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MOTIVES FOR PERFECT PAC FIELDS WITH PRO-CYCLIC

GALOIS GROUP

IMMANUEL HALUPCZOK

Abstract. Denef and Loeser defined a map from the Grothendieck ring of sets
definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus
enabling to apply any cohomological invariant to these sets. We generalize this
to perfect, pseudo algebraically closed fields with pro-cyclic Galois group.

In addition, we define some maps between different Grothendieck rings
of definable sets which provide additional information, not contained in the
associated motive. In particular we infer that the map of Denef-Loeser is not
injective.
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1. Preliminaries

1.1. Introduction. To understand definable sets of a theory, it is helpful to have
invariants with nice properties. For a fixed pseudo-finite field K, there are two
well-known invariants of definable sets: the dimension (see [3]), and the measure
(see [2]).

In a slightly different setting, Denef and Loeser constructed a much stronger
invariant: they do not fix a pseudo-finite field; instead they consider definable sets
in the theory of all pseudo-finite fields of characteristic zero. To each such set X
they associate an element χc(X) of the Grothendieck group of Chow motives (see
[4], [5]). In particular, this implies that all the usual cohomological invariants (like
Euler characteristic, Hodge polynomial) are now applicable to arbitrary definable
sets.

Note that the work of Denef and Loeser does not directly imply the existence of
the measure of [2]: the motive associated to a set defined by a formula φ is invariant
under equivalence in the theory of pseudo-finite fields, but not under equivalence
in the theory of a fixed pseudo-finite field.

The dimension defined in [3] exists for a much larger class of fields and in [10],
Hrushovski asked whether one can also generalize the measure. This question has
been answered in [9]: it is indeed possible to define a measure for any perfect, pseudo
algebraically closed (PAC) field with pro-cyclic Galois group. A natural question
is now: Can the work of Denef-Loeser also be generalized to this setting? More
precisely, fix an infinite pro-cyclic group Gal , and consider the theory of perfect
PAC fields with absolute Galois group Gal . Then to any definable set X in that
theory we would like to associate a virtual motive χc(X). The first goal of this
article is to do this.

One reason this result seems interesting to me is the following: the map χc exists
for pseudo-finite fields (by Denef-Loeser) and for algebraically closed fields (by
quantifier elimination). The case of general pro-cyclic Galois groups is a common
generalization of both and thus a kind of interpolation.

Comparing those maps χc for different Galois groups, one gets the feeling that
they are closely related. Indeed, given an inclusion of Galois groups Gal2 ⊂ Gal1,
we will prove the existence of a map θ from the definable sets for Gal2 to the
definable sets for Gal1 which is compatible with the different maps χc.

These maps θ turn out to be interesting in themselves. An open question was
whether, using χc, one can get all the (additive) information about definable sets;
in other words: is χc injective? We will show that it is not, by giving an example
of two definable sets with the same image under χc but with different images under
one of those maps θ.

We have one more result. In [5], the map χc is defined by enumerating certain
properties and then existence and uniqueness of such a map is proven. We are able
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to weaken the conditions needed for uniqueness in the case of pseudo-finite fields.
Unfortunately however, we do not get any sensible uniqueness conditions for other
pro-cyclic Galois groups.

1.2. The results in detail. Let me fix some notation once and for all.
By a “group homomorphism” we will always mean a continuous group homo-

morphism if there are profinite groups involved.
Let Gal be a pro-cyclic group such that there do exist perfect PAC fields having

Gal as absolute Galois group. This is the case if and only if Gal is torsion-free, or
equivalently, if it is of the form

∏

p∈P Zp, where P is any set of primes.
“definable” will always mean 0-definable. When we want to consider sets defin-

able with parameters, we will add these parameters to the language. Indeed most
of the time we will fix a field k (mostly of characteristic zero) and work in the the-
ory TGal,k of perfect PAC (pseudo algebraically closed) fields with absolute Galois
group Gal which contain k.

Models of TGal,k will be denoted by K; the algebraic closure of a field K will be

denoted by K̃.
By “variety”, we mean a separated, reduced scheme of finite type. If not stated

otherwise, all our varieties will be over k. The reader not so familiar with algebraic
geometry can restrict herself to locally closed subsets of An, and everything will
work out fine.

I will use the notion “definable set” even when there is no model around: By
a “definable set (in TGal,k)”, I mean a formula up to equivalence modulo TGal,k.
In addition, I will permit myself to speak about “definable subsets of (arbitrary)
varieties”. For affine embedded varieties, it is clear what this should mean. In
general, any definable decomposition of a variety V into affine embedded ones
yields the same notion of definable subsets of V . For a precise version of this, see
e.g. [4]. (Denef and Loeser call this “definable subassignments”.)

For the definition of a Chow motive, see e.g. [11]. We do not repeat the definition
here, as anyway the only things the reader really needs to believe about them
are Theorem 3.5 and Lemma 3.6 and the existence of the map χc : K0(Vark) →
K0(Motk) mentioned below.

