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Abstract

Let N = (R,+, ·, <, . . . ) be an o-minimal expansion of the standard structure of a real
closed field R. A definably compact definable group G is a definable Borsuk-Ulam group
if there exists an isovariant definable map f : V → W between representations of G, then
dimV − dimV G ≤ dimW − dimWG. We prove that if a finite group G satisfies the prime
condition, then G is a definable Borsuk-Ulam group.
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1 . Introduction.

Let G be a topological group. A con-
tinuous map f : X → Y is a G map if
f(gx) = gf(x) for all x ∈ X, g ∈ G. A
G map f : X → Y is isovariant if for any
x ∈ X, Gf(x) = Gx.

Let Ck be the cyclic group of order k and
Sn the n-dimensional unit sphere of the (n+
1)-dimensional Euclidean space Rn+1 with
the antipodal C2 action. If a real closed field
R is the field R of real numbers, then the
Borsuk-Ulam theorem states that if there ex-
ists a continuous C2 map from Sn to Sm, then
n ≤ m. There are several equivalent state-
ments of it and many related generalizations
(e.g. [1], [8] [10], [11], [12], [13], [14], [15],
[19] ). The above theorem is generalized the
case where spheres with free Ck actions and
a definable version in an o-minimal expan-
sion of a real closed field of it is known in

[13].
LetN = (R,+, ·, <, . . . ) be an o-minimal

expansion of the standard structure of a real
closed field R. Let G be a definably compact
definable group. A group homomorphism
from G to some On(R) is a representation if
it is definable, where On(R) means the nth
orthogonal group of R. A representation
space of G is Rn with the orthogonal ac-
tion induced from a representation of G. In
this paper, we consider isovariant definable
maps between representation spaces of de-
finably compact definable groups as a defin-
able generalization of related results of the
Borsuk-Ulam theorem. Everything is con-
sidered inN and a definable map is assumed
to be continuous unless otherwise stated.

A positive integer n satisfies the prime
condition if n is expressed as pr11 . . . prss , each
pi is a prime and ri ≥ 1 for 1 ≤ i ≤ s,
then

∑s
i=1

1
pi

≤ 1. A finite simple group
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G satisfies the prime condition if for any
g ∈ G, the order |g| of g satisfies the prime
condition. A finite group G satisfies the
prime condition if each composition factor
of G satisfies the prime condition.

A definably compact definable groupG is
a definable Borsuk-Ulam group if there ex-
ists an isovariant definable map f : V → W
between representations of G, then dimV −
dimV G ≤ dimW − dimWG.

Theorem 1.1. If a finite group G satis-
fies the prime condition, then G is a defin-
able Borsuk-Ulam group.

Theorem 1.1 is a definable generalization
of [20].

2 . Preliminaries.

General references on o-minimal struc-
tures are [2], [4]. See also [18], [3], [5], [9]
for examples and constructions of them.

Let X ⊂ Rn and Y ⊂ Rm be defin-
able sets. A continuous map f : X → Y
is definable if the graph of f (⊂ X × Y ⊂
Rn ×Rm) is a definable set. A group G is a
definable group if G is a definable set and
the group operationsG×G → G andG → G
are definable. A definable subset X of Rn

is definably compact if for every definable
map f : (a, b)R → X, there exist the lim-
its limx→a+0 f(x), limx→b−0 f(x) in X, where
(a, b)R = {x ∈ R|a ≤ x < b},−∞ ≤ a <
b ≤ ∞. A definable subset X of Rn is defin-
ably compact if and only if X is closed and
bounded ([17]). Note that if X is a defin-
ably compact definable set and f : X → Y
is a definable map, then f(X) is definably
compact.

If R = R, then for any definable subset
X of Rn, X is compact if and only if it is
definably compact. In general, a definably
compact set is not necessarily compact. For
example, if R = Ralg, then [0, 1]Ralg

= {x ∈
Ralg|0 ≤ x ≤ 1} is definably compact but
not compact.

Note that every definable subgroup of a
definable group is closed ([16]) and a closed
subgroup of a definable group is not neces-
sarily definable. For example Z is a closed

subgroup of R but not a definable subgroup
of R.

Recall existence of definable quotient.
Theorem 2.1. (Existence of definable
quotient (e.g. 10. 2.18 [2])). Let G be a
definably compact definable group and X a
definable G set. Then the orbit space X/G
exists as a definable set and the orbit map
π : X → X/G is surjective, definable and
definably proper.

Let G,G′ be definable groups. A group
homomorphism f : G → G′ is a definable
group homomorphism if f is definable. A
definable group homomorphism h : G →
G′ is a definable group isomomorphism if
there exists a definable group homomorphism
k : G′ → G such that h◦k = idG′ , k◦h = idG.

Let G be a finite group andX a represen-
tation space of G. The character χX : G →
R is defined by χX(g) = the trace of the
orthogonal transformation of g. Note that

χX(e) = dimX and dimXG =
∑

g∈G χX(g)

|G| ,

where e denotes the unit element of G and
|G| stands for the order of G. Thus dimX−
dimXG = χX(e)−

∑
g∈G χX(g)

|G|
= 1

|G|(
∑

g∈G(χX(e)− χX(g))).

There exist some examples which are con-
tinuous actions but not definable actions.

Example 2.2. (1) Let g denote the gen-
erator of C2. Corresponding g to the map
fg : Ralg → Ralg,

fg(x) =


x, x < −π
−x, −π < x < π
x, x > π

, we have a

non-trivial continuous C2 action of Ralg. But
this action is not a definable C2 action.

(2) Let g denote a generator of Cp with
p ≥ 2 and D = {(x, y) ∈ R2

alg|x2 + y2 <

π2}. Suppose that Fp : R2
alg → R2

alg denotes

the 2π
p

rotation centered the origin. Corre-

sponding g to the map fg : R2
alg → R2

alg,

fg(x) =

{
x, x ∈ R2

alg −D
Fp(x), x ∈ D

, we have

a non-trivial continuous Cp action of Ralg.
But this action is not a definable Cp action.
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3 . Proof of Theorem 1.1

Proposition 3.1. Let G be a definably
compact definable group and H a definable
normal subgroup of G. If G is a definable
Borsuk-Ulam group, then G/H is a definably
compact definable Borsuk-Ulam group.

Proof . Since H is normal and by Theo-
rem 2.1, G/H is a definable group. Since G
is definably compact, so is G/H. Any repre-
sentation of G/H can be pulled back to the
group G via the projection π : G → G/H
and every G/H isovariant definable map is
seen to be G isovariant.

Proposition 3.2. If 1 → H → G →
K → 1 is an exact sequence of definably
compact definable groups and H,K are de-
finable Borsuk-Ulam groups, then G is a de-
finable Borsuk-Ulam group.

Proof . Let V,W be representation
spaces of G and f : V → W a G isovari-
ant definable map. Since f is H isovariant
and H is a definable Borsuk-Ulam group,
dimV −dimV H ≤ dimW−dimWH . More-
over V H ,WH are representation spaces of
G/H because H is normal in G, and f |V H :
V H → WH is a G/H isovariant definable
map. Since G/H is definably group isomor-
phic to K and K is a definable Borsuk-Ulam
group, dimV H − dim(V H)K ≤ dimWH −
dim(WH)K . On the other hand, (V H)K (
resp. (WH)K) is definably isomorphic to
V G (resp. WG). Thus dimV H − dimV G ≤
dimWH−dimWG. Hence dimV−dimV G ≤
dimW−dimWG. Therefore G is a definable
Borsuk-Ulam group.

The proof also proves the following in-
equality.

If H is a normal definable subgroup of G,
then dimW−dimWG−(dimV −dimV G) ≥
dimW−dimWH−(dimV −dimV H). More-
over,
1
|G|(

∑
g∈G(χW (e)−χW (g)−χV (e)+χV (g))) ≥

1
|H|(

∑
g∈H(χW (e)−χW (g)−χV (e)+χV (g))).

