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Abstract. A criterion is given for a strong type in a finite rank stable theory

T to be (almost) internal to a given nonmodular minimal type. The motivation

comes from results of Campana [5] which give criteria for a compact complex
analytic space to be “algebraic” (namely Moishezon). The canonical base

property for a stable theory states that the type of the canonical base of a

stationary type over a realisation is almost internal to the minimal types of the
theory. It is conjectured that every finite rank stable theory has the canonical

base property. It is shown here, that in a theory with the canonical base

property, if p is a stationary type for which there exists a family of types qb,
each internal to a non-locally modular minimal type r, and such that any pair

of independent realisations of p are “connected” by the qb’s, then p is almost
internal to r.

1. Introduction

This paper is concerned with analysability and internality in the context of stable
theories of finite rank. While we will briefly recall these notions at the end of this
introduction, we refer the reader to [14] for details on geometric stability theory.

In the many sorted structure A of compact complex spaces, a space X will be
an algebraic variety (or rather a Moishezon space) iff its generic type is internal to
the sort of the projective line. Roughly speaking, Campana proves in [5] that if
the space X is of Kähler-type and “algebraically connected” in the sense that there
exists an analytic family of algebraic subvarieties of X such that any two points of
the space X are connected by a finite sequence of algebraic subvarieties from this
family, then X is itself algebraic.

We wanted to find a general model-theoretic treatment or at least analogue of
this result, and this is what the current paper is about.

We work in a saturated model M
eq

of a complete stable theory T of finite U -rank
sort-by-sort. In general we will be concerned with types (over arbitrary small sets
of parameters) of possibly infinite tuples that are contained in the algebraic closure
of a finite tuple.

For p(x) ∈ S(A) a stationary type, the canonical base of p usually means (an enu-
meration of) the smallest definably closed subset A0 of dcl(A) such that p(x) does
not fork over A0 and the restriction of p to A0 is stationary. It will be more conve-
nient for us to consider (an enumeration of) the algebraic closure of A0, which we
will denote by Cb(p) and also refer to as the canonical base. This abuse of notation
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is harmless since throughout this paper we will only be concerned with precision
up to interalgebraicity. We will also write Cb(a/A) to mean Cb

(
stp(a/A)

)
.

The following is a property that is conjectured to hold in all finite rank theories.
Let P be the set of all nonmodular minimal (stationary U -rank 1) types.

Canonical Base Property (CBP). If b = Cb(a/b) then stp(b/a) is almost P-
internal.

Remark 1.1. (a) The CBP is preserved by naming parameters.
(b) The CBP is equivalent to the statement where one replaces P by the set

of all minimal types. The reason is that from Proposition 1.9 of [7] (see
also [16]) we know that stp(b/a) is already (almost) analysable in P, hence
orthogonal to all modular minimal types.

The following definition is inspired by a related notion for cycle spaces of compact
complex manifolds introduced by Campana in [5].

Definition 1.2. Suppose q(x, y), s(y), p(x) ∈ S(A) are stationary types. We say
that q is a generating family for p over s if

(i) q(x, y) ` p(x) ∧ s(y),
(ii) qb(x) := q(x, b) is stationary for b |= s, and
(iii) if (a, b) |= q then acl(Aa) ∩ acl(Ab) = acl(A)

We call s the parameter space for the family, and qb the fibres, where b |= s. If s
is algebraic then we say the family is trivial. A generating family is canonical if
b ∈ Cb(qb) for b |= s. It is said to almost separate points of p if for any a |= p there
are only finitely many other realisations of p that lie on all the same fibres as a.

Note that to be given a generating family for a stationary type tp(a/A) is to
be given a tuple b such that acl(Aa) ∩ acl(Ab) = acl(A), tp(b/A) is stationary, and
tp(a/Ab) is stationary. The generating family is then canonical if b ∈ Cb(a/Ab),
and trivial if tp(b/A) is algebraic.

Remark 1.3. (a) If q almost separates points of p then pM ⊂ acl(AsM ).
(b) If q is a nontrivial canonical generating family with fibres of U -rank 1, then

q almost separates points.
(c) If p has a nontrivial canonical generating family then p is not 1-based.

Proof. Part (a) is clear.
For part (b) note that as b /∈ acl(A), condition (iii) of the definition implies that

b /∈ acl(Aa). Hence there exists b′ /∈ acl(Aab) realising tp(b/Aa). In particular
b′ /∈ acl(Ab). As b′ ∈ Cb(qb′), we must have that qb ∪ qb′ is not a nonforking
extension of both qb and qb′ , which implies by the rank hypothesis that qb ∪ qb′ is
algebraic. So q almost separates points of p.