We will work with the following Grothendieck groups: K0(TGal,k) is the group
generated by the definable sets of TGal,k, modulo the relations [X1] = [X2] if there
is a definable bijection between X1 and X2, and [X1] + [X2] = [X1 ∪X2] if X1 and
X2 are disjoint. K0(Vark) is the group generated by the varieties over k, modulo
[V1] = [V2] if V1 and V2 are isomorphic and [V ] = [U ] + [V \ U ] if U is an open
subvariety of V . K0(Motk) is the group generated by the Chow motives over k,
modulo [m1] = [m2] if m1 and m2 are isomorphic and [m1]+ [m2] = [m1⊕m2]. All
three Grothendieck groups are in fact rings, where the multiplication is induced by
× resp. × resp. ⊗. We will also need to tensor the Grothendieck ring of motives
with Q; we denote this by K0(Motk)Q := K0(Motk) ⊗Z Q.

Gillet and Soulé [7] and Guillén and Navarro Aznar [8] showed that there exists a
unique morphism of rings χc : K0(Vark) → K0(Motk) which extends the canonical
map on the smooth projective varieties. Our first theorem states that this map can
be extended to χc : K0(TGal,k) → K0(Motk)Q in such a way that it satisfies one
additional property which needs some more definitions to be stated properly. Let
me write down the theorem right now anyway; the reader may skip that property for
the moment and come back after she has read the necessary definitions in Section 2.
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Theorem 1.1. Suppose Gal =
∏

p∈P Zp (where P is any set of primes) is a pro-
cyclic group and k is a field of characteristic zero. Then there exists a ring homo-
morphism χc : K0(TGal,k) → K0(Motk)Q extending the homomorphism χc : K0(Vark) →

K0(Motk) with the following property: if V
G
։ W is a Galois cover such that all

prime factors of |G| lie in P , then

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V ) .

If Gal = Ẑ, then a ring homomorphism with these properties is unique.

In the case Gal = Ẑ, this result is almost the same as the one of Denef-Loeser
(Theorem 6.4.1 of [5]). However, our condition (∗) needed to get uniqueness is a
weakening of the one in [5].

As the reader will guess, even if Gal 6= Ẑ we have a precise map χc in mind
(which we will construct during the proof). Unfortunately we can not prove that
condition (∗) is strong enough to define χc uniquely in the general case, and we do
not have any good replacement for (∗). The best uniqueness statement we can offer
is this: there is a unique map χc as in Theorem 1.1 compatible with Definition 3.7
(which in reality is spread over Section 3.4). Below we will give another (equivalent)
tentative definition of χc.

Our map χc will not really depend on the base field k: if we have a second
field k′ containing k, then there are canonical ring homomorphisms K0(TGal,k) →
K0(TGal,k′) and K0(Motk)Q → K0(Motk′)Q, which we will both denote by ⊗kk′.
The map χc is compatible with these homomorphisms:

Proposition 1.2. In the setting just described (with χc satisfying Definition 3.7)
we have, for any definable set X of TGal,k, χc(X ⊗k k′) = χc(X) ⊗k k′.

In [9], the idea behind the proof of the existence of a measure for definable sets
of perfect PAC fields with pro-cyclic Galois group was to reduce the general case
to the pseudo-finite case. However, this was just an idea, not a real reduction. For
the present problem, it turns out that we really can define maps θι between the
different Grothendieck groups which enable us to reduce the existence of a map
χc : K0(TGal,k) → K0(Motk)Q to the case Gal = Ẑ. More generally, we will prove
the following theorem.

Theorem 1.3. Suppose Gal1 and Gal2 are two torsion-free pro-cyclic groups,
ι : Gal2 →֒ Gal1 is an injective map, and k is any field (not necessarily of char-
acteristic zero). Denote the theories TGali,k by Ti for i = 1, 2. Then the following
defines a ring homomorphism θι : K0(T2) → K0(T1): Suppose K1 is a model of

T1. Then the fixed field K2 := K̃
ι(Gal2)
1 is a model of T2 containing K1. For any

X2 ⊂ An definable in T2, we define θι(X2)(K1) := X2(K2) ∩ Kn
1 .

To reduce the existence of χc to the case Ẑ, apply this theorem to ι : Gal →֒ Ẑ,

where ι maps Gal to the appropriate factor
∏

p∈P Zp of Ẑ (such that Ẑ/Gal is

torsion-free). Then define χc as the composition χ̂c ◦ θι, where χ̂c : K0(TẐ,k) →

K0(Motk)Q is the known map in the pseudo-finite case. Verification of the properties
of χc is not very difficult, as soon as one knows the meaning of (∗), and using explicit
computations done in the proof of Theorem 1.3.

So in principle, the existence of χc is reduced to Theorem 1.3. On the other hand,
one has the feeling that it should also be possible to construct this map directly
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when Gal 6= Ẑ, so we will do this. The proof in [4] in the pseudo-finite case uses
finite fields a lot, so to generalize it, we first had to “clean it up”. in our proof, the
only place where finite fields appear is in a proof of Lemma 3.3, which is a kind of
qualitative Chebotarev density theorem for TGal,k (and which might be interesting
in itself).

By the way, we now have a second not-so-beautiful definition of χc in the general

case at hand: in the above reduction, we chose a map ι : Gal → Ẑ, but it can be
seen from Theorem 1.3 that θι is independent of this choice (as we fixed the image).
So one could also define χc := χ̂c◦θ. We will check that the two different definitions
of χc are equivalent.

