Definable obstruction theory

Tomohiro Kawakami¹ and Ikumitsu Nagasaki²

¹Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan

²Department of Mathematics, Kyoto Prefectural University of Medicine,

13 Nishi-Takatsukaso-Cho, Taishogun Kita-ku, Kyoto 603-8334, Japan

Abstract

Let $\mathcal{N} = (R, +, \cdot, <, ...)$ be an o-minimal expansion of the standard structure of a real closed field R. In this paper, we consider an obstruction theory in the definable category of \mathcal{N} .

2010 Mathematics Subject Classification. 55N20, 03C64. Keywords and Phrases. Obstruction theory, o-minimal, real closed fields.

1. Introduction.

Obstruction theory addresses several types of problems (see chap. 7 [2]). Let (X, A) be a CW pair and Y a topological space. One of these problems is Extension Problem.

Problem 1.1. Suppose that $f : A \to Y$ is a continuous map. When does f extend to all of X?

Let $\mathcal{N} = (R, +, \cdot, <, ...)$ be an o-minimal expansion of the standard structure of a real closed field R. General references on o-minimal structures are [3], [5], see also [9]. Examples and constructions of them can be seen in [4], [6], [7].

In this paper, we consider an obstruction theory in the definable category of \mathcal{N} . Everything is considered in \mathcal{N} , a definable map is assumed to be continuous and $I = \{x \in R | 0 \le x \le 1\}$.

Theorem 1.2. Let (X, A) be a relative definable CW complex, $n \ge 1$, and Y a de-

finably connected n-simple definable set. Let $g: X_n \to Y$ be a definable map.

- (1) There exists a cellular cocycle $\theta(g) \in C^{n+1}(X, A, \pi_n(Y))$ which vanishes if and only if g extend to a definable map $X_{n+1} \to Y$.
- (2) The cohomology class $[\theta(g)] \in H^{n+1}(X, A, \pi_n(Y))$ vanishes if and only if the restriction $g|X_{n-1}: X_{n-1} \to Y$ extend to a definable map $X_{n+1} \to Y$.

2. Preliminaries.

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is *definable* if the graph of $f (\subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m)$ is a definable set. A definable map $f: X \to Y$ is a *definable homeomorphism* if there exists a definable map $h: Y \to X$ such that $f \circ h = id_Y, h \circ f = id_X$. A definable subset X of \mathbb{R}^n is *definably compact* if for every definable map $f: (a, b)_R \to X$, there exist the limits $\lim_{x\to a+0} f(x)$, $\lim_{x\to b-0} f(x)$ in X, where $(a,b)_R = \{x \in R | a < x < d\}$ b, $-\infty \leq a < b \leq \infty$. A definable subset X of \mathbb{R}^n is definably compact if and only if X is closed and bounded ([8]). Note that if X is a definably compact definable set and $f: X \to Y$ is a definable map, then f(X) is definably compact.

If R is the field \mathbb{R} of real numbers, then for any definable subset X of \mathbb{R}^n , X is compact if and only if it is definably compact. In general, a definably compact definable set is not necessarily compact. For example, if $R = \mathbb{R}_{alg}$, then $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \leq$ $x \leq 1$ is definably compact but not compact.

Recall existence of definable quotient and properties of dimensions of definable sets.

Theorem 2.1. (Existence of definable quotient (e.g. 10. 2.14 [3])). If X is a definable set and A is a definably compact definable subset of X, then the set obtained by collapsing A to a point exists a definable set.

Proposition 2.2 (e.g. 4.1.3 |3|). (1) If $X \subset Y \subset \mathbb{R}^n$, then dim $X \leq \dim Y \leq n$.

(2) If $X \subset \mathbb{R}^n, Y \subset \mathbb{R}^m$ are definable sets and there is a definable bijection between Xand Y, then $\dim X = \dim Y$.

Let (X, A), (Y, B) be two pairs of definable sets. Two definable maps $f, h: (X, A) \rightarrow$ (Y, B) is definably homotopic relative to A if there exists a definable map H : (X \times $I, A \times I \rightarrow (Y, B)$ such that H(x, 0) = f(x), H(x,1) = g(x) for all $x \in X$ and H(x,t) = $f(x), (x,t) \in A \times I$. The o-minimal homotopy set [(X, A), (Y, B)] of (X, A) and (Y, B)is the set of homotopy classes of definable maps from (X, A) to (Y, B). If $A = \emptyset, B =$ \emptyset , then we simply write [X, Y] instead of [(X, A), (Y, B)].