For part (c) note that if p is 1-based then Cb(qb) ∈ acl(Aa), and so by condi-
tion (iii), b ∈ acl(A). That is, the family is trivial. �

The following lemma justifies the term “generating family”; it says that if q is a
generating family for p over s, and given independent realisations a and a′ of p, one
can get from a to a′ by “moving along the fibres” of q over s. The lemma is due
originally to Lascar [10] who stated it in the language of groups of automorphisms,
but we give a proof for the sake of completeness.

Lemma 1.4. The following are equivalent:
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(i) acl(Aa) ∩ acl(Ab) = acl(A)
(ii) For any a′ |= stp(a/A) independent of a over A, there exist a = a0, . . . , a` =

a′ and b = b0, . . . , b` such that
– ai+1 |= stp(ai/Abi) and
– bi+1 |= stp(bi/Aai+1),

for all i = 0, . . . , `− 1.

Proof. We suppress the parameters A by naming them as constants to the language.
Assume (i). By stationarity, in order to show (ii) it suffices to find some a′ |= stp(a)
independent of a satisfying the desired properties. This is what we do. Define
sequences a = a0, a1, . . . and b = b0, b1, . . . inductively so that

(1) ai+1 realises the nonforking extension of stp(ai/bi) to abi

(2) bi+1 realises the nonforking extension of stp(bi/ai+1) to aai+1

Note that U(ai+1, bi/a) ≥ U(ai, bi/a). Indeed,

U(ai+1, bi/a) = U(ai+1/abi) + U(bi/a)
= U(ai+1/bi) + U(bi/a)
= U(ai/bi) + U(bi/a)
≥ U(ai/abi) + U(bi/a)
= U(ai, bi/a)

Similarly, U(ai+1, bi+1/a) ≥ U(ai+1, bi/a). So we get a sequence

U(a, b/a) ≤ U(a1, b/a) ≤ U(a1, b1/a) ≤ U(a2, b1/a) ≤ · · · ≤ U(a, b).

Hence, for some ` ≥ 0 it must be the case that U(a`, b`/a) = U(a`+1, b`/a). It
follows that

U(a`/ab`) + U(b`/a) = U(a`, b`/a)
= U(a`+1, b`/a)
= U(a`+1/ab`) + U(b`/a)
= U(a`+1/b`) + U(b`/a)
= U(a`/b`) + U(b`/a)

That is, U(a`/ab`) = U(a`/b`) and so a` and a are independent over b`. On the
other hand, b` and a are independent over a` by construction. So Cb(a/a`b`) ⊆
acl(a`) ∩ acl(b`). But a`b` has the same type as ab, and acl(a) ∩ acl(b) = acl(∅).
What we have shown is the following statement that we will use again later:

(∗) If acl(a) ∩ acl(b) = acl(∅) and a = a0, a1, . . . and b = b0, b1, . . . satisfy (1)
and (2), then there exists ` ≥ 0 such that a is independent of a`b` over ∅.

In particular, a` and a are independent over the empty set. Setting a′ = a`, we
have shown (ii).

For the converse, suppose (ii) holds and let σ0, . . . , σ`−1 and τ1, . . . , τ` be au-
tomorphisms such that σi(aibi) = ai+1bi and τi+1(ai+1bi) = ai+1bi+1, for all i =
0, . . . , `−1. Hence, for each i, σi witnesses that acl(ai)∩acl(bi) = acl(ai+1)∩acl(bi)
and τi+1 witnesses that acl(ai+1)∩acl(bi) = acl(ai+1)∩acl(bi+1). So acl(a)∩acl(b) =
acl(a′) ∩ acl(b`). In particular, acl(a) ∩ acl(b) ⊆ acl(a) ∩ acl(a′). But the indepen-
dence of a and a′ implies that the latter is acl(∅), as desired. �

The purpose of this note is to prove the following theorem which is motivated
by, and in part recovers, Campana’s “algebraicity criteria” for compact Kähler
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manifolds (cf. Théorèmes 2 and 3 of [5]). It depends heavily on the results of
Chatzidakis [7].

Theorem 1.5. Suppose that a stationary type p(x) ∈ S(A) has a generating family
with a fibre that is almost internal to a nonmodular minimal type r.

(i) Then r is nonorthogonal to A (and so every fibre of the generating family
is almost internal to r) and p is almost analysable in r.

(ii) If moreover the CBP holds for T , then p is almost internal to r.

The rest of the paper is organised as follows. In Section 2 we elaborate on
the connections between the notions presented here and the model theory of com-
pact complex manifolds, in Section 3 we discuss a natural strengthening of the
CBP which is true in compact complex manifolds and relate it to the work of Zoé
Chatzidakis [7], and finally in Section 4 we prove Theorem 1.5.