Another interesting application of Theorem 1.3 is the case Gal1 = Gal2 = Gal ,
but with a non-trivial injection ι : Gal →֒ Gal . One thus gets endomorphisms of
the ring K0(TGal,k), which might reveal a lot of information about its structure.
Indeed this really gives new information: we will construct a whole family of pairs of
definable sets X1 and X2 such that χc(X1) = χc(X2) but χc(θ(X1)) 6= χc(θ(X2)),
thereby proving:

Proposition 1.4. Let k be a field of characteristic zero and let Gal be a non-trivial
torsion-free pro-cyclic group. Then the map χc : K0(TGal,k) → K0(Motk)Q is not
injective.

The remainder of the article is organized as follows:

• In Section 2, we define Galois covers, the Artin symbol (in a version suited
for this article) and Galois stratifications. After that, the reader will un-
derstand condition (∗) of Theorem 1.1. At the end of the section, we will
state a version of “almost quantifier elimination” from [6] which we will be
need several times.

• The construction of the map χc of Theorem 1.1 will be done in Section 3,
after first proving some lemmas, in particular the version of Chebotarev’s
density theorem for TGal,k. We also check that the constructed map has
the required properties.

• In Section 4, we prove the remaining statements on χc, i.e. the uniqueness

in the Ẑ case and compatibility with change of the base field k (Proposi-
tion 1.2).

• Section 5 is devoted to the maps θι. We prove Theorem 1.3 and, as an
example application, Proposition 1.4. In addition, we will check that the
maps χc for different Galois groups (as constructed in Section 3.4) are
compatible with the maps θι for suitable ι.

• Finally Section 6 lists some open problems.

2. Galois stratifications

A standard technique to get hold of definable sets of perfect PAC fields with
not-too-large Galois group is the quantifier elimination to Galois formulas. In this
section, we define the necessary objects and then, in Section 2.4, state this quantifier
elimination result in the version of Fried-Jarden [6].

In most of the article, we will work with parameters in a field k. However, at
some point we will need Galois covers defined over rings, so for the definitions in
this section assume that all varieties are defined over some fixed ring R.
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We also fix a pro-cyclic group Gal =
∏

p∈P Zp for some set of primes P , and we
let T := TGal,R be the theory of perfect PAC fields with absolute Galois group Gal
containing R.

2.1. Galois covers.

Definition 2.1. (1) A Galois cover consists of two integral and normal vari-
eties V and W (over our ring R) and a finite étale map f : V → W such
that for G := AutW (V )opp, we have canonically W ∼= V/G (where G acts

from the right on V ). We denote a Galois cover by f : V
G
։ W and call G

the group of that cover. The action of G on V will be denoted by v.g (for
v ∈ V , g ∈ G).

(2) We say that a Galois cover f ′ : V ′ G′

։ W is a refinement of f : V
G
։ W , if

there is a finite étale map g : V ′ ։ V such that f ′ = f ◦ g.
(3) If W ′′ is a locally closed subset of W and V ′′ is a connected component of

f−1(W ′′), then we call V ′′ G′′

։ W ′′ the restriction of V
G
։ W to W ′′, where

G′′ := AutW ′′ (V ′′)opp.

Remark 2.2. (1) If f ′ : V ′ G′

։ W is a refinement of f : V
G
։ W , then we have

a canonical surjection π : G′ ։ G.

(2) If V ′′ G′′

։ W ′′ is a restriction of V
G
։ W , then we have a canonical injection

G′′ →֒ G. Different choices of the connected component of f−1(W ′′) yield
isomorphic restricted Galois covers.

2.2. Artin symbols and colorings. Using a Galois cover V
G
։ W , we would

like to decompose W into subsets according to the Artin symbol of the elements.
However, the usual definition of Artin symbol needs a canonical generator of the
Galois group Gal (usually the Frobenius of a finite field); the Artin symbol is then
the image of the generator under a certain map ρ : Gal → G (which is unique only
up to conjugation by G). If one does not have such a canonical generator, then one
still can consider the image of ρ. This is what one uses as Artin symbol in our case.

Definition 2.3 (and Lemma). Suppose f : V
G
։ W is a Galois cover and K |= T

is a model.

(1) Suppose v ∈ V (K̃) such that f(v) ∈ W (K). Then there is a unique group

homomorphism ρ : Gal(K̃/K) → G satisfying σ(v) = v.ρ(σ) for any σ ∈

Gal(K̃/K). The decomposition group Dec(v) := im ρ ⊂ G of v is the image
of that homomorphism.

(2) For w ∈ W (K), let the Artin Symbol Ar(w) of w be the set {Dec(v) | v ∈

V (K̃), f(v) = w} of decomposition groups of all preimages of w.

