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Abstract. - We show that Ribet sections are the only obstruction to the validity of the
relative Manin-Mumford conjecture for one dimensional families of semi-abelian surfaces.
Applications include special cases of the Zilber-Pink conjecture for curves in a mixed
Shimura variety of dimension four, as well as the study of polynomial Pell equations with
non-separable discriminants.
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1 Introduction

1.1 The viewpoint of group schemes : relative Manin-Mumford

Let Qalg be the algebraic closure of Q in C, let S be an irreducible algebraic curve over Qalg,
and let G/S be a semi-abelian scheme over S of relative dimension 2 and constant toric
rank 1. We write Gtor for the union of all the torsion points of the various fibers of G→ S.
This set Gtor is also the set of values at all points of S of the various torsion-sections of
the group scheme G/S. Let further s : S → G be a section of G/S. The image of s is
an irreducible algebraic curve s(S) = W in G, defined over Qalg. Pursuing the theme of
“unlikely intersections” and relative versions of the Manin-Mumford conjecture (see [33]),
we here study the following question, where “strict” means “distinct from G”.

Question 1 : assume that W ∩ Gtor is infinite (i.e. Zariski dense in W ). Must W then
lie in a strict subgroup scheme of G/S ?

Let us review some of the results known along this line :

i) the analogous question has a positive answer when G/S is replaced by an abelian
scheme of relative dimension 2 : see [20], [33], Theorem III.12 and §5 for non-simple ones,
and [21] for the general case.

ii) Assume that the scheme G/S is isoconstant, i.e. isomorphic, after a finite base
extension, to a product G = G0 × S with G0/Qalg. Then, the Zariski closure W0 of the
projection of W to G0 is an algebraic curve (or a point) meeting G0,tor Zariski-densely. By
Hindry’s generalization of Raynaud’s theorem on the Manin-Mumford conjecture, see [17],
§5, Thm. 2, W0 is a torsion-coset of a strict algebraic subgroup H0 of G0, and W lies in a
translate of H = H0 × S by a torsion section. So, a positive answer is known in this case.

Therefore, the first new case occurs when G is a non isoconstant extension over S of an
isoconstant elliptic scheme by Gm, i.e. when G is a semi-constant extension in the sense of
[11]. But as in [11] (though for different reasons), this case turns out to be more delicate,
and the question can then have a negative answer. A counterexample is given in [8], and we
shall refer to the corresponding sections sR as Ribet sections of G/S and to their images
WR = sR(S) as Ribet curves. For a formal definition, see the end of this subsection (and
[18] for its initial version). In this paper, we will prove that in all other cases, our question
has a positive answer; in other words :
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Main Theorem . Let E/S be an elliptic scheme over the curve S/Qalg, and let G/S be
an extension of E/S by Gm/S. Let further s : S → G be a section of G/S, with image
W = s(S).

(A) Assume that W ∩Gtor is infinite. Then,
i) either s is a Ribet section;
ii) or s factors through a strict subgroup scheme of G/S.

(B) More precisely, W ∩ Gtor is infinite if and only if s is a Ribet section, or a torsion
section, or a non isoconstant section of a strict subgroup scheme of G/S.

We point out that this statement is invariant under isogenies G→ G′ of the ambient group
scheme, and under finite base extensions S ′ → S. Throughout the paper, we will allow
ourselves, sometimes tacitly, to perform such isogenies and base extensions.

We now rephrase Part (A) of the theorem according to the various types of extensions
G/S and elliptic schemes E/S which can occur, and explain in each case the meaning of
“isoconstant” in its Part (B) ; a more concrete discussion of this array of cases is given in
§2. Concerning the type of E/S, we recall that the scheme E/S is isoconstant if and only
if the j-invariant of its various fibers is constant; performing a finite base extension, we
will then assume that E is equal to E0×S for some elliptic curve E0/Qalg. As for the type
of G/S,

- either G is isogenous as a group scheme over S to a direct product Gm×E. We then
say that the extension G/S is isotrivial and perform this isogeny. Since W is flat over S,
Conclusion (ii) then reads : W lies in a translate of E/S or of Gm/S = Gm×S by a torsion
section of G/S (and Conclusion (i) does not occur); in this case, the isoconstant sections of
the strict subgroup schemes are the translates by torsion sections of the constant sections
of Gm/S, or of the constant sections of E/S if E = E0 × S is constant.

- or the extension G/S is not isotrivial. Conclusion (ii) then reads : W lies in a translate
of Gm/S by a torsion section of G/S; in this case, the isoconstant sections are the translates
by torsion sections of the constant sections of Gm/S.

Now, whether G/S is or is not an isotrivial extension,
- we automatically get Conclusion (ii) if either the scheme E/S is not isoconstant, or

it is isoconstant, but E0 does not admit complex multiplications, or if E0 is CM, but G is
isoconstant (a case already covered by [17], of course).

- in the remaining case where E/S is isoconstant, with a CM elliptic curve E0/Qalg,
and G is not isoconstant (hence in particular, not isotrivial), Ribet sections of G/S do
exist, their images W do not lie in strict subgroup schemes of G/S but meet Gtor infinitely
often, while not all sections s satisfying the hypotheses of the theorem are Ribet sections.

In other words, both conclusions (i) and (ii) of the Main Theorem occur in this last
case and are then mutually exclusive. However, there is a way of reconciling them, through
the setting of Pink’s extension of the André-Oort and Zilber conjectures to mixed Shimura
varieties, which we turn to in the next subsection §1.2 (see, e.g., Corollary 1).

Another type of application of the Main Theorem is given in §7, Appendix II of the
paper : this concerns the solvability of Pell’s equations over polynomial rings, and extends
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some of the results of [21] to the case of non-separable discriminants.

To conclude this introduction, here is the promised definition of a Ribet section sR :
S → G (see [9], §1 - several other definitions are discussed in [10], and a more concrete,
but analytic, characterization is mentioned in Remark 4 of §7, Appendix I, below). In
the notations of the Main Theorem, let Ê/S be the dual of E/S: the isomorphism class
of the Gm-torsor G over E is given by a section q : S → Ê. Let further P → E ×S Ê
be the Poincaré biextension of E and Ê by Gm : by [13], 10.2.13, a section s : S → G
of G/S lifting a section p : S → E of E/S is entirely described by a trivialisation of
the Gm-torsor (p, q)∗P over S. Assume now that E = E0 × S is isoconstant, and admits
complex multiplications, and let f : Ê0 → E0 be a non-zero antisymmetric isogeny (i.e.,
identifying E0 and Ê0, a purely imaginary complex multiplication) which for simplicity, we
here assume to be divisible by 2. Then, (f(q), q)∗P is a trivial torsor in a canonical way,
and the corresponding trivialization yields a well-defined section s = s(f) of G/S above
p = f(q). When G/S is semiconstant (which means : when q is not constant), any section
sR of G/S a non-zero multiple of which is of the form s(f) for some antisymmetric f will
be called a Ribet section of G/S. So, on such a semi-abelian scheme G/S, there exists
essentially only one Ribet section sR (more precisely, all are linearly dependent over Z),
and by [8] (see also [10], and Appendix I), its image WR = sR(S) meets Gtor infinitely
often. It follows from Hindry’s theorem (see Corollary 3 of §4) that the latter property
characterizes Ribet sections among those sections of G/S which project to a section of
E/S of the form p = f(q).

1.2 The viewpoint of mixed Shimura varieties : Pink’s conjecture

The consequences of the Main Theorem described in this subsection are discussed in [9],
which we here summarize for the convenience of the reader.

Let X be a modular curve, parametrizing isomorphism classes of elliptic curves with
some level structure, let E be the universal elliptic scheme over X, with dual Ê , and let P be
the Poincaré bi-extension of E×X Ê by Gm. This is a mixed Shimura variety of dimension 4,
which parametrizes points P on extensions G of elliptic curves E by Gm. A point of P(C)
can be represented by a triple (E,G, P ) , and is called special if the attached Mumford-
Tate group is abelian, which is equivalent to requiring that E has complex multiplications,
that G is an isotrivial extension, and that P is a torsion point on G. Denote by Psp the
set of special points of P . Following [29], we further say that an irreducible subvariety of
P is special if it is a component of the Hecke orbit of a mixed Shimura subvariety of P .
Given any irreducible subvariety Z of P , the intersection of all the special subvarieties of P
containing Z is called the special closure of Z. The special subvarieties of P of dimension
0 are the special points; the special curves of P are described below; for the full list, see
[9], section 3.

Corollary 1. Let W/Qalg be an irreducible closed algebraic curve in P. Assume that
W ∩ Psp is infinite. Then, W is a special curve.
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To prove this corollary, we distinguish the various cases provided by the projection
$ : P → X and its canonical section (rigidification) σ : X → P , whose image σ(X) is
made up of points of the type (E,Gm × E, 0) ∈ P :

- either the restriction of $ to W is dominant : the corollary then says that W lies
in the Hecke orbit of the curve σ(X). Indeed, up to Hecke transforms, σ(X) is the only
one-dimensional (mixed, but actually pure) Shimura subvariety of P dominating X.

In this case where $|W is dominant, the corollary follows not from our Main Theorem,
but from André’s theorem [2], p. 12, on the special points of the mixed Shimura variety E
(see also [23], Thm. 1.2).

- or$(W ) is a point x0 ofX, necessarily of CM type. In particular, W lies in the fiber P0

of $ above x0. This fiber P0 is a 3-dimensional mixed Shimura subvariety of P , which can
be identified with the Poincaré biextension of E0× Ê0 by Gm, where E0 denotes an elliptic
curve in the isomorphism class of x0. An analysis of the generic Mumford-Tate group of P0

as in [6], p. 52, shows that up to Hecke transforms, there are exactly four types of special
curves in P0 : the fiber (Gm)x0 above (0, 0) of the projection P0 → (E×X Ê)x0 = E0×Ê0 and
the images ψB(B) of the elliptic curves B ⊂ E0 × Ê0 passing through (0, 0) such that the
Gm-torsor P0|B is trivial, under the corresponding (unique) trivialization ψB : B → P0|B.

There are three types of such elliptic curves B : the obvious ones E0×0 and 0× Ê0 (whose
images we denote by ψ(E0× 0), ψ(0× Ê0)), and the graphs of the non-zero antisymmetric
isogenies from E0 to Ê0, in which case ψB corresponds precisely to a Ribet section of the
semi-abelian scheme G0/Ê0 defined below.

Corollary 1 now follows from the Main Theorem, by interpreting P0/Ê0 as the “univer-
sal” extension G0 of E0 by Gm, viewed as a group scheme over the curve S := Ê0, so that
Psp ∩ P0 ⊂ (G0)tor. More precisely, suppose that W dominates Ê0 : then, it is the image

of a multisection of G0/Ê0, and after a base extension, the theorem implies that up to a
torsion translate, W is the Ribet curve ψB(B), or it lies in Gm/Ê0

= Gm × Ê0, where a
new application of the theorem (or more simply, of Hindry’s) shows that it must coincide
with a Hecke transform of Gm = (Gm)x0 or of ψ(0× Ê0). By biduality (i.e. reverting the
roles of Ê0 and E0), the same argument applies if W dominates E0. Finally, if W projects
to a point of E0 × Ê0, then, this point must be torsion, and W lies in the Hecke orbit of
(Gm)x0 .

Although insufficient in the presence of Ribet curves, the argument devised by Pink
to relate the Manin-Mumford and the André-Oort settings often applies (see the proof of
Theorems 5.7 and 6.3 of [29], and [28], Prop. 4.6, as well as [10], for abelian schemes). In the
present situation, one notes that given a point (E,G, P ) in P(C), asking that it be special
as in Corollary 1 gives 4 independent conditions, while merely asking that P be torsion on
G as in the Main Theorem gives 2 conditions. Now, unlikely intersections for a curve W
in P precisely means studying its intersection with the union of the special subvarieties of
P of codimension ≥ 2 (i.e. of dimension ≤ 2), and according to Pink’s Conjecture 1.2 of
[29], when this intersection is infinite, W should lie in a special subvariety of dimension
< 4, i.e. a proper one. Similarly, if W lies in the fiber P0 of P above a CM point x0 and
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meets infinitely many special curves of this 3-fold, then, it should lie in a special surface
of the mixed Shimura variety P0. In these directions, our Main Theorem, combined with
[2], p. 12, and with the relative version of Raynaud’s theorem obtained in [20], implies :

Corollary 2. Let W/Qalg be an irreducible curve in the mixed Shimura 4-fold P, and let
δW be the dimension of the special closure of W .

i) Suppose that δW = 4; then, the intersection of W with the union of all the special
surfaces of P dominating X is finite;

ii) Suppose that δW = 3; then, the intersection of W with the union of all the special
non-Ribet curves of P is finite.

The proof goes along the same lines as that of Corollary 1; see [9] for more details,
and for a discussion on the gap between these corollaries and the full statement of Pink’s
conjecture 1.2 of [29], which would give a positive answer to :

Question 2 : Let W/Qalg be an irreducible curve in the mixed Shimura 4-fold P, and let
δW be the dimension of the special closure of W . Is the intersection of W with the union
of all the special subvarieties of P of dimension ≤ δW − 2 then finite ?

The case where δW = 2 is covered by Corollary 1 . The remaining cases would consist
in disposing of the restrictions “dominating X” and “non-Ribet” in Corollary 2. These
problems are out of the scope of the present paper.