We end this introduction with a brief discussion of internality and analysability.
If p(x) ∈ S(A) is stationary and P is some family of partial types (over possibly
differing sets) we say p is internal to P or is P -internal, if there is some C containing
A and a realizing p independent from C over A, such that a is in the definable closure
of C together with some realisations of some partial types in P whose domains are
contained in C. If we replace definable closure by algebraic closure we get the
notion of p being almost internal to P. We will be using this notion in at least
two cases, first where P is some acl(∅)-invariant family of minimal (stationary U -
rank 1) types over varying domains, such as the family of all nonmodular minimal
types, and second where P is a single minimal type (over some set) q say. In the
second case the hypothesis that p ∈ S(A) is almost internal to q implies that q is
nonorthogonal to all of its conjugates over acl(A) – that is, q is nonorthogonal to A.
So almost internality of p to q is equivalent to almost internality of p to Q where
Q is the family of conjugates of q over acl(A).

We also have the standard notion of analysability; p(x) ∈ S(A) is analysable in P
if there are a0 . . . an such that stp(ai+1/Aa0 . . . ai) is internal to P for i = 0, . . . , n−1
and a ∈ acl(an). So algebraic closure is built into the definition. We might also
want to define almost analysability by only requiring that stp(ai+1/Aa0 . . . ai) be
almost internal to P for i = 0, . . . , n−1, and in this case we may as well require that
an = a. Assuming that the family P is acl(A)-invariant, it is not hard to see that
p(x) ∈ S(A) is almost analysable in P iff p(x) is analysable in P. As in the case
of internality, if q is a minimal type nonorthogonal to A then almost analysability
of p in q is equivalent to (almost) analysability of p in Q where Q is the family of
conjugates of q over acl(A).

2. Compact complex manifolds

Much of the discussion in the introduction – including the CBP, the notion of
a generating family, as well as the statement of Theorem 1.5 itself – is informed
by certain aspects of the model theory of compact complex manifolds. In this
section we aim to make these origins and connections precise. The material here
is almost entirely of an expository nature. Let A denote the multi-sorted structure
where there is a sort for each irreducible compact complex-analytic space and the
language consists of a predicate for each complex-analytic subset of each finite
cartesian product of sorts. The theory Th(A) admits quantifier elimination and is,
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sort-by-sort, of finite Morley rank. A survey of some of the model theory of Th(A)
can be found in [12].

We work in a fixed sufficiently saturated elementary extension A′ of A. Here it
is more natural to work only with types of finite tuples. Since the theory is totally
transcendental there will be no loss of generality in doing so. It may however lead
to some (harmless) abuse of notation; for example, we will often write Cb(p) when
we really mean a finite tuple whose algebraic closure is Cb(p).

Among the sorts of A we have the projective line P(C) in which the complex
field is definable. In A′ the interpretation of this sort is P(C′) where C′ is the
corresponding elementary extension of the complex field.

The nonmodular minimal types in this theory are exactly those that are nonorthog-
onal to the generic type of the projective line (which is equal to the generic type
of C′). Indeed, this follows from the truth of the Zilber dichotomy in Th(A) via
Zariski geometries plus the fact that the only infinite field definable in A′ is C′ (see
Corollary 4.8 of [11]). However, it also follows directly from a theorem of Cam-
pana [4] (due independently to Fujiki [9]) as observed by the second author in [17].
We will discuss this theorem of Campana’s later, as it is tied up with the issues we
are concerned with in this paper. In any case, it follows that almost internality to
the set of nonmodular minimal types coincides in this theory with almost internality
to the generic type of the projective line. Moreover, as the following summarising
fact describes, almost internality to the projective line has a very natural geometric
meaning.

First some notation: given a tuple a from A′ by the locus of a, denoted loc(a),
we mean the smallest complex-analytic set whose interpretation in A′ contains a.

Fact 2.1. Suppose p(x) = tp(a/b) is a stationary type. Let X = loc(a), S = loc(b),
G = loc(ab) ⊆ X × S, and G → S and G → X the natural projections. Then the
following are equivalent:

(a) p is almost internal to the set of nonmodular minimal types.
(b) p is almost internal to the projective line.
(c) p is internal to the projective line.
(d) After base change G → S is a Moishezon morphism: that is, for some

complex-analytic space T over S, the fibred-product G×S T bimeromorphi-
cally embeds into a projective linear space P(F) over T , where F is some
coherent analytic sheaf on T .

(e) For some complex-analytic space T̂ over S, the fibred-product G×S T̂ bimero-
morphically embeds into Pn(C)× T̂ over T̂ , for some n ≥ 0.