Ar(w) consists exactly of one conjugacy class of subgroups of G, and these sub-
groups are isomorphic to a quotient of Gal . The quotients of Gal are just the cyclic
groups Q such that all prime factors of |Q| lie in P (where P was the set of primes
such that Gal =

∏

p∈P Zp). We introduce some notation for this:

Definition 2.4. Given a finite group G, we will call those subgroups of G which
are isomorphic to a subgroup of Gal the permitted subgroups. We denote the set
of all permitted subgroups of G by Psub(G). If Q is a finite cyclic group, then we
denote by Ppart(Q) the “permitted part of Q”, i.e. the biggest permitted subgroup
of Q.
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(The “P” in “Psub” and “Ppart” stands for permitted and/or the set P of
primes.) The interest of Ppart(Q) is the following. We will sometimes identify

Gal =
∏

p∈P Zp with the corresponding factor of Ẑ and consider homomorphisms

ρ : Ẑ → G. Then the image of Gal in G is just ρ(Gal ) = Ppart(im ρ).

Given a Galois cover V
G
։ W , we now define subsets of W using the Artin

symbol:

Definition 2.5. (1) A coloring of a Galois cover V
G
։ W is a subset C of

the permitted subgroups of G which is closed under conjugation. A Galois
cover together with a coloring is called a colored Galois cover.

(2) Given a colored Galois cover (V
G
։ W, C) and a model K |= T , we define

the set X(V
G
։ W, C)(K) := {w ∈ W (K) | Ar(w) ⊂ C}.

Note that X(V
G
։ W, C) is definable, i.e. there is a formula φ such that for any

model K |= T we have φ(K) = X(V
G
։ W, C)(K).

Remark 2.6. (1) If (V
G
։ W, C) is a colored Galois cover and V ′ G′

։ W is
a refinement with canonical map π : G′ ։ G, then we can also refine the

coloring: by setting C′ := {Q ∈ Psub(G′) | π(Q) ∈ C}, we get X(V ′ G′

։

W, C′) = X(V
G
։ W, C).

(2) Similarly if V ′′ G′′

։ W ′′ is a restriction of f : V
G
։ W : in that case, set C′′ :=

{Q ∈ C | Q ⊂ G′′}. Then we get X(V ′′ G′′

։ W ′′, C′′) = X(V
G
։ W, C)∩W ′′.

2.3. Galois stratifications.

Definition 2.7. A Galois stratification A of a variety W is a finite family (fi : Vi
Gi
։

Wi, Ci)i∈I of colored Galois covers where the Wi form a partition of W into locally
closed sub-varieties. We shall say that A defines the following subset A(K) ⊂
W (K), where K |= T is a model:

A(K) :=
⋃

i∈I

X(Vi
Gi
։ Wi, Ci)(K)

The data of a Galois stratification denoted by A will always be denoted by Vi,
Wi, Gi, Ci, and analogously with primes for A′, A′′, etc. This will not always be
explicitely mentioned.

Definition 2.8. Suppose A and A′ are two Galois stratifications. We say that A′

is a refinement of A, if:

• Each Wi is a union
⋃

j∈Ji
W ′

j for some Ji ⊂ I ′.

• For each i ∈ I and each j ∈ Ji, the Galois cover V ′
j

G′

j

։ W ′
j is a refinement

of the restriction of the Galois cover Vi
Gi
։ Wi to the set W ′

j .

• C′
j is constructed out of Ci as described in Remark 2.6, such that X(V ′

j

G′

j

։

W ′
j , C

′
j) = X(Vi

Gi
։ Wi, Ci) ∩ W ′

j .

By the third condition, A and A′ define the same set.
One reason for Galois stratifications being handy to use is the following well-

known lemma:
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Lemma 2.9. If A and A′ are two Galois stratifications, then there exist refinements
Ã and Ã′ of A resp. A′ which differ only in the colorings.

2.4. Quantifier elimination to Galois stratifications. We now can state the
version of quantifier elimination which we will use. It is given in [6], Proposi-
tion 25.9. Applied to our situation, that proposition reads:

Lemma 2.10. Suppose Gal is a torsion-free pro-cyclic group and k is any field.
Then each definable set X of TGal,k is already definable by a Galois stratification
A (over k), i.e. for any K |= TGal,k, we have X(K) = A(K).

Note that Proposition 25.9 of [6] requires that K is what Fried-Jarden call a
“prefect Frobenius field”; this is indeed the case for any model of TGal,k.

3. Existence of χc

In this section we prove the existence of the map χc of Theorem 1.1. For the
whole section, we fix a torsion-free pro-cyclic group Gal and a field k of character-
istic zero. We also fix the theory T := TGal,k we will work in.

3.1. Overview of the proof. We follow the ideas of [4]. The proof consists of
three parts:

(1) Associate virtual motives to colored Galois covers, and, more generally, to
Galois stratifications.

(2) Verify that this only depends on the set defined by the stratification. Using
the quantifier elimination result Lemma 2.10, we thus get a map χc from
the definable sets to the virtual motives.

(3) Check that this map χc has all the required properties: that it is invariant
under definable bijections and compatible with disjoint union and products
(so it defines a ring homomorphism K0(TGal,k) → K0(Motk)Q) and that it
satisfies condition (∗) of Theorem 1.1.

To associate a virtual motive to a colored Galois cover, we use results of [1] where
an “equivariant version” of the map χc : K0(Vark) → K0(Motk) is given. In this

definition we have to be careful if Gal 6= Ẑ; otherwise, the motive will really depend
on the Galois cover and not only on the set defined by the cover. We will do this
in Section 3.4.