Although the Shimura view-point will not be pursued further, the Poincaré biextension,
which has already appeared in the definition of Ribet sections, plays a role in the proof
of the Main Theorem. See §5.3, Remark 3.(iii), §3.3, Footnote (3), and §6, Case (SC2),
where s is viewed as a section of P , rather than of G. See also the sentence concluding
§4. We finally mention that very recently, Ziyang Gao [14] has obtained a proof of the
André-Oort conjecture for many mixed Shimura varieties. His work implies Corollary 1
above on special points, but probably not Corollary 2 on unlikely intersections.

1.3 Plan of the paper

• In the first sections (§§ 2, 3.1, 3.2), we give a set of notations, present the overall strategy
of the proof, borrowed from [20] and based on the same set of preliminary lemmas : large
Galois orbits, bounded heights, Pila-Wilkie upper bounds. The outcome is that for a
certain real analytic surface S in R4 attached to the section s ∈ G(S):

W ∩Gtor infinite ⇒ S contains a semi-algebraic curve.

• The program for completing the proof is sketched in §3.3, and can be summarized by the
following two steps (α), (β). Here logG(s) is a local logarithm of s, and Fpq is a certain
Picard-Vessiot extension of K attached to G and to the projection p of s to E. Then,
under a natural assumption on p (see Proposition 4),

(α) S contains a semi-algebraic curve ⇒ logG(s) is algebraic over Fpq.

The proof is thereby reduced to a statement of algebraic independence, which forms the
content of our “Main Lemma”, cf. middle of §3.3. Notice the similarity between the
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statements of this Main Lemma and of the Main Theorem, making it apparent that up to
translation by a constant section,

(β) logG(s) is algebraic over Fpq ⇒ s is Ribet or factors

as is to be shown.

• As a warm up, we realize these two steps, in Section 4 when G is an isotrivial extension.
In Section 5, we go back to the general case G/S, prove the first step (α), and comment
on the use of Picard-Vessiot extensions.

• Section 6 is devoted to the proof of the Main Lemma (β). As in §4, we appeal to results of
Ax type [3] to treat isoconstant cases, and to Picard-Vessiot theory, in the style of André’s
theorem [1], for the general case.

• Finally, Appendix I of §7 gives a concrete description of the local logarithm logG(s),
while Appendix II is devoted to an application to polynomial Pell’s equations, following
the method of [21].

2 Restatement of the Main Theorem

2.1 Introducing q and p

We first repeat the setting of the introduction, with the help of the fundamental isomor-
phism ExtS(E,Gm) ' Ê to describe the various cases to be studied.

So, let Qalg be the algebraic closure of Q in C. Extensions of scalars from Qalg to C will
be denoted by a lower index C. Let S be an irreducible algebraic curve over Qalg, whose
generic point we denote by λ, and let K = Qalg(S) = Qalg(λ), so KC := C(SC) = C(λ).
We use the notation λ for the closed points of SC, i.e. λ ∈ S(C). Let G/S be an semi-
abelian scheme over S of relative dimension 2, all of whose fibers have toric rank 1. Making
Question 1 more precise, we write Gtor for the union of all the torsion points of the various
fibers of GC → SC, i.e. Gtor = ∪λ∈S(C)(Gλ)tor ⊂ G(C), where Gλ denotes the fiber of G

above λ. This set Gtor is also the set of values at all λ ∈ S(C) of the various torsion-sections
of GC → SC. Let finally s : S → G be a section of G/S defined over Qalg, giving a point
s(λ) ∈ Gλ(K) at the generic point of S, and closed points s(λ) ∈ Gλ(C) at the λ’s in S(C).

In the description which follow, we may have to withdraw some points of S, or replace
S by a finite cover, but will still denote by S the resulting curve. After a base extension,
the group scheme G/S can be presented in a unique way as an S-extension

0−→Gm/S−→G
π−→E−→0

of an elliptic scheme E/S by Gm/S = Gm×S. We denote by π : G→ E the corresponding
S-morphism.

The extension G is parametrized by a section

q ∈ Ê(S)
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of the dual elliptic scheme Ê/S. We write

p = π ◦ s ∈ E(S)

for the projection to E of the section s. Finally, we denote by k ⊂ Qalg the number field
over which S is defined, and assume without loss of generality that the generic fibers of G,
hence of q, and of s, hence of p, are defined over k(S) = k(λ).

Since the algebraic curve W = s(S) ⊂ G is the image of a section, the minimal strict
subgroup schemes H of G which may contain W are flat over S, with relative dimension
1. These can be described as follows :

– either q has infinite order in Ê(S) : then, G/S is a non isotrivial extension, and
H ( G is contained in a finite union of torsion translates of Gm/S; in particular, π(H) is
finite over S, and H can contain W only if p = π(s) is a torsion section of E/S.

– or q has finite order : in this case, G is isogeneous to the direct product Gm/S ×S E.
Since the answer to the question is invariant under isogenies, we can then assume that G
is this direct product, i.e. that q = 0. Strangely enough, this (easy) case of Question 1
does not seem to have been written up yet. We present it in §4. The answer (cf. Theorem
1 below) is a corollary of Hindry’s theorem when E/S is isoconstant, since G/S too is
then isoconstant; in an apparently paradoxical way, we will use it to characterize the Ribet
sections of semi-constant extensions, cf. Corollary 3.

So, from now on and apart from §4, we could assume that q has infinite order in Ê(S),
i.e. that G is a non-isotrivial extension. However, the only hypothesis we will need in our
general study of §3.3 and §5 concerns the section p = π(s) of E/S, see next subsection.

2.2 Isoconstant issues

In general, given our curve S/Qalg, we say that a scheme X/S is isoconstant if there exists
a finite cover S ′ → S and a scheme X0/Qalg such that XS′ = X ×S S ′ is isomorphic over
S ′ to the constant scheme X0 ×Qalg S

′. We then say that a section x of X/S is constant if
after a base change S ′/S which makes X constant, the section of XS′/S ′ which x defines
comes from the constant part X0 of XS′ . This notion is indeed independent of the choice
of S ′. See Footnote (4) of §4 below for further conventions in the isoconstant cases.

In these conditions, the hypothesis just announced about p reads :

p ∈ E(S) is not a torsion section, and is not constant if E/S is isoconstant,

and will be abbreviated as “the section p is not torsion, nor constant”; in terms to be
described in §5.3 and §6, it is better expressed as :

p ∈ E(S) does not lie in the Manin kernel E] of E.

The relation to the Main Theorem is as follows. If p is a torsion section, then, a torsion
translate of s ∈ G(S) lies in Gm, so s satisfies Condition (ii) of the Main Theorem. And if
p = p0 is a constant (and not torsion) section, then, p(S) = {p0}×S does not meet Etor at
all, so s(S) ∩Gtor is empty. In other words, the Main Theorem is trivial in each of theses
cases.
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A precision on the expression “G is semi-constant” is now in order : it appears only
if E/S is isoconstant, and means that there exists a finite cover S ′ → S such that on the
one hand, there exists an elliptic curve E0/Qalg such that the pull-back of E/S to S ′ is
isomophic over S ′ to E0 × S ′, and that on the other hand, the section q′ ∈ Ê ′(S ′) which
q defines is given by a section of Ê0 ×Qalg S which does not come from Ê0(Qalg). Since
the answer to our question is invariant under finite base extension of S, we will assume in
this case that E/S is already constant, i.e. E = E0 × S, and that q ∈ Ê0(S) \ Ê0(Qalg);
indeed, as just said above, the second condition is then valid for any S ′/S. Notice that
the condition that q be non-constant forces it to be of infinite order. Consequently, semi-
constant extensions are automatically both non isoconstant and non-isotrivial. On the
other hand, if q ∈ Ê0(Qalg) is constant, we are in the purely constant case of [17] already
discussed in the Introduction.

Remark 1 (traces and images). - Let E0/Qalg denote the constant part (K/Qalg-trace) of
E/S. An innocuous base extension allows us to assume that if E/S is isoconstant, then
E0 6= {0} (and we then set E0 := E0), and E/S is actually isomorphic to E0×S. Denote by
G0/Qalg the constant part (K/Qalg-trace) of G/S, and by G0/Qalg the maximal constant
quotient (K/Qalg-image) of G/S. Then :

- G/S is an isotrivial extension if and only if q is a torsion section of Ê/S. In this
case, an isogeny allows us to assume that q = 0, i.e. G = Gm × E. We then have
G0 = G0 = Gm × E0, and G/S is isoconstant if and only if E/S is isoconstant.

- assume now that G/S is not an isotrivial extension, and that E/S, hence Ê/S, is not
isoconstant. Then, G0 = Gm, while G0 = E0 = {0}.

- finally , assume that G/S is not an isotrivial extension, but E = E0 × S, hence
Ê = Ê0 × S, is (iso)constant. Then either q is a non constant section of Ê/S, in which
case G is semi-constant, and we have G0 = Gm, G

0 = E0 = E0; or q is constant, in which
case G0 = G0 ∈ ExtQalg(E0,Gm) , and G = G0 × S is itself constant.

For the sake of brevity, we will henceforth say that a section of a group scheme H/S is
(iso)constant if it is a constant section of the constant part H0 × S of H/S.

2.3 Antisymmetric relations and restatement

The answer to Question 1 of the Introduction, as well as the proofs, depend on possible
relations between p and q. For ease of notations, we fix a principal polarization ψ : Ê ' E
of the elliptic scheme, and allow ourselves to identify q with its image ψ(q) ∈ E(S). Also,
we denote by O the ring of endomorphisms of E. If E/S is not isoconstant, O reduces to
Z. Otherwise, O may contain complex multiplications, and we say that the non-torsion
and non-constant sections p and q are antisymmetrically related if there exists α ∈ O ⊗Q
with α = −α such that q = αp in E(K) modulo torsion.

Notice that we reserve this expression for sections p, q which are non torsion (and non
constant). Therefore, an antisymmetric relation between p and q necessarily involves a
non-zero imaginary α, hence O 6= Z, forcing E/S to be isoconstant. And since q is not

9



constant, the corresponding semi-abelian scheme G = Gq is then semiconstant, and admits
a Ribet section sR projecting to p ∈ E(S).

For any positive integer m, we set :

SGm = {λ ∈ S(C), s(λ) has order m in Gλ(C)},

SEm = {λ ∈ S(C), p(λ) has order m in Eλ(C)},

SG∞ = ∪m∈Z>0S
G
m ' W ∩Gtor , S

E
∞ = ∪m∈Z>0S

E
m ' π(W ) ∩ Etor,

where the indicated bijections are induced by S ' s(S) = W , S ' p(S) = π(W ). Clearly,
∪k|mSGk ⊂ ∪k|mSEk for all m’s, and the points of SG∞ can be described as those points of
π(W )∩Etor (“likely intersections”) that lift to points of W ∩Gtor (“unlikely intersections”).

Our Main Theorem can then be divided into the following three results. We first
consider the case when q is torsion, which reduces after an isogeny to the case q = 0.

Theorem 1. Let E/S be an elliptic scheme over the curve S/Qalg, and let G = Gm × E
be the trivial extension of E/S by Gm/S. Let further s : S → G be a section of G/S, with
image W = s(S), such that p = π(s) has infinite order in E(S). Then, SG∞ is finite (in
other words, W ∩Gtor is finite) as soon as

(o) no multiple of s by a positive integer factors through E/S (i.e. the projection of s
to the Gm-factor of G is not a root of unity).

The case when q is not torsion can be restated as follows.

Theorem 2. Let E/S be an elliptic scheme over the curve S/Qalg, and let G/S be a non-
isotrivial extension of E/S by Gm/S, i.e. parametrized by a section q ∈ Ê(S) ' E(S) of
infinite order. Let further s : S → G be a section of G/S, with image W = s(S), such that
p = π(s) has infinite order in E(S). Then, SG∞ is finite (in other words, W ∩Gtor is finite)
in each of the following cases :

(i) E/S is not isoconstant;
(ii) E/S is isoconstant, and p and q are not antisymmetrically related;
(iii) E/S is isoconstant, p and q are non-constant antisymmetrically related sections,

and no multiple of s is a Ribet section.

For the sake of symmetry, we recall that in these two theorems, the hypothesis that p
is not torsion is equivalent to requiring that no multiple of s by a positive integer factors
through Gm/S.

Since Ribet sections exist only in Case (iii) of Theorem 2, the conjunction of Theorems
1 and 2 is equivalent to Part (A) of the Main Theorem, giving necessary conditions for
W ∩ Gtor ' SG∞ to be infinite. That these conditions are (essentially) sufficient, i.e. that
Part (B) holds true, is dealt with by the following statement, which we prove right now.
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Theorem 3. Let E/S be an elliptic scheme over the curve S/Qalg, and let G/S be an
extension of E/S by Gm/S. Let further s : S → G be a section of G/S. Then,

i) if s is a Ribet section, SG∞ is infinite, and equal to SE∞;
ii) if s is a torsion section, then SG∞ = S(C);
iii) if s is a non-torsion section factoring through a strict subgroup scheme H/S of G/S,

then SG∞ is empty if s is an isoconstant section of H/S, and infinite but strictly contained
in S(Qalg) if s is not isoconstant.

Proof : (i) is proved in [8], [10], see also Remark 4 in Appendix I below. The second
statement is clear. As for (iii), this is an easy statement if the connected component of
H is Gm. If (for an isotrivial G), it is isogenous to E, the isoconstant case is again clear,
while the non-isoconstant one follows from “torsion values for a single point” as in [33], cf.
Proposition 1.(iv) below.

So, we can now concentrate on Theorems 1 and 2.

3 The overall strategy

Our stategy will be exacty the same as in [20].