Proof. The equivalence of (c), (d), and (e) is Proposition 4.4 of [11]. In the pre-
ceeding discussion we explained the equivalence of (a) and (b). It remains to prove
that (b) implies (c). In the case when the tuple b comes from the standard model
A this is stated in [15] and boils down to the fact that if X is a Moishezon space
and X ′ is another space such that there is dominant generically finite-to-one mero-
morphic map from X ′ to X, then X ′ is also Moishezon. To prove that (b) implies
(c) in general we actually need a relative version of the above fact, which we now
explain. If tp(a/b) is almost internal to the projective line then there exist a tuple
c extending b such that a is independent of c over b, and a tuple d from P(C) such
that a ∈ acl(cd). It suffices to prove that tp(a/c) is P(C)-internal. Let T = loc(c),
H = loc(ac) ⊆ X × T , P = loc(dc) ⊆ Pn(C)× T , and Z = loc(adc) ⊆ H ×T P . We
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then have the following diagram where all the maps are the natural projections:

Z

~~~~
~~

~~
~

��@
@@

@@
@@

H

  @
@@

@@
@@

P

��~~
~~

~~
~

T

Now P → T is Moishezon as P ⊆ Pn(C)× T . Also Z → P is generically finite-to-
one since a ∈ acl(cd), and all generically finite-to-one maps are Moishezon. Hence
the composition Z → T is Moishezon. (See for example Section 1 of [9] for these
facts about Moishezon morphisms.) By the equivalence of parts (c) and (d) this
implies that stp(ad/c) is P(C)-internal. Hence tp(a/c) is P(C)-internal. �

In particular, note that if p is a stationary type over ∅, then p is (almost) internal
to the projective line if and only if it is the generic type of a Moishezon variety: an
irreducible complex-analytic space that is bimeromorphic to a projective variety.

We now explain why the CBP is true in Th(A). This is a consequence of a
theorem of Campana [4] already referred to earlier. Indeed, it was this theorem
in complex analytic geometry that inspired the second author to introduce the
CBP in [17]. To describe Campana’s theorem we need to recall the Barlet space
of cycles. For X any complex-analytic space, a k-cycle of M is a finite linear
combination Z =

∑
i

niZi where the Zi’s are distinct k-dimensional irreducible

compact complex-analytic subsets of X, and each ni is a positive integer called the
multiplicity of Zi in Z. By |Z| we mean the underlying set or support of Z, namely⋃
i

Zi. We denote the set of all k-cycles of X by Bk(X), and the set of all cycles

of X by B(X) :=
⋃
k

Bk(X). In [1] Barlet endowed Bk(X) with a natural structure

of a complex-analytic space whereby if for s ∈ Bk(X) we let Zs denote the cycle
respresented by s, then the set {(x, s) : s ∈ Bk(X), x ∈ |Zs|} is a complex-analytic
subset of X × Bk(X). Equipped with this complex structure, B(X) is called the
Barlet space of X. When X is a projective variety the Barlet space coincides with
the Chow scheme. In [3] it is shown that

B∗(X) := {s ∈ B(X) : Zs is irreducible with multiplicity 1}

is a Zariski open subset of B(X): its complement in B(X) is a proper complex-
analytic subset. An irreducible component of B(X) is prime if it has nonempty
intersection with B∗(X).

Note that even for a compact complex-analytic space X it is not necessarily the
case that the (prime) irreducible components of B(X) are again compact. Indeed,
the condition that all the prime components of B(Xn) for all n ≥ 0 turns out to
be important model-theoretically; it is equivalent to the property introduced by
the first author in [13] of being essentially saturated. This property is satisfied for
example, by all holomorphic images of compact Kähler manfiolds (these are the
so-called Kähler-type spaces introduced by Fujiki in [8]).
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Theorem 2.2 (Campana [4]). Suppose X is a compact complex-analytic space and
S is an irreducible compact complex-analytic subset of B(X) such that S∩B∗(X) 6=
∅. Let ZS := {(x, s) : s ∈ S, x ∈ |Zs|} ⊆ X × S denote the graph of the family of
cycles S. Then the natural projection pX : ZS → X is a Moishezon morphism. �

Let us see how this implies the CBP. Given a stationary type p(x) = tp(a/b) let
X = loc(a), Y = loc(b), and G = loc(a, b) ⊆ X × Y . By stationarity the general
fibres of G over Y are irreducible complex-analytic subsets of X. The universal
property of the Barlet space, along with the geometric flattenning theorem of [2],
