A definable Borsuk-Ulam type theorem

Tomohiro Kawakami¹ and Ikumitsu Nagasaki²

¹Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

²Department of Mathematics, Kyoto Prefectural University of Medicine,

13 Nishi-Takatsukaso-Cho, Taishogun Kita-ku, Kyoto 603-8334, Japan

Abstract

Let $\mathcal{N} = (R, +, \cdot, <, ...)$ be an o-minimal expansion of the standard structure of a real closed field R. A definably compact definable group G is a definable Borsuk-Ulam group if there exists an isovariant definable map $f : V \to W$ between representations of G, then $\dim V - \dim V^G \leq \dim W - \dim W^G$. We prove that if a finite group G satisfies the prime condition, then G is a definable Borsuk-Ulam group.

2010 Mathematics Subject Classification. 57S10, 57S17, 55M35, 03C64. Keywords and Phrases. A definable Borsuk-Ulam type theorem, finite groups, o-minimal, real closed fields.

1. Introduction.

Let G be a topological group. A continuous map $f : X \to Y$ is a G map if f(gx) = gf(x) for all $x \in X, g \in G$. A G map $f : X \to Y$ is *isovariant* if for any $x \in X, G_{f(x)} = G_x$.

Let C_k be the cyclic group of order k and \mathbb{S}^n the *n*-dimensional unit sphere of the (n + 1)-dimensional Euclidean space \mathbb{R}^{n+1} with the antipodal C_2 action. If a real closed field R is the field \mathbb{R} of real numbers, then the Borsuk-Ulam theorem states that if there exists a continuous C_2 map from \mathbb{S}^n to \mathbb{S}^m , then $n \leq m$. There are several equivalent statements of it and many related generalizations (e.g. [1], [8] [10], [11], [12], [13], [14], [15], [19]). The above theorem is generalized the case where spheres with free C_k actions and a definable version in an o-minimal expansion of a real closed field of it is known in

[13].

Let $\mathcal{N} = (R, +, \cdot, <, \dots)$ be an o-minimal expansion of the standard structure of a real closed field R. Let G be a definably compact definable group. A group homomorphism from G to some $O_n(R)$ is a representation if it is definable, where $O_n(R)$ means the *n*th orthogonal group of R. A representation space of G is \mathbb{R}^n with the orthogonal action induced from a representation of G. In this paper, we consider isovariant definable maps between representation spaces of definably compact definable groups as a definable generalization of related results of the Borsuk-Ulam theorem. Everything is considered in \mathcal{N} and a definable map is assumed to be continuous unless otherwise stated.

A positive integer *n* satisfies the prime condition if *n* is expressed as $p_1^{r_1} \dots p_s^{r_s}$, each p_i is a prime and $r_i \geq 1$ for $1 \leq i \leq s$, then $\sum_{i=1}^s \frac{1}{p_i} \leq 1$. A finite simple group G satisfies the prime condition if for any $g \in G$, the order |g| of g satisfies the prime condition. A finite group G satisfies the prime condition if each composition factor of G satisfies the prime condition.

A definably compact definable group G is a *definable Borsuk-Ulam group* if there exists an isovariant definable map $f: V \to W$ between representations of G, then dim V dim $V^G \leq \dim W - \dim W^G$.

Theorem 1.1. If a finite group G satisfies the prime condition, then G is a definable Borsuk-Ulam group.

Theorem 1.1 is a definable generalization of [20].

2. Preliminaries.

General references on o-minimal structures are [2], [4]. See also [18], [3], [5], [9] for examples and constructions of them.

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f (\subset X \times Y \subset$ $R^n \times R^m$) is a definable set. A group G is a definable group if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable. A definable subset X of \mathbb{R}^n is *definably compact* if for every definable map $f: (a,b)_R \to X$, there exist the limits $\lim_{x\to a+0} f(x)$, $\lim_{x\to b-0} f(x)$ in X, where $(a,b)_R = \{x \in R | a \le x < b\}, -\infty \le a < b\}$ $b \leq \infty$. A definable subset X of \mathbb{R}^n is definably compact if and only if X is closed and bounded ([17]). Note that if X is a definably compact definable set and $f: X \to Y$ is a definable map, then f(X) is definably compact.