3.1 Algebraic lower bounds

In this section, we denote by k a number field over which the algebraic curve S, the group
scheme G/S and its section s are defined. We fix a embedding of S in a projective space
over k, and denote by H the corresponding height on the set S(Qalg) of algebraic points
of S. We then have :

Proposition 1. Let E/S be an elliptic scheme, and let p : S → E be a section of E/S of
infinite order. There exist positive real numbers C,C ′ depending only on S/k,E/S and p,
with the following properties. Let λ ∈ S(C) be such that p(λ) is a torsion point of Eλ(C),
i.e. λ ∈ SE∞. Then,

i) the point λ lies in S(Qalg), i.e. the field k(λ) is an algebraic extension of k;
ii) the height H(λ) of λ is bounded from above by C;
iii) if n = n(λ) ≥ 1 denotes the order of p(λ), then [k(λ) : k] ≥ C ′n1/3.
iv) the set SE∞ is infinite (assuming that if E/S is isoconstant, p is not constant).

Proof : i, ii, iii) In the non-isoconstant case, one can reduce to the Legendre curve, where
all is already written in [20], [21], [33], based on diophantine results of Silverman, David
and the second author. Notice that the upper bound (ii) on H(λ) is needed to deduce
the lower bound (iii) on degrees. In the isoconstant case, the proof is easier as (ii) is not
needed, and one can sharpen the lower bound (iii) to n2 in the non-CM case (non effective),
resp. n/logn in the CM case. But as usual, any positive power of n will do.
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iv) This is the issue of “torsion values for a single point”, an analytic proof of which is
given in [33], p. 92, in the non-isoconstant case. If E/S is isoconstant, the second case of
this analytic proof does not occur, since we assume in (iv) that p is not constant.

Corollary. Hypotheses and the notation C ′ being as in Proposition 1, let G/S be an
extension of E/S by Gm/S, and let s be a section of G/S lifting the non-torsion section p

of E/S. Assume that λ ∈ SE∞ actually lies in SG∞, and let m be the order of the torsion
point s(λ) ∈ Gλ(Qalg). Then, [k(λ) : k] ≥ C ′m1/6.

Proof : if s(λ) has precise order m in Gλ and projects to a point p(λ) of order n|m on
Eλ, then, ns(λ) is a primitive m/n-th root of unity, so has degree >> (m/n)1−ε over k,
and we can assume that this is larger than C ′(m/n)1/3 (assume C ′ < [k : Q]−1). Since
the fields of definition of ns(λ) and of p(λ) are contained in k(λ), we get [k(λ) : k] ≥
C ′(sup(n,m/n))1/3 ≥ C ′m1/6.

The conclusion of this first step is summarized by the implications :

∀λ ∈ S(C), λ ∈ SG∞ ⇒ λ ∈ S(Qalg) and H(λ) ≤ C,

and
∀λ ∈ S(Qalg),∀m ≥ 1, λ ∈ SGm ⇒ [k(λ) : k] ≥ C ′m1/6.

In particular, if W = s(S) contains a point w = s(λ) of order m (w.r.t. the group law of
its fiber Gλ), then W contains at least C ′m1/6 points of order m (w.r.t. the group laws
of their respective fibers) : indeed, since W is defined over k, it contains the orbit of w
under Gal(Qalg/k). However, we will need a sharper version of this statement, involving
the archimedean sizes of the conjugates of λ, and the upper bound on H(λ) will again
come to help at this stage.

3.2 Transcendental upper bounds

The next step is based on the following theorem of Pila. For the involved definitions and
a short history on this type of results, leading to [22] and the accompanying references, we
refer to [33], Remark 3.1.1, and to the Amer. J. Math. version of [20]). Dimensions here
refer to real dimensions. For any m ∈ Z>0, we set Qm = 1

m
Z ⊂ Q.

Proposition 2. Let S be a naive-compact-2-(dimensional)-analytic subset of an affine
space Rd. Assume that no semi-algebraic curve of Rd is contained in S. For any ε > 0,
there exists a real number c = c(S, ε) > 0 with the following property. For each positive
integer m, the set S ∩Qd

m contains at most cmε points.

Proof : see [20], Lemma 1.

In §3.3, we will give a precise description of the real surfaces S to which Proposition 2 is
to be applied. See the following §4.1 for a more easily recognizable form when G = Gm×E.
Roughly speaking,
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S ∼ logBG(W ) ⊂ (Z⊗ C)⊕ (Z2 ⊗ R) ' R4

is the set of logarithms of the various points s(λ), when λ runs through S(C), but we express
these logarithms in terms of a basis attached to the Z-local system of periods ΠG, i.e. in
Betti terms rather than in the de Rham view-point provided by the Lie algebra, hence the
upper index B above. In this basis, the logarithms of the torsion points s(λ) of order m
are represented by vectors with coordinates in Qm, and so logBG(s(SGm)) ⊂ Q4

m. Thanks to
the “zero estimate” discussed at the end of the present subsection, which compares the
graph S̃ ⊂ S × R4 of logBG ◦ s : S → R4 with its projection S in R4, Proposition 2 then
implies (with a proviso to be explained below for the first conclusion)

- either that for any positive integer m, expG(S̃) ∼ s(S) = W contains at most c mε

points of order m w.r.t the group law of their respective fibers;

- or that S contains a real semi-algebraic curve, where algebraicity refers to the real
affine space R4 associated to the above mentioned basis.

In §§4 and 5-6, we will prove that in all cases considered in Theorems 1 and 2, the surface
S contains no semi-algebraic curve. The first conclusion must then hold true. Combined
with the conclusion of §3.1, this implies that the orders m of the torsion points lying on W
are uniformly bounded, and so, there exists a positive integer N = N(k, S,G, s) such that
W ∩ Gtor ⊂ ∪λ∈S(Qalg)Gλ[N ]. The latter set is the union of the values at all λ ∈ S(Qalg)
of the torsion sections of G/S of order dividing N , whose images form a finite union of
curves in G. As soon as p is not a torsion section, neither is s and W = s(S) intersects
this finite union in a finite number of points. Hence, W ∩Gtor is finite, and this concludes
the proof of Theorems 1 and 2. (NB : as done in [20], this conclusion can be reached in a
faster way via the inequalities m1/6 << [k(λ) : k] << ](SGm) << mε, H(λ) << 1, and the
Northcott property.)

However, two points must be modified for the above discussion to hold.

• We need a uniform determination of the logarithms of the points s(λ), and this re-
quires fixing from the start a (any) simply connected pointed subset (Λ, λ0) of the Riemann
surface San attached to S(C); in particular, our surface

S = SΛ := logB
G,λ0

(s(Λ)),

and the graph S̃Λ ⊂ Λ × R4 of logB
G,λ0
◦ s : Λ → R4 will depend on a choice of Λ.

Furthermore, the surfaces S studied by Proposition 2 must be compact, so, Λ too must be
compact. Consequently, expG(S̃Λ) = s(Λ) ⊂ W (C) is truly smaller than W (C), and the
desired “first conclusion” is reached in a slightly different way : as in [20] (see Lemma 6.2
of AJM version, Lemma 8.2 of Math. Ann.), one first attaches to the height bound C a
finite union ΛC of simply-connected compact pointed sets (Λi, λi) such that for any point
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λ ∈ S(Qalg) of sufficiently large degree with H(λ) ≤ C, a positive proportion (say half, i.e.
independent of λ) of the conjugates of λ over k lies in ΛC

1 . Letting S̃ΛC be the finite union
of the graphs of the maps logB

G,λi
◦ s, we deduce that for any λ ∈ SGm, a similar positive

proportion of the orbit of s(λ) = w under Gal(Qalg/k) lies in expG(S̃ΛC ) = s(ΛC) ⊂ W .
Proposition 2, combined with the subsequent zero estimate, then implies that this orbit
has at most c′mε points, and one can conclude as above (or via the Northcott property on
λ). In what follows, we fix one of the Λi’s, call it Λ and write logBG ◦ s for logB

G,λi
◦ s.

• Proposition 2 provides an upper bound for the image of SGm∩Λ in S ∩Q4
m ⊂ R4 under

the map logBG ◦s : Λ→ R4, while we need an upper bound for SGm∩Λ itself. In other words,
we must show that not too many points λ of SGm can be sent by logBG ◦ s onto the same
point of Q4

m. Clearly, it suffices to show that (the Betti presentation of) the projection

u(λ) := dπ(logG(s(λ))) = logE(π(s(λ))) = logE(p(λ))

of logG(s) under the differential of π : G → E satisfies this separation property. The
gap can now be filled by appealing to the “zero estimate” of [20], Lemma 7.1 of AJM, or
Lemma 9.1 of Math. Ann., as follows. The elliptic Betti notations introduced here will be
repeated and developed in §3.3 and §4.

Let Λ be a compact and simply connected subset of the Riemann surface S(C), which,
without loss of generality, we may assume to be homeomorphic to a closed disk in C. We
recall that given an analytic sheaf F on S(C), a section σ ∈ F(Λ) of F over Λ is by
definition analytic on a neighbourhood of Λ in S(C). Let now E/S be an elliptic scheme
over S, and let ω1(λ), ω2(λ) be the analytic functions on a neighbourhood of Λ in S(C)
expressing its periods relative to a given global differential form of the first kind on E/S.
Fix a determination logE of the corresponding elliptic logarithm on E(Λ). For any analytic
section p ∈ E(Λ), there then exists unique real analytic functions β1, β2 : Λ → R such
that logE(p(λ)) = β1(λ)ω1(λ) + β2(λ)ω2(λ). We call {β1, β2} the Betti coordinates of p,
set logBE (p(λ)) = (β1(λ), β2(λ)) ∈ R2 and (extending a well-known notion for the Legendre
family) say that p is a Picard-Painlevé section of E/Λ if its Betti coordinates β1, β2 are
constant. We then have :

Proposition 3. (Zero estimate). Let E/S and the simply-connected compact subset Λ
be as above, and let p be a regular section of E/S. Assume that p is not a torsion section,
and if E/S is isoconstant, that it is not a constant section. There exists an integer C ′′

1 In the present case, let us first remove from S the finite set consisting of the points of bad reduction
and those where the section is not defined (or any finitely many ones that may cause trouble along the way,
possibly none...). Now remove “small” open disks around each of these points; what remains is a compact
set in S. We want them small enough so that at most half of the conjugates of the relevant λ fall in their
union: this may be achieved because λ has bounded height. In fact, if “many” conjugates fall into a same
small disk, then the corresponding contribution to the height is too big. In turn this follows for instance
on looking at the difference f(λ)− f(λ0) where λ0 is the center of the disk and f is a suitable nonconstant
coordinate on S. Using the coordinate reduces the verification to the case of algebraic numbers (rather
than algebraic points). Having chosen these small enough disks, we cover the said compact set with finitely
many simply connected domains where the logs are locally defined.
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depending only on E/S,Λ and p such that for any Picard-Painlevé section p of E/Λ, the
set

{λ ∈ Λ, logE(p(λ)) = logE(p(λ)})

has at most C ′′ elements.

In other words, if we set u(λ) = logE(p(λ)) = b1(λ)ω1(λ)+b2(λ)ω2(λ), then for any real
numbers β1, β2, the equation u(λ) = β1ω1(λ) + β2ω2(λ) has at most C ′′ solutions λ ∈ Λ.
So, the statement above is just a fancy translation of [20], Amer. JM, p. 12, and follows
from Lemma 7.1 there in exactly the same way if E/S is not isoconstant. The constant
case is even easier. Notice that we need Proposition 3 only for β1, β2 running in Q, i.e. for
torsion Picard-Painlevé sections p, and that the Painlevé equation may bring a new view
point on the computation of the bound C ′′.

In our applications, p is not a torsion section of E/S. And in the isoconstant case,
we have assumed without loss of generality that p is not constant. So, the map logBE ◦ p
separates the points of Λ up to the bounded error C ′′; a fortiori, so does its lift logBG ◦ s,
and the gap between its image S and its graph S̃ is now filled.

3.3 What remains to be done

In view of the previous discussion, the proof of Theorems 1 and 2 is now reduced to defining
the real surface S properly, and to showing that under each of their hypotheses, S contains
no semi-algebraic curve. This is dealt with as follows.

The real surface S

Fix a simply connected and compact subset Λ ∈ S(C), homeomorphic to a closed disk, as
well as a point λ0 in Λ, and a point U0 in Lie(Gλ0

(C)) such that expGλ0
(U0) = s(λ0) ∈

Gλ0
(C). We henceforth denote by λ the general element2 of Λ, and (sometimes) by an

upper index an the analytic objects over the Riemann surface San attached to our schemes
over S.

We first repeat the definition of the real surface S in more precise terms. The group
scheme G/S defines an analytic family Gan of Lie groups over the Riemann surface San.
Similarly, its relative Lie algebra (LieG)/S defines an analytic vector bundle LieGan over

2 A remark may be in order about the meaning of the notation λ. In the first paragraphs, it represented
the generic point of SC, i.e. we set C(S) = C(λ) (notice that, from now on, we are over C, so, dropping
the lower index C, we will write K = C(S)). But it now represents the “general element” of the simply
connected domain Λ ⊂ San, which can have many analytic automorphisms. It is understood that we
here consider only a global λ. Such a λ may require several algebraically dependent parameters to be
expressed. Of course, when Λ is small enough, we can work with a chart t on Λ such that C(λ) is an
algebraic extension of C(t). The results of functional algebraic independence we appeal to do not require
such reduction.
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San, of rank 2. The Z-local system of periods of Gan/Λ is the kernel of the exponential
exact sequence

0 −→ ΠG −→ LieGan expG−→ Gan −→ 0 ,

over San. Its sections over Λ form a Z-module ΠG(Λ) ⊂ LieGan(Λ) of rank 3. Indeed, on
using similar notations for the group schemes E/S and Gm × S, the canonical projection
π : G→ E over S induces at the Lie algebra level an exact sequence

0 −→ LieGan
m −→ LieGan dπ−→ LieEan −→ 0 .