Let $D^n = \{(x_1, \dots, x_n) \in R^n | x_1^2 + \dots + x_n^2 \le 1\}, S^{n-1} = \{(x_1, \dots, x_n) \in R^n | x_1^2 + \dots + x_n^2 = 1\}$. Then D^n is the closed unit disk of \tilde{R}^n and S^{n-1} is the unit sphere of R^n .

We now define relative CW complexs in the definable category. To reserve definablity, we consider the case where finitely many cells attached.

Definition 2.3. Let X be a definable set and A a definable closed subset of X. We say that X is obtained from A by attaching ncells $\{e_i^n\}_{i=1}^{k_n}$ if the following four conditions satisfy.

(1) For each i, e_i^n is a definable subset of X, called an *n*-cell.

(2) $X = A \cup \bigcup_{i=1}^{k_n} e_i^n$. (3) Letting ∂e_i^n denote the intersection of e_i^n and A, $e_i^n - \partial e_i^n$ is disjoint from $e_j^n - \partial e_j^n$ for $i \neq j$.

(4) For each i, there exists a surjective definable map $\phi_i^n : (D^n, S^{n-1}) \to (e_i^n, \partial e_i^n),$ called the *characteristic map* of e_i^n , such that the restriction of ϕ_i of the interior Int D^n of D^n is a definable homeomorphism onto $e_i^n - \partial e_i^n$. The restriction of the characteristic map of S^{n-1} is the attaching map of e_i^n .

Definition 2.4. A relative defiable $CW \ complex \ (X, A)$ is a definable set X, a definable closed set A and a sequence of definable closed subset X_n , $n = -1, 0, 1, 2, \ldots$ called the *relative n-skeleton* such that

(1) $X_{-1} = A$ and X_n is obtained from X_{n-1} by attaching *n*-cells.

$$(2) X = \bigcup_{i=-1}^{\dim X} X_i.$$

The smallest n such that $X = X_n$ is called the dimension $\dim(X, A)$ of (X, A). If A is a definable CW complex, we say that (X, A) is a definable CW pair. If $A = \emptyset$, then X is called a definable CW complex, and X^n is called the *n*-skeleton of X.

Remark that in Definition 2.4, the maximum dimension of attaching cells to A does not exceed dim X and dim $A \leq \dim X$ because Proposition 2.2.

Let Y be a definable set and $y_0 \in Y$. The o-minimal homotopy group of dimension $n, n \geq 1$ (see [1]) is the set $\pi_n(Y, y_0) =$ $[(I^n, \partial I^n), (Y, y_0)] = [(S^n, x_0), (Y, y_0)],$ where ∂I^n denote the boundary of I^n and $x_0 =$ $(0,\ldots,0,1)$. We define $\pi_0(Y,y_0)$ as the set of definably connected components of Y.

A definable set Y is definably arcwise connected if for every two points $x, y \in Y$, there exists a definable map $f: I \to Y$ such that x = f(0) and y = f(1). Note that Y is definably connected if and only if it is definably arcwise connected. In this case, for any $y_0, y_1 \in Y$ and $n \ge 1$, $\pi_n(Y, y_0)$ is isomorphic to $\pi_n(Y, y_1)$ and we denote it $\pi_n(Y)$.

For $n \geq 1$, a definably connected definable set is *definably n-connected* if $\pi_i(Y) = 0$ for each $1 \leq i \leq n$.

Lemma 2.5. Let Y be a definably connected definable set. If $\pi_{n-1}(Y) = 0$, then for every definable map $h: S^{n-1} \to Y$, there exists a definable map $H: D^n \to Y$ with $H|S^{n-1} = f$.

Proof. For $i \geq 1$, since Y is definably connected, $\pi_i(Y) \to [S^i, Y], [h] \to [h]$ is bijective. Thus h is definably homotopic to a constant map $C : S^{n-1} \to Y, C(x) =$ c. Hence there exists a definable map $\phi :$ $S^{n-1} \times I \to Y$ such that $\phi(x, 0) = c, \phi(x, 1) =$ h(x) for all $x \in S^{n-1}$. Collapsing $S^{n-1} \times \{0\}$ to a point, by Theorem 2.1, we have the cone CS^{n-1} which is definably homeomorphic to D^n and a definable map $H : D^n \to Y$ with $H|S^{n-1} = f$. □

Proposition 2.6. If Y is definably (n - 1)-connected, $f : A \to Y$ is a definable map, $\dim(X, A) \leq n$ and $n \geq 1$, then there exists a definable map $F : X \to Y$ with F|A = f.