gives us a meromorphic map φ : Y → B(X) such that for general y ∈ Y , Gy = Zφ(y)

(see for example Proposition 2.20 of [6]). The condition that b = Cb(p) translates
into the statement that φ is generically finite-to-one onto its image. Let S denote
the image of Y under φ. Then S is an irreducible compact complex-analytic subset,
S∩B∗(X) 6= ∅, and id×φ induces a dominant generically finite-to-one meromorphic
map from G to ZS over X. By Theorem 2.2, pX : ZS → X, and hence G → X,
is Moishezon. By Fact 2.1, stp(b/a) is internal to the projective line. That is, the
CBP holds in Th(A).

Finally in this section we explain the origins of our notion of a generating family
for a stationary type. Fix an irreducible compact complex-analytic space X. In [5]
Campana calls a family of cycles (Zs : s ∈ S), where S is an irreducible compact
complex-analytic subset of B(X) with S∩B∗(X) 6= ∅, a generating family for X if for
any x, x′ ∈ X there exists a sequence x = x0, x1, . . . , x` = x′ in X and s1, . . . , s` ∈ S
such that xi and xi+1 both lie in the cycle |Zsi+1 |, for all i = 0, . . . , ` − 1. That
is, if every pair of points in X can be connected by moving along the cycles in the
family. The motivation for Definition 1.2 is made explicit by the following:

Proposition 2.3. Suppose q = tp(a, b) is a canonical generating family for p =
tp(a) over s = tp(b) in the sense of Defintion 1.2. Let X = loc(a), Y = loc(b), and
G = loc(a, b) ⊆ X × Y . Let φ : Y → B(X) be the meromorphic map given by the
universal property of the Barlet space, as discussed above. Let S denote the image
of Y under φ. Then (Zs : s ∈ S) is a generating family of cycles for X.

Proof. Note that φ is generically finite-to-one onto S and that for general y ∈ Y ,
Gy = Zφ(y). As in section 1 of [5], for each n ∈ N, let Rn ⊆ X×X be the set of pairs
(x, x′) for which there exist x = x0, . . . , xn = x′ ∈ X and s1, . . . , sn ∈ S such that
x, x1 ∈ |Zs1 |, x1, x2 ∈ |Zs2 |, . . . , xn−1, x

′ ∈ |Zsn
|. By construction Rn is a complex-

analytic subset of X×X. To show that (Zs : s ∈ S) is a generating family of cycles
for X we need to show that R` = X×X for some ` ∈ N. Now, since q is a generating
family for p, Lemma 1.4 implies there exists a′ |= p independent from a and ` ∈ N for
which there exist a = a0, . . . , a` = a′ and b = b0, . . . , b` such that ai+1 |= stp(ai/Abi)
and bi+1 |= stp(bi/Aai+1), for all i = 0, . . . , ` − 1. In particular the bi’s are all
generic in Y and hence φ is defined on them, and ai, ai+1 ∈ Gbi

= Zφ(bi). That is,
(a, a′) ∈ R`. Since a and a′ are generic independents of X, and X is irreducible, it
follows that R` = X ×X. �

Campana proves the following algebraicity criterion (cf. Théorème 3 of [5]):

Theorem 2.4 (Campana [5]). Suppose X is a Kähler-type complex-analytic space.
If (Zs : s ∈ S) is a generating family of cycles for X, and each Zs is Moishezon,
then X is Moishezon. �
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Using Proposition 2.3 it is not hard to see that our main result (Theorem 1.5)
specialised to compact complex manifolds is a consequence of the above algebraicity
criterion of Campana. In fact, Theorem 1.5 can be viewed as generalising the
“generic” content of Theorem 2.4 to all finite rank theories with the CBP.

3. Variants of the CBP

Zoé Chatzidakis [7] has shown that the CBP implies what on the face of it
appears to be a stronger property. We will use this in our proof of Theorem 1.5 in
Section 4 below.

Theorem 3.1 (Chatzidakis [7]). Suppose the CBP holds for T . If b = Cb(a/b)
then stp

(
b/ acl(a) ∩ acl(b)

)
is almost P-internal.1 �

The point here is that we are able to conclude that stp
(
b/ acl(a)∩ acl(b)

)
rather

than just stp(b/a) is almost P-internal. The following immediate corollary is our
main use of this theorem.

Corollary 3.2. Suppose the CBP holds for T and q(x, y) is a canonical generating
family for p(x) over s(y). Then s(y) is almost P-internal.

Proof. Writing q(x, y) = tp(a, b/A) we have that acl(Aa) ∩ acl(Ab) = acl(A) and
b ∈ Cb(a/Ab) =: b′. Then acl(a) ∩ acl(b′) ⊆ acl(A) and b′ = Cb(a/b′). Hence by
Theorem 3.1, stp(b′/A) is almost P-internal. So tp(b/A) is almost P-internal. �

The proof of Theorem 3.1 involves some substantial model-theoretic technical-
ities. It turns out however that in the case of compact complex manifolds the
conclusion follows from a very transparent geometric argument. In this section,