From the compatibility of the exponential morphisms, we deduce an exact sequence of
Z-local systems of periods

0 −→ ΠGm −→ ΠG
dπ−→ ΠE −→ 0 ,

with ΠGm(Λ) and ΠE(Λ) of respective ranks 1 and 2 over Z.

There exists a unique analytic section U := logG,λ0
of Lie(Gan)/Λ such that

U(λ0) = U0 and ∀λ ∈ Λ, expGanλ (U(λ)) = s(λ).

Since Λ is fixed and λ0 plays no role in what follows, we will forget about them and will
just write U = logG,Λ = logG, i.e.

∀λ ∈ Λ, U(λ) = logG(s(λ)).

We call U = logG(s) “the” logarithm of the section s. Its projection p = π(s) ∈ E(S)
admits as logarithm

logE(p) := u = dπ(U) = dπ(logG(s)) = logE(π(s)).

We describe these logarithms in terms of classical Weierstrass functions in §4 for the
(iso)trivial case G = Gm × E, and in Appendix I for the general case. These explicit
expressions are not needed, but will provide the interested reader with a translation of the
algebraic independence results in more classical terms.

Now, we rewrite U in terms of a conveniently chosen basis of the Z-local system of
periods ΠG/Λ of Gan/Λ. We call UB(λ) = logBG(s(λ)) the resulting expression. For this,
we choose a generator $0 = 2πi of ΠGm , and a Z-basis {ω1, ω2} of ΠE(Λ). At each point
λ ∈ Λ, the latter generate over R the C-vector space Lie(Eλ). Consequently (and as
already said before Proposition 3), there exist uniquely defined real analytic functions
b1, b2 : Λ→ R2 such that

∀λ ∈ Λ, u(λ) = b1(λ)ω1(λ) + b2(λ)ω2(λ). (Ru)

We call uB = (b1, b2) : Λ→ R2 the Betti presentation of the logarithm u = logE(p).
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Now, choose at will lifts {$1, $2} of {ω1, ω2} in ΠG(Λ). Then, U − b1$1 − b2$2 lies
in the kernel LieGm(Λ) of dπ, which is generated over C by $0. Therefore, there exist a
unique real analytic function a : Λ→ C = R2 such that

U = a$0 + b1$1 + b2$2.

In conclusion, there exist uniquely defined real-analytic functions a : Λ → C, b1 : Λ →
R, b2 : Λ→ R such that U = logG(s) satisfies the relation :

∀λ ∈ Λ, U(λ) = a(λ)$0(λ) + b1(λ)$1(λ) + b2(λ)$2(λ). (RU)

We call the real analytic map

UB = (a, b1, b2) : Λ→ C× R2 = R4,

the Betti presentation of the logarithm U of logG(s). Its image S = SΛ := UB(Λ) =
logBG(s(Λ)) ⊂ R4 is the real surface to be studied. Since ΠG is the kernel of the exponential
morphism, it is clear that for any λ ∈ SGm, UB(λ) lies in Qm ×Q2

m ⊂ Q4
m ⊂ R4.

Reducing to algebraic independence.

To complete their proofs, we must show that under the hypotheses of Theorems 1 and 2,
the surface S contains no semi-algebraic curve of the ambient affine space R4. This will
be done in two steps, as follows. But before we describe them, we point out that since
logG(s), logE(p), logE(q), ωi, $i, ... are local sections of the globally defined vector bundles
(LieG)/S, (LieE)/S, it makes sense to speak of the minimal extension K(logG(s)), ... of
K = C(λ) they generate in the field of meromorphic functions over a neighbourhood Λ′ of
Λ. A similar remark applies to the field K(a), ... generated by the real analytic functions
a, ... in the fraction field of the ring of real analytic functions over Λ′.

• Step (α). - Let F
(1)
pq = K(ω1, ω2, logE(p), logE(q)) be the field generated over K

by ω1, ω2, logE(p) = u and a logarithm v = logE(q) of the section q ∈ Ê(S) ' E(S)
parametrizing the extension G. We recall that p is not a torsion section, and assume
as usual that if E/S is isoconstant, then p is not constant. We then claim that if S
contains a semi-algebraic curve, then logG(s) is algebraic over F

(1)
pq . In fact, we will only

need a corollary of this result, involving the universal vectorial extensions of E and of G,
where the base field F

(1)
pq is replaced by a differential field Fpq := F

(2)
pq containing F

(1)
pq ,

which, inspired by the theory of one-motives, we can call the field of generalized periods
of {E, p, q}. (In more classical terms, the upper indexes (1) and (2) here stand for elliptic
integrals of the first and second kinds.) In these conditions, and under no assumption on
q, we will prove :

Proposition 4. Assume that p is not torsion and not constant, and that S contains a
semi-algebraic curve. Then, logG(s) is algebraic over the field Fpq of generalized periods of
{E, p, q}.
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• Step (β). - The desired contradiction is then provided by the following Main Lemma,
whose proof is the object of §6 (and §4 for q = 0). This is a statement of “Ax-Lindemann”
type, but with logarithms replacing exponentials, in the style of André’s theorem [1] (see
also [7]) for abelian schemes. For results on semi-abelian surfaces close to this Main Lemma,
see [6], Propositions 4.a, 4.b and Theorem 2. For a broader perspective on algebraic
independence of relative periods, and on the role of the constant part and image of G, see
Ayoub [4], proof of Theorem 2.57, and his recent work on the Kontsevich-Zagier conjecture.

Main Lemma. With S/C, let G/S be an extension by Gm of an elliptic scheme E/S,
parametrized by a section q of Ê/S, and let G0 be the constant part of G. Let further s be
a section of G/S, with projection p = π ◦ s to E/S, and let Fpq be the field of generalized
periods of {E, p, q}.
(A) Assume that logG(s) is algebraic over Fpq. Then, there exists a constant section
s0 ∈ G0(C) such that

i) either s− s0 is a Ribet section;
ii) or s− s0 factors through a strict subgroup scheme of G/S.

(B) More precisely, logG(s) is algebraic over Fpq if and only if there exists a constant
section s0 ∈ G0(C) such that s − s0 is a Ribet section, or a torsion section, or factors
through a strict subgroup scheme of G/S projecting onto E/S.

The analogy with the Main Theorem is clear, except perhaps for the last conclusion
of Part (B) of the Main Lemma (which forces an isotrivial G ' Gm × E). This is due to
the fact that even in this isotrivial case, the roles of Gm and E are here not symmetric,
because of the occurence of p in the base fields F

(1)
pq , Fpq. On the contrary (“torsion values

for a single point” on a group scheme of relative dimension 1 over a curve), they played
similar roles for relative Manin-Mumford.

As was pointed out in §1.3, these steps (α), (β) imply the desired conclusion only up
to translation by a constant section. We now show how to replace constant by torsion
sections, thereby concluding the proof of the Main Theorem. This reduction is achieved
through the case-by-case description of the constant part G0 of G given in Remark 1, as
follows.

Proposition 4 + Main Lemma (A) ⇒ Theorems 1 and 2.

Let us first deal with Theorem 1, where G = Gm×E, with constant part G0 = Gm, resp.
G0× S = G, if E is not, resp. is, isoconstant. Assume for a contradiction that Hypothesis
(o) holds, but that SG∞ is infinite. Then, the real surface S must contain an algebraic
curve, and since G admits no Ribet section, Proposition 4, combined with Part (A) of
the Main Lemma, implies that a multiple by a non-zero integer of the section s factors
through a translate of H = Gm or of H = E by a constant (non-necessarily torsion) section
s0 ∈ G0(C). But the projection p of s to E is by assumption not torsion, and we know
that it cannot be constant. So, H must be equal to E, and s projects on the Gm-factor of
G to a constant point δ0. Since s(S) = W contains torsion points, δ0 must be a root of
unity, and s factors through a torsion translate of E, contradicting (o).
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In the direction of Theorem 2, we now assume that G is a non-isotrivial extension,
so H = Gm/S is the only connected strict subgroup scheme of G/S, and that one of its
hypotheses (i), (ii), (iii) holds, but SG∞ is infinite. The proof above easily adapts to the
case when G ' G0 × S is isoconstant, where again, G admits no Ribet section (in the
sense of §1). Now, assume that G is not isoconstant, so G0 = Gm. If G is not semi-
constant, there still are no Ribet sections and Proposition 4, combined with Part (A) of
the Main Lemma, implies that a multiple of s factors through a translate of H = Gm by
a constant section s0 ∈ Gm(C), so, since SG∞ is not empty, s factors through a torsion
translate of Gm, and p = π(s) is torsion, contradicting the general hypothesis of Theorem
2. So, G must be semi-constant, E = E0 × S must be isoconstant (concluding Case (i)),
and the argument just described shows that s must satisfy Conclusion (i) of the Main
Lemma, for some s0 ∈ Gm(C). The mere existence of a Ribet section sR := s − s0 of
G/S implies that p = π(s) = π(sR) and q are antisymmetrically related (concluding Case
(ii)). Moreover, by Theorem 3.i, sR(λ) is a torsion point on Gλ whenever s(λ) is so, since
π(sR(λ)) = π(s(λ)) = p(λ) is then a torsion point of E0. There are infinitely many such λ’s,
so at least one. Consequently the constant section s0 ∈ Gm(C) is torsion, and (a multiple
of) s is a Ribet section of G/S. This concludes Case (iii), and Theorem 2 is established.

Part (B) of the Main Lemma.

Just as for the Main Theorem (cf. Theorem 3), let us right now deal with the “if” side
of Part B of the Main Lemma.

The periods ΠG of G are defined over the subfield Fq of Fpq (see §5.1, or the explicit
formula given in Appendix I, §7.1, or the footnote 3 below), so, clearly, logG(s) lies in Fpq
if s − s0 is a torsion section. When s − s0 := sR is a Ribet section, an explicit formula
for logG(sR) in terms of u and ζ(u) is given in Appendix I, Remark 4, from which the
rationality of logG(sR) over Fpq immediately follows. In fact, we will prove this in a style
closer to Manin-Mumford issues in Lemma 3 of §6. The last case considered in Part B forces
G to be an isotrivial extension. In the notations of §4, we then have s−s0 = (δ, p) ∈ G(S),
with δ a root of unity, so logG(s) is rational over the field Fp.

As for the “only if” side of Part (B) not covered by Part (A), we must show that if
(a multiple by a positive integer of) s − s0 is a non constant section δ of Gm(S), then
` := logGm(δ) is transcendental over Fpq. But then, p − π(s0) is a torsion section of E/S,
so Fpq = Fq, and the statement follows from Lemma 1 of §4, with q playing the role of p.

In conclusion, we have reduced the proof of the Main Theorem (more specifically, of

3 More intrinsically, concerning the field of definition of ΠG : the Cartier dual of the one-motive
[0→ G] is the one-motive [Z→ Ê] attached to q ∈ Ê(S), so their fields of (generalized) periods coincide,

and K(ΠG) = F
(1)
G ⊂ F

(2)
G = Fq (in the notations of the later §5.1). Concerning logG(sR) : in the

notations of §1.2, it suffices to consider the generic Ribet section sR of the semi-abelian scheme P0, viewed
as an extension G0 of E0 by Gm, over the base Ê0. As mentioned there, its image WR is a special curve
of the mixed Shimura variety P0. Therefore, the inverse image of WR in the uniformizing space of P0

is an algebraic curve. In the notations of §6, the statement amounts to the vanishing of τsR , and could
alternatively be deduced from the self-duality of the one-motive [MsR : Z → G] attached to the Ribet
section, cf. [10].
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Theorems 1 and 2) to defining the field Fpq, proving Proposition 4, and proving Part (A)
of the Main Lemma.

4 A warm up : the case of direct products

In this Section, we perform the above-mentioned tasks under the assumption that G is
an isotrivial extension, thereby establishing Theorem 1, as stated in §2. Without loss
of generality, we assume that G = Gm × E, i.e. q = 0 (so, the field Fpq = Fp0 will
coincide with Fp). Of course, if E/S is isoconstant, say E = E0×S, then G = G0×S with
G0 = Gm×E0/Qalg, and Theorem 1 follows from Hindry’s theorem [17]; in this isoconstant
case, the strategy we are here following reduces to that of [26].

As announced in §3.2, we first rewrite in concrete terms the logarithms U, u and their
Betti presentations, under no assumption on the elliptic scheme E/S nor on its section
p. We fix global differential forms4 of the first and second kind ω, η for E/S, and for any
λ ∈ Λ, we let

℘λ , ζλ , σλ

be the usual Weierstrass functions attached to the elliptic curve Eλ/C and its differential
forms ωλ, ηλ. We also fix an elliptic logarithm of the point p(λ0), and extend it to an analytic
function u(λ) = logE(p(λ)) = Arg℘λ(p(λ)) on Λ. Similarly, we fix a basis of periods and
quasi-periods for Eλ0

, and extend them to analytic functions ω1(λ), ω2(λ), η1(λ), η2(λ) (of
hypergeometric type if E/S is the Legendre curve). There then exist uniquely defined
real-analytic functions b1, b2 with values in R such that

∀λ ∈ Λ, u(λ) = b1(λ)ω1(λ) + b2(λ)ω2(λ), (Ru)

and the Betti presentation of logE(p(λ) is given by

uB(λ) := logBE (p(λ)) = (b1(λ), b2(λ)) ∈ R2.