In Section 3.5, we will extend the definition of χc to arbitrary Galois strati-
fications and check (2). The most important ingredient for this is that different
colorings of a fixed Galois cover always define different sets. This is essentially a
qualitative version of Chebotarev’s density theorem for models of T = TGal,k, which
we will prove in Section 3.3.

Finally, the properties (3) of χc will be verified in Section 3.6. The most labo-
rious one is that χc is invariant under definable bijections. For this, we will first
prove an additional lemma in Section 3.2, which replaces the quantitative part of
Chebotarev’s density theorem.

3.2. Some fiber sizes.

Lemma 3.1. Suppose f : V
G
։ W is a Galois cover, K |= T a model, w ∈ W (K),

and C = Ar(w) is the Artin symbol of w. Fix a group Q ∈ C. Then the number

#
{

v ∈ V (K̃) | f(v) = w ∧ Dec(v) = Q
}
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of elements in the fiber of w with decomposition group Q is |G|
|C| .

Proof. For Q ∈ C, write F (Q) := {v ∈ V (K̃) | f(v) = w∧Dec(v) = Q} for the part
of the fiber with decomposition group Q. We will show that for any two Q, Q′ ∈ C,
F (Q) and F (Q′) have the same cardinality. As the whole preimage of w consists
of |G| elements, the lemma follows.

Given Q, Q′ ∈ C, there exists a g ∈ G such that Q′ = Qg. Suppose v ∈ F (Q),

i.e. the homomorphism ρ : Gal(K̃/K) → G which satisfies σ(v) = v.ρ(σ) (for all

σ ∈ Gal(K̃/K)) has image im ρ = Q. Then σ(v).g−1 = v.ρ(σ)g−1 = v.g−1ρ(σ)g.
Now im(ρg) = Q′, so v.g−1 ∈ F (Q′), which means that g−1 maps F (Q) to F (Q′).
By the same argument, g maps F (Q′) to F (Q), so we have a bijection. �

Lemma 3.2. Suppose we have the following diagram, where the maps f1 : V → W1

and f2 : V → W2 are Galois covers with groups G1 resp. G2. Note that we have
naturally G1 ⊂ G2.

V

W1 W2

f1

f2

φ

Suppose additionally that C1 is a coloring of f1 : V
G1

։ W1 consisting of a single

conjugacy class of groups and C2 := CG2

1 is the induced coloring of f2 : V
G2

։ W2.

Then the image under φ of X1 := X(V
G1

։ W1, C1) is X2 := X(V
G2

։ W2, C2). In

addition, φ restricts to a bijection X1 → X2 if and only if |G1|
|C1|

= |G2|
|C2|

.

Proof. “φ(X1) ⊂ X2”: Suppose K |= T is a model, w1 ∈ X1(K) and v ∈ f−1
1 (w1)

is a preimage in V (K̃). Then Dec(v) ∈ C1. But v is also a preimage of φ(w1), so

Ar(φ(w1)) contains Dec(v) and is therefore equal to CG2

1 .
“φ(X1) ⊃ X2”: Suppose w2 ∈ X2(K) for some model K |= T . As Ar(w2)

contains C1, we may choose a preimage v ∈ V (K̃) of w2 with Dec(v) ∈ C1. In

particular, Dec(v) ⊂ G1, which means that Gal(K̃/K) fixes v.G1 ∈ (V/G1)(K) ∼=
W1(K). So the image f1(v) lies in W1(K). As Ar(f1(v)) contains Dec(v), we have
Ar(f1(v)) = C1, so f1(v) is a preimage of w2 lying in X1(K).

It remains to check that the fibers of φ↾X1
have size one if and only if |G1|

|C1|
= |G2|

|C2|
.

Indeed, we prove that the size of the fibers is |G2|·|C1|
|C2|·|G1|

. Fix a group Q ∈ C1. For

any model K |= T and any w2 ∈ X2(K), consider the set F2 := {v ∈ f−1
2 (w2) |

Dec(v) = Q}. By Lemma 3.1, this set has |G2|
|C2|

elements.

For any v ∈ F2, f1(v) lies in X1(K) ∩ φ−1(w2) (lying in X1(K) holds true by
the same argument as in “φ(X1) ⊃ X2”). So the sets F1(w1) := {v ∈ f−1

1 (w1) |
Dec(v) = Q}, w1 ∈ X1(K)∩ φ−1(w2), form a partition of F2. By Lemma 3.1, each

set F1(w1) has |G1|
|C1|

elements, so w2 has |G2|·|C1|
|C2|·|G1|

preimages in X1(K). �

3.3. A version of Chebotarev’s density theorem. We will need the following
(qualitative) version of Chebotarev’s density theorem. Remember that we fixed a
torsion-free pro-cyclic group Gal , a field k of characteristic zero, and the theory
T = TGal,k. Concerning the permitted subgroups Psub, remember Definition 2.4.
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Lemma 3.3. For any Galois cover V
G
։ W and any conjugacy class C ⊂ Psub(G)

of permitted subgroups of G, there exists a model K |= T such that X(V
G
։

W, C)(K) is Zariski dense in W (K).

Remark 3.4. As K is PAC, X(V
G
։ W, C)(K) is even dense in W (K̃).

