzy and Point showed in [GP10] that T̄ can be extended to be a model companion of
T ∪DF1. We now use 2.8 to generalise this i.e. we show that for each N ∈ N, T̄ can be extended to a model
companion of T ∪DFN .

Definition 8.4. We call any field with several valuations and orderings a multi-local field

Throughout this subsection we denote a multi-local field by (K,A1, . . . , An) where for each 1 ≤ i ≤ n Ai
is either a valuation ring of K or a positive cone for some ordering of K. By the notation Hi (1 . . . i ≤ n)
we mean the henselianization of K with respect to Ai if Ai is a valuation ring or the real closure of K with
respect Ai if Ai is a positive cone of K. Let also τK denote the smallest topology that contains

∪n
i=1 τAi

where, for each 1 ≤ i ≤ n, τAi is the topologies induced by Ai on K.

Definition 8.5. [JRH84, Theorem 1.9] Let (K,A1, . . . , An) be a multi-local field. We say that (K,A1, . . . , An)
has theApproximation Property if for each absolutely irreducible affineK-variety V , there areK-rational
points ā which are simultaneously (arbitrarily) close to any sequence of regular points ā1 ∈ H1, . . . , ān ∈ Hn

of V .

Proposition 8.6. For any multi-local field (K,A1, . . . , An) with the Approximation Property τK is large.

Proof. Recall from 6.8, the topology induced by (the extension of) Ai in Hi must be large. Since these
topologies are Hausdorff, it is clear that if (K,A1, . . . , An) has the Approximation Property then this must
imply that τK is large �

Now suppose that for each 1 ≤ i ≤ n that Ti is one of the following theories.

(1) The theory OF of ordered fields in the language LRi(<).
(2) The theory V F of valued fields in the language Lval.
(3) The theory pCF of p-adically closed fields in the language Lval({Pn}n∈N), where for each n ∈ N, Pn

is a unary relation symbol interpreted in models of pCF as the set of nth powers.
(4) The theory πCF of π-adically closed fields in the language Lval({Pn}n∈N, π) where π is a constant

symbol interpreted in models of πCF as some element such that v(π) = 1.

For each 1 ≤ i ≤ n let Li denote the language of Ti and

L := LRi ∪
n⊔
i=1

(Li\LRi)

where
⊔

stands for disjoint union. If <, | or Pn (n ∈ N) is a symbol of the language Li for some 1 ≤ i ≤ n
then we denote the corresponding symbol in L by |i, <i or Pin respectively. Then the L-theory (T1, . . . , Tn)
is defined as the theory whose models are L-structures M such that M �Li |= Ti for each 1 ≤ i ≤ n.
Theorem 1.12 in [vdD78, Chp. 3] tells us that (T1, . . . , Tn) has a model companion in L which we shall

denote by (T1, . . . , Tn). Furthermore, Theorem 4.1 in [JRH84] tells us that every model of (T1, . . . , Tn) has
the Approximation Property. Hence, 8.6 gives us the following.

Corollary 8.7. For every model (K,A1, . . . , An) |= (T1, . . . , Tn), τK is large.
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Remark 8.8. The works [Pre81] of A. Prestel and [Jar83] of M. Jarden show that if Ti = OF for each

1 ≤ i ≤ n, then the class of models of (T1, . . . , Tn) is precisely the class of PRCn fields with no proper
algebraic extensions (called a maximal PRCn field). Thus Corollary 8.7 tells us that the topology on
maximal PRCn field is large. It can in fact be shown that the topology on any PRCn field is large ([Sol14,
Lemma 4.4.15.]). However, as we will not require this fact here we shall show it here it.

Now we turn to find a set of ∃-L-formulae that define open sets in models in of (T1, . . . , Tn) (and so are

large in (T1, . . . , Tn)) and also induce covers in (T1, . . . , Tn).