generalising from the case of compact complex manifolds, we introduce a “uniform”
version of the CBP and give a rather conceptual argument for why the conclusion
of Theorem 3.1 follows from this strengthened form of the CBP.

To motivate this “uniform” CBP, let us look back to the previous section at how
the CBP was established for Th(A), and notice that one actually gets more. Sup-
pose tp(a/b) is a stationary type, X = loc(a), Y = loc(b), and G = loc(a, b) ⊆ X×Y
and πX : G → X is the natural projection. Campana’s theorem (Theorem 2.2) im-
plies that if b = Cb(p) then πX is a Moishezon morphism, without taking any base
change. On the other hand, the CBP only concludes that tp(b/a) is internal to the
projective line, which means that πX is Moishezon after a suitable base change (cf.
the equivalence of (c) and (d) in Fact 2.1). To see concretely how these conclusions
differ, consider what happens if there is another Moishezon morphism f : X → X ′.
The Moishezonness of πX : G → X would imply that f ◦ πX is Moishezon, and so
stp

(
b/f(a)

)
would be P(C)-internal. Whereas internality of stp(b/a) to the pro-

jective line only implies that stp
(
b/f(a)

)
is P(C)-analysable (in two steps). So

Campana’s theorem tells us more than the CBP for Th(A).
This motivates the following definition; we return to our general set-up where T

is an arbitrary complete stable theory of finite rank and P is the collection of all
nonmodular minimal types.

Uniform Canonical Base Property (UCBP). Suppose b = Cb(a/b) and C is
a set of parameters such that stp(a/C) is almost P-internal. Then for b′ realising
the nonforking extension of stp(b/a) to acl(Ca), stp(ab′/C) is almost P-internal.

1Recall that in this general setting P denotes the collection of all nonmodular minimal types.
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Note that UCBP implies CBP by taking C = a.

Proposition 3.3. Th(A) has the UCBP.

Proof. This is more or less the preceding discussion, but we give some details now.
Suppose p = tp(a/b) is stationary in Th(A) with b = Cb(p). We have seen that
the projection loc(a, b) → loc(a) is a Moishezon morphism. Now suppose C is a set
of parameters such that stp(a/C) is P(C)-internal and let b′ realise the nonforking
extension of stp(b/a) to acl(Ca). Set c = Cb(a/C), X = loc(a, b′, c), Y = loc(a, c)
and Z = loc(c). So X → Y is a Moishezon morphism as it is obtained from
loc(a, b) → loc(a) by base change (this is where the choice of b′ independent of c
over a is used). We need to show that, possibly after further base change, X → Z
is Moishezon. Since stp(a/c) is P(C)-internal, we have by Fact 2.1 that for some
T → Z, Y ×Z T → T is Moishezon. On the other hand, X ×Z T → Y ×Z T is
Moishezon since it is obtained from X → Y by base change. Hence the composition
X ×Z T → T is Moishezon, as desired. �

The following argument yields the conclusion of Chatzidakis’ theorem under the
stronger hypothesis of UCBP.

Proposition 3.4. Suppose the UCBP holds for T . If b = Cb(a/b) then stp
(
b/ acl(a)∩

acl(b)
)

is almost P-internal.

Proof. Working over acl(a) ∩ acl(b) we may assume that acl(a) ∩ acl(b) = acl(∅),
and aim to show that stp(b) is almost P-internal.

Next, we may assume that a = Cb(b/a) also. Indeed, letting a′ = Cb(b/a)
and b′ = Cb(a′/b) we see that b and a are independent over b′. This implies that
acl(b) = acl(b′). Since a′ = Cb(b′/a′), b′ = Cb(a′/b′), and acl(a′) ∩ acl(b′) = acl(∅),
we have obtained the desired reduction.

Now define inductively sequences a = a0, a1, . . . and b = b0, b1, . . . satisfying the
following

• ai+1 realises the nonforking extension of tp(ai/bi) to abi

• bi+1 realises the nonforking extension of stp(bi/ai+1) to aai+1

• stp(aibi/a) is almost P-internal.

This is done as follows. Applying UCBP to (a, b, C = a) we get that stp(b/a) is
almost P-internal. Now, appying UCBP to (b, a, C = a) we obtain a realisation
a1 of the nonforking extension of tp(a/b) to ab such that stp(a1b/a) is almost P-
internal. Hence stp(a1/a) is almost P-internal. Now apply UCBP to (a1, b, C = a)
to obtain a realisation b1 of the nonforking extension of stp(b/a1) to aa1 such that
stp(a1b1/a) is almost P-internal. Hence, stp(b1/a) is almost P-internal, and we may
continue.

By (∗) in the proof of Lemma 1.4 we know that eventually, for some `, a is
independent of a`b` over ∅. In particular, stp(b`/a) – which is almost P-internal
