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1 . Introduction.

Obstruction theory addresses several types
of problems(see chap. 7 [2]). Let (X,A) be
a CW pair and Y a topological space. One
of these problems is Extension Problem.

Problem 1.1. Suppose that f : A → Y
is a continuous map. When does f extend
to all of X?

LetN = (R,+, ·, <, . . . ) be an o-minimal
expansion of the standard structure of a real
closed field R. General references on o-mini-
mal structures are [3], [5], see also [9]. Exam-
ples and constructions of them can be seen
in [4], [6], [7].

In this paper, we consider an obstruction
theory in the definable category of N . Ev-
erything is considered in N , a definable map
is assumed to be continuous and I = {x ∈
R|0 ≤ x ≤ 1}.

Theorem 1.2. Let (X,A) be a relative
definable CW complex, n ≥ 1, and Y a de-

finably connected n-simple definable set. Let
g : Xn → Y be a definable map.

(1) There exists a cellular cocycle θ(g) ∈
Cn+1(X,A, πn(Y )) which vanishes if
and only if g extend to a definable map
Xn+1 → Y .

(2) The cohomology class [θ(g)] ∈ Hn+1(X,
A, πn(Y )) vanishes if and only if the
restriction g|Xn−1 : Xn−1 → Y extend
to a definable map Xn+1 → Y .

2 . Preliminaries.

Let X ⊂ Rn and Y ⊂ Rm be defin-
able sets. A continuous map f : X → Y is
definable if the graph of f (⊂ X×Y ⊂ Rn×
Rm) is a definable set. A definable map f :
X → Y is a definable homeomorphism if
there exists a definable map h : Y → X such
that f ◦ h = idY , h ◦ f = idX . A definable
subset X of Rn is definably compact if for
every definable map f : (a, b)R → X, there
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exist the limits limx→a+0 f(x), limx→b−0 f(x)
in X, where (a, b)R = {x ∈ R|a < x <
b},−∞ ≤ a < b ≤ ∞. A definable sub-
set X of Rn is definably compact if and only
if X is closed and bounded ([8]). Note that
if X is a definably compact definable set and
f : X → Y is a definable map, then f(X) is
definably compact.

If R is the field R of real numbers, then
for any definable subset X of Rn, X is com-
pact if and only if it is definably compact.
In general, a definably compact definable set
is not necessarily compact. For example, if
R = Ralg, then [0, 1]Ralg

= {x ∈ Ralg|0 ≤
x ≤ 1} is definably compact but not com-
pact.

Recall existence of definable quotient and
properties of dimensions of definable sets.

Theorem 2.1. (Existence of definable
quotient (e.g. 10. 2.14 [3])). If X is a de-
finable set and A is a definably compact de-
finable subset of X, then the set obtained by
collapsing A to a point exists a definable set.

Proposition 2.2 (e.g. 4.1.3 [3]). (1)
If X ⊂ Y ⊂ Rn, then dimX ≤ dimY ≤ n.

(2) If X ⊂ Rn, Y ⊂ Rm are definable sets
and there is a definable bijection between X
and Y , then dimX = dimY .

Let (X,A), (Y,B) be two pairs of defin-
able sets. Two definable maps f, h : (X,A) →
(Y,B) is definably homotopic relative to A
if there exists a definable map H : (X ×
I, A×I) → (Y,B) such that H(x, 0) = f(x),
H(x, 1) = g(x) for all x ∈ X and H(x, t) =
f(x), (x, t) ∈ A × I. The o-minimal homo-
topy set [(X,A), (Y,B)] of (X,A) and (Y,B)
is the set of homotopy classes of definable
maps from (X,A) to (Y,B). If A = ∅, B =
∅, then we simply write [X,Y ] instead of
[(X,A), (Y,B)].

Let Dn = {(x1, . . . , xn) ∈ Rn|x2
1 + · · · +

x2
n ≤ 1}, Sn−1 = {(x1, . . . , xn) ∈ Rn|x2

1 +
· · · + x2

n = 1}. Then Dn is the closed unit
disk of Rn and Sn−1 is the unit sphere of Rn.

We now define relative CW complexs in
the definable category. To reserve definablity,
we consider the case where finitely many cells
attached.