Proof of Lemma 3.3. First note that the condition “X(V
G
։ W, C)(K) is dense in

W (K)” can be expressed by an infinite number of first order sentences: for every

open subset W0 ⊂ W , take the sentence which says that X(V
G
։ W, C) ∩ W0 is

not empty. Let T ′ be the theory T with these sentences added. Using the usual
density theorem of Chebotarev, we will show that T ′ is finitely satisfyable; then,
the claim follows by compactness. (In algebraic terms: we will construct a lot of
fields satisfying some of the properties we would like to have; then an appropriate
ultraproduct of these fields will do the job.)

Fix once and for all a ring R ⊂ k which is finitely generated over Z and such

that V
G
։ W can be defined over R. Choose a version VR

G
։ WR of V

G
։ W over

R, i.e. such that V = VR ⊗R k, etc.
Let A be any finite subset of k, and let W0 ⊂ WR ⊗R R[A] be any open subset

defined over R[A]. Out of this, we will construct a field K ′ = K ′
A,W0

together with a

ring homomorphism φ : R[A] → K ′ with the following properties: K ′ is an algebraic

extension of a finite field, its Galois group is Gal , and X(VR
G
։ WR, C)(K ′) ∩

W0(K
′) is not empty, where we use φ to interpret the parameters of this formula

(which lie in R[A]) in K ′.
Before we give the construction of K ′, let us check that those fields indeed verify

any finite part of T ′. Of course, the constants for the elements of R[A] in the
language of T ′ are interpreted using φ and the remaining constants k r R[A] are
interpreted anyhow.

All fields K ′
A,W0

are perfect and have Galois group Gal . By choosing W0 small

enough, we can make K ′
A,W0

satisfy any finite part of “X(V
G
։ W, C) is dense in

W”. To get a field K ′
A,W0

which satisfies a finite part of the atomic diagram of k,

we just have to choose A big enough; in particular to get φ(a) 6= φ(a′) for a, a′ ∈ k,
we put 1

a−a′
into A. To get a finite part of PAC, by the Lang-Weil estimates we

just have to ensure that K ′
A,W0

is big enough. This can be done by adding elements

of the form 1
p to A.

Now the only thing left to do is to construct the field KA,W0
for any given A

and W0 as above. Let us start by specifying the objects we want to apply the

usual density theorem of Chebotarev to. Tensor the Galois cover VR
G
։ WR with

⊗RR[A], restrict it to W0, and denote the result by V0
G
։ W0. This is again a

Galois cover, and both V0 and W0 are finitely generated over Z. Define Ĉ := {g ∈
G | Ppart(〈g〉) ∈ C}.

We apply Chebotarev’s density theorem (in the version of [12], Theorem 7) to

V0
G
։ W0 and Ĉ. This yields the existence of a finite field F and an element

w ∈ W0(F ) such that the usual Artin symbol of w lies in Ĉ. Note that here W0

is interpreted as a scheme over Z, so “w ∈ W0(F )” means that we get a map
R[A] → F , and W0(F ) has to be interpreted using this map.

To get our desired field K ′, we identify Gal with a subgroup of Ẑ ∼= Gal(F̃ /F )

in such a way that Ẑ/Gal is torsion-free. Then we define K ′ to be the subfield of



MOTIVES FOR PERFECT PAC FIELDS WITH PRO-CYCLIC GALOIS GROUP 11

F̃ fixed by Gal ⊂ Gal(F̃ /F ). As promised it is an algebraic extension of a finite
field, it has Galois group Gal , and it comes with a map φ : R[A] → F →֒ K ′. It
remains to check that the element w, interpreted as an element of W0(K

′), has
Artin symbol C in our sense.

Denote the usual Frobenius automorphism x 7→ x|F | in Gal(F̃ /F ) by σ0. Choose

a preimage v ∈ V0(F̃ ) of w and let ρ : Gal(F̃ /F ) → G be the group homomorphism

satisfying σ(v) = v.ρ(σ) for all σ ∈ Gal(F̃ /F ). Then the image of ρ is 〈ρ(σ0)〉, and
the image of ρ↾Gal is ρ(Gal ) = Ppart(〈ρ(σ0)〉) (see the remark after Definition 2.4).

As ρ(σ0) lies in Ĉ, im(ρ↾Gal) lies in C, which is what we had to show. �

3.4. Assigning a virtual motive to a colored Galois cover. Gillet and Soulé
[7] and Guillén and Navarro Aznar [8] have defined a map χc : K0(Vark) → K0(Motk)
assigning a virtual motive to any variety. As in [4], we use the following “equivariant
version” of this result from [1].

For a finite group G, denote by R(G) the group of virtual characters of G
(i.e. Z-linear combinations of irreducible characters of G) and by K0(G, Vark) the
Grothendieck ring of G-varieties. (As for the Galois covers, we let G act from the
right.) The following is Theorem 6.1 of [1]:

Theorem 3.5. There exists a unique map χc which associates to each finite group
G, each G-variety V and each character α ∈ R(G) a virtual motive χc(G # V, α) ∈
K0(Motk) such that:

(1) For any G and α, the induced map χc(G # , α) : K0(G, Vark) → K0(Motk)
is a group homomorphism.