We now go to G = Gm × E over Λ. The section s : Λ → G has two components
(δ, p), where δ : S → Gm/S is expressed by a rational function on S. We fix a classical

logarithm of δ(λ0) and extend it to an analytic function `(λ) := logGm(δ(λ)) on Λ. With
these notations, the section logG ◦ s of (LieGan)/Λ is represented by the analytic map

Λ 3 λ 7→ logG(s(λ)) := U(λ) =

(
`(λ)
u(λ)

)
∈ C2 = (LieG)λ.

The Z-local system of periods ΠG admits the basis

$0(λ) =

(
2πi
0

)
, $1(λ) =

(
0

ω1(λ)

)
, $2(λ) =

(
0

ω2(λ)

)
,

4 When the modular invariant j(λ) is constant, i.e. when E/S is isoconstant, we tacitly assume that
E = E0 × S, with E0/C, and that the chosen differential of first and second kind ω, η are constant (i.e.
come from E0/C). In particular, the periods ω1, ω2 and quasi-periods η1, η2 are constant. The Weierstrass
functions are those of E0, and we drop the index λ from their notation.
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and the Betti presentation of logG(s(λ)) is given by

Λ 3 λ 7→ UB(λ) := logBG(s(λ)) = (a(λ), b1(λ), b2(λ)) ∈ C× R2 = R4,

where a, b1, b2 are the unique real analytic functions on Λ satisfying

∀λ ∈ Λ,

(
`(λ)
u(λ)

)
= a(λ)

(
2πi
0

)
+ b1(λ)

(
0

ω1(λ)

)
+ b2(λ)

(
0

ω2(λ)

)
. (R`,u)

We then set S = UB(Λ) ⊂ R4 as usual.

Since q = 0, the tower of function field extensions of K = C(λ) to be considered take
here the following simple forms :

F (1) = K(ω1, ω2) , F
(1)
p0 := F

(1)
p = F (1)(u) = K(ω1, ω2, u),

while their differential extensions

F (2) = F (1)(η1, η2) , F
(2)
p0 := F

(2)
p = F

(1)
p (ζλ(u)) = K(ω1, ω2, η1, η2, u, ζλ(u))

involve the Weierstrass ζ function, and can be rewritten as

F := F (2) = K(ω1, ω2, η1, η2) , Fp := F
(2)
p = F (u, ζλ(u)).

We point out that since it contains the field of definition F of the periods of ω and η, the
field Fp depends only on the section p, not on the choice of its logarithm u, so, the notation
is justified. Furthermore, let α ∈ O = End(E) be a non-zero endomorphism of E, and let
p0 ∈ E0(C) be a constant section of E. Then, the section p′ = αp+ p0 yields the same field
Fp′ = Fp as p. In particular, Fp = F if p is a torsion or a constant section of E/S.

Step (α). - Proof of Proposition 4 when q = 0.

Suppose for a contradiction that S contains a real semi-algebraic curve C, and denote by
Γ ⊂ Λ the inverse image of C in Λ under the map UB (all we will need is that Γ has an
accumulation point inside Λ , but it is in fact a real curve). We are going to study the
restrictions to Γ of the functions

a, b1, b2, u, `, ω1, ω2.

Recall that all these are functions of λ ∈ Λ. In view of the defining relation (R`,u), the
transcendence degree of the functions u, ` over the field C(ω1, ω2, a, b1, b2) is at most 0.
When restricted to Γ, the latter field has transcendence degree ≤ 1 over C(ω1, ω2), since
UB(Γ) = (a, b1, b2)(Γ) is the algebraic curve C. So, the restrictions to Γ of the two functions
u, ` generate over C(ω1|Γ, ω2|Γ) a field of transcendence degree ≤ 1+0 = 1, and are therefore
algebraically dependent over C(ω1|Γ, ω2|Γ). Since Γ is a real curve of the complex domain
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Λ, the complex analytic functions u, ` are still algebraically dependent over the field of
Λ-meromorphic functions C(ω1, ω2), i.e.

tr.deg.C(ω1(λ),ω2(λ)) C
(
ω1(λ), ω2(λ), u(λ), `(λ)

)
≤ 1.

Now, assume as in Proposition 4 that p has infinite order, and if E/S is isotrivial, that p
is not constant. Then, André’s Theorem 3 in [1] (see also [5], Thm. 5) implies that u(λ)
is transcendental over the field F (1) = K

(
ω1(λ), ω2(λ)). The previous inequality therefore

says that the function `(λ) is algebraic over the field F
(1)
p = K

(
ω1(λ), ω2(λ), u(λ)

)
, or

equivalently, that the field of definition of logG(s(λ)) = (`(λ), u(λ)) is algebraic over F
(1)
p0 ,

hence also over Fp0 = F
(2)
p0 , and Proposition 4 is proved when q = 0.

Step (β). - Proof of Main Lemma (A) when q = 0

Before giving this proof, let us point out that the advantage of the fields F = F (2), Fpq =

F
(2)
pq over their first kind analogues is that they are closed under the derivation ′ = ∂/∂λ.

Moreover, by Picard-Fuchs theory, they are Picard-Vessiot (i.e. differential Galois) exten-
sions of K. Since `(λ) satisfies a K-rational DE of order 1, K(`) and Fp(`) = Fp(logG(s))
too are Picard-Vessiot extension of K.

Lemma 1. Let Λ be a ball in C, let {℘λ, λ ∈ Λ} be a family of Weierstrass functions, with
invariants g2, g3 algebraic over C(λ) and periods ω1, ω2, and let u be an analytic function
on Λ such that u, ω1, ω2 are linearly independent over Q. If j(λ) is constant, we assume
that g2, g3 too are constant, and that u is not constant. Let further ` be a non-constant
analytic function on Λ. Assume that ℘λ(u(λ)) and e`(λ) := δ(λ) are algebraic functions
of λ, and consider the tower of differential fields K ⊂ F ⊂ Fp, where K = C(λ), F =
K(ω1, ω2, η1, η2), Fp = F (u, ζλ(u)). Then,

tr.deg.FFp(`(λ)
)

= 3.

In particular, `(λ) is transcendental over Fp, i.e. Part (A) of the Main Lemma holds true
when q = 0.

This last statement is indeed equivalent to Part (A) of the Main Lemma when G '
Gm × E is a trivial extension (or more generally, an isotrivial one), with constant part
G0 = Gm, resp. G0 × S = G, if E is not, resp. is, isoconstant. Indeed, with s =
expG(`, u) = (δ, p) as above, we then have Fp = Fpq, and Fp(`) = Fp(logG(s)). Lemma
1 then says that if logG(s) is algebraic over Fpq, then either p is a torsion point (so, a
multiple of s factors through Gm), or E is isoconstant and p = p0 is constant (so, the
constant section s0 = (1, p0) ∈ G0(C) satisfies s − s0 ∈ Gm(S)), or δ = δ0 is constant (so,
the constant section s0 = (δ0, 0) ∈ G0(C) satisfies s−s0 ∈ E(S)). In all cases, we therefore
derive Conclusion (ii) of the Main Lemma.

Proof (of Lemma 1): this is essentially due to André, cf. [1], but not fully stated there (nor
in [5]). It is proven in full generality in [7], but one must look at the formula on top of p.
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2786 to see that K can be replaced by F in Theorem L . So, it is worth giving a direct
proof.

We first treat the case when E/S is not isoconsant. By Picard-Lefchetz, the Picard-
Vessiot extension F = K(ω1, ω2, η1, η2) of K = C(λ) has Galois group SL2. By [5], the
Galois group of Fp = F (u(λ), ζλ(u(λ)) over F is a vector group V ' C2 of dimension 2
(i.e. these two functions are algebraically independent over F ), while the Galois group of
K(`(λ)) over K = C(λ) is C. Since C is not a quotient of SL2, the Galois group of F (`(λ))
over F is again C. Now, SL2 acts on the former V = C2 by its standard representation, and
on the latter C via the trivial representation, so the Galois group of F (u(λ), ζλ(u(λ), `(λ))
over F is a subrepresentation W of SL2 in C2 ⊕C projecting onto both factors. Since the
standard and the trivial representations are irreducible and non isomorphic, we must have
W = C2 ⊕ C. Therefore,

tr.deg.F F (u(λ), ζλ(u(λ)), `(λ)) = dimW = 3.

We now turn to the case of an isoconstant E = E0 × S. The field of periods F then
reduces to K, and SL2 disappears. But since the ambient group G = Gm × E is now
isoconstant, we can appeal to Ax’s theorem on the functional version of the Schanuel
conjecture. More precisely, since the result we stated involves the ζ-function, we appeal
to its complement on vectorial extensions, see [12], Thm. 2.(iii), or more generally, [6],
Proposition 1.b, which implies that tr.degKK(u, ζ(u), `) = 3 as soon as u and ` are not
constant. (Actually, André’s method still applies to the isoconstant case, but requires a
deeper argument, involving Mumford-Tate groups : cf. [1], Theorem 1, and [7], §8.2).

Remark 2. - (i) Concerning the proof of Theorem 1 : as pointed out by the fourth author
in [33], p. 79, Comment (v), since we are here dealing with a direct product, the torsion
points yield torsion points on Gm, which lie on the unit circle, a real-curve. So, in the
argument of §3.2, the dimension decreases by 1 a priori, and Bombieri-Pila (real-curves)
rather than Pila (real-surfaces) as in Proposition 2 would suffice.

(ii) As shown by the proof of Proposition 4 (q = 0) above, it would have sufficed
to prove that the (non constant) logarithm ` is transcendental over the field C(ω1, ω2, u).

Adjoining λ leads to F
(1)
p as base field, and as already said, differential algebra then forces

to consider F
(2)
p . For a broader perspective on these extensions of the base field, see §5.3

below.

(iii) For the last statement of Lemma 1 to hold, the only necessary hypothesis is that
` be non-constant. Indeed, if p is torsion or constant, then Fp = F , and u plays no role.
But we have preferred to present Lemma 1 and its proof in this way, as an introduction to
the general proofs of §5 and §6.

(iv) Conversely, let q be any (non-necessarily torsion or constant) section of E/S, and
set v = logE(q), Fq = F (2)(v, ζλ(v)) and Fpq = Fp.Fq, as will be done in §5. The same proof
as above shows that

∀p, q ∈ E(S),∀δ ∈ Gm(S), δ /∈ Gm(C)), ` := logGm(δ) is transcendental over Fpq.
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Indeed, the only new case is when p and q are linealy independent over End(E) modulo
the constant part of E/S. From the same references and argument as above, replacing
V = C2 by V ⊕ V , we deduce that the transcendence degree of Fpq(`) over F is equal to
5 , yielding the desired conclusion on the transcendency of `.

A characterization of Ribet sections

We close this section on isotrivial extensions by a corollary to Theorem 1, which plays a
useful role in checking the compatibility of the various definitions of Ribet sections : see
for instance the equalities βR = βJ in [8].

Corollary 3. Let G/S be an extension of E/S by Gm, and let p be a section of E/S
of infinite order and not constant if E/S is isoconstant (equivalently, by Proposition 1.iv,
such that the set SE∞ attached to p is infinite). Let further s† and s be two sections of G/S
such that π ◦ s† = π ◦ s = p. Assume that for all but finitely many (resp. for infinitely
many) values of λ in SE∞, the point s†(λ) (resp. s(λ)) lies in Gtor, i.e. that s† (resp. s)
“lifts almost all (resp. infinitely many) torsion values of p to torsion points of G”. Then,
there exists a torsion section δ0 ∈ Gm(C) (i.e. a root of unity) such that s = s† + δ0.

Proof : Let δ0 := s − s† ∈ Gm(S). We know that s† lifts almost all torsion points
p(λ) ∈ Etor to points in Gtor. If s does so for infinitely many of them, then, so does the
section s1 := (δ0, p) of the direct product G1 = Gm × E/S. This contradicts Theorem 1,
unless the projection δ0(S) of s1(S) to Gm is reduced to a root of unity.

It is interesting to note that in this way, Theorem 1 on the trivial extension G1 has an
impact on extensions G which need not be isotrivial. For instance, if G is semi-constant and
E0 has CM, Corollary 3, applied to the Ribet section s† = sR, shows that up to isogenies,
sR is the only section which lifts infinitely many torsion values of π(sR) to torsion points of
G. We also point out that since the elliptic scheme E ' E0 × S is here constant, Hindry’s
theorem on the constant semi-abelian variety Gm × E0 suffices to derive this conclusion.

On the other hand, assume that G is an isotrivial extension. Then, there exists a
subgroup scheme E†/S of G/S such that the restriction π† of π : G → E to E† is an
S-isogeny. Any section s† of G/S a non zero multiple of which factors through E† then
satisfies the lifting property of the corollary, since p(λ) := π† ◦ s†(λ) is a torsion point of
Eλ if and only if s†(λ) is a torsion point of Gλ . By Corollary 3, such sections s† are, up
to a root of unity, the only section s above p = π ◦ s† for which s(S) ∩Gtor is infinite. Of
course, this is (after an isogeny) just a rephrasing of Theorem 1, but it shows the analogy
between these “obvious” sections and the Ribet sections. This is a reflection of the list of
special curves of the mixed Shimura variety described in §1.2.
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5 The general case

5.1 Fields of periods and the Main Lemma

Apart from the statement of Lemma 2 below, we henceforth make no assumption on the ex-
tension G of E/S by Gm. So the section q ∈ Ê(S) which parametrizes G is arbitrary. Con-
cerning the elliptic scheme E/S, we recall the notations of §4, and in particular, the fields
of periods F (1) = K(ω1, ω2) of E and its differential extension F := F (2) = F (1)(η1, η2). We
identify Ê and E in the usual fashion, and denote by v = logE(q) a logarithm of the section

q over Λ. We recall that the field Fq := F
(2)
q = F (2)(v, ζλ(v)) depends only on q, and coin-

cides with F (2) = F when q is a torsion section, i.e. when G is isotrivial. We will also use
the notations of §3.3 on the local system of periods ΠG = Z$0⊕Z$1⊕Z$2 ⊂ LieGan(Λ)
of Gan/Λ.