Proof. If i = 0, then we may assume that $X_0 = A \cup e_1^0 \cup \cdots \cup e_{r_0}^0$, $e_1^0, \ldots, e_{r_0}^0$ denote the 0-cells of (X, A). For each e_j^0 , defining the image of e_j^0 , there exists a definable map $f_0: X_0 \to Y$ extending f.

We may assume that $X_i = X_{i-1} \cup e_1^i \cup \cdots \cup e_{r_i}^i, e_1^i, \ldots, e_{r_i}^i$ denote the *i*-cells of (X, A). By assumption, there exists a definable map $h_j : \partial e_j^i \to Y$. Since ∂e_j^i is definably homeomorphic to S^{n-1} and by Lemma 2.5, we have a definable map $H_j : e_j^i \to Y$ with $H_j |\partial e_j^i = h_j$. Using H_j , we obtain a definable map F with F|A = f. \Box

Let X be a definably connected definable set and $n \ge 1$. As in the topological setting, $\pi_1(X)$ acts on $\pi_n(X)$. We say that a definably connected definable set X is *n*-simple if the $\pi_1(X)$ action on $\pi_n(X)$ is tirivial. Since the $\pi_1(X)$ action on $\pi_1(X)$ is $\pi_1(X) \times \pi_1(X) \to \pi_1(X), (h_1, h_2) \mapsto h_1 h_2 h_1^{-1}, X$ is 1-simple if and only if $\pi_1(X)$ is abelian.

Let X be a definable CW complex, A a definable subcomplex of X, $n \ge 1$ and Y a definably connected n-simple definable set. We define the cohomology group $H^n(X, A, \pi_n(Y))$ as follows. Remark that $[S^n, Y] = \pi_n(Y)$ because Y is n-simple.

We define the *n*-dimensional chain complex $C_n(X, A)$ to be $H_n(X_n, X_{n-1})$. Let $i_{n-1} : X_{n-1} \to X_n, j_n : (X_n, \emptyset) \to (X_n, X_{n-1})$ be inclusions. As in the topological setting, we have an exact sequence

$$\cdots \to H_n(X_n, X_{n-1}) \xrightarrow{\partial'_n} H_{n-1}(X_{n-1}) \xrightarrow{i_{*n-1}} H_{n-1}(X_n) \xrightarrow{j_{*n}} H_{n-1}(X_n, X_{n-1}) \to \dots$$

The boundary operator $\partial_n : H_n(X_n, X_{n-1})$ $\rightarrow H_{n-1}(X_{n-1}, X_{n-2})$ is $j_{*n-1} \circ \partial'_n$. We define the *n*-dimensional cochain complex $C^n(X, A) = Hom_{\mathbb{Z}}(C_n(X, A), \pi_n(Y))$ and the coboundary operator $\delta_n : C^n(X, A) \to C^{n+1}(X, A), (\delta f)c = f(\partial c).$

Let (X, A) be a relative definable CWcomplex, $n \geq 1$, and Y a definably connected *n*-simple definable set. Let $g: X_n \to Y$ be a definable map.

Let e_i^{n+1} be an (n+1)-cell and $\phi_i : (D^{n+1}, S^n) \to (e_i^{n+1}, \partial e_i^{n+1}) \subset (X_{n+1}, X_n)$ the characteristic map of e_i^{n+1} . Composing $f_i = \phi_i | S^n$ with $g : X_n \to Y$, we have an element $[g \circ f_i] \in [S^n, Y] = \pi_n(Y)$. We define the obstruction cochain $\theta^{n+1}(g) \in C^{n+1}(X, A, \pi_n(Y))$ on the basis of (n+1)-cells by the formula $\theta^{n+1}(g)(e_i^{n+1}) = [g \circ f_i]$ and extend by linearly.