If $R = \mathbb{R}$, then for any definable subset X of \mathbb{R}^n , X is compact if and only if it is definably compact. In general, a definably compact set is not necessarily compact. For example, if $R = \mathbb{R}_{alg}$, then $[0, 1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \leq x \leq 1\}$ is definably compact but not compact.

Note that every definable subgroup of a definable group is closed ([16]) and a closed subgroup of a definable group is not necessarily definable. For example \mathbb{Z} is a closed

subgroup of \mathbb{R} but not a definable subgroup of \mathbb{R} .

Recall existence of definable quotient. **Theorem 2.1.** (Existence of definable quotient (e.g. 10. 2.18 [2])). Let G be a definably compact definable group and X a definable G set. Then the orbit space X/G exists as a definable set and the orbit map $\pi : X \to X/G$ is surjective, definable and definably proper.

Let G, G' be definable groups. A group homomorphism $f: G \to G'$ is a definable group homomorphism if f is definable. A definable group homomorphism $h: G \to$ G' is a definable group isomomorphism if there exists a definable group homomorphism $k: G' \to G$ such that $h \circ k = id_{G'}, k \circ h = id_G$.

Let G be a finite group and X a representation space of G. The character $\chi_X : G \to R$ is defined by $\chi_X(g) =$ the trace of the orthogonal transformation of g. Note that $\chi_X(e) = \dim X$ and $\dim X^G = \frac{\sum_{g \in G} \chi_X(g)}{|G|}$, where e denotes the unit element of G and |G| stands for the order of G. Thus $\dim X - \dim X^G = \chi_X(e) - \frac{\sum_{g \in G} \chi_X(g)}{|G|} = \frac{1}{|G|} (\sum_{g \in G} (\chi_X(e) - \chi_X(g))).$

There exist some examples which are continuous actions but not definable actions.

Example 2.2. (1) Let g denote the generator of C_2 . Corresponding g to the map $f_g : \mathbb{R}_{alg} \to \mathbb{R}_{alg}$,

 $f_g(x) = \begin{cases} x, & x < -\pi \\ -x, & -\pi < x < \pi \\ x, & x > \pi \end{cases}$, we have a

non-trivial continuous C_2 action of \mathbb{R}_{alg} . But this action is not a definable C_2 action.

(2) Let g denote a generator of C_p with $p \ge 2$ and $D = \{(x,y) \in \mathbb{R}^2_{alg} | x^2 + y^2 < \pi^2\}$. Suppose that $F_p : \mathbb{R}^2_{alg} \to \mathbb{R}^2_{alg}$ denotes the $\frac{2\pi}{p}$ rotation centered the origin. Corresponding g to the map $f_g : \mathbb{R}^2_{alg} \to \mathbb{R}^2_{alg}$, $f_g(x) = \begin{cases} x, & x \in \mathbb{R}^2_{alg} - D \\ F_p(x), & x \in D \end{cases}$, we have a non-trivial continuous C_p action of \mathbb{R}_{alg} . But this action is not a definable C_p action.

3. Proof of Theorem 1.1

Proposition 3.1. Let G be a definably compact definable group and H a definable normal subgroup of G. If G is a definable Borsuk-Ulam group, then G/H is a definably compact definable Borsuk-Ulam group.

Proof. Since H is normal and by Theorem 2.1, G/H is a definable group. Since G is definably compact, so is G/H. Any representation of G/H can be pulled back to the group G via the projection $\pi : G \to G/H$ and every G/H isovariant definable map is seen to be G isovariant.

Proposition 3.2. If $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$ is an exact sequence of definably compact definable groups and H, K are definable Borsuk-Ulam groups, then G is a definable Borsuk-Ulam group.