since stp(a`b`/a) is almost P-internal – is a nonforking extension of stp(b`). Hence
stp(b`) is almost P-internal, as desired. �

Question 3.5. Does the CBP imply the UCBP? Equivalently, does the conclusion
of Chatzidakis’ Theorem 3.1 imply the UCBP?
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4. Internality criteria

We now work toward proving Theorem 1.5. We will need at least Chatzidakis’
Proposition 1.9 from [7], which we now state in a slightly different form.

Lemma 4.1 (Chatzidakis [7]). Suppose that a, b are tuples, A is algebraically closed,
b = Cb(a/Ab), a = Cb(b/Aa) and acl(Aa) ∩ acl(Ab) = A. Then there are mutually
orthogonal nonmodular U -rank 1-types r1, .., rk, each nonorthogonal to A, and tuples
a1, .., ak, b1, .., bk /∈ A such that tp(ai/A) and tp(bi/A) are Ri-analysable for each i
(where Ri is the set of A-conjugates of ri), a is interalgebraic with (a1, .., ak) over
A, b is interalgebraic with (b1, .., bk) over A, and for each i, bi = Cb(ai/Ab) and
ai = Cb(bi/Aa). �

We now prove Theorem 1.5 in the special case when the fibres of the generating
family are of rank 1.

Proposition 4.2. Suppose that a stationary type p(x) = tp(a/A) has a nontrivial
canonical generating family q(x, y) = tp(a, b/A) over s(y) = tp(b/A), with qb =
tp(a/Ab) of rank 1.

(i) Then qb is nonorthogonal to A and p is almost analysable in qb.
(ii) If moreover T has the CBP, then p is almost internal to qb.

Note that if the fibre qb is almost internal to a nonmodular minimal type r then
we can replace qb by r in the conclusions (i) and (ii) above. Hence Proposition 4.2
does indeed imply a special case of Theorem 1.5.

Proof of 4.2. Without loss of generality asume that A = acl(A). Also note that b
and Cb(a/Ab) are interalgebraic over A, and replacing b by Cb(a/Ab) preserves the
hypotheses of the proposition. So we may assume that b = Cb(a/Ab).

Let a′ = Cb(b/Aa) and b′ = Cb(a′/Ab). Then, as observed in the proof of
Proposition 3.4, b and b′ are interalgebraic over A.

We claim that a and a′ are interalgebraic over Ab. Note first that b forks with a′

over A. For if not, then b is independent from a over A, and so b ∈ A, contradicting
nontriviality. So a′ /∈ A. If a′ ∈ acl(Ab), then, as a′ ∈ acl(Aa), we contradict the
hypothesis that acl(Aa) ∩ acl(Ab) = A. So U(a′/Ab) ≥ 1. As U(a/Ab) = 1 and
a′ ∈ acl(Aa) it follows that a is interalgebraic with a′ over Ab as required.

We have b′ = Cb(a′/Ab′), a′ ∈ Cb(b′/Aa′) and acl(Aa′) ∩ acl(Ab′) = A. So
we can apply Lemma 4.1 to a′, b′, A to obtain r1, . . . , rk and a′1, . . . , a

′
k, b′1, . . . , b

′
k

satisfying the conclusion of that lemma (with the obvious notational changes).

Claim 4.3. k = 1 and r1 is nonorthogonal to qb.

Proof. Recall that a′i /∈ A and a′ is interalgebraic with (a′1 . . . , a′k) over A. So
acl(Aa′i) ∩ acl(Ab′) = A and it follows that a′i /∈ acl(Ab′). Hence U(a′i/Ab′) ≥ 1 for
each i = 1, . . . , k. Since each stp(a′i/Ab′) is Ri-analysable and the ri’s are mutually
orthogonal, it follows that U(a′/Ab′) ≥ k. But as b and b′ are interalgebraic over A
and a and a′ are interalgebraic over Ab, it follows that U(a′/Ab′) = U(a/Ab) = 1.
So k = 1 and stp(a′/Ab′) is R1-analysable. Hence qb = tp(a/Ab) is R1-analysable,
and so nonorthogonal to r1 as desired. �

We can now prove (i). Since by the claim r1 is nonorthogonal to qb, and since
r1 is nonorthogonal to A, it follows that qb is nonorthogonal to A. Moreover, b is
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interalgebraic with b′1 over A. It follows that tp(b/A) is almost analysable in r1,
and hence in qb. But tp(a/Ab) = qb. So tp(a/A) is almost analysable in qb.

For (ii) we already know from Corollary 3.2 that the CBP implies that tp(b/A)
is almost P-internal. On the other hand, we have just seen that tp(b/A) is almost
analysable in qb ∈ P. Hence, tp(b/A) must be almost internal to qb. On the
other hand, as the fibres have rank 1, we know that q almost separates points of p

(cf. part (b) of Remark 1.3). So pM ⊆ acl
(
AsM

)
, and hence p is almost internal to

qb as well. This completes the proof of Proposition 4.2. �

The following lemma will enable us to reduce Theorem 1.5 to Proposition 4.2.

Lemma 4.4. Suppose r is a stationary type of rank at least 2 that is almost internal
to a nonmodular minimal type. Then r has a canonical generating family whose
fibres are of rank 1.

Proof. There is no harm in assuming r to be over ∅. It suffices to show