In the rest of this section, we prove the o-minimal cellular approximation theorem

Theorem 2.7 (O-minimal cellular approximation theorem). Let (X, A), (Y, B) be definable CW pairs and f : (X, A) $\rightarrow (Y, B)$ a definable map. Then there exists a definable map $g : (X, A) \rightarrow (Y, B)$ such that f is definably homotopic to g relative to A and for any nonnegative integer n, $g(X'_n) \subset Y'_n$, where X'_n (resp. Y'_n) denotes the union of the n-skeleton X_n (resp. Y_n) of X (resp. Y) and A (resp. B). **Lemma 2.8** (O-minimal homotopy extension lemma [1]). Let X, Z, A be definable sets with $A \subset X$ closed in X. Let $f : X \to Z$ be a definable map and H : $A \times I \to Z$ a definable homotopy such that $H(x,0) = f(x), x \in A$. Then there exists a definable homotopy $F : X \times I \to Z$ such that $F(x,0) = f(x), x \in X$ and $F|A \times I = H$.

By the above lemma, we have the following o-minimal homotopy extension theorem.

Theorem 2.9. Let (X, A) be a definable CW pair. Let $f : X \to Y$ be a definable map and $H : A \times I \to Y$ a definable homotopy with $H(x, 0) = f(x), x \in A$. Then there exists a definable homotopy $F : X \times I \to$ Y such that $F(x, 0) = f(x), x \in X$ and $F|A \times I = H$.

To prove Theorem 2.7, we prepare four claims.

Claim 2.10. Let (Z, C) be a definable CW pair. For any definable map $g: D^q \to Z$ with $g(S^{q-1}) \subset \overline{Z^{q-1}}$, there exists a definable map $g': D^q \to Z$ such that $g \simeq g'$ rel S^{q-1} and $g'(D^q) \subset \overline{Z^q}$, where $\overline{Z^{q-1}} = Z^q \cup C$.

Proof. Let n be the maximum dimension of cells not contained in C. We may assume that n > q and proceed by induction on the number of such *n*-cells. Let ϕ : $(D^n, S^{n-1}) \to (Z, Z^{n-1})$ be the characteristic map of an *n*-cell *e*. Let D_1^n , (D_2^n) be the closed ball of center 0 with radius $\frac{1}{3}$, $(\frac{2}{3})$, respectively. Put $U = \phi(D^n - D_1^n) \cup (Z$ e), $V = \phi(\text{Int } D_2^n), z_0 = \phi(0)$, where Int D_2^n denotes the interior of D_2^n . Then $U \cup V = Z$. Taking a refinement of D^q , every simplex |s|of it is contained in $g^{-1}(U)$ or $g^{-1}(V)$. Let $E_1 = \bigcup_{|s| \cap g^{-1}(z_0) \neq \emptyset} |s|, E_2 = \bigcup_{|s| \cap g^{-1}(z_0) = \emptyset} |s|.$ Then $g(E_1) \subset V, \ g(E_1 \cap E_2) \subset V - \{z_0\}.$ Thus we have a definable map $\phi^{-1} \circ g : E_1 \cap$ $E_2 \rightarrow \text{Int } D_2^n - \{0\}$. Since $\text{Int } D_2^n - \{0\}$ is definably homotopy equivalent to S^{n-1} and S^{n-1} is (n-2) connected, there exists a definable map $h: E_1 \to \text{Int } D_2^n - \{0\}$ with $h|E_1 \cap E_2 = \phi^{-1} \circ g$. Define a definable homotopy h_t : $E_1 \rightarrow \text{Int } D_2^n$ by $h_t(x) =$

 $(1-t)\phi^{-1} \circ g(x) + th(x)$. Then h_t is a definable homotopy between $\phi^{-1} \circ g$ and h relative to $E_1 \cap E_2$. Define a definable homotopy $h'_t : D^q \to Z$ by $h'_t | E_1 = \phi^{-1} \circ g$, $h'_t | E_2 = g | E_2$. Then h'_t is a definable homotopy between g and h'_1 relative to S^{q-1} and $h'_1(D^q) \subset Z - \{z_0\}$. Taking a definable retraction $r : Z - \{z_0\} \to Z - e, h'_1 \simeq r \circ h'_1$ rel $S^{q-1} : D^q \to Z - \{z_0\}$. Let $g'' = r \circ h'_1$. Then $g \simeq g''$ rel $S^{q-1} : D^q \to Z, g''(D^q) \subset Z - e$. By the inductive hypothesis, there exists a definable map g' such that $g'' \simeq g'$ rel $S^{q-1} : D^q \to Z - e, g'(D^q) \subset \overline{Z^q}$. \Box

Claim 2.11. For any definable map f: $(\overline{X^{q}}, \overline{X^{q-1}}) \rightarrow (Y, \overline{Y^{q-1}})$, there exists a definable map $g: (\overline{X^{q}}, \overline{X^{q-1}}) \rightarrow (Y, \overline{Y^{q-1}})$ such that $f \simeq g \ rel \ \overline{X^{q-1}}$ and $g(\overline{X^{q}}) \subset \overline{Y^{q}}$.