Corollary 8.9. For each 1 ≤ i ≤ n let Si be one of the following sets of ∃-Li-formulae formulae such

(1) {0 <i x} if Ti = OF ,
(2) {1|ix,¬1|ix} if Ti = V F ,
(3) {1|ix,¬1|ix} ∪ {Pin(x) ∧ x ̸= 0}n∈N if Ti = pCF or Ti = πCF ,

Then B := ⟨
n∪
i=1

Si⟩ induces a large cover in (T1, . . . , Tn) (and thus (T1, . . . , Tn) ∪ UCN (B) is the model

companion of (T1, . . . , Tn) ∪DFN ).

Proof. From Examples 5.3 it is clear that B induces a cover in (T1, . . . , Tn) (and thus in (T1, . . . , Tn) also).

We now show that for each M := (K,A1, . . . , An) |= (T1, . . . , Tn) and each φ(x) ∈ B, φ(M) ⊂ K is an open
set of τm. It is clear that it suffices to check that for each 1 ≤ i ≤ n and each φ ∈ Si, φ(M) is an open set.
If for some 1 ≤ i ≤ n Ti = pCF or Ti = πCF and φ(x) is the formula Pn(x) ∧ x ̸= 0 then φ(M) is open
subset of K because the set PM

n ∩ K× is open in K× (cf. [vdD78, Examples]) where K× := K\{0} and
K× ∈ τK itself. For each other formulae φ ∈

∪n
i=1 Si, it is clear that φ(M) is an open set. Thus, by 8.7 we

know that B is a large cover. We apply 2.8 to get that (T1, . . . , Tn) ∪ UCN (B) is the model companion of
(T1, . . . , Tn) ∪DFN . �
Remark 8.10 (Open Question). The theories considered in this subsection fall under a class of theories van
den Dries defined called t-theories (cf. [vdD78, Chp. 3]). Could the method presented here be generalised
to obtain model companion for t-theories extend by the theory of partial differential fields in N commuting
derivations?

8.3. Valued Fields with a Residual Subfield. In this final section we apply our results to valued fields
with a designated subfield of the residue field. By this we mean a two sorted structure ((K, v), (kv, k)) where

• (K, v) is a valued field in the language Lval.
• kv is the residue field of v and k is a subfield of kv. So (kv, k) is a structure in the language
Lpairs := LRi(R) where R is a unary predicate.

• We have the residue map µv : Ov → kv, where Ov is the valuation ring of v, between the two sorts.

Of course, to be formal µv has to be a map from K but this can easily be arranged by setting µ(a) = 0 for
all a ∈ K\Ov. However it shall be more convenient for us to view µ as the actual residue map i.e. with
domain Ov so that is indeed what we shall do. We shall call such structures valued fields with a residual
subfield. By a partial differential valued field with a residual subfield (in N ∈ N commuting
derivations) we shall mean a structure of the form ((K, v, ∂1, . . . , ∂n), (kv, k)) where-

• ((K, v), (kv, k)) is a valued field with a residual subfield.
• (K, v, ∂1, . . . , ∂N ) is partial differential valued field where the derivations and the pair (kv, k) are
independent.

Then given a theory T of valued fields with a residual subfield, by T∪DFN we shall mean the theory of par-
tial differential valued fields with a residual subfield ((K, v, ∂1, . . . , ∂n), (kv, k)) such that ((K, v), (kv, k)) |= T .

Remark 8.11. By replacing variables of the residue sort with a string µ(x), where x is a variable of the
valued field sort, it is not difficult to see that in the theory of (respectively, partial differential) valued fields
with a residual subfield, every formula in the language of (respectively, partial differential) valued fields with
a residual subfield is equivalent to one in which no variables of the residue sort occur (bound or free).