(2) For any G and V , χc(G # V, ) : R(G) → K0(Motk) is a group homomor-
phism.

(3) If αreg is the character of the regular representation of G, then χc(G #

V, αreg) = χc(V ).
(4) Suppose V is projective and smooth and α ∈ R(G) is irreducible and of

dimension nα. Then χc(G # V, α) is the class of the motive (V, pα), where
pα := nα

|G|

∑

g∈G α(g−1)[g] ∈ Q[G] is the idempotent corresponding to α.

We shall also need the following properties of χc.

Lemma 3.6. Let G be a finite group, H ⊂ G be a subgroup and V be a G-variety.

(1) Suppose H is normal in G and denote the projection G ։ G/H by π. Then,
for any character α ∈ R(G/H),

χc(G/H # V/H, α) = χc(G # V, α ◦ π) .

(2) For any character α ∈ R(H),

χc(G # V, IndG
H α) = χc(H # V, α) .

(3) Suppose V is isomorphic as a G-variety to ˙⋃
s∈G/H Us for a H-variety U .

Then, for any character α ∈ R(G),

χc(G # V, α) = χc(H # U, ResG
H α) .

(4) Suppose that for i = 1, 2 we have a finite group Gi, a Gi-variety Vi, and a
character αi of Gi. Then

χc(G1 × G2 # V1 × V2, α1 ⊗ α2) = χc(G1 # V1, α1) ⊗ χc(G2 # V2, α2) .
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Proof. (1) to (3) are Proposition 3.1.2 of [4]. (4) is a straightforward computation
using the definition of χc in [1]. �

χc(G # V, ) naturally extends to a map R(G)⊗ZQ → K0(Motk)Q = K0(Motk)⊗Z

Q with the same properties.

Using this map χc we will now associate to any colored Galois cover (V
G
։ W, C)

a motive χc(V
G
։ W, C). This will be done by associating a virtual character

αC ∈ R(G) ⊗Z Q to any coloring C.
In the case of pseudo-finite fields, in [4] Denef-Loeser defined αC to be 1 on the

set {g ∈ G | 〈g〉 ∈ C} and 0 elsewhere. Just copying this definition does not work

when the Galois group is not Ẑ. The reason is that in a certain sense, the meaning
of “Q ∈ C” depends on the Galois group. For example, “{1} ∈ C” means “just a

little part of W” when Gal = Ẑ, whereas when Gal is trivial, it means “the whole
of W”.

To get a working definition for αC in the non-Ẑ-case, one has to remember that
the Artin symbol is the image of a certain map ρ : Gal → G. Then one views Gal

as a subgroup of Ẑ and considers extensions of ρ to Ẑ, as described in the remark
after Definition 2.4 and as it was done in the proof of Lemma 3.3. In this way one
naturally gets the following definition:

αC(g) :=

{

1 if Ppart(〈g〉) ∈ C

0 otherwise .

The first thing we have to check is that indeed αC lies in R(G) ⊗Z Q (and not

just in R(G) ⊗Z Q̃). This follows from the fact that αC(g) = αC(g′) if 〈g〉 = 〈g′〉:
we get that αC can be written as Q-linear combination of characters induced by
trivial representations of cyclic subgroups of G.

Now we can associate a virtual motive to any colored Galois cover:

Definition 3.7. Given a colored Galois cover (V
G
։ W, C), define

χc(V
G
։ W, C) := χc(G # V, αC) .

3.5. Assigning a virtual motive to a definable set. We define the motive
associated to a Galois stratification A in the following way:

χc(A) :=
∑

i∈I

χc(Vi
Gi
։ Wi, Ci)

Lemma 3.8. If two Galois stratifications A and A′ of the same variety W define
the same subset of W , then the corresponding motives χc(A) and χc(A

′) are equal.

Proof. By Lemma 2.9, there exist refinements Ã resp. Ã′ of A resp. A′ which differ
only in the colorings, and the refinements define the same sets as the originals. So
it is enough to check that the associated motives are invariant under refinement of
the stratification and that if A and A′ differ only in the colorings and define the
same set, then even the colorings are the same.

Suppose first that A = (fi : Vi
Gi
։ Wi, Ci)i∈I and A′ = (fi : Vi

Gi
։ Wi, C

′
i)i∈I differ

only in the colorings and that both define the same set. Consider a conjugacy class
D of permitted subgroups of one of the groups Gi. By Lemma 3.3 there exists a
model K |= T and an element w ∈ Wi(K) such that Ar(w) = D. So as A(K) and
A′(K) do not differ in w, Ci and C′

i do not differ in D.
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To check that the virtual motive associated to a Galois stratification does not
change under refinement, it is enough to verify the two following special cases:

(1)

χc(f : V
G
։ W, C) =

∑

i∈I

χc(Vi
Gi
։ Wi, Ci)

where (f : V
G
։ W, C) is a colored Galois cover, (Wi) a decomposition of W

into finitely many locally closed subsets, and (Vi
Gi
։ Wi, Ci) is the restriction

of (V
G
։ W, C) to Wi.

(2)

χc(V
G
։ W, C) = χc(V

′ G′

։ W, C′)

where (V
G
։ W, C) is a colored Galois cover and (V ′ G′

։ W, C′) is a refine-
ment.