Proof. Let V, W be representation

spaces of G and $f: V \to W$ a G isovariant definable map. Since f is H isovariant and H is a definable Borsuk-Ulam group, $\dim V - \dim V^H \leq \dim W - \dim W^H$. Moreover V^H, W^H are representation spaces of G/H because H is normal in G, and $f|V^H$: $V^H \to W^H$ is a G/H isovariant definable map. Since G/H is definably group isomorphic to K and K is a definable Borsuk-Ulam group, $\dim V^H - \dim (V^H)^K \leq \dim W^H \dim(W^H)^K$. On the other hand, $(V^H)^K$ (resp. $(W^H)^K$ is definably isomorphic to V^{G} (resp. W^{G}). Thus dim $V^{H} - \dim V^{G} \le$ $\dim W^{\vec{H}} - \dim W^{G}$. Hence $\dim V - \dim V^{G} \leq$ $\dim W - \dim W^G$. Therefore G is a definable Borsuk-Ulam group.

The proof also proves the following inequality.

If H is a normal definable subgroup of G, then dim W-dim W^G -(dim V-dim V^G) \geq dim W-dim W^H -(dim V-dim V^H). Moreover,

 $\frac{1}{|G|} (\sum_{g \in G} (\chi_W(e) - \chi_W(g) - \chi_V(e) + \chi_V(g))) \ge \frac{1}{|H|} (\sum_{g \in H} (\chi_W(e) - \chi_W(g) - \chi_V(e) + \chi_V(g))).$

Corollary 3.3. If G is a definably compact definable group and the identity definable component G_0 and G/G_0 are definable Borsuk-Ulam groups, then G is a definable Borsuk-Ulam group.

A composition series of a finite group G is a collection of subgroups $G_j, 0 \leq j \leq r-1$ such that $G_0 = \{e\}, G_r = G$ and G_j is a maximal normal subgroup of G_{j+1} for $0 \leq j \leq r-1$. Each quotient group G_{j+1}/G_j is a finite simple group and is called a composition factor of G. They are independent of the choice of the composition series.

Proposition 3.4. (1) If any composition factor of a finite group G is a definable Borsuk-Ulam group, then G is a definable Borsuk-Ulam group.

(2) If p is a prime, then C_p is a definable Borsuk-Ulam group.

(3) Any finite abelian group is a definable Borsuk-Ulam group.

Proof. (1) If $G = G_1$, then $G_1/G_0 \simeq G$ and G is a definable Borsuk-Ulam group. Assume that it is true for groups with n factors. Let $G = G_{n+1}$. Considering the sequence $1 \to G_n \to G_{n+1} \to G_{n+1}/G_n \to 1$, since G_n is a definable Borsuk-Ulam group and G_{n+1}/G_n is a composition factor and by Proposition 3.2, $G = G_{n+1}$ is a definable Borsuk-Ulam group.

(2) follows from [13].

(3) follows from (2) and Proposition 3.2. \Box

Let G be a definably compact definable group. We recall orbit types ([7]). We say that two homogeneous definable G sets are equivalent if they are definably G homeomorphic. Let (G/H) denote the equivalence class of G/H. The set of all equivalence classes of homogeneous definable G sets has a natural order defined as $(X) \ge (Y)$ if there exists a definable G map $X \to Y$. If (X) = (G/H) and (Y) = (G/K), then $(X) \ge (Y)$ if and only if H is conjugate to a definable subgroup of K. The reflexivity and the transitivity clearly hold and the anti-symmetry is true by the following lemma. **Lemma 3.5** ([7]). Let G be a definably compact definable group, H a definable subgroup of G and $g \in G$. If $gHg^{-1} \subset H$, then $gHg^{-1} = H$.

Theorem 3.6 $(2.2 \ [6])$. Let G be a definably compact definable group. Then every definable G set has only finitely many orbit types.

The unit circle S^1 of R^2 is defined as $S^1 = \{(x, y) \in R^2 | x^2 + y^2 = 1\}$. For a general real closed field R, S^1 is definably compact and definably connected but netiher compact nor connected. We say that $T^n = S^1 \times \cdots \times S^1$ (*n*-times) is the *n*-dimensional torus.