We shall focus on theories of valued field with a residual subfield that are unions of a theory of valued
fields and a theory of pairs if fields i.e. theories T such that there exists theories Tval of valued fields and
Tpairs of pairs of fields with the property that:
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(K, v, (kv, k)) |= T if and only if (K, v) |= Tval and (kv, k) |= Tpairs

In other words, theories where there is no assumed interaction between the valued field and the subfield k
of the residue field. For such a theory T we can of course denote T = Tval ∪ Tpairs

The advantage of considering such theories T is that the following Ax-Kochen-Eršov principle reduces
questions of model completeness for T to a question of model completeness of the theories Tval and Tpairs.

Theorem 8.12. [B0́0, Corollary 4.3] Suppose v1, v2 are two henselian unramified valuations. Then

(1) ((K1, v1), (kv1 , k1)) ⊆ ((K2, v2), (kv2 , k2)) if and only if (kv1 , k1) ⊆ (kv2 , k2) and v1(K
×
1 ) ⊆ v2(K

×
2 )

(2) ((K1, v1), (kv1 , k1)) ≺ ((K2, v2), (kv2 , k2)) if and only if (kv1 , k1) ≺ (kv2 , k2) and v1(K
×
1 ) ≺ v2(K

×
2 )

Corollary 8.13. For any two theories Tval of valued fields and Tpairs of pairs of fields, the theory [Tval, Tpairs]
is model complete if and only if Tval and Tpairs are both model complete.

However, as far as the author is aware, there are no known model complete Lpairs-theories of pairs of fields.
Therefore, to obtain model complete theories of pairs of fields one needs to Morleyise a given Lpairs-theory
of pairs of fields to a some degree i.e. extend the Lpairs-theories of pairs of fields by definitions somehow.
We now list certain model complete extensions by definitions of theories of pairs of fields that we shall use
later.

Example 8.14. In the following, let FLpairs be the Lpairs-theory of pairs of fields.

(1) ([Rob59, Theorem 3.6]) Let Tdense be the Lpairs-theory of dense pairs i.e. pairs of real closed fields
(k1, k2) such that ∅ ≠ k2 ( k1 and k2 is dense in k1 with respect to the interval topology. For each
n, d ∈ N let Dn,d be a new n-ary relation symbol and let TRob be the extension by definitions of
Tdense to LRob := Lpairs(Dn,d)n,d∈N where each Dn,d(x1, . . . , xn) is defined by the Lpairs formula
that says (in the theory of pairs of fields) “x1, . . . , xn are a zero of a non-zero polynomial of degree
at most d with coefficients from the subfield”. Then TRob is model complete.

(2) ([Lel90, Théorème 4.1.3]) The extension TLel of Tdense to the language
LLel := Lpairs((En,m,f,g)n,m∈N,f,g∈Z[v1,...,vm,X1,...,Xn]) where for each n,m ∈ N and f, g ∈ Z[X1, . . . , Xn],
En,m,f,g is an m-ary relation defined by the Lpairs-formula-

∃x1, . . . , xn

(
n∧
i=1

R(xi) ∧ f(y1, . . . , ym, x1, . . . , xn) = 0 ∧ g(y1, . . . , ym, x1, . . . , xn) > 0

)
Then TLel has quantifier elimination.

(3) ([Del12, Théorème 1]) Let TACLP be the Lpairs-theory of pairs algebraically closed fields. Now let
TDel be the extension of TACLP by definitions to the language LDel = Lpairs((ln)n∈N≥2

, (fn,i)n∈N≥2,1≤i≤n)
where
(a) For each n ∈ N≥2, ln(x1, . . . , xn) is an n-ary relation defined by the Lpairs formula saying in

FLpairs “x1, . . . , xn are linearly independent over the smaller field”.
(b) For each n ∈ N≥2 and 1 ≤ i ≤ n fn,i(y, x1, . . . , xn) an (n + 1)-ary function symbol defined in

T ′
ACLP to be a function in the following way

z = fn,i(y, x1, . . . , xn) ↔

ln(x1, . . . , xn) ∧ ∃z1, . . . , zn

(
z = zi ∧ y =

n∑
i=1

xizi ∧
n∧
i=1

R(zi)