Proof. Let *e* be a *q*-cell not contained in *A*. Since *f*(\overline{e}) is definably compact, there exists a finite subcomlex *Z* of *Y* with *f*(\overline{e}) ⊂ *Z*. Put *C* = *Z* ∩ \overline{Y}^{q-1} . Then *f*(e^r) ⊂ *C*, where e^r denotes the boundary of *e*. Let $\phi : (D^q, S^{q-1}) \to (\overline{e}, e^r)$ be the characteristic map of *e*. Applying Claim 2.10 to *f* ◦ ϕ : $(D^q, S^{q-1}) \to (Z, C)$, there exists a definable map *g'* such that *f* ◦ $\phi \simeq g'$ rel S^{q-1} , $g'(D^q) \subset \overline{Z}^q$. Then $g = g' \circ \phi$ is the required map. □

Claim 2.12. For any definable map f: $(X, A) \rightarrow (Y, B)$, there exists a definable homotopy H_q : $(X, A) \times [0, 1]_R \rightarrow (Y, B)$ such that:

(1) $H_0(x,t) = f(x)$ for all $x \in X$. (2) $H_q(x,0) = H_{q+1}(x,0)$ for all $x \in X$. (3) $H_q(x,t) = (x,t)$ for all $(x,t) \in \overline{X}^q \times [0,1]_R$. (4) $H_q(\overline{X}^q \times \{1\}) \subset \overline{Y}$.

Proof. Let $H_0(x,t) = f(x)$ for $(x,t) \in X \times [0,1]_R$. Assume we have H_{q-1} . Since $H_{q-1}(\overline{X}^{q-1} \times \{1\}) \subset \overline{Y}^{q-1}$ and by Claim 2.11, there exists a definable homotopy H'_q rel $\overline{X}^{q-1}: (\overline{X}^q, \overline{X}^{q-1}) \times [0,1]_R \to (\overline{Y}^q, \overline{Y}^{q-1})$ such that $H'_q | \overline{X}^q \times \{0\} = H_{q-1} | \overline{X}^q \times \{1\}, H'_q(\overline{X}^q \times \{1\}) \subset \overline{Y}^q$. By Lemma 2.8, there exists a definable homotopy $H_q: X \times [0,1]_R \to Y$

such that $H_q|X \times \{0\} = H_{q-1}|X \times \{1\}, H_q|\overline{X}^q \times [0,1]_R = H'_q$, and H_q satisfies (1)-(4). \Box

Proof of Theorem 2.7. Let $q = \dim X$. By Claim 2.12, we have a definable homotopy H_q . Then the definable map g: (X, A) $\rightarrow (Y, B)$ defined by $g(x) = H_q(x, 1)$ is the required map. \Box

3. Proof of Theorem 1.2.

Lemma 3.1. Let *i* be the inclusion $X_n \rightarrow X_{n+1}$ and $x_0 \in X_n$. Then $i_* : \pi_1(X_n, x_0) \rightarrow \pi_1(X_{n+1}, x_0)$ is surjective if n = 1 and an isomorphism n > 1.

Proof. Let $n \ge 1$ and $\alpha : S^1 \to X_{n+1}$ a definable map. By Theorem 2.7, there exists a definable map $\alpha' : S^1 \to X_1 \subset X_n$ such that α is definably homotopic to α' . Since $i_*([\alpha']) = [\alpha], i_*$ is surjective.

Assume $n \geq 2$ and $i_*([\alpha]) = 0$. Then α : $S^1 \to X_{n+1}$ is null homotopic and there exists a definable map $H: S^1 \times [0,1]_R \to X_{n+1}$ such that $H(-,0) = \alpha, H(-,1) = c$, where c denotes a constant map. By Theorem 2.7 and since $S^1 \times [0,1]_R$ is a 2-dimensional definable set, there exists a definable map H': $S^1 \times [0,1]_R \to X_2$ such that H is definably homotopic to H' relative to $S^1 \times \{0,1\}$. Thus $[\alpha] = 0$ and i_* is injective. \square

Lemma 3.2. If $k \le n, n > 1$ and $x_0 \in X_n$, then $\pi_k(X_{n+1}, X_n, x_0) = 0$.