Proposition 3.7. The n-dimensional torus T^n is a definable Borsuk-Ulam group.

Proof. Using the exact sequence $1 \rightarrow T^{n-1} \rightarrow T^n \rightarrow S^1 \rightarrow 1$ and Proposition 3.2, it is enough to prove the case where $G = S^1$.

Let V, W be representations of S^1 and $f: V \to W$ an isovariant definable S^1 map. By Theorem 3.6, there exist only finitely many definable subgroups of S^1 that occur as isotropy subgroups in V or W, say C_{n_1} , \ldots, C_{n_r}, S^1 with $n_i < n_{i+1}$ for all i. Take a prime p such that $p > n_r$. Then considering f as a C_p isovariant definable map, dim V dim $V^{C_p} \leq \dim W - \dim W^{C_p}$. Moreover $V^{C_p} = V^{S^1}, V^{C_p} = W^{S^1}$ and hence dim V dim $V^{S^1} \leq \dim W - \dim W^{S^1}$. \Box

By a way similar to the proof of Lemma 13 [20].

Lemma 3.8. Let C be a finite cyclic group and |C| satisfies the prime condition and f: $V \to W$ an isovariant definable C map. Then $\sum_{gen C} (\chi_W(e) - \chi_W(g) - \chi_V(e) + \chi_V(g)) \ge 0$, where g ranges all of generators of C.

Proof of Theorem 1.1. Using Propositiom 3.2, Lemma 3.8, by a way similar to the proof of Theorem 12 [20], we have theorem 1.1. \Box

References

- Carlos Biasi and Denise de Mattos, A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc. 37 (2006), 127–137.
- [2] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series
 248, London Math. Soc. Cambridge Univ. Press (1998).
- [3] L. van den Dries, A. Macintyre and D. Marker, *The elementary theory of restricted analytic field with exponentiation*, Ann. of Math. **140** (1994), 183– 205.
- [4] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [5] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), 4377–4421.
- [6] Definable slices, Bull. Fac. Ed. Wakayama Univ. Natur. Sci. 64 (2014), 1–8.
- T. Kawakami, Structure theorems in ominimal structures, Far East J. Math. Sci. (FJMS) 63 (2012), 141–155.
- [8] T. Kobayashi, The Borsuk-Ulam theorem for a \mathbb{Z}_q -map from a \mathbb{Z}_q -space to S^{2n+1} , Proc. Amer. Math. Soc. 97 (1986), 714–716.
- C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68, (1994), 79–94.
- [10] I. Nagasaki, Isovariant Borsuk-Ulam results for pseudofree circle actions and their converse, Trans. Amer. Math. Soc. 358 (2006), 743–757
- [11] I. Nagasaki, The converse of isovariant Borsuk-Ulam results for some abelian groups, Osaka J. Math. 43 (2006), 689– 710.

- [12] I. Nagasaki, The weak isovariant Borsuk-Ulam theorem for compact Lie groups, Arch. Math. (Basel) 81 (2003), 348–359.
- [13] I. Nagasaki, T. Kawakami, Y. Hara and F. Ushitaki, *The Smith homology and Borsuk-Ulam type theorems*, Far East J. Math. Sci. (FJMS) 38 (2010), 205–216.
- [14] I. Nagasaki and F. Ushitaki, Isovariant maps from free C_n -manifolds to representation spheres, Topology Appl. 155 (2008), 1066–1076.
- [15] Pedro L. Q Pergher, Denise de Mattos and Edivaldo L. dos Santos, *The Borsuk-Ulam theorem for general* spaces, Arch. Math. (Basel) 81 (2003), 96–102.
- [16] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239-255.
- [17] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769–786.
- [18] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math.
 150 (1997), Birkhäuser.
- [19] J.W. Walker, A homology version of the Borsuk-Ulam theorem, Amer. Math. Monthly 90 (1983), 466–468.
- [20] A.G. Wasserman, Isovariant maps and the Borsuk-Ulam theorem, Topology Appl. 38 (1991), 155–161.