)
(and one can set fn,i to be zero everywhere where the formula at the bottom is not defined)

Then TDel has quantifier elimination in LDel

Thus we now consider expansions ((K, v),K) of valued field with a residual subfield ((K, v), (kv, k)) where
K is an expansion of (kv, k). If the language of K is L′

pairs then we shall denote the (two sorted) language
of ((K, v),K) by (Lval,L′

pairs). Furthermore, if Tval is an Lval-theory and T ′
pairs is an L′

pairs-theory then
we shall write Tval ∪ T ′

pairs for the (Lval,L′
pairs) theory they determine in the same sense as above. For this

case, 8.12 also gives us a generalisation of 8.13.
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Proposition 8.15. Let Tval be an L-theory of henselian unramified valued fields, Tpairs be a theory of pairs
of fields and T ′

pairs be an extension of Tpairs by definitions to some language L′
pairs. If Tval and T

′
pairs are

model complete then Tval ∪ T ′
pairs is a model complete in the language (Lval,L′

pairs).

Proof. Suppose that ((K1, v1),K1), ((K2, v2),K2) |= Tval ∪ T ′
pairs such that ((K1, v1),K1) ⊆ ((K2, v2),K2).

Then for both i = 1, 2

• (Ki, vi) |= Tval
• Ki |= T ′

pairs

• Ki is an expansion of (KOi , ki) |= Tpairs for some subfield ki of kOi .

It is not difficult to see that also (K1, v1) ⊆ (K2, v2) and K1 ⊆ K2. Since, Tval and T ′
pairs are model

complete, (K1, v1) ≺ (K2, v2) and K1 ≺ K2. Thus in particular (kv1 , k1) ≺ (kv2 , k2). Then by 8.12 we have
that ((K1, v1), (kv1 , k1)) ≺ ((K2, v2), (kv2 , k2)). But then, since for each i = 1, 2, ((Ki, vi),Ki) is an extension
by definitions of ((Ki, vi), (kOi , ki)) we have ((K1, v1),K1) ≺ ((K2, v2),K2). �

Corollary 8.16. The following theories of (expansions of) valued fields with a residual subfield are model
complete-

(1) RCV F ∪ TRob in the language (Lval,LRob)
(2) RCV F ∪ TLel in the language (Lval,LLel)
(3) ACV F ∪ TDel in the language (Lval,LDel)

Remark 8.17. We consider both expansions TRob and TLel because though TLel has quantifier elimination,
due to the choice of new relations in the extensions TRob, this theory is also of interest in many cases.

Remark 8.18. There a couple questions that arise from the above corollary:

(1) Are the theories listed above model companions of natural theories and if so, what are they?
(2) Considering ACV F has quantifier elimination in Lval and TDel has quantifier elimination in the

language LDel, does ACV F ∪ TDel have quantifier elimination in the language (Lval,LDel)?

Now we turn to finding model companions of T ∪ DFN where T is one of the model complete theories
in corollary 8.16. We shall do this by applying our results from section 7.2. However, since our results are
regarding one-sorted structures we must first look at how to appropriately interpret the structures we have
been considering as a one sorted structure. This is what we do now.

In fact, any valued field with a residual subfield ((K, v), (Kv, k)) is bi-interpretable with the one-sorted
structure (K,R) where R is, what is called, a pseudovaluation ring such that K = Quot(R). Pseudovaluation
rings were first introduced in [JRH78] and can be defined as follows-

Definition 8.19. An integral domain R is called a pseudovaluation domain if there is a valuation v of
the fraction field K = Quot(R) and a subfield k of the residue field kv of v such that R is the pullback
of the residue map µ : Ov → kv (where Ov is the valuation ring of v) along the inclusion i : k ↪→ kv i.e.
R = µ−1(k).

Call any structure of (Quot(R), R), where R is a pseudovalued domain, a pseudovalued field.