Consider the extension F
(1)
G = K($0, $1, $2) = K($1, $2) of K = C(λ) generated

by the elements of ΠG. Since ΠG projects onto ΠE under dπ, whose kernel has relative
dimension 1, this field is an extension of F (1) = K(ω1, ω2) of transcendence degree ≤ 2. So,

the field F
(2)
G generated by ΠG over F := F (2) has transcendence degree ≤ 2. In fact, the

duality argument mentioned in Footnote (3), or more explicitly, the computation given in
Appendix I, shows that

F
(2)
G = F (2)(v, ζλ(v)) := Fq,

i.e F
(2)
G coincides with the differential extension Fq of F (2) = F attached to q. So, F

(2)
G is

in fact a Picard-Vessiot extension of K.

A more intrinsic way to describe these “fields of the second kind” is to introduce the
universal vectorial extension Ẽ/S of E/S, cf. [11]. This is an S-extension of E/S
by the additive group Ga, whose local system of periods ΠẼ generates the field F (2). The
universal vectorial extension G̃/S of G/S is the fiber product G×E Ẽ, and its local system

of periods ΠG̃ generates the field F
(2)
G . Now, for both Ẽ and G̃ (and contrary to E and G),

these local systems generate the spaces of horizontal vectors of connections ∂LieẼ, ∂LieG̃ on

LieẼ/S, LieG̃/S. This explains why the fields K(ΠẼ) = F (2) = F and K(ΠG̃) = F
(2)
G = Fq

are Picard-Vessiot extensions of K.

Let now s be a section of G/S, and let U = logG(s) ∈ LieGan(Λ) be a logarithm of
s over Λ. As usual, set p = π(s) ∈ E(S), u = logE(p) = dπ(U) ∈ LieEan(Λ). Since
Ker(dπ) has relative dimension 1, the field generated over K by logG(s) is an extension
of K(logE(p)) of transcendence degree ≤ 1, so logG(s) has transcendence degree ≤ 1 over
Fp = F (u, ζλ(u)). Finally, set

Fpq := Fp.Fq , L = Ls := Fpq(logG(s)).

The field Fpq = F
(2)
pq is the field of generalized periods of {E, p, q} promised in §3.3. Since

it contains F
(2)
G , the field L = Ls depends only on s, not on the choice of its logarithm
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U = logG(s), and is an extension of Fpq, of transcendence degree ≤ 1. In fact, the explicit
formulae of Appendix I show that for q 6= 0 and p 6= 0,−q :

Ls = Fpq
(
`s − gλ(u, v)

)
, where gλ(u, v) = logGm

σλ(v + u)

σλ(v)σλ(u)

is a Green function attached to the sections {p, q} of E/S, and `s = logGm(δs) for some
rational function δs ∈ K∗ attached to the section s of G/S. This formula implies that L is
a differential field, but L is even a Picard-Vessiot extension of K. One way to check this
is to relate logG(s) to an integral of a differential of the 3rd kind on E, with integer, hence
constant residues, and to differentiate under the integral sign. Another way consists in
lifting s to a section s̃ of G̃/S, projecting to p̃ ∈ Ẽ(S). Then, for any choices ũ = logẼ(p̃)
and Ũ = logG̃(s̃) of logarithms of p̃ and s̃, the field F (2)(ũ) = F (u, ζλ(u)) = Fp is contained
in Fq(Ũ), which can therefore be written as Fpq(Ũ), and the latter field Fpq(Ũ) coincides
with Fpq(U) = L, since Ũ lifts U and ũ in the fiber product LieG̃ = LieG ×LieE LieẼ.
Now, in the notations of [11], [7], Ũ is a solution of the inhomogenous linear system
∂LieG̃(Ũ) = ∂`nG̃(s̃), which, on the one hand, is defined over K, and on the other hand,
admits Fq(Ũ) as field of solutions. So, L = Fq(Ũ) is indeed a Picard-Vessiot extension of
K. By the same argument, applied to the differential equation ∂LieẼ(ũ) = ∂`nẼ(p̃), we see
anew that Fp is a Picard-Vessiot extension of K. Notice, on the other hand, that Fq(U) is
in general not a differential extension of Fq (it contains u, but not ζλ(u)).

The following diagram summarizes these notations (and proposes other natural ones...) :

L
↑
Fpq

↗ ↖
Fq Fp
↖ ↗

F
↑
K

L = Fpq(logG(s)) = FG̃(logG̃(s̃)) = Fpq
(
`s − g(u, v)

)
Fpq = Fp.Fq = F (u, ζ(u), v, ζ(v))

Fq = F
(2)
G := FG̃ = FẼ(logẼ(q̃)) Fp = FẼ(logẼ(p̃))

F = F (2) := FẼ = K(ω1, ω2, η1, η2)

K = C(λ)

All the notations of the Main Lemma have now been specified, and we can restate its
Part (A) in the non-isotrivial case, as follows :

Lemma 2. (= Main Lemma for q non-torsion) With S/C, let G/S be a non isotrivial
extension by Gm of an elliptic scheme E/S, parametrized by a section q of Ê/S, and let
G0 be the constant part of G. Let further s be a section of G/S, with projection p = π ◦ s
to E/S, and let Fpq = Fp.Fq ⊃ F be the field of generalized periods of {E, p, q}. Assume
that logG(s) is algebraic over Fpq. Then, there exists a constant section s0 ∈ G0(C) such
that

i) either s− s0 is a Ribet section;
ii) or s− s0 is a torsion section.
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In other words, if s is not a constant translate of a Ribet or of a torsion section of G/S,
then gλ(u, v)− `s is transcendental over Fpq.

Conclusion (ii) of Lemma 2 appears to be stronger than Conclusion (ii) of Part (A) of
the Main Lemma, but is in fact equivalent to it when G is not isotrivial. Indeed, in this
case, Gm/S is the only connected strict subgroup scheme of G. Now, if a multiple by a
non-zero integer N of the section s− s0 factors through Gm, i.e. is of the form δ for some
section δ ∈ Gm(S), then, p = π(s) is a torsion or a constant section of E/S, so Fpq = Fq,
and Fpq(logG(s)) = Fq(`), where ` = logGm(δ). By assumption, ` is then algebraic over Fq,
and Lemma 1 of §4 implies that δ = δ0 ∈ Gm(C) is a constant section. Considering the
constant section s′0 = s0 − 1

N
δ0 of G/S, we derive that s− s′0 is a torsion section, i.e. that

Conclusion (ii) of Lemma 2 is fulfilled.

5.2 Reducing the Main Theorem to the Main Lemma

In view of §4, we could now restrict to the case of a non isotrivial extension G, prove
Proposition 4 in this case, and finally prove Lemma 2, thereby concluding the proof of
Theorem 2. However, as announced above, we will remain in the general case, and make
no assumption on q.

We now perform Step (α), i.e. prove Proposition 4 in the general case, extending the
pattern of proof of §4. We recall the notations of Proposition 4, including the fundamental
assumption that p = π(s) is neither a torsion nor a constant section of E/S. By Lemma
1 , this condition implies that Fp has transcendence degree 2 over F , hence that u(λ) =
logE(p(λ)) is transcendental over the field F .

Consider the following tower of fields of functions on Λ, where the lower left (resp.
upper right) ones are generated by complex (resp. real) analytic functions. The inclusions
which the NE-arrows represent come from the definition of a, b1, b2 in terms of logE(p(λ)) =
u(λ), logG(s(λ)) = U(λ), cf. Relations (Ru), (RU) of §3.3; the inclusions of the NW-arrows
on the left come from the definition of the fields of periods F, Fpq; those of the NW-arrows
on the right are obvious.

Fpq(a, b1, b2) (RU) : logGs = a$0 + b1$1 + b2$2

↗ ↖

Fpq(logG(s)) Fpq(b1, b2)

↖ ↗ ↖
Fpq F (b1, b2)

↖ ↗
F (logE(p)) (Ru) : u := logEp = b1ω1 + b2ω2

↑
F

.
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Now, assume for a contradiction that the real surface S contains a semi-algebraic curve
C. As in §4, consider the real curve Γ = (UB)−1(C) ⊂ Λ ⊂ S(C), and denote by a
lower index Γ the restrictions to Γ of the various functions of λ appearing above; similar
notation F|Γ, Fpq|Γ, etc, for the fields they generate. For instance, since (a|Γ, b1|Γ, b2|Γ)
parametrize the algebraic curve C, these three functions generate a field of transcendence
degree 1 over R, and tr.deg.F|ΓF|Γ(b1|Γ, b2|Γ) ≤ 1. But by the result recalled above and the
principle of isolated zeroes, u|Γ is transcendental over F|Γ. Therefore, the restriction to
Γ of the field F (b1, b2) is an algebraic extension of the restriction to Γ of the field F (u).
We may abbreviate this property by saying that F (u) and F (b1, b2) are essentially equal
over Γ. Going up north-west in the tower, we deduce that the fields Fpq and Fpq(b1, b2) are
essentially equal over Γ.

Notice that b1|Γ and b2|Γ are not both constant since F|Γ(b1|Γ, b2|Γ) :=
(
F (b1, b2)

)
|Γ ⊃(

F (u)
)
|Γ is a transcendental extension of F|Γ. So, a|Γ must be algebraic over R(b1|Γ, b2|Γ).

Therefore,
(
Fpq(a, b1, b2)

)
|Γ is an algebraic extension of

(
Fpq(b1, b2)

)
|Γ, hence of the essen-

tially equal field
(
Fpq
)
|Γ , and we deduce that the intermediate field

(
Fpq(logG(s))

)
|Γ is

algebraic over
(
Fpq
)
|Γ. But logG(s(λ)) = U(λ) is a complex analytic map, so, by iso-

lated zeroes, Fpq(logG(s(λ)) must also be algebraic over Fpq. This concludes the proof of
Proposition 4.

5.3 The role of K-largeness

The change of base field from K to Fpq can be viewed as the “logarithmic” equivalent of

the passage from K to the field K]
G generated by the Manin kernel G] := Ker(∂`nG)

of an algebraic D-group G/K, which one encounters in the study of the exponentials of
algebraic sections of Lie(G)/S, as in [11]. A Manin kernel has in fact already appeared in
the present paper at the level of the D-group Ẽ : in this case, the group of Kalg-points of
Ẽ] projects onto Etor ⊕E0(C), and the recurrent hypothesis made on the section p (that it
be neither torsion nor constant) exactly means that none of its lifts p̃ to Ẽ(S) lies in Ẽ].

For elliptic curves, the field of definition K]

Ẽ
of Ẽ] is always algebraic over K, and one

says that the D-group Ẽ is K-large. This is the hypothesis required on G for the Galois
theoretic approach to the proof of the relative Lindemann-Weierstrass theorem of [11], §6.
But the third author has checked that it can be extended to non K-large groups (those
with K]

G transcendental over K), yielding some new cases of the following conjecture. See
[24] - and [7], §8.1 and §4.3 of S. & C. in the abelian case.

Conjecture : Let G be an almost semi-abelian algebraic D-group over K, let a ∈ LieG(K),
and let y = expG(

∫
a) ∈ G(Kdiff ) be a solution of the equation ∂`nG(y) = a. Then,

tr.deg.(K]
G(y)/K]

G) is the smallest among dimensions of connected algebraic D-groups H
of G defined over K such that a ∈ LieH + ∂`nG(G(K)), equivalently such that y ∈
H + G(K) + G]. Moreover, H](Kdiff ) is the Galois group of K]

G(y) over K]
G.
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By
∫
a, we here mean any x ∈ LieG(Kdiff ) such that ∂LieGx = a. When x lies in

LieG(K), this leads to results of “Ax-Lindemann” type (as used in [26], [24]), whereas
at least in the non-isoconstant case, the transcendence results required by the present
strategy (i.e. that of [20]) concern the equation ∂LieGx = b, with b = ∂`nG(y) for some
y ∈ G(K). Notice that when G is the universal vectorial extension G̃ of our semi-abelian
scheme G = Gq, the analogous field K]

LieG is precisely the field of periods Fq = FG̃ of
G̃; see [7], §2 of S & C, for a justification of this analogy, and Remark 3.ii below for the
adjunction of Fp in the base field.

More generally, given (x, y) ∈ (LieG×G), analytic over a ball Λ ⊂ S(C) and linked by
the relation ∂`nG(y) = ∂LieGx (i.e. essentially y = expG(x)), one may wonder which exten-
sion of the Ax-Schanuel theorem holds for the transcendence degree over K]

LieG.K
]
G of the

point (x, y). The case when x is algebraic over K]
LieG includes the study of Picard-Painlevé

sections; in this direction, see [15], Lemma 3.4. The case when x has transcendence degree
≤ 1 over K]

LieG would be of particular interest, as it occurs when the Betti coordinates
of x parametrize an algebraic curve, and this may pull the present strategy back into the
“exponential” frame-work of Ax-Lindemann-Weierstrass.