Definition 2.3. Let X be a definable set
and A a definable closed subset ofX. We say
that X is obtained from A by attaching n-
cells {eni }kni=1 if the following four conditions
satisfy.

(1) For each i, eni is a definable subset of
X, called an n-cell.

(2) X = A ∪ ∪kn
i=1e

n
i .

(3) Letting ∂eni denote the intersection of
eni and A, eni − ∂eni is disjoint from enj − ∂enj
for i ̸= j.

(4) For each i, there exists a surjective
definable map ϕn

i : (Dn, Sn−1) → (eni , ∂e
n
i ),

called the characteristic map of eni , such
that the restriction of ϕi of the interior Int D

n

of Dn is a definable homeomorphism onto
eni − ∂eni . The restriction of the character-
istic map of Sn−1 is the attaching map of
eni .

Definition 2.4. A relative defianble
CW complex (X,A) is a definable set X, a
definable closed set A and a sequence of de-
finable closed subset Xn, n = −1, 0, 1, 2, . . .
called the relative n-skeleton such that

(1) X−1 = A and Xn is obtained from
Xn−1 by attaching n-cells.

(2) X = ∪dimX
i=−1 Xi.

The smallest n such that X = Xn is
called the dimension dim(X,A) of (X,A).
If A is a definable CW complex, we say that
(X,A) is a definable CW pair. If A = ∅,
then X is called a definable CW complex,
and Xn is called the n-skeleton of X.

Remark that in Definition 2.4, the maxi-
mum dimension of attaching cells to A does
not exceed dimX and dimA ≤ dimX be-
cause Proposition 2.2.

Let Y be a definable set and y0 ∈ Y . The
o-minimal homotopy group of dimension
n, n ≥ 1 (see [1]) is the set πn(Y, y0) =
[(In, ∂In), (Y, y0)] = [(Sn, x0), (Y, y0)], where
∂In denote the boundary of In and x0 =
(0, , . . . , 0, 1). We define π0(Y, y0) as the set
of definably connected components of Y .

A definable set Y is definably arcwise
connected if for every two points x, y ∈ Y ,
there exists a definable map f : I → Y such
that x = f(0) and y = f(1). Note that Y is
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definably connected if and only if it is defin-
ably arcwise connected. In this case, for any
y0, y1 ∈ Y and n ≥ 1, πn(Y, y0) is isomorphic
to πn(Y, y1) and we denote it πn(Y ).

For n ≥ 1, a definably connected defin-
able set is definably n-connected if πi(Y ) =
0 for each 1 ≤ i ≤ n.

Lemma 2.5. Let Y be a definably con-
nected definable set. If πn−1(Y ) = 0, then
for every definable map h : Sn−1 → Y , there
exists a definable map H : Dn → Y with
H|Sn−1 = f .

Proof . For i ≥ 1, since Y is defin-
ably connected, πi(Y ) → [Si, Y ], [h] → [h]
is bijective. Thus h is definably homotopic
to a constant map C : Sn−1 → Y,C(x) =
c. Hence there exists a definable map ϕ :
Sn−1×I → Y such that ϕ(x, 0) = c, ϕ(x, 1) =
h(x) for all x ∈ Sn−1. Collapsing Sn−1×{0}
to a point, by Theorem 2.1, we have the cone
CSn−1 which is definably homeomorphic to
Dn and a definable map H : Dn → Y with
H|Sn−1 = f .

Proposition 2.6. If Y is definably (n−
1)-connected, f : A → Y is a definable map,
dim(X,A) ≤ n and n ≥ 1, then there exists
a definable map F : X → Y with F |A = f .

Proof . If i = 0, then we may assume
that X0 = A∪e01∪· · ·∪e0r0 , e

0
1, . . . , e

0
r0
denote

the 0-cells of (X,A). For each e0j , defining

the image of e0j , there exists a definable map
f0 : X0 → Y extending f .

We may assume that Xi = Xi−1 ∪ ei1 ∪
· · ·∪eiri , e

i
1, . . . , e

i
ri
denote the i-cells of (X,A).

By assumption, there exists a definable map
hj : ∂e

i
j → Y . Since ∂eij is definably home-

omorphic to Sn−1 and by Lemma 2.5, we
have a definable map Hj : eij → Y with

Hj|∂eij = hj. Using Hj, we obtain a de-
finable map F with F |A = f .

Let X be a definably connected defin-
able set and n ≥ 1. As in the topologi-
cal setting, π1(X) acts on πn(X). We say
that a definably connected definable set X
is n-simple if the π1(X) action on πn(X) is
tirivial. Since the π1(X) action on π1(X) is

π1(X)×π1(X) → π1(X), (h1, h2) 7→ h1h2h
−1
1 ,

X is 1-simple if and only if π1(X) is abelian.

Let X be a definable CW complex, A
a definable subcomplex of X, n ≥ 1 and Y
a definably connected n-simple definable set.
We define the cohomology groupHn(X,A, πn

(Y )) as follows. Remark that [Sn, Y ] = πn(Y )
because Y is n-simple.

We define the n-dimensional chain com-
plex Cn(X,A) to beHn(Xn, Xn−1). Let in−1 :
Xn−1 → Xn, jn : (Xn, ∅) → (Xn, Xn−1) be
inclusions. As in the topological setting, we
have an exact sequence

· · · → Hn(Xn, Xn−1)
∂′
n→ Hn−1(Xn−1)

i∗n−1→

Hn−1(Xn)
j∗n→ Hn−1(Xn, Xn−1) → . . . .

The boundary operator ∂n : Hn(Xn, Xn−1)
→ Hn−1(Xn−1, Xn−2) is j∗n−1 ◦ ∂′

n. We de-
fine the n-dimensional cochain complex Cn(
X,A) = HomZ(Cn(X,A), πn(Y )) and the
coboundary operator δn : Cn(X,A) → Cn+1(
X,A), (δf)c = f(∂c).

Let (X,A) be a relative definable CW
complex, n ≥ 1, and Y a definably con-
nected n-simple definable set. Let g : Xn →
Y be a definable map.

Let en+1
i be an (n+1)-cell and ϕi : (D

n+1,
Sn) → (en+1

i , ∂en+1
i ) ⊂ (Xn+1, Xn) the char-

acteristic map of en+1
i . Composing fi = ϕi|Sn

with g : Xn → Y , we have an element [g ◦
fi] ∈ [Sn, Y ] = πn(Y ). We define the ob-
struction cochain θn+1(g) ∈ Cn+1(X,A, πn(
Y )) on the basis of (n + 1)-cells by the for-
mula θn+1(g)(en+1

i ) = [g ◦ fi] and extend by
linearly.

In the rest of this section, we prove the
o-minimal cellular approximation theorem

Theorem 2.7 (O-minimal cellular
approximation theorem). Let (X,A),
(Y,B) be definable CW pairs and f : (X,A)
→ (Y,B) a definable map. Then there ex-
ists a definable map g : (X,A) → (Y,B)
such that f is definably homotopic to g rela-
tive to A and for any nonnegative integer n,
g(X ′

n) ⊂ Y ′
n, where X ′

n (resp. Y ′
n) denotes

the union of the n-skeleton Xn (resp. Yn) of
X (resp. Y ) and A (resp. B).
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Lemma 2.8 (O-minimal homotopy
extension lemma [1]). Let X,Z,A be de-
finable sets with A ⊂ X closed in X. Let
f : X → Z be a definable map and H :
A × I → Z a definable homotopy such that
H(x, 0) = f(x), x ∈ A. Then there exists a
definable homotopy F : X×I → Z such that
F (x, 0) = f(x), x ∈ X and F |A× I = H.

By the above lemma, we have the follow-
ing o-minimal homotopy extension theorem.

Theorem 2.9. Let (X,A) be a definable
CW pair. Let f : X → Y be a definable
map and H : A × I → Y a definable homo-
topy with H(x, 0) = f(x), x ∈ A. Then there
exists a definable homotopy F : X × I →
Y such that F (x, 0) = f(x), x ∈ X and
F |A× I = H.

To prove Theorem 2.7, we prepare four
claims.

Claim 2.10. Let (Z,C) be a definable
CW pair. For any definable map g : Dq →
Z with g(Sq−1) ⊂ Zq−1, there exists a defin-
able map g′ : Dq → Z such that g ≃ g′ rel
Sq−1 and g′(Dq) ⊂ Zq, where Zq−1 = Zq∪C.

Proof . Let n be the maximum dimen-
sion of cells not contained in C. We may
assume that n > q and proceed by induc-
tion on the number of such n-cells. Let ϕ :
(Dn, Sn−1) → (Z,Zn−1) be the characteris-
tic map of an n-cell e. Let Dn

1 , (D
n
2 ) be the

closed ball of center 0 with radius 1
3
, (2

3
),

respectively. Put U = ϕ(Dn − Dn
1 ) ∪ (Z −

e), V = ϕ(Int Dn
2 ), z0 = ϕ(0), where Int Dn

2

denotes the interior of Dn
2 . Then U∪V = Z.

Taking a refinement of Dq, every simplex |s|
of it is contained in g−1(U) or g−1(V ). Let
E1 = ∪|s|∩g−1(z0) ̸=∅|s|, E2 = ∪|s|∩g−1(z0)=∅|s|.
Then g(E1) ⊂ V , g(E1 ∩ E2) ⊂ V − {z0}.
Thus we have a definable map ϕ−1 ◦ g : E1∩
E2 → Int Dn

2 − {0}. Since Int Dn
2 − {0} is

definably homotopy equivalent to Sn−1 and
Sn−1 is (n− 2) connected, there exists a de-
finable map h : E1 → Int Dn

2 − {0} with
h|E1 ∩ E2 = ϕ−1 ◦ g. Define a definable
homotopy ht : E1 → Int Dn

2 by ht(x) =

(1− t)ϕ−1 ◦ g(x)+ th(x). Then ht is a defin-
able homotopy between ϕ−1 ◦ g and h rel-
ative to E1 ∩ E2. Define a definable ho-
motopy h′

t : Dq → Z by h′
t|E1 = ϕ−1 ◦

g, h′
t|E2 = g|E2. Then h′

t is a definable ho-
motopy between g and h′

1 relative to Sq−1

and h′
1(D

q) ⊂ Z − {z0}. Taking a definable
retraction r : Z − {z0} → Z − e, h′

1 ⋍ r ◦
h′
1 rel Sq−1 : Dq → Z−{z0}. Let g′′ = r◦h′

1.
Then g ⋍ g′′ rel Sq−1 : Dq → Z, g′′(Dq) ⊂
Z − e. By the inductive hypothesis, there
exists a definable map g′ such that g′′ ⋍
g′ rel Sq−1 : Dq → Z − e, g′(Dq) ⊂ Zq.

Claim 2.11. For any definable map f :
(Xq, Xq−1) → (Y, Y q−1), there exists a de-

finable map g : (Xq, Xq−1) → (Y, Y q−1) such

that f ≃ g rel Xq−1 and g(Xq) ⊂ Y q.

Proof . Let e be a q-cell not contained in
A. Since f(e) is definably compact, there ex-
ists a finite subcomlex Z of Y with f(e) ⊂
Z. Put C = Z ∩ Y

q−1
. Then f(er) ⊂ C,

where er denotes the boundary of e. Let
ϕ : (Dq, Sq−1) → (e, er) be the characteristic
map of e. Applying Claim 2.10 to f ◦ ϕ :
(Dq, Sq−1) → (Z,C), there exists a defin-
able map g′ such that f ◦ ϕ ⋍ g′ rel Sq−1,
g′(Dq) ⊂ Z

q
. Then g = g′ ◦ϕ is the required

map.

Claim 2.12. For any definable map f :
(X,A) → (Y,B), there exists a definable ho-
motopy Hq : (X,A) × [0, 1]R → (Y,B) such
that:

(1) H0(x, t) = f(x) for all x ∈ X.
(2) Hq(x, 0) = Hq+1(x, 0) for all x ∈ X.

(3) Hq(x, t) = (x, t) for all (x, t) ∈ X
q ×

[0, 1]R.
(4) Hq(X

q × {1}) ⊂ Y .

Proof . Let H0(x, t) = f(x) for (x, t) ∈
X × [0, 1]R. Assume we have Hq−1. Since

Hq−1(X
q−1 × {1}) ⊂ Y

q−1
and by Claim

2.11, there exists a definable homotopy H ′
q

rel X
q−1

: (X
q
, X

q−1
)× [0, 1]R → (Y

q
, Y

q−1
)

such that H ′
q|X

q×{0} = Hq−1|X
q×{1}, H ′

q(

X
q×{1}) ⊂ Y

q
. By Lemma 2.8, there exists

a definable homotopy Hq : X × [0, 1]R → Y
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such thatHq|X×{0} = Hq−1|X×{1}, Hq|X
q

× [0, 1]R = H ′
q, and Hq satisfies (1)-(4).

Proof of Theorem 2.7. Let q = dimX.
By Claim 2.12, we have a definable homo-
topy Hq. Then the definable map g : (X,A)
→ (Y,B) defined by g(x) = Hq(x, 1) is the
required map.

3 . Proof of Theorem 1.2.

Lemma 3.1. Let i be the inclusion Xn →
Xn+1 and x0 ∈ Xn. Then i∗ : π1(Xn, x0) →
π1(Xn+1, x0) is surjective if n = 1 and an
isomorphism n > 1.

Proof . Let n ≥ 1 and α : S1 → Xn+1 a
definable map. By Theorem 2.7, there exists
a definable map α′ : S1 → X1 ⊂ Xn such
that α is definably homotopic to α′. Since
i∗([α

′]) = [α], i∗ is surjective.
Assume n ≥ 2 and i∗([α]) = 0. Then α :

S1 → Xn+1 is null homotopic and there ex-
ists a definable map H : S1× [0, 1]R → Xn+1

such that H(−, 0) = α,H(−, 1) = c, where
c denotes a constant map. By Theorem 2.7
and since S1 × [0, 1]R is a 2-dimensional de-
finable set, there exists a definable map H ′ :
S1 × [0, 1]R → X2 such that H is definably
homotopic toH ′ relative to S1×{0, 1}. Thus
[α] = 0 and i∗ is injective.

Lemma 3.2. If k ≤ n, n > 1 and x0 ∈
Xn, then πk(Xn+1, Xn, x0) = 0.

Proof . Consider an exact sequence
· · · → πk(Xn, x0) → πk(Xn+1, x0) →
πk(Xn+1, Xn, x0) → πk−1(Xn, x0) →
πk−1(Xn+1, x0) → . . . . We prove that i∗k :
πk(Xn, x0) → πk(Xn+1, x0) is surjecitve and
i∗k−1 : πk−1(Xn, x0) → πk−1(Xn+1, x0) is in-
jective.

Let α : Sk → Xn+1 be a definable map.
Then by Theorem 2.7, there exists a defin-
able map α′ : Sk → Xk such that α is defin-
ably homotpic to α′. Then i∗k : πk(Xn, x0) →
πk(Xn+1,x0) is surjecitve.

Assume i∗k−1([α]) = 0. Then α : Sk−1 →
Xn+1 is null homotopic and there exists a
definable map H : Sk−1 × [0, 1]R → Xn+1

such that H(−, 0) = α,H(−, 1) = c. By

Theorem 2.7 and since Sk−1 × [0, 1] is a k-
dimensional definable set, there exists a de-
finable map H ′ : Sk−1 × [0, 1]R → Xk ⊂ Xn

such that H is definably homotopic to H ′

relative to Sk−1 × {0, 1}. Thus [α] = 0 and
i∗k−1 is injective.

By the above results and exactness, we
have the lemma.

The following is the o-minimal relative
Hurewicz theorem.

Theorem 3.3 (5.4 [1]). Let (X,A, x0)
be a definable pointed pair and n ≥ 2. Sup-
pose that πr(X,A, x0) = 0 for any 1 ≤ r ≤
n− 1. Then the o-minimal Hurewicz homo-
morphism hn : πn(X,A, x0) → Hn(X,A) is
surjective and its kernel is the subgroup gen-
erated by {β[u]([f ])[f ]

−1|[u] ∈ π1(A, x0), [f ] ∈
πn(X,A, x0)}. In particular, hn is an iso-
morphism for n ≥ 3.

Put π+
n+1(Xn+1, Xn) = πn+1(Xn+1, Xn)/

ker hn. Let g : Xn → Y be a definable map
and π : πn+1(Xn+1, Xn) → π+

n+1(Xn+1, Xn)
denote the projection.

Lemma 3.4. There exits a factorization
g∗ ◦ ∂ : π+

n+1(Xn+1, Xn) → πn(Y ) such that

π ◦ g∗ ◦ ∂ = g∗ ◦ ∂.

Proof . If α ∈ π1(Xn), then ∂(αx) =
a∂x. Since Y is n-simple, for any z ∈ πn(Xn),
g∗(αz) = g∗(α)g∗(z) = g∗(z).

By Lemma 3.4, we can define the compo-

sition map Cn+1(X,A) = Hn+1(Xn+1, Xn)
h−1

→

π+
n+1(Xn+1, Xn)

g∗◦∂→ βπn(Y ), where h : π+
n+1(

Xn+1, Xn) → Hn+1(Xn+1, Xn) denotes the
Hurewicz isomorphism. This composition
map defines another cochain inHomZ(Cn+1(
X,A), πn(Y )) which we again denote by θn+1(
g).

Proposition 3.5. The two definitions of
θn+1(g) coincide.

Proof . For an (n + 1)-cell en+1
i , let ϕi :

(Dn+1, Sn) → (Xn+1, Xn) be the character-
istic map of en+1

i . We define a map (ϕi∨u)◦
q : (Dn+1, Sn, p) → (Xn+1, Xn, x0) as the
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composition of a map q : (Dn+1, Sn, p) →
(Dn+1∨I, Sn∨I, p) and a map Dn+1∨I

ϕi∨u→
Xn+1, where u is a definable path in Xn to
the base point x0. Then (ϕi ∨ u) ◦ q is de-
finably homotopic to the characteristic map
ϕi. Hence h((ϕi ∨ u) ◦ q) is the generator
of Hn+1(Xn+1, Xn) represented by the cell
en+1
i and (ϕi ∨ u) ◦ q represents the element
h−1(en+1

i ) in π+
n+1(Xn+1, Xn). By definition,

∂((ϕi∨u)◦q) ∈ πn(Xn) is represented by the
composition of the map q : Sn → Sn ∨ I ob-
tained by restricting the map q to the bound-
ary and the attaching map fi = ϕi|Sn to-
gether with a definable path u to x0: ∂((ϕi∨
u) ◦ q) = (fi ∨ u) ◦ q : Sn → Xn. By the sec-
ond definition, θ(g)(en+1

i ) = g ◦ (fi∨u)◦ q =
(gi ◦ fi ∨ g ◦ u) ◦ q. Moreover this is equal
to [fi] ∈ [Sn, Y ] = πn(Y ), which is the first
definition of θ(g)(en+1

i ).

Theorem 3.6. The obstruction cohain
θn+1(g) is a cocycle.

Proof . Consider the following commu-
tative diagram.

πn+2(Xn+2, Xn+1) → Hn+2(Xn+2, Xn+1)
↓ ↓

πn+1(Xn+1) → Hn+1(Xn+1)
↓ ↓

πn+1(Xn+1, Xn) → Hn+1(Xn+1, Xn)
↓ ↓ θ(g)

πn(Xn)
g∗→ Hn(Yn)

The unlableled horizontal arrows are the
Hurewicz maps and the unlableled vertical
arrows are obtained from homotopy or ho-
mology exact sequences of the pair (Xn+2,
Xn+1) and (Xn+1, Xn).

The composition of the bottom two ver-
tical maps on the left are zero because they
occur in the homotopy exact sequence of the
pair (Xn+1, Xn). Since δθ(g) is the composi-
tion of all the right vertical maps, δθn+1(g)(x)
= θn+1(g)(∂x) = 0. Thus θn+1(g) is a cocy-
cle.

By a way to similar to the topological
category, we have the following proposition.

Proposition 3.7. If X is a definable
CW complex, then X× I is a definable CW
complex.

Theorem 3.8. Let (X,A) be a relative
definable CW complex, Y a definably con-
nected n-simple definable set and g : Xn →
Y a definable map.

(1) θn+1(g) = 0 if and only if there exists
a definavble map g̃ : Xn+1 → Y extending g.

