Publications > Preprint server > Preprint Number 732
Preprint Number 732
732. Raf Cluckers and Willem Veys Bounds for p-adic exponential sums and log-canonical thresholds E-mail: Submission date: 3 June 2014. Abstract: We propose a conjecture for exponential sums which generalizes both a conjecture by Igusa and a local variant by Denef and Sperber, in particular, it is without the homogeneity condition on the polynomial in the phase, and with new predicted uniform behavior. The exponential sums have summation sets consisting of integers modulo p^m lying p-adically close to y, and the proposed bounds are uniform in p, y, and m. We give evidence for the conjecture, by showing uniform bounds in p, y, and in some values for m. On the way, we prove new bounds for log-canonical thresholds which are closely related to the bounds predicted by the conjecture. Mathematics Subject Classification: 11L07, 11L05 Keywords and phrases: |
Last updated: March 23 2021 10:22 | Please send your corrections to: |