Proof. Consider an exact sequence $\dots \to \pi_k(X_n, x_0) \to \pi_k(X_{n+1}, x_0) \to$ $\pi_k(X_{n+1}, X_n, x_0) \to \pi_{k-1}(X_n, x_0) \to$ $\pi_{k-1}(X_{n+1}, x_0) \to \dots$ We prove that i_{*k} : $\pi_k(X_n, x_0) \to \pi_k(X_{n+1}, x_0)$ is surjective and $i_{*k-1} : \pi_{k-1}(X_n, x_0) \to \pi_{k-1}(X_{n+1}, x_0)$ is injective.

Let $\alpha : S^k \to X_{n+1}$ be a definable map. Then by Theorem 2.7, there exists a definable map $\alpha' : S^k \to X_k$ such that α is definably homotpic to α' . Then $i_{*k} : \pi_k(X_n, x_0) \to \pi_k(X_{n+1,x_0})$ is surjective.

Assume $i_{*k-1}([\alpha]) = 0$. Then $\alpha : S^{k-1} \to X_{n+1}$ is null homotopic and there exists a definable map $H : S^{k-1} \times [0,1]_R \to X_{n+1}$ such that $H(-,0) = \alpha, H(-,1) = c$. By

Theorem 2.7 and since $S^{k-1} \times [0,1]$ is a kdimensional definable set, there exists a definable map $H': S^{k-1} \times [0,1]_R \to X_k \subset X_n$ such that H is definably homotopic to H'relative to $S^{k-1} \times \{0,1\}$. Thus $[\alpha] = 0$ and i_{*k-1} is injective.

By the above results and exactness, we have the lemma. $\hfill \Box$

The following is the o-minimal relative Hurewicz theorem.

Theorem 3.3 (5.4 [1]). Let (X, A, x_0) be a definable pointed pair and $n \ge 2$. Suppose that $\pi_r(X, A, x_0) = 0$ for any $1 \le r \le$ n-1. Then the o-minimal Hurewicz homomorphism $h_n : \pi_n(X, A, x_0) \to H_n(X, A)$ is surjective and its kernel is the subgroup generated by $\{\beta_{[u]}([f])[f]^{-1}|[u] \in \pi_1(A, x_0), [f] \in$ $\pi_n(X, A, x_0)\}$. In particular, h_n is an isomorphism for $n \ge 3$.

Put $\pi_{n+1}^+(X_{n+1}, X_n) = \pi_{n+1}(X_{n+1}, X_n)/$ ker h_n . Let $g: X_n \to Y$ be a definable map and $\pi: \pi_{n+1}(X_{n+1}, X_n) \to \pi_{n+1}^+(X_{n+1}, X_n)$ denote the projection.

Lemma 3.4. There exits a factorization $\overline{g_* \circ \partial} : \pi_{n+1}^+(X_{n+1}, X_n) \to \pi_n(Y)$ such that $\pi \circ \overline{g_* \circ \partial} = g_* \circ \partial.$

Proof. If $\alpha \in \pi_1(X_n)$, then $\partial(\alpha x) = a\partial x$. Since Y is n-simple, for any $z \in \pi_n(X_n)$, $g_*(\alpha z) = g_*(\alpha)g_*(z) = g_*(z)$.

By Lemma 3.4, we can define the composition map $C_{n+1}(X, A) = H_{n+1}(X_{n+1}, X_n) \xrightarrow{h^{-1}}$

 $\pi_{n+1}^+(X_{n+1},X_n) \xrightarrow{g_* \circ \partial} \beta \pi_n(Y), \text{ where } h: \pi_{n+1}^+(X_{n+1},X_n) \to H_{n+1}(X_{n+1},X_n) \text{ denotes the Hurewicz isomorphism. This composition map defines another cochain in <math>Hom_{\mathbb{Z}}(C_{n+1}(X,A),\pi_n(Y))$ which we again denote by $\theta^{n+1}(g).$

Proposition 3.5. The two definitions of $\theta^{n+1}(g)$ coincide.