Proof of (1):

χc(V
G
։ W, C) = χc(G # V, αC)

=
∑

i

χc(G # f−1(Wi), αC) by Theorem 3.5 (1)

=
∑

i

χc(Gi # Vi, ResG
Gi

αC) by Lemma 3.6 (3)

=
∑

i

χc(Gi # Vi, αCi
) =

∑

i

χc(Vi
Gi
։ Wi, Ci)

Proof of (2): By Lemma 3.6 (1), it is enough to check that αC′ = αC ◦ π. But
indeed we have, for any g′ ∈ G′:

αC′(g′) = 1 ⇐⇒ Ppart(〈g′〉) ∈ C′ ⇐⇒ π(Ppart(〈g′〉)) ∈ C

⇐⇒ Ppart(〈π(g′)〉) ∈ C ⇐⇒ αC(π(g′)) = 1 .

�

Using this lemma (and Lemma 2.10 about the quantifier elimination), we are
now able to associate virtual motives to definable sets:

Definition 3.9. Let X be a definable set of T . Then define the associated virtual
motive χc(X) by choosing any Galois stratification A defining X and by letting
χc(X) := χc(A).

3.6. The properties of χc. We now check all the properties of χc we need for
Theorem 1.1: χc should induce a ring homomorphism K0(TGal,k) → K0(Motk)Q,
i.e. it has to be invariant under definable bijections and compatible with disjoint
unions and products; and we want χc to satisfy condition (∗) of the theorem.

Compatibility with disjoint unions is clear. (Use a Galois stratification which is
sufficiently fine to define all involved sets.) Let us now quickly verify compatibility
with products and (∗), so that afterwards the only thing remaining is compatibility
with definable bijections.

Lemma 3.10. Suppose X1 and X2 are two definable sets. Then χc(X1 × X2) =
χc(X1) ⊗ χc(X2).
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Sketch of proof. It is enough to verify the statement if Xi = X(Vi
Gi
։ Wi, Ci) for

i = 1, 2.
Using the definition of the Artin symbol and by choosing a generator of Gal , one

easily verifies that

X1 × X2 = X(V1 × V2
G1×G2

։ W1 × W2, C) ,

where C = {〈(g1, g2)〉 ⊂ G1 × G2 | 〈g1〉 ∈ C1, 〈g2〉 ∈ C2}.
One then computes αC((g1, g2)) = αC1

(g1) · αC1
(g1) for g1 ∈ G1 and g2 ∈ G2.

For this, the following formula is helpful. Let m be the product of all prime factors
of |G1 ×G2| (with multiplicity) not lying in P . Then for any g ∈ G1 ×G2 we have
Ppart(〈g〉) = 〈gm〉.

Finally, apply Lemma 3.6 (4). �

Lemma 3.11. Suppose V
G
։ W is a Galois cover such that all prime factors of

|G| lie in P (where P is the set of primes such that Gal =
∏

p∈P Zp). Then the
map χc of Definition 3.9 satisfies

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V ) .

Proof. Remember the definition: χc(X(V
G
։ W, {1})) = χc(G # X, α{1}) where

α{1}(g) = 1 if Ppart(〈g〉) = {1} and α{1}(g) = 0 otherwise. As all prime factors

of |G| lie in P , we have Ppart(〈g〉) = 〈g〉, so α{1} = 1
|G|αreg, where αreg is the

character of the regular representation of G. By Theorem 3.5 (2) and (3), we get

χc(X(V
G
։ W, C)) = 1

|G|χc(V ). �

The last piece of work is compatibility with definable bijections:

Lemma 3.12. Suppose X ⊂ An and X ′ ⊂ An′

are two definable sets and suppose
there is a definable bijection φ from X to X ′. Then the associated virtual motives
χc(X) and χc(X

′) are the same.

Proof. We have definable bijections between the graph of φ and X and X ′, induced
by the projections An+n′

։ An and An+n′

։ An′

. So it is enough to check the
statement when the bijection itself is induced by a projection.

Choose a Galois stratification A = (Vi
Gi
։ Wi)i∈I defining X . By compatibility

of χc with disjoint union, it is enough to show the statement for all the restricted
bijections Wi → φ(Wi), so we can suppose that X is a subset of a variety W and

defined by a single colored Galois cover: X = X(f : V
G
։ W, C).

Now choose a Galois stratification A′ of X ′. Again it is enough to show the
statement for all restricted bijections φ−1(W ′

i )∩W → W ′
i , so we can suppose that

X ′ is defined by a single colored Galois cover: X ′ = X(f ′ : V ′ G′

։ W ′, C′). Note
that X is still defined by a single Galois cover as we can simply restrict the previous
one to φ−1(W ′

i ) ∩ W . φ will now denote the map from W to W ′.
By induction, we can remove parts of W ′ of smaller dimension (and restrict the

two Galois covers appropriately). We will do this in the next paragraph.
The next thing we claim is that we can suppose V = V ′. By Lemma 3.3 (our

version of Chebotarev) and Remark 3.4, there exists a model K ′ |= T such that

X ′(K ′) is dense in W ′(K̃ ′). As the image of φ contains X ′(K ