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Abstract. We prove that the first-order theory of a finite extension of the field
of p-adic numbers is model-complete in the language of rings, for any prime p.

1. Introduction

This paper proves model-completeness in the language of ring theory for each
finite extension of the p-adic field Qp. Recall that a theory T is called model-
complete if for any model M of T and any n ≥ 1, any definable subset of Mn is
defined by an existential formula. This concept was defined by Abraham Robinson
(cf. [11]).

1. Theorem. Let L be a finite extension of the field of p-adic numbers Qp, where p is
a prime. Then the first-order theory of L in the language of rings is model-complete.

Though we have a nagging feeling that we are neglecting something in the litera-
ture, we have not found any reference for such a model-completeness result. For Qp,
model-completeness in the language of rings is a well-known consequence of Macin-
tyre’s quantifier elimination for p-adic fields in the Macintyre language (which is an
extension of the language of rings by predicates for sets of nth powers, for all n) [9].

Quantifier elimination for a finite extension ofQp was obtained by Prestel-Roquette
[10] in an extension of the Macintyre language got by adding constant symbols for
certain distinguished elements. However, the use of these constants does not readily
give model-completeness.

Using relative quantifier elimination results of Basarab [1] and Kuhlmann [8]
for the case of a fixed finite extension of Qp in a many-sorted language involving
sorts for higher residue ring and higher residue groups, we are reduced to proving
model-completeness for these higher sorts. A key step, the model-completeness of
the higher residue group sorts, is proved via defining a class of pre-ordered Abelian
groups that we call finite-by-Presburger, and proving their model-completeness. We
shall also interpret in such groups, each of the higher residue rings.

Given a valued field K, we shall denote the valuation by v, the valuation ring
by OK , and the maximal ideal by MK . In [3], it was proved that given a finite
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extension K of Qp, there is an existential definition of OK without parameters in
the ring language. In view of other results in [3] it is natural to ask if there is a
universal definition of OK without parameters in the ring language. Note that if
we knew that the theory K is model complete, this and the existential definition of
OK would be immediate. In [3], a uniform parameter-free definition of OK from the
language of rings is given uniformly for all finite extensions of Qp and all Fq((t)) for
all primes p and prime powers q (and more generally uniformly for all fields with a
valuation of arbitrary rank with finite or pseudo-finite residue field). This uniform
definition is not existential (however it is ∃∀), and it is proved in [3] that there
can not be any parameter-free uniform existential or universal definition from the
language of rings. Interestingly, in our proof of Theorem 1, we first have to get the
universal definition of valuation rings suggested above.

2. Proof of the Theorem

2.1. First-order definitions of valuation rings. We shall denote by Lrings the
(first-order) language of rings with primitives {+, ., 0, 1}. Given a structure K, we
let Th(K) denote the Lrings-theory of K, i.e., the set of all Lrings-sentences that are
true in K.

Let L be a finite extension ofQp, where p is a prime. By a theorem of F.K. Schmidt
(cf. [5, Theorem 4.4.1]), any two Henselian valuation rings of L are comparable, so
since L has a rank 1 valuation, it has a unique valuation ring OL giving a Henselian
valuation. By [3, Theorem 6], this valuation ring is defined by an existential Lrings-
formula ψ(x). We remark that ψ(x) depends on the field L. For any field K which
is elementarily equivalent to L, ψ(x) defines a valuation ring in K and hence a
valuation.

By Krasner’s Lemma (see [2, Section 1]), L = Qp(δ) for some δ algebraic over
Q, and L has only finitely many extensions of each finite dimension. This property
(with the same numbers) is true for any K which satisfies K ≡ L.

From the Σ1-definability of OL we easily get a Σ1-definition of the set

{x : v(x) ≤ 0},
and of the set of units {x : v(x) = 0}. But it seems that no general nonsense
argument gives a Σ1-definition of the maximal ideal {x : v(x) > 0}.

We shall be working throughout in the language of rings, and our structures and
morphisms and formulas are from this language unless otherwise stated.

Note that it is a necessary condition for model-completeness that

OK2 ∩K1 = OK1 ,

whenever K1 → K2 is an embedding of models of Th(L). We shall establish this
condition for all embeddings of models of Th(L). For this, we shall first prove the
following lemma.

1. Lemma. Let K1 → K2 be an embedding of models of Th(L). Then
(1) K1 is relatively algebraically closed in K2,
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(2) The valuation induced from OK2 on K1 is Henselian.

Proof. We first give a proof of (1). Suppose n = [L : Qp]. Then n = ef , where e is the
ramification index and f the residue field dimension (see [5],[2]). Clearly it is a first-
order (but not yet visibly existential) property of OL (defined by ψ(x)) expressed
in the language of rings that the residue field has pf elements. Thus both K1 and
K2 have residue fields (with respect to OK1 and OK2) of cardinality pf . (Recall, of
course, that we do not yet know 2.1.1, so we have no natural map of residue fields).
Similarly, in both K1 and K2 we have that v(p) is the eth positive element of the
value group (a condition that can be expressed by a first-order sentence using the
formula ψ(x) defining the valuation).

We now argue by contradiction. Suppose K1 is not relatively algebraically closed
in K2, then K1(β) ⊂ K2, for some β which is algebraic over K1 of degreem > 1. The
valuation v of K1 defined by ψ(x) has a unique extension w to K1(β) by Henselianity
and [5, Theorem 4.4.1]. We have that m = e′f ′, where e′ is the ramification index
and f ′ is the residue field dimension of K1(β) over K1 with respect to w. (L satisfies
all such equalities and so K1 does too. All this is of course with respect to the
topology defined by ψ(x)). Now if f ′ > 1 we may replace K1(β) by its maximal
subfield unramified over K1. So we can in that case assume K1(β) is unramified
over K1. Now K1 has residue field Fpf , and then by Hensel’s Lemma K1(β) contains
a primitive (pff

′ − 1)th root of unity (similar arguments are used in [3]). So K2

contains a primitive (pff
′ − 1)th root of unity. But K2 certainly does not, since it’s

residue field (with respect to ψ(x)) is Fpf also.
So we must have f ′ = 1, i.e. K1(β) is totally ramified over K1. Now we can

assume that β is a root of a monic Eisenstein (relative to OK1) polynomial F (x)
over K1. Let

F (x) = xe
′
+ c1x

e′−1 + · · ·+ ce′ .

Note that F (x) can not be Eisenstein over K2, for then it would be irreducible, and
it has a root β in K2.

Within K1 the condition that cj is in the maximal ideal (for OK1 !) is simply that

cejp
−1 ∈ OK1 ,

and the condition that ce′ is a uniformizing element is simply that both

cee′p
−1 ∈ OK1,

and
c−ee′ p ∈ OK1 ,

hold. Now these conditions go up into K2 since ψ(x) is a Σ1-formula. So

cejp
−1 ∈ OK2

for all 1 ≤ j ≤ e′, and
c−ee′ p ∈ OK2 .

Now v(p) (in the sense of OK2) is the eth positive element of the value group (true
in L). So in fact each v(cj) > 0 (in the sense of OK2) for 1 ≤ j ≤ e′.



4 JAMSHID DERAKHSHAN AND ANGUS MACINTYRE

Since F (x) is not Eisenstein over K2, ce′ must fail to be a uniformizing element.
But ev(ce′) = v(p) (in the sense of OK2), and v(p) is the eth positive element of
value group for OK2 , so ce′ does generate. So K1 is relatively algebraically closed in
K2. This proves (1).

We now prove (2). The valuation ring of the induced valuation on K1 is K1∩OK2 ,
and its maximal ideal isMK2 ∩K1. By [5, Theorem 4.1.3, pp.88], Henselianity of a
valued field is equivalent to the condition that any polynomial of the form

f := Xn +Xn−1 + an−2X
n−2 + · · ·+ a0

where all the coefficients aj are in the maximal ideal has a root in the field. So fix a
polynomial f as above with the condition that the coefficients aj are in the maximal
ideal

MK2 ∩K1

of the induced valuation. Since all aj are in particular inMK2 , by Henselianity of
K2 and [5, Theorem 4.1.3, pp.88] we deduce that f has a root α in K2. Since by
the first part, K1 is relatively algebraically closed in K2, this α must lie in K1, and
by another application of [5, Theorem 4.1.3, pp.88] we deduce that K1 is Henselian.
The proof of the Lemma is complete. �

We can now prove the following.

2. Lemma. Let K1 → K2 be an embedding of models of Th(L). Then

(2.1.1) OK2 ∩K1 = OK1 .

Proof. Consider the valuation ring in K1 induced from OK2 . By Lemma 1, it is
Henselian. Since any two Henselian valuation rings in K1 are comparable, and K1

has rank one value group (since its value group is a Z-group because it is elementarily
equivalent to the value group of L), by [5, Theorem 4.4.1] the induced valuation on
K1 must agree with that given by OK1 and 2.1.1 follows. �

It follows from Lemmas 1 and 2 that the valuation rings are ∀1-definable uniformly
for models of Th(L).

2.2. Basarab-Kuhlmann quantifier-elimination. We shall use the results of
Basarab [1] and Kuhlmann [8] on relative quantifier elimination for a given finite
extension of Qp. It is a little bit easier to use Kuhlmann’s version [8]. Basarab
works with categories of valued fields. Because of the previous results on definabil-
ity of valuation rings we may work with models of Th(L) as above, imposing the
valuation ring which is defined both existentially and universally, thereby giving
automatically a category of valued fields. In Kuhlmann’s language [8] there is no
symbol for valuation but the valuation can be defined in the language.

Recall the ingredients of the main result in [8]. In fact only the following special
case of the formalism and result is needed. We shall use some convenient notation
from [1].
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Let K be a valued field with OK ,MK as before. We suppose that K has residue
characteristic p > 0. We denote the value group of K by Γ. For an integer k ≥ 0,
set

MK,k = {a ∈MK : v(a) > kv(p)},
OK,k = OK/MK,k,

a local ring, and
GK,k = K∗/1 +MK,k,

a multiplicative group. πk denotes the canonical projection

OK → OK,k,

and π∗k the canonical projection

K∗ → GK,k.

Furthermore, we denote by
Θk ⊆ GK,k ×OK,k

the binary relation defined by

Θk(x, y)⇔ ∃z ∈ OK(π∗k(z) = x ∧ πk(z) = y).

We denote by Kk the many-sorted structure

(K,GK,k,OK,k,Θk).

Note that v is well-defined on GK,k and surjective to the value group Γ. Kuhlmann’s
language [8] for this structure is the many-sorted language

(Lrings,Lgroups,Lrings, πk, π
∗
k,Θk),

which has a sort for the field K equipped with the language of rings, a sort for the
groups GK,k equipped with the language of groups Lgroups, and a sort for the residue
rings OK,k equipped with the language of rings, for all k ≥ 0. The language has
symbols for the projection maps πk and π∗k and a predicate for the relation Θk. We
call this the language of Basarab-Kuhlmann and denote it by LBK .

Note that LBK does not have a symbol for the valuation on K and on GK,k.
However the valuation is quantifier-free definable from Θk.

2. Theorem. [8] Let K be a Henselian valued field with characteristic zero and
residue characteristic p > 0. Then given an LBK-formula ϕ(x̄), there is an LBK-
formula ψ(x̄) which is quantifier free in the field sort such that for all x̄

K |= ϕ(x̄)⇔ Kk |= ψ(x̄).

Note that for k = 0, OK,k is the residue field, and GK,k comes with an exact
sequence

1→ k∗ → GK,0 → Γ→ 1.

We shall need a suitable description of the relation Θk as follows.

3. Lemma. For any valued field K and k ≥ 0,

Θk = {(g, α) ∈ GK,k ×OK,k : (α = 0 ∧ v(g) ≥ k + 1) ∨ (α 6= 0 ∧ v(g) ≤ k)}.
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Proof. Obvious. �

In the case that interests us, K ≡ L and [L : Qp] < ∞, and in this case the
multiplicative group of the residue field is isomorphic to the subgroup µpf−1 of
(pf − 1)th roots of unity in K∗. If one has a cross-section Γ → K∗, then GK,0

is a subgroup of K∗, and in any case (with cross-section or not) it is elementarily
equivalent to µpf−1×Γ. Note that the µpf−1 factor is definable as the set of (pf−1)-
torsion elements.

So fix such an L, with its attendant numbers n, e, f with n = ef . For any field L
such that K ≡ L, the value group is a Z-group, and v(p) is the eth positive element
of the value group.

Now suppose K1 → K2 is an extension of models of Th(L). Let γ be a uni-
formizing parameter for K1, i.e., v(γ) is the least positive element if v(K1). By the
preceding, γ is also a uniformizing element for v(K2).

4. Lemma. For any k = mv(p), where m ≥ 0, the embedding of local rings

OK1,k → OK2,k

is elementary.

Proof. For any k = mv(p), where m ≥ 0, the rings OK1,k and OK,k2 have the same
cardinality since K1 and K2 have the same finite residue field, so the inclusion
OK1,k → OK2,k is an isomorphism, and hence is elementary. �

The proof of the next lemma is harder.

5. Lemma. For any k = mv(p), where m ≥ 0, the embedding of groups

GK1,k → GK2,k

is elementary

The proof Lemma 5 will be given in the next section. We shall deduce it from
a more general theorem on model-completeness of a class of pre-ordered Abelian
groups that we call finite-by-Presburger.

2.3. Model Theory of finite-by-Presburger Abelian groups. We consider the
language of group theory with primitives {., 1,−1 }, together with a symbol ≤ stand-
ing for pre-order. The intended structures are abelian groups G, equipped with a
binary relation ≤ satisfying

∀g (g ≤ g),

∀g∀h∀j (g ≤ h ∧ h ≤ j ⇒ g ≤ j),

∀g∀h (g ≤ h ∨ h ≤ g),

∀g∀h∀j (g ≤ h⇒ gj ≤ hj).

It would be natural to call such structures pre-ordered abelian groups.
Define g ∼ h to mean g ≤ h and h ≤ g. This is obviously a congruence on G,

and the quotient G/ ∼ is naturally an ordered abelian group. We restrict to the
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case when {g : g ∼ 1} is a finite group H. We call such G finite-by-ordered. Note
that the projection map

G→ G/ ∼
is pre-order preserving.

6. Lemma. H is the torsion subgroup of G if G is finite-by-ordered.

Proof. G/ ∼ is torsion free. �

Note that H is pure in G, indeed, if g ∈ G satisfies gm ∈ H for some m, then
g ∈ H. By [7, Theorem 7,pp.18], a pure subgroup of bounded exponent in an abelian
group is a direct summand. Clearly H is of bounded exponent (being finite!), so
H is a direct factor of G, so G = H.Γ, an internal direct product of subgroups, for
some Γ.

Now Γ contains at most one element from each ∼-class, and the relation ≤ on Γ
gives Γ the structure of an ordered abelian group. So in fact since G is the product
of two pre-ordered groups, one of which H has only one ∼-class. So Γ ∼= G/H as
ordered abelian groups.

Since G is a direct product of two pre-ordered groups, we have the following.

3. Theorem. The theory of (G,≤) is determined by the theory of H and the theory
of the ordered group (G/H,≤). Moreover, G is decidable if and only if (G/H,≤) is
decidable.

Proof. Follows from the Feferman-Vaught Theorem [6]. �

We would like model-completeness of (G,≤) but settle here for a special case
when G/H is a model of Presburger arithmetic. Now Presburger arithmetic has
quantifier elimination in the language with primitives {., 1,−1 , τ, Pn,≤}, where .
denotes multiplication, τ is a constant interpreted as the minimal positive element,
≤ is an ordering, and Pn is the subgroup of nth powers. Note that this is the
multiplicative version of the usual formalism of Presburger arithmetic (cf. [4, Section
3.2, pp.197]).