(∗) there is some rank 1 stationary extension qb ∈ S(b) of r such that there are
realizations c1, c2 of qb which are independent over ∅.

Indeed, assume such a qb exists and let c |= qb. Restricting qb we may assume
b = Cb(qb). Hence in order to see that q := stp(c, b) is a canonical generating
family for r over stp(b) it remains to show that acl(c) ∩ acl(b) = acl(∅). Suppose
d ∈ acl(c) ∩ acl(b). Then, as qb is stationary, if c′ |= qb is independent from c over
∅ then d ∈ acl(c) ∩ acl(c′) = acl(∅), as desired. So (∗) suffices.

We next prove the lemma in the special case that r = tp(a1, .., an) where
{a1, .., an} is an independent set of realizations of a nonmodular stationary rank 1
type p(x). By nonmodularity of p we can find, for each i = 2, .., n, some bi such
that tp(a1, ai/bi) is stationary of rank 1, bi is the canonical base of tp(a1, ai/bi),
and U(bi) ≥ 2. (See Chapter 2 of [14].) Choose the bi as freely as possible, namely
{b2, .., bn} is independent over ∅, and {a1, ai} is independent from all the other
aj ’s together with all the bj ’s over bi (for each i = 2, .., n). Let b = (b2, .., bn).
Then stp(a1, .., an/b) has rank 1 and b is interalgebraic with the canonical base of
the latter strong type. Let (a′1, .., a

′
n) be a realization of stp(a1, .., an/b), indepen-

dent from (a1, .., an) over b. Now if U(a′1, a
′
i/a1, ai) = 1 then (a′1, a

′
i) is indepen-

dent from (a1, ai, bi) over (a1, ai). But bi = Cb(a′1, a
′
i/b) = Cb(a′1, a

′
i/a1, ai, b), so

bi ∈ acl(a1, ai). But then computing the rank of tp(a1, ai, bi) shows that U(bi) ≤ 1,
which is a contradiction. So, for each i, (a1, ai) must be independent of (a′1, a

′
i) over

∅. It is now routine to conclude, using our free choice of the bi’s, that (a′1, ..., a
′
n) is

independent from (a1, .., an) over ∅. So (∗) has been proved in the special case.
Now for the general case. Our assumption on r implies that there is a realization c

of r, a model M independent from c, a nonmodular rank 1 type p over M , and an M -
independent set {a1, .., an} (n ≥ 2) of realizations of p which is interalgebraic with
c over M . Denote (a1, .., an) by a. Let b be given by the special case treated above,
namely tp(a/M, b) has rank 1, and if a′ realizes stp(a/M, b) independently from a, b
over M , then a′ is independent from a over M . Note that tp(c/M, b) has rank 1 too.
Now let (a, c) and (a′, c′) be independent (over M, b) realizations of stp(a, c/M, b).
As a′ is independent from a over M it follows (from the interalgebraicity of c and
a over M), that c′ and c are independent over M , and thus independent over ∅. So
c′ and c are realizations of stp(c/M, b) which are independent over ∅. This proves
(∗) for r. �
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4.1. Proof of Theorem 1.5. Write p = tp(a/A), q = tp(a, b/A), and s = tp(b/A),
such that q generates p over s and qb is internal to a nonmodular minimal type r.

Without loss of generality assume that A = acl(A). Let b′ = Cb(a/Ab). Then
tp(a/Ab′) is stationary and almost internal to r, and acl(Aa)∩acl(Ab′) = A. So the
hypotheses of the theorem are preserved by replacing b with b′. We may therefore
assume that b = Cb(a/Ab) and q is thus a canonical generating family. If q were
a trivial generating family then qb = p and the theorem would follow. So we may
assume that q is a nontrivial canonical generating family.

If U(qb) = 1 then the theorem follows from Proposition 4.2. So we may assume
that the fibres are of rank at least 2. Applying Lemma 4.4 we obtain c such that

• tp(a/Abc) is stationary of rank 1,
• c ∈ Cb(a/Abc), and
• acl(Aba) ∩ acl(Abc) = acl(Ab).

Letting ĉ = Cb(a/Abc) we have that

• ĉ /∈ A,
• tp(a/Aĉ) is stationary of rank 1,
• ĉ = Cb(a/Aĉ), and
• acl(Aa) ∩ acl(Aĉ) = A.

That is, tp(a, ĉ/A) is a nontrivial canonical generating family for p over tp(ĉ/A)
with fibre tp(a/Aĉ) of rank 1. Hence Proposition 4.2 yields

(i)′ tp(a/Aĉ) is nonorthogonal to A and p is almost analysable in tp(a/Aĉ)
(ii)′ If moreover T has the CBP then p is almost internal to tp(a/Aĉ).

But since qb = tp(a/Ab) is almost internal to r so is the extension tp(a/Abc) and
hence also tp(a/Aĉ). So (i)′ and (ii)′ yield

(i) r is nonorthogonal to A and p is almost analysable in r
(ii) If moreover T has the CBP then p is almost internal to r.

This completes the proof of Theorem 1.5. �
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