Remark 3.- i) Just as in §4, all we need to know for relative Manin-Mumford statements
is the transcendence degree of logG ◦ s over the field of generalized periods Fpq of {E, p, q}.
More clearly put, the transcendence degree (i.e. the differential Galois group) of Fpq over
K plays no role. Of course, Gal(Fpq/K) will come as a help during the proof of the Main
Lemma, in parallel with the role of SL2 in §4. But in the notations of the diagram of §6,
we must merely compute Gal(L/Fp,q) = Im(τs) ⊂ C, and show that under the hypotheses
of the Main Lemma, τs vanishes only if one of its conclusions (i), (ii) is satisfied.

ii) Adjoining the field Fp to the base field Fq comes in naturally, since the Picard-
Vessiot extension Fq(Ũ) of K automatically contains it. But another advantage of the
compositum Fpq is that the roles of p and q become symmetric in the statement of the
Main Lemma. The explicit formula for L given by the Green function makes this apparent.
More intrisically, the field Ls = Fpq(logG(s)) is the field of periods of the smooth one-motive
M = [Ms : Z → G] over S, in the sense of [13], attached to the section s ∈ G(S), with
p = π(s) and q ∈ Ê(S) parametrizing the extension G. By biduality, p parametrizes an
extension G′ of Ê by Gm, and s may be viewed as a section s′ of G′ above the section q
of Ê(S). The Cartier dual of M is the one-motive M ′ = [M ′

s′ : Z → G′] attached to this
section s′, and its field of periods FM ′ = L′s′ = Fqp(logG′(s′)) coincides with FM , since they
are the Picard-Vessiot extensions of two adjoint differential systems. So, although logG and
logG′ have no direct relations, the fields which logG(s) and logG′(s′) generate over Fpq are
the same. Similarly, the structures of G and G′ usually differ a lot, but the conclusions (i)
and (ii) of the Main Lemma turn out to be invariant under this duality. See Case (SC2)
of §6 for a concrete implementation of this remark.

iii) The above symmetry is best expressed in terms of the Poincaré bi-extension P , resp.
P ′, of E ×S Ê, resp. Ê ×S E, by Gm. As recalled in the Introduction (cf. [13]), a section
s of G = Gq above p corresponds to a trivialization of the Gm-torsor (p, q)∗P ' (q, p)∗P ′.

29



Then, the inverse image ς of this trivialization under the uniformizing map

C3 × S̃ → Pan

of P generates L over Fpq (here, S̃ denotes the universal cover of San, for instance the
Poincaré half-plane when S = X is a modular curve). This view-point turns the Main
Lemma into a statement about the transcendency of ς over Fpq, and explain why the
various types of special curves of the mixed Shimura variety P/X, as encountered in §1.2,
occur in its conclusion.

iv) (Autocritique on differential extensions).- It would be interesting to pursue the study
of this uniformizing map further, as it may lead to a simplification of the present proof
of the Main Theorem, where the appeal to differential extensions would be replaced by
an Ax-Lindemann statement, extending the recent results of Ullmo-Yafaev [32] and Pila-
Tsimerman [25] to mixed Shimura varieties. This has actually just been achieved by Gao,
see [14], Theorem 1.2, whose proof is based on o-minimality, but also on a monodromy
argument (Theorem 8.1) close to our Main Lemma. See [30] for a perspective on both
approaches.

6 Proof of the Main Lemma

We finally perform Step (β) in the general case. The arguments will be of the same nature
as in §4, appealing to Ax type results for constant groups, and to representation theory
otherwise. As mentioned before the enunciation of the Main Lemma in §3.3, similar results
appear in [6], Propositions 4.a, 4.b and Theorem 2, but it seems better to gather them
here into a full proof.

Consider the tower of Picard-Vessiot extensions drawn on the left part of the following
picture :

L
↑
Fpq

↗ ↖
Fq Fp
↖ ↗

F
↑
K

, ρG,s(γ) =

 1 tξq(γ) τs(γ)
0 ρE(γ) ξp(γ)
0 0 1

 ,

τs : Gal∂(L/Fpq) ↪→ C
tξq : Gal∂(Fq/F ) ↪→ C2 ' V̂
ξp : Gal∂(Fp/F ) ↪→ C2 ' V
ρE : Gal∂(F/K) ↪→ SL2(C)

For convenience, we recall from §5.1 that the field F = K(ω1, ω2, η1, η2) is the Picard-
Vessiot extension of K given by the Picard-Fuchs equation ∂LieẼ(∗) = 0 for E/S, whose
set of solutions we denote by V ' C2. If E/S is isoconstant, F = K, while Gal∂(F/K) =
SL2(C) otherwise. The field Fp = F (u, ζ(u)) corresponds to the inhomogeneous equation
attached to p (given by ∂LieẼ(ũ) = ∂`nẼ(p̃), for any choice of a lift p̃ ∈ Ẽ(S) of p), while
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Fq = F (v, ζ(v)) is the field of periods of the semi-abelian scheme G/S, generated by the
solutions of ∂LieG̃(∗) = 0. As already said, its resemblance with Fp reflects a duality,

witnessed by the dual V̂ of V . We fix a polarization of E/S, allowing us to identify E and
Ê (and in particular, q to a section of E/S), but will keep track of this duality. The field
of generalized periods of {E, p, q} is the compositum Fpq of Fp and Fq. Finally,

L = Fpq(logGs(λ)) = Fpq(logG̃(s̃(λ))

is the Picard-Vessiot extension generated by the solutions of the 3rd order inhomogeneous
equation ∂LieG̃(Ũ) = ∂`nG̃(s̃), where s̃ is the pullback of p̃ to G̃ over s. The corresponding
4th order homogeneous system can be described as the Gauss-Manin connection attached to
the smooth one-motive M over S given by the section s ∈ G(S). The drawing in the middle
is a representation ρG,s of the differential Galois group of L/K. The right part expresses
that the coefficients of this representation become injective group homomorphisms on the
indicated subquotients of Gal∂(L/K).

We will again distinguish between several cases, depending on the position of p and q
with respect to the projection E] to E of the Manin kernel Ẽ] of Ẽ. So,

E] = Etor + E0(C) =

{
Etor if E is not isoconstant;

E0(C) if E ' E0 × S

depending on whether the K/C-trace E0 of E vanishes or not. (In fact, E] is the Kolchin
closure of Etor, and is also called the Manin kernel of E.) We denote by p̂, q̂ the images of
p, q in the quotient E/E]. Notice that the ring O = End(E/S) still acts on this quotient.

We recall that we must here merely prove Part (A) of the Main Lemma. By contrapo-
sition, we assume that no constant translate of s is a Ribet section, or factors through a
strict subgroup scheme of G/S, and must deduce that logG(s), or equivalently, logG̃(s̃), is
transcendental over Fpq.

Case (SC1) : q̂ = 0

Assume first that E/S is not isoconstant. Then, this vanishing means that q is a torsion
section, and after an isogeny, G = Gq is isomorphic to Gm × E. We have already proven
Part (A) of the Main Lemma in this case, see Lemma 1 and the lines which follow. So,
we can assume that E = E0 × S is constant, and the relation q̂ = 0 now means that q
is constant. So, G = G0 × S is a constant semi-abelian variety, and we can apply to its
(constant) universal vectorial extension G̃0 the slight generalization of Ax’s theorem given
in [6], Proposition 1.b. Since we are assuming that no constant translate s−s0, s0 ∈ G0(C),
of s factors through a strict subgroup scheme H of G, the relative hull Gs of s in the sense
of [6], §1, is equal to G, and Proposition 1.b of loc. cit. implies that

tr.deg.(K(logG̃(s̃))/K) = dim(G̃) = 3.

Now, Fq = F = K since E and q are constant, while K(Ũ) = K(ũ, U) = Fp(logG(s))
has transcendence degre ≤ 1 over Fp, which has transcendence degree ≤ 2 over K. So,
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both transcendence degrees must be maximal, and logG(s) is indeed transcendental over
Fp = Fpq.

Case (SC2) : p̂ = 0

This case is dual to the previous one, and the following preliminary remarks will simplify
its study. The hypothesis made on s implies that p is not a torsion section (otherwise,
a multiple of s factors through Gm). So, we can assume that E = E0 × S is constant,
and that p = p0 is a constant non-torsion section of E. In view of Case (CS1), we can
also assume that q̂ 6= 0, i.e. that q is not constant5 (and in particular, not torsion). We
now consider the smooth one-motive M = [Ms : Z → G] attached to the section s above
p = p0, and its Cartier dual M ′ = [M ′

s′ : Z → G′], where G′ is the extension of Ê by
Gm parametrized by p0. In particular, G′ is a constant and non isotrivial semi-abelian
variety. By Remark 3.ii of §5, the field Fp0q(logG(s)) = Fq(logG(s)) coincides with the field

Fqp0(logG′(s′)) = Fq(logG′(s′)). But the section s′ of G′ project to q in Ê, which is not
constant, so no constant translate of s′ factors through Gm. Finally, Gm is the unique
connected subgroup scheme of G′, since G′ is non isotrivial. So, the constant semi-abelian
variety G′ and its section s′ satisfy all the hypotheses of Case (SC1). Therefore, logG′(s′)
is transcendental over Fq = Fqp, or equivalenty, logG(s) is transcendental over Fpq.

In the next two cases, the proof of our transcendence claim can be derived from the
following simple observation : the Lie algebra us of the unipotent radical of the image of ρG,s
consists of matrices of the form X indicated below, where (ty, x) ∈ Im

(
(tξq, ξp)

)
⊂ V̂ × V ,

and t ∈ C, and for two such matrices

X =

 0 ty t
0 0 x
0 0 0

 , X ′, we have [X,X ′] =

 0 0 t(X,X ′)
0 0 0
0 0 0

 ,

where t(X,X ′) = < y|x′ > − < y′|x > depends only on the vectors x, y, x′, y′. Here,
the transposition and the scalar product represent the canonical antisymmetric pairing
V × V → C provided by the chosen principal polarisation on E/S. Now,

Case (SC3) : p̂ and q̂ are linearly independent over O

As mentioned in Remark 2.(iv) of §4, the argument leading to Lemma 1, i.e. the sharpened
form of André’s theorem [1] given in [7] (or alternatively, if E/S is isoconstant, the sharp-
ened forms of Ax’s theorem given in [12], Thm. 2, and in [6], Prop. 1.b) implies in this
case that u, ζ(u), v, ζ(v) are algebraically independent over F . In other words, the homo-
morphism (tξq, ξp) : Gal∂(Fpq/F )→ V̂ × V ' C4 is bijective, and any couple (ty, x) occurs

5 It is worth noticing that this case (SC2) is the logarithmic analogue of the counterexample studied in
[11], §5.3. It does not provide a counterexample to the Main lemma, whose “exponential” analogue would
amount, in the notations of [11], to the equality tr.deg.(K(y)/K) = 1. In fact, the work [24], combined

with Lemma 1 and with the conclusion of Case (SC2), implies that y is transcendental over K]
G.
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in the Lie algebra us. Consequently, there exists X,X ′ ∈ us such that t(X,X ′) 6= 0, and us
contains matrices all of whose coefficients, except the upper right one, vanish. Therefore,
the homomorphism τs is bijective, Gal∂(L/Fpq) ' C, and tr.deg(L/Fpq) = 1. (Notice that
this yields tr.deg(L/F ) = 1 + 4 = 5.)

So, from now on, we can assume that q̂ and p̂ are linked by a unique relation over O,
which, considering multiples if necessary, we write in the shape

q̂ = αp̂, α ∈ O, p̂ 6= 0, α 6= 0.

We denote by α the complex conjugate of α, which represents the image of α ∈ End(E/S)
under the Rosati involution attached to the chosen polarization. We first deal with non
antisymmetric relations, in the sense of §2.3.

Case (SC4) : q̂ = αp̂, where α 6= −α and p̂ 6= 0

Lifted to E and up to an isogeny, this relation reads q = αp + p0, where p0 ∈ E0(C) is a
constant section, equal to 0 is E/S is not isoconstant. Then, Fq = Fp, and more precisely,
ξq = α ◦ ξp. In other words, the coefficients of the matrices X in us satisfy the relation
y = αx, for the natural action of O on V . Since p /∈ E0(C), Lemma 1 implies that ξp is
bijective, and any x ∈ V occurs in the Lie algebra us. Recall that < | > is antisymmetric,
and that the adjoint of the endomorphism of V induced by an isogeny α ∈ O is its Rosati
image α. For any x, x′ in V occurring in matrices X,X ′ and such that < x|x′ > 6= 0, we
then have :

t(X,X ′) = < αx|x′ > − < αx′|x > = < αx|x′ > − < x′|αx >
= < αx|x′ > + < αx, x′ > = < (α + α)x|x′ > 6= 0

since α + α is a non-zero integer. We conclude as in Case (SC3) that Gal∂(L/Fpq) ' C,
and tr.deg.(L/Fpq) = 1. (Here, this yields tr.deg(L/F ) = 1 + 2 = 3.)

The remaining cases concerns antisymmetric relations of the type q̂ = αp̂, with p̂ 6= 0
and a non zero purely imaginary α = −α. (In particular, the CM elliptic scheme E/S
must be isoconstant and so, Theorem 2 is now already proven under its Conditions (i) or
(ii)). We first treat the case when q and p themselves are antisymmetrically related.

Case (SC5) : q = αp, where α = −α 6= 0 and p̂ 6= 0

This is the only case where a Ribet section of G/S exists above the section p ∈ E(S), p /∈
E0(C). Denote by sR this (essentially unique) Ribet section.

Lemma 3. Let sR be the Ribet section of G/S. Then, logG(sR) is defined over Fpq.