Proof. For an (n + 1)-cell e_i^{n+1} , let $\phi_i : (D^{n+1}, S^n) \to (X_{n+1}, X_n)$ be the characteristic map of e_i^{n+1} . We define a map $(\phi_i \lor u) \circ q : (D^{n+1}, S^n, p) \to (X_{n+1}, X_n, x_0)$ as the

composition of a map $q: (D^{n+1}, S^n, p) \rightarrow$ $(D^{n+1} \vee I, S^n \vee I, p)$ and a map $D^{n+1} \vee I \xrightarrow{\phi_i \vee u}$ X_{n+1} , where u is a definable path in X_n to the base point x_0 . Then $(\phi_i \vee u) \circ q$ is definably homotopic to the characteristic map ϕ_i . Hence $h((\phi_i \lor u) \circ q)$ is the generator of $H_{n+1}(X_{n+1}, X_n)$ represented by the cell e_i^{n+1} and $(\phi_i \vee u) \circ q$ represents the element $h^{-1}(e_i^{n+1})$ in $\pi_{n+1}^+(X_{n+1}, X_n)$. By definition, $\partial((\phi_i \lor u) \circ q) \in \pi_n(X_n)$ is represented by the composition of the map $\overline{q}: S^n \to S^n \vee I$ obtained by restricting the map q to the boundary and the attaching map $f_i = \phi_i | S^n$ together with a definable path u to x_0 : $\partial((\phi_i \vee$ $(u) \circ q) = (f_i \lor u) \circ \overline{q} : S^n \to X_n$. By the second definition, $\theta(g)(e_i^{n+1}) = g \circ (f_i \lor u) \circ \overline{q} =$ $(g_i \circ f_i \lor g \circ u) \circ \overline{q}$. Moreover this is equal to $[f_i] \in [S^n, Y] = \pi_n(Y)$, which is the first definition of $\theta(g)(e_i^{n+1})$.

Theorem 3.6. The obstruction cohain $\theta^{n+1}(g)$ is a cocycle.

Proof. Consider the following commutative diagram.

The unlableled horizontal arrows are the Hurewicz maps and the unlableled vertical arrows are obtained from homotopy or homology exact sequences of the pair (X_{n+2}, X_{n+1}) and (X_{n+1}, X_n) .

The composition of the bottom two vertical maps on the left are zero because they occur in the homotopy exact sequence of the pair (X_{n+1}, X_n) . Since $\delta\theta(g)$ is the composition of all the right vertical maps, $\delta\theta^{n+1}(g)(x)$ $= \theta^{n+1}(g)(\partial x) = 0$. Thus $\theta^{n+1}(g)$ is a cocycle.

By a way to similar to the topological category, we have the following proposition.

Proposition 3.7. If X is a definable CW complex, then $X \times I$ is a definable CW complex.

Theorem 3.8. Let (X, A) be a relative definable CW complex, Y a definably connected n-simple definable set and $g: X_n \rightarrow$ Y a definable map.

(1) $\theta^{n+1}(g) = 0$ if and only if there exists a definable map $\tilde{g}: X_{n+1} \to Y$ extending g. (2) $[\theta^{n+1}(g)] = 0$ if and only if there exists a definable map $\tilde{g}: X_{n+1} \to Y$ extending $g|X_{n-1}$.

Lemma 3.9. Let $f_0, f_1 : X_n \to Y$ be definable maps such that $f_0|X_{n-1}$ is definably homotopic to $f_1|X_{n-1}$. Then there exists a difference cochain $d \in C^n(X, A, \pi_n(Y))$ such that $\delta d = \theta^{n+1}(f_0) - \theta^{n+1}(f_1)$.

Proof. Let $\hat{X} = X \times I$, $\hat{A} = A \times I$. Then (\hat{X}, \hat{A}) is a relative definable CW complex with $\hat{X}^k = X_k \times \partial I \cup X_{k-1} \times I$. Take a definable homotopy H between f_0 and f_1 . Hence a definable map $\hat{X}_n \to Y$ is obtained from $f_0, f_1 : X_n \to Y$ and a definable homotopy $G = H|X_{n-1} \times I : X_{n-1} \times I \to$ Y. Thus we have the cocycle $\theta(f_0, G, f_1) \in$ $C^{n+1}(\hat{X}, \hat{A}, \pi_n(Y))$ which obstructs finding an extension of $f_0 \cup G \cup f_1$ to X_{n+1} . we define the difference cochain $d(f_0, G, f_1) \in$ $C^n(X, A, \pi_n(Y))$ by restricting to cells of the form $e^n \times I$, that is $d(f_0, G, f_1)(e_i^n) = (-1)^{n+1}$ $\theta(f_0, G, f_1)(e_i^n \times I)$ for each *n*-cell e_i^n of X. Since $\theta(f_0, G, f_1)$ is a cocycle, $0 = (\delta \theta(f_0, G, f_1))(e_i^{n+1} \times I) = \theta(f_0, G, f_1)(\partial((e_i^{n+1} \times I))) =$ $\begin{array}{l} \theta(f_0, G, f_1)(\partial(e_i^{n+1} \times I) + (-1)^{n+1}(\theta(f_0, G, f_1) \\ (e_i^{n+1} \times \{1\}) - \theta(f_0, G, f_1)(e_i^{n+1} \times \{0\})) = \end{array}$ $(-1)^{n+1}(\delta(d(f_0,G,f_1))(e_i^{n+1}) + \theta(f_1)(e_i^{n+1}) \theta(f_0)(e_i^{n+1}))$. Thus $\delta d = \theta^{n+1}(f_0) - \theta^{n+1}(f_1)$.