Corollary 3.3. If G is a definably com-
pact definable group and the identity defin-
able component G0 and G/G0 are definable

Borsuk-Ulam groups, then G is a definable
Borsuk-Ulam group.

A composition series of a finite group
G is a collection of subgroups Gj, 0 ≤ j ≤
r − 1 such that G0 = {e}, Gr = G and
Gj is a maximal normal subgroup of Gj+1

for 0 ≤ j ≤ r − 1. Each quotient group
Gj+1/Gj is a finite simple group and is called
a composition factor of G. They are in-
dependent of the choice of the composition
series.

Proposition 3.4. (1) If any composi-
tion factor of a finite group G is a definable
Borsuk-Ulam group, then G is a definable
Borsuk-Ulam group.

(2) If p is a prime, then Cp is a definable
Borsuk-Ulam group.

(3) Any finite abelian group is a definable
Borsuk-Ulam group.

Proof . (1) If G = G1, then G1/G0 ≃ G
and G is a definable Borsuk-Ulam group.
Assume that it is true for groups with n fac-
tors. Let G = Gn+1. Considering the se-
quence 1 → Gn → Gn+1 → Gn+1/Gn → 1,
since Gn is a definable Borsuk-Ulam group
and Gn+1/Gn is a composition factor and
by Proposition 3.2, G = Gn+1 is a definable
Borsuk-Ulam group.

(2) follows from [13].
(3) follows from (2) and Proposition 3.2.

Let G be a definably compact definable
group. We recall orbit types ([7]). We say
that two homogeneous definable G sets are
equivalent if they are definably G homeo-
morphic. Let (G/H) denote the equivalence
class of G/H. The set of all equivalence
classes of homogeneous definable G sets has
a natural order defined as (X) ≥ (Y ) if
there exists a definable G map X → Y .
If (X) = (G/H) and (Y ) = (G/K), then
(X) ≥ (Y ) if and only if H is conjugate
to a definable subgroup of K. The reflex-
ivity and the transitivity clearly hold and
the anti-symmetry is true by the following
lemma.
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Lemma 3.5 ([7]). Let G be a definably
compact definable group, H a definable sub-
group of G and g ∈ G. If gHg−1 ⊂ H, then
gHg−1 = H.

Theorem 3.6 (2.2 [6]). Let G be a de-
finably compact definable group. Then every
definable G set has only finitely many orbit
types.

The unit circle S1 of R2 is defined as
S1 = {(x, y) ∈ R2|x2 + y2 = 1}. For a
general real closed field R, S1 is definably
compact and definably connected but neti-
her compact nor connected. We say that
T n = S1×· · ·×S1 (n-times) is the n-dimen-
sional torus.

Proposition 3.7. The n-dimensional
torus T n is a definable Borsuk-Ulam group.

Proof . Using the exact sequence 1 →
T n−1 → T n → S1 → 1 and Proposition 3.2,
it is enough to prove the case where G = S1.

Let V,W be representations of S1 and
f : V → W an isovariant definable S1 map.
By Theorem 3.6, there exist only finitely
many definable subgroups of S1 that occur
as isotropy subgroups in V or W , say Cn1 ,
. . . , Cnr , S

1 with ni < ni+1 for all i. Take a
prime p such that p > nr. Then considering
f as a Cp isovariant definable map, dimV −
dimV Cp ≤ dimW − dimWCp . Moreover
V Cp = V S1

, V Cp = W S1
and hence dimV −

dimV S1 ≤ dimW − dimW S1
.

By a way similar to the proof of Lemma
13 [20].

Lemma 3.8. Let C be a finite cyclic group
and |C| satisfies the prime condition and f :
V → W an isovariant definable C map. Then∑

gen C(χW (e)−χW (g)−χV (e)+χV (g)) ≥ 0,
where g ranges all of generators of C.

Proof of Theorem 1.1. Using Proposi-
tiomn 3.2, Lemma 3.8, by a way similar to
the proof of Theorem 12 [20], we have theo-
rem 1.1.
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