(2) [θn+1(g)] = 0 if and only if there ex-
ists a definavble map g̃ : Xn+1 → Y extend-
ing g|Xn−1.

Lemma 3.9. Let f0, f1 : Xn → Y be de-
finable maps such that f0|Xn−1 is definably
homotopic to f1|Xn−1. Then there exists a
difference cochain d ∈ Cn(X,A, πn(Y )) such
that δd = θn+1(f0)− θn+1(f1).

Proof . Let X̂ = X×I, Â = A×I. Then
(X̂, Â) is a relative definable CW complex

with X̂k = Xk × ∂I ∪ Xk−1 × I. Take a
definable homotopy H between f0 and f1.
Hence a definable map X̂n → Y is obtained
from f0, f1 : Xn → Y and a definable ho-
motopy G = H|Xn−1 × I : Xn−1 × I →
Y . Thus we have the cocycle θ(f0, G, f1) ∈
Cn+1(X̂, Â, πn(Y )) which obstructs finding

an extension of f0 ∪ G ∪ f1 to X̂n+1. we
define the difference cochain d(f0, G, f1) ∈
Cn(X,A, πn(Y )) by restricting to cells of the
form en×I, that is d(f0, G, f1)(e

n
i ) = (−1)n+1

θ(f0, G, f1)(e
n
i × I) for each n-cell eni of X.

Since θ(f0, G, f1) is a cocycle, 0 = (δθ(f0, G,
f1))(e

n+1
i × I) = θ(f0, G, f1)(∂((e

n+1
i × I)) =

θ(f0, G, f1)(∂(e
n+1
i ×I)+(−1)n+1(θ(f0, G, f1)

(en+1
i × {1}) − θ(f0, G, f1)(e

n+1
i × {0})) =

(−1)n+1(δ(d(f0, G, f1))(e
n+1
i )+θ(f1)(e

n+1
i )−

θ(f0)(e
n+1
i )). Thus δd = θn+1(f0)−θn+1(f1).

Proposition 3.10. Let f0 : Xn → Y be
a definable map, G : Xn−1 × I → Y a defin-
able homotopy such that G(−, 0) = f0|Xn−1

and d ∈ Cn(X,A, πn(Y )). Then there ex-
ists a definable map f1 : Xn → Y such that
G(−, 1) = f1|Xn−1 and d = d(f0, G, f1).

To prove Proposition 3.10, we need the
following lemma.
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Lemma 3.11. For any definable map f :
Dn×{0}∪Sn−1× I → Y and for any defin-
able homotopy class α ∈ [∂(Dn×I), Y ], there
exists a definable map F : ∂(Dn × I) → Y
such that F |Dn × {0} ∪ Sn−1 × I = f and
[F ] = [α].

Proof . Take a definable mapK : ∂(Dn×
I) → Y with [K] = [α]. Let D = Dn×{0}∪
Sn−1 × I. Then D is definably contractible
and K|D and f are null homotopic. Thus
K|D and f are definably homotopic. Ap-
plying Theorem 2.7 to (∂(Dn× I), D), there
exists an extension H : ∂(Dn × I)× I → Y .
Hence F = H(−, 1) is the required definable
map.

Proof of Proposition 3.10. Let eni be an
n-cell ofXn and ϕ : (Dn, Sn−1) → (Xn, Xn−1)
the characteristic map of eni . Applying
Lemma 3.11 to f = f0◦ϕi∪G◦(ϕi|Sn−1×idI)
and α = d(eni ), we have a definable map Fi.
We define f1 : Xn → Y on the n-cells by
f1(ϕi(x)) = Fi(x, 1). Then d(f0, G, f1)(e

n
i ) =

d(eni ).

Proof of Theorem 3.8. We now prove
that if g : Xn → Y and θ(g) is a coboundary
δd, then g|Xn−1 extneds to Xn. Applying
Proposition 3.10 to g, d and the stationary
homotopy ((x, t) 7→ g(x)) from g|Xn−1 to
itself, there exists a definable map g′ : Xn →
Y such that g′|Xn−1 = g|Xn−1 and δd =
θ(g) − θ(g′). Since θ(g′) = 0, g′ extends to
Xn+1.
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