Proposition 3.10. Let $f_0: X_n \to Y$ be a definable map, $G: X_{n-1} \times I \to Y$ a definable homotopy such that $G(-,0) = f_0|X_{n-1}$ and $d \in C^n(X, A, \pi_n(Y))$. Then there exists a definable map $f_1: X_n \to Y$ such that $G(-,1) = f_1|X_{n-1}$ and $d = d(f_0, G, f_1)$.

To prove Proposition 3.10, we need the following lemma.

Lemma 3.11. For any definable map f: $D^n \times \{0\} \cup S^{n-1} \times I \to Y$ and for any definable homotopy class $\alpha \in [\partial(D^n \times I), Y]$, there exists a definable map $F : \partial(D^n \times I) \to Y$ such that $F|D^n \times \{0\} \cup S^{n-1} \times I = f$ and $[F] = [\alpha]$.

Proof. Take a definable map $K : \partial(D^n \times I) \to Y$ with $[K] = [\alpha]$. Let $D = D^n \times \{0\} \cup S^{n-1} \times I$. Then D is definably contractible and K|D and f are null homotopic. Thus K|D and f are definably homotopic. Applying Theorem 2.7 to $(\partial(D^n \times I), D)$, there exists an extension $H : \partial(D^n \times I) \times I \to Y$. Hence F = H(-, 1) is the required definable map. □

Proof of Proposition 3.10. Let e_i^n be an *n*-cell of X_n and $\phi : (D^n, S^{n-1}) \to (X_n, X_{n-1})$ the characteristic map of e_i^n . Applying Lemma 3.11 to $f = f_0 \circ \phi_i \cup G \circ (\phi_i | S^{n-1} \times id_I)$ and $\alpha = d(e_i^n)$, we have a definable map F_i . We define $f_1 : X_n \to Y$ on the *n*-cells by $f_1(\phi_i(x)) = F_i(x, 1)$. Then $d(f_0, G, f_1)(e_i^n) = d(e_i^n)$.

Proof of Theorem 3.8. We now prove that if $g: X_n \to Y$ and $\theta(g)$ is a coboundary δd , then $g|X_{n-1}$ extneds to X_n . Applying Proposition 3.10 to g, d and the stationary homotopy $((x,t) \mapsto g(x))$ from $g|X_{n-1}$ to itself, there exists a definable map $g': X_n \to$ Y such that $g'|X_{n-1} = g|X_{n-1}$ and $\delta d =$ $\theta(g) - \theta(g')$. Since $\theta(g') = 0, g'$ extends to X_{n+1} . \Box

References

- E. Baro and M. Otero, On o-minimal homotopy groups, Q. J. Math. 61 (2010), 275–289.
- [2] J.F. Davis and P. Kirk, *Lecture notes in algebraic topology*, Graduate Studies in Mathematics, **35**, American Mathematical Society, Providence, RI, (2001).
- [3] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series
 248, London Math. Soc. Cambridge Univ. Press (1998).

- [4] L. van den Dries, A. Macintyre and D. Marker, *The elementary theory of restricted analytic field with exponentiation*, Ann. of Math. **140** (1994), 183– 205.
- [5] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [6] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350 (1998), 4377–4421.
- [7] C. Miller, Expansion of the field with power functions, Ann. Pure Appl. Logic 68, (1994), 79–94.
- [8] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. 59 (1999), 769–786.
- [9] M. Shiota, Geometry of subanalytic and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.