So we augment the basic formalism of pre-ordered abelian groups with symbols τ
and Pn, for all n ≥ 2 as above, and to the axioms of pre-ordered groups we add the
following set of axioms for any given finite group H. (In these axioms m denotes
the exponent of H, and Tor(G) the torsion subgroup of G.

i) If the relation ≤ is an order, then τ is the minimal positive element, and if not,
then τ = 1.

ii) If g ∈ G and g has order k for some k ∈ N, then k divides m (we have a
sentence for each k ≥ 1).

iii) Tor(G) |= σ, where σ denote a sentence that characterizes the group H up to
isomorphism (note that this sentence exists since H is finite).

iv) If g ∈ G satisfies g ∼ 1, then g ∈ H.
v) G/T is totally ordered and is a model of Presburger arithmetic with τH the

minimal positive element.
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vi) The order ≤ on H is trivial (i.e. for any two g, h ∈ H we have g ≤ h and
h ≤ g).

Note that given a modelM of these axioms, H is the isomorphic to the torsion
subgroup ofM (by (iii)). Thus, given any finite group H, we obtain a theory which
we denote by TH . Note that if H = 1 (the identity group!), then TH is the theory of
Presburger arithmetic. We call these the axioms of pre-ordered groups with torsion
H and ordered Presburger quotient modulo H.

Clearly G from above enriches to a model of these axioms.

4. Theorem. The theory determined by the above axioms is model-complete. It
follows that (G,≤) is model-complete.

Proof. Let M1 →M2 be an embedding of models of the above axioms. We know as
above that

M2 = H.Γ2

for some Γ2. Let Γ1 := Γ2 ∩M1. Then we have
M1 = H.Γ1.

Thus the embedding M1 →M2 is the product embedding
H.Γ1 → H.Γ2.

Now H → H is elementary (indeed, take γ = 1 in both copies of H), and
Γ1 → Γ2

is elementary since the map
M1/H →M2/H

is elementary because both ordered groups have the same minimal positive element.
Therefore by the Feferman-Vaught Theorem [6] the map

H.Γ1 → H.Γ2

is elementary. �

2.4. Proof of Lemma 5. Let K be a valued field and k ≥ 0. We first identify
the torsion elements of GK,k. Clearly these must be of the form g(1 +MK,k) where
v(g) = 0. Note that

gp
f−1 ∈ 1 +MK

and
(gp

f−1)p
k ∈ 1 +MK,k.

Thus g has (in GK,k) order dividing (pf − 1)pk, and if
g ∈ 1 +MK ,

then g has order dividing pk in GK,k. Thus the torsion subgroup of GK,k has order

(pf − 1)(pf )me = (pf − 1)pnm.

Now let the embedding K1 → K2 and k be as in Lemma 5. We have an inclusion
GK1,k → GK2,k,
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and the groups GK1,k and GK2,k have isomorphic torsion subgroups, say H. The
group GK1,k/H (resp. GK2,k/H) is isomorphic to the value group of K1 (resp. value
group of K2). Hence GK1,k and GK2,k are ordered groups satisfying the axioms in
Subsection 2.3 on pre-ordered groups with torsion H and ordered quotient modulo
H. Furthermore, the minimal positive elements of GK1,k and GK2,k are the same.
Thus by Theorem 4 the embedding GK1,k → GK2,k is elementary.

1. Remark. In general, the theory of the structure Z × (torsion subgroup) is not
model-complete.

2.5. Completion of proof of Theorem 1. Let π denote an element of least pos-
itive value in K1 (it follows that π is also an element of least positive value in K2).
We let µ denote a generator of the cyclic group consisting of the Teichmuller rep-
resentatives in K1 (and hence the same holds for µ in K2). µ has order pf − 1. As
before we have k = ef where f and e are respectively the residue field degree and
ramification index of L over Qp.

An element of OK1,k can be written uniquely in the form
a+MK1,k,

where a ∈ K can be uniquely represented as∑
0≤j≤k

cjπ
j

where cj are either 0 or a power of µ. Similarly, an element of OK2,k is uniquely of
the form a +MK2,k. Now except when all cj = 0, these elements map to elements
of GKi,k (where i = 1, 2) under the map

(
∑

0≤j≤k

cjπ
j +MKi,k)→ (

∑
0≤j≤k

cjπ
j)(1 +MKi,k).