Clearly, for any valued field with a residual subfield ((K, v), (kv, k)), the pseudovaluation R = µ−1
v (k)

((K, v), (kv, k)). On the other hand, Ov is definable in (K,R) and k is interpretable in (K,R) (cf. [B0́0] for
details). This gives rise to a bi-interpretation between valued fields with a residual subfield and pseudovalued
fields. What is more, this bi-interpretation preserves sub-structures. Thus, the following fact tells us that this
bi-interpretation also preserves properties such as model completeness and quantifier elimination between
theories of such field structures.

Theorem 8.20. [B0́0, Theorem 3.1] Let R and S be two pseudovaluations associated to valuation rings
Ov ⊆ Quot(R) and Ow ⊆ Quot(S) respectively. Let also kR and kS be the images of R and S respectively
under their residue maps.

(1) R ≡LRi
S if and only if ((Quot(R),Ov), (kv, kR)) ≡ ((Quot(R),Ov), (kv, kR)).

(2) Suppose R ⊆ S is a local inclusion. Then R ≺LRi
S if and only if ((Quot(R),Ov), (kv, kR)) ≺

((Quot(R),Ov), (kv, kR)).
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Further details on this bi-interpretability can be found in [B0́0]. This bi-interpretation also gives us
general framework for how to proceed to expansions ((K, v),K) where K is an expansion of (kv, k): firstly,
by replacing new functions by the graphs and new constants by unary predicates, we assume that K is a
relational expansion of (kv, k). Denote by Rel the set of new relations of K. Then it is not hard to see that
((K, v),K) is bi-interpretable with the structure -

(K,R, {µ−1(P )}P∈Rel)

We shall call any such an expansion of a pseudovalued field a residual expansion. Notice that if L is
the language of K then the language of (K,R, {µ−1(P )}P∈Rel) is the language formed by replacing the
function and constant symbols in L replaced by appropriate relation symbols. Denote this new language by
L◦. Once again, this bi-interpretation preserves substructures. Furthermore, 8.20 again tells us that this
bi-interpretation preserves model completeness and quantifier elimination of theories of such expansions as
well. Therefore, henceforth we consider the all the model complete theories of expansions of valued fields
with a residual subfield presented in 8.16 as model complete theories of residual expansions of pseudovalued
fields in their respective languages.

Now consider one of these theories T (as a theory residual expansions of pseudovalued fields) listed in
8.16 and suppose its language is L. Then L is a relational extension of LRi. Now consider the set BL of
L-formulae defined in example (2) of 5.3 that induces a cover on T . Then notice that in every model of T
the formulae of BL are just unions of products of cosets of the maximal ideal of the valuation ring (in the
valuation ring). Thus the formulae of BL define open sets in the models of T with respect to the henselian
topology. So by (2) of 6.8 we obtain the following.

Proposition 8.21. If v is a henselian valuation then sets defined by the formulae of BL in M are large.

This now, along with ?? gives us the following corollary.

Corollary 8.22. We have the following-

(1) ACV F ∪ TDel ∪ UCN (BL◦
Del

) is the model companion of ACV F ∪ TDel ∪ DFN in the language

L◦
Del(∂̄).

(2) RCV F ∪ TRob ∪ UCN (BLRob◦ ) is the model companion of RCV F ∪ TRob ∪ DFN in the language
L◦
Rob(∂̄).

(3) RCV F ∪TLel∪UCN (BL◦
Lel

) is the model companion of RCV F ∪TLel∪DFN in the language L◦
Lel(∂̄).

References

[B0́0] L. Bélair, Pseudovaluation domains with vapnik-chervonenkis classes of definable sets, Communications in Algebra
28 (2000), no. 8, 3785–3793. 16, 17, 18

[Del12] F. Delon, limination des quantificateurs dans les paires de corps algébriquement clos, Confluentes Mathematici 04
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