Proof : let LR = Fpq(logG(sR)) be the field generated over Fpq by logG(sR). Since the
differential Galois group Gal∂(LR/Fpq) injects via τsR into a vectorial group C, logG(sR)
is either transcendental or rational over Fpq. Assume that it is transcendental. Then, by
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Proposition 4, the surface S attached to sR contains no algebraic curve, and the whole
reduction of the Main Theorem to the study of S given in §3.1 and §3.2 implies that
sR admits only finitely many torsion values. But this contradicts the main result of [8].
Notice that the explicit formula given in §7.1, Remark 4, for logG(sR) directly shows that
LR = Fpq.

We now come back to our section s, which we assumed not to be a Ribet section of G,
and more accurately, such that no constant translate s− s0 of s is a Ribet section. Since
s and sR project to the same section p of E/S, there exists a section δ ∈ Gm(S), i.e. a
rational function in K∗, such that s = sR + δ. The assumption on s implies that δ /∈ C∗ is
not constant. Set ` = logGm(δ). Then, logG(s) = logG(sR) + `, and Lemma 3 implies that
that Fpq(logG(s)) = Fpq(`), which is equal to Fp(`), since q̂ = αp̂. By Lemma 1, Fp(`) has
transcendence degree 1 over Fp, so logG(s) too is transcendental over Fpq.

Case (SC6) : q = αp+ p0, where α = −α 6= 0 and p0 ∈ E0(C), p0 /∈ E0,tor

Fixing an α-division point p′0 of p0 in E0(C), we have q = α(p − p′0), and there exists an
(essentially unique) Ribet section s′R of G/S above p′ := p − p′0. Then, the section s′ :=
s−s′R of G/S projects to π(s′) = p−p′ = p′0 in E0(C) ⊂ E(S). Furthermore, Fp = Fp′ = Fq
since p′0 is constant, and since logG(s′R) is defined over Fp′q = Fpq = Fq by Lemma 3, we
deduce that logG(s′) = logG(s)− logG(s′R) generates over the field Fpq = Fp′q = Fq = Fp′0q
the same field as logG(s). We are therefore reduced to showing that given q̂ 6= 0 and a
section s′ of G/S projecting to a constant non-torsion section p′0 ∈ E0(C), then logG(s′) is
transcendental over Fp′0q. But this is exactly what we proved in Case (SC2) !

This concludes the proof of the Main Lemma, hence of the Main Theorem.

7 Appendices

7.1 Analytic description of the semi-abelian logarithm

Let G/S be a non isotrivial extension of an elliptic scheme E/S by Gm and let s be a
section of G/S. The aim of this Appendix is to give an explicit formula for its local
logarithm logG(s) in terms of the Weierstrass functions ℘λ, ζλ, σλ, in parallel with that of
§4 for products. We recall the notations of §5.1. In particular, we set p = π(s) ∈ E(S),
u = logE(p), For simplicity, we will work over the generic point of S, consider G as a
semi-abelian variety over the field K = C(S), and often drop the variable λ indexing the
Weierstrass functions and their (quasi-)periods ω1, ω2, η1, η2.

By Weil-Rosenlicht-Barsotti, the algebraic group G, viewed as a Gm-torsor, defines a
line bundle over E of degree 0, admitting a rational section β with divisor (−q)− (0) ∈ Ê,
which we identify with the point q ∈ E (the sign is admittedly not standard, but it will
make the formulae symmetric in p and q). By assumption, q is not a torsion point, and we
set v = logE(q). We further assume that p 6= 0 and p+ q 6= 0.
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The rational section β provides a birational isomorphism G 99K Gm × E and (after a
shift away from 0) an isomorphism LieG ' LieGm⊕LieE. The 2-cocycle which describes
the group law on the product ([31], VII.5) is a rational function on E × E, expressed in

terms of σ-functions by σ(z+z′+v)σ(z)σ(z′)σ(v)
σ(z+z′)σ(z+v)σ(z′+v)

. Therefore, the exponential morphism expG is
represented by the map

(LieG)an(Λ) 3
(
t(λ)
z(λ)

)
7→
(
fv(λ)(z(λ)) et(λ)

℘λ(z(λ))

)
∈ Gan(Λ)

where

fv(z) =
σ(v + z)

σ(v)σ(z)
e−ζ(v)z

is a meromorphic theta function for the line bundle OE
(
(−q) − (0)

)
, whose factors of

automorphy are given by e−κv(ωi) (opposite of the multiplicative quasi-periods), with

κv(ωi) = ζ(v)ωi − ηiv, for i = 1, 2.

The occurence of the trivial theta function e−ζ(v)z in fv is due to the condition d0(expG) =

idLieG. The logarithmic form dfv
fv

=
(
ζ(v + z) − ζ(v) − ζ(z)

)
dz = 1

2
℘′(z)−℘′(v)
℘(z)−℘(v)

dz is the
pullback under expE of the standard differential form of the 3rd kind on E with residue
divisor −1.(0) + 1.(−q).

Under this description, the section s of G/S under study and its logarithm logG(s) are
given by

s =

(
δs
p

)
, U := logG(s) =

(
−g(u, v) + ζ(v)u+ `s

u

)
where δs := s − β(p) ∈ K∗ is a rational function on S, depending only on s (and on the
choice of the section β), for which we set `s = logGm(δs), and (cf. the formulae in [6], up
to signs) :

gλ(u, v) = log
( σλ(u+ v)

σλ(v)σλ(u)

)
.

This is the Green function mentioned in §5.1.

The Z-local system of periods ΠG of Gan/Λ which was introduced in §3.3 admits the
basis

$0(λ) =

(
2πi
0

)
, $1(λ) =

(
κv(λ)(ω1(λ))

ω1(λ)

)
, $2(λ) =

(
κv(λ)(ω2(λ))

ω2(λ)

)
.

We can now describe the various extensions of F = K(ω1, ω2, η1, η2) appearing in §5 for
a non isotrivial extension G. In view of the Legendre relation

2πi = η1ω2 − η2ω1 ∈ K∗,
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the periods of G generate over F the field

FG = F
(2)
G = F (κv(ω1), κv(ω2)) = F (v, ζ(v)) := Fq,

while the field generated over Fpq by logG(s) satisfies

L = Fpq(logG(s)) = F (u, ζ(u), v, ζ(v),−g(u, v) + ζ(v)u+ `s) = Fpq
(
`s − g(u, v)

)
Remark 4 (Analytic description of the Ribet sections). - Assume that E = E0 × S is a
constant elliptic scheme with complex multiplications byO, that q is not constant, and that
p and q are antisymmetrically related in the sense of §2. So, their logarithms u(λ), v(λ) are
non constant holomorphic functions on Λ, and up to an isogeny, we can assume that v = αu
for a totally imaginary non zero complex multiplication α ∈ 2O. In these conditions, the
semi-abelian scheme G/S parametrized by q is semi-constant, and admits a Ribet section

sR lifting p, given as above by a couple sR =

(
δsR
p

)
, with logarithm UR := logG(sR) =(

−g(u, v) + ζ(v)u+ `sR
u

)
, where δsR ∈ K∗ and `sR = logGm(δsR). By the theory of

complex multiplication (see for instance [19], Appendix I), there exists an algebraic number
s2 such that the quasi-periods of ζ satisfy : η2 − s2ω2 = τ(η1 − s2ω1), where ω2 = τω1.

One can then show that up to a root of unity, δsR = σ(u+v)
σ(v)σ(u)

e−s2uv. Consequently, the first

coordinate of UR is given by ζ(v)u− s2uv. This makes it apparent that logG(sR) lies in the
field Fpq, as already proven in Lemma 3. Furthermore, this expression, combined with the
CM and Legendre relations, implies that for any λ ∈ S such that p(λ) is a torsion point
of E0, say of order n, the point sR(λ) is a torsion point of Gλ, of order dividing n2. For
algebraic proofs of this property, see [8], §3, and [10].

7.2 Application to Pell equations

In [21], the relative Manin-Mumford conjecture (RMM) is proven for simple abelian surface
schemes, and this is shown to imply the following corollary : consider the family of sextic
polynomials Dλ(x) = x6 + x + λ, where λ is a complex parameter. Then, there are only
finitely many λ ∈ C such that the functional Pell equation X2 − Dλ(x)Y 2 = 1 admits a
solution in polynomials X, Y ∈ C[x], Y 6= 0; see also [33], III. 4.5 for connections with
other problems and a proof of the deduction from RMM . The involved abelian surface
A/C(λ) is the jacobian of the (normalized) relative hyperelliptic curve C : y2 = x6 +x+λ,
and RMM is applied to the section s of A defined by the linear equivalence class of the
relative divisor (∞+)− (∞−) on C.

Following a suggestion of the second and fourth authors, we may treat in the same way
the case of a sextic Dλ(x) = (x− ρ(λ))2Qλ(x) having a squared linear factor, i.e. a generic
double root ρ(λ) for some algebraic function ρ(λ), now applying the Main Theorem of
the present paper to a quotient G = Gρ of the generalized jacobian of the corresponding
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semi-stable relative sextic curve C. This Gρ is an extension by Gm of an elliptic curve E
(over C(λ)), where E is the jacobian of the (normalized) relative quartic C̃ with equation
v2 = Qλ(u), and RMM may be applied to the section s of Gρ defined by the class of the
relative divisor (∞+)− (∞−) on C̃, for the strict linear equivalence attached to the node of
C at x = ρ(λ) (see [31], V.2, [8], Appendix). As a concrete example, we will here consider
the family of quartics

Qλ(x) = x4 + x+ λ.

From the analysis in [21], [33] recalled below, we derive that the set ΛQ of complex numbers
λ such that the Pell equation X2 − Qλ(x)Y 2 = 1 has a solution in polynomials X, Y ∈
C[x], Y 6= 0, is infinite. The solutions for each such λ form a sequence (Xλ,n, Yλ,n)n∈Z of
polynomials in C[x]. Our result is that for the ρ(λ) considered in the following statements,
only finitely many of the polynomials Yλ,n(x)λ∈ΛQ,n∈Z admit x = ρ(λ) among their roots.
In other words :

Theorem 4. i) (Case ρ(λ) = 0.) There are only finitely many complex numbers λ such
that the equation X2−x2Qλ(x)Y 2 = 1 admits a solution in polynomials X, Y ∈ C[x], Y 6= 0.

ii) (Case ρ(λ) =
4y( 1

2
pW+e3)−1

8x( 1
2
pW+e3)

∈ C(λ)alg, with notations explained below.) There are

only finitely many complex numbers λ such that the equation X2− (x−ρ(λ))2Qλ(x)Y 2 = 1
admits a solution in polynomials X, Y ∈ C[x], Y 6= 0.

In spite of their similarity, these two statements cover different situations : in (i), the
extension Gρ is not isotrivial, and the theorem is a corollary of Theorem 2. On the contrary,
(ii) illustrates the case of an isotrivial extension Gρ, and follows from Theorem 1. In fact,
we believe that on combining these two cases of our Main Theorem, Theorem 4 will hold
for any choice of ρ. We mention in this direction a recent work of the fourth author on
the isotrivial case, which implies that Theorem 4 holds for all but finitely many algebraic
functions ρ(λ).

The specific function ρ(λ) of Case (ii) can be described as follows. Consider the Weier-
strass model (WE) : y2 = 4x3−λx+ (1/16) of the elliptic curve E/C(λ), which is therefore
not isoconstant, and the relative point pW = (0,−1

4
) on (WE), which is generically of infinite

order (it can be rewritten as the point pW̃ = (0,−1) on the curve (W̃E) : Y 2 = X3−4λX+1,
and is not torsion at λ = 1

4
). Then, the 2-division points of pW are the four points of (WE) :

“
1

2
pW” = (

1

8
m2
λ,−

1

8
m3
λ +

1

4
), where mλ is a root of m4 − 8m+ 16λ = 0.

Choose one of the two roots mλ which is real when λ = 1
4
, and call the corresponding point

1
2
pW (λ). Further, choose one of the two points of order 3 on WE which is real when λ is

real, and call it e3(λ). Computing the x and y coordinates of the relative point 1
2
pW + e3

on WE then provides the function ρ(λ) appearing in Case (ii).

In a more enlightening way, let in general p(λ) be the section of E defined by the class
of the divisor (∞+) − (∞−) on C̃, for the standard linear equivalence of divisors. Then,
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p is the projection to E of the section s of Gρ defined (via strict equivalence) above, and
one checks that p is not a torsion section. By [21], [33] (see also [16], Prop. 3.1), the Pell
equation for Qλ(x) has a non trivial solution if and only if p(λ) is a torsion point on Eλ, i.e.
λ ∈ SE∞ in the notations of §2. Similarly, the Pell equation for (x− ρ(λ))2Qλ(x) has a non

trivial solution if and only if s(λ) is a torsion point of Gρ(λ), i.e. λ ∈ SGρ∞ . Furthermore, the

section q(λ) of Ê parametrizing the extension Gρ is represented the (standard) equivalence

class of the divisor (q+) − (q−) on C̃, where q±(λ) is the section (ρ(λ),±Q1/2
λ (ρ(λ)) of C̃.

Now, in the first case ρ(λ) = 0, q is a non torsion section, i.e. Gρ is a non isotrivial
extension of the non isoconstant elliptic scheme E, and since p is not torsion, Theorem
2.(i) implies that S

Gρ
∞ is finite. On the other hand, Case (ii) is built up in such a way that

q has finite order (equal to 3), so that Gρ is now isogenous to Gm ×E. But one can check
(by specializing at the real number λ = 1

4
) that the projection of the section s to the Gm

factor is not a root of unity, so s does not factor through a translate of E. Since p is not
torsion either, Theorem 1 now provides the finiteness of S

Gρ
∞ .
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