This map is injective. Indeed, if two elements
∑

0≤j≤k cjπ
j and

∑
0≤j≤k c

′
jπ

j map to
the same element, then their difference lies inMKi,k, but if γ1 and γ2 are different
powers of µ, then v(γ1 − γ2) = 0 by the usual Hensel Lemma argument that gives
us the Teichmuller set, this gives a contradiction.

So we may construe the nonzero elements
∑

0≤j≤k cjπ
j +MK1,k as constant ele-

ments of GK1,k (and the same for GK2,k). We shall use the notation

[
∑

0≤j≤k

cjπ
j +MK1,k]

for them (similarly for GK2,k). We have a multiplication on these elements coming
from the group GKi,k, for i = 1, 2, which we denote by �. It is defined by

[r1]� [r2] = [r1].[r2],

where . is group multiplication in GKi,k. We also have an addition on these elements
together with the zero element 0 coming from the ring OKi,k, for i = 1, 2, which we
denote by ⊕. It is defined by

[r1]⊕ [r2] = [r1 + r2].
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We thus have a finite subset, denoted by R1 (resp. R2), of GK1,k (resp. GK2,k)
consisting of the nonzero elements

[
∑

0≤j≤k

cjπ
j +MK1,k]

(resp. [
∑

0≤j≤k cjπ
j +MK1,k]) above together with the operations ⊕,� satisfying

([r1]⊕ [r2])� [r3] = [r1]� [r1]⊕ [r1]� [r3],

and the properties that [1] is the unit element of � and [πk+1] is the zero element.
Now, for i = 1, 2, using Lemma 3, we can interpret in GKi,k the relation Θk as

the set Θ+
k of all pairs (g, r) ∈ GKi,k ×Ri satisfying the formula

(r = [πk+1] ∧ v(g) ≥ k + 1)∨∨
s

(0 ≤ v(g) ≤ k ∧ v([s]) = v(g) ∧ r = [s])),

where s runs through the nonzero elements
∑

0≤j≤k cjπ
j +MKi,k from before. (In

fact, the s satisfying the above is unique). Thus

GKi,k ×R
with the relation Θ+

k as above and with factors the two sorts is isomorphic to the
structure

GKi,k ×OKi,k

with the relation Θk and with factors the two sorts.
We can now finish the proof of model-completeness of Th(L). Let K1 → K2 be

an embedding of models of Th(L). We show that the embedding of K1 in K2 is
elementary. Let ϕ(x̄) be an Lrings-formula and consider ϕ(ā) where ā is a tuple
from K1. By Theorem 2, there is a constant N ≥ 0 and an LBK-formula ψ(x̄) which
is quantifier-free in the field sort such that

Th(L) ` ∀x̄(ϕ(x̄)↔ ψ(x̄)).

Since K1 and K2 are models of Th(L), the formula ∀x̄(ϕ(x̄)↔ ψ(x̄)) holds in both
K1 and K2. Hence

Ki |= ϕ(ā)↔ ψ(ā),

where i = 1, 2. The subformula of ψ(ā) from the field sort is quantifier free and so will
hold in K1 if and only if it holds in K2. Thus to prove that the inclusion of K1 into
K2 is elementary, it suffices to consider the sub-formula of ψ(ā) involving the sorts
other than the field sort. In Ki (for i = 1, 2), this formula is a Boolean combination
of formulas of the sorts OKi,k, formulas of the sorts GKi,k, and formulas involving
the relation Θk for finitely many values of k. We claim that each subformula of ψ(ā)
of each sort (including subformulas containing Θk) holds in K1 if and only if it holds
in K2. This would imply that ψ(ā) holds in K1 if and only if it holds in K2, which
implies that ϕ(ā) holds in K1 if and only if it holds in K2. To prove the claim,
by Lemmas 4 and 5, the embedding of rings OK1,k → OK2,k and the embedding of
groups GK1,k → GK2,k are both elementary for k = m.v(p) and any m ≥ 0. Using
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the above interpretation of (GKi,k ×OKi,k,Θk) in (GKi,k ×GKi,k,Θ
+
k ) (for i = 1, 2),

we deduce that the embedding
(K1, GK1,k,OK1,k,Θk)→ (K2, GK2,k,OK2,k,Θk)

is elementary. This establishes the claim, and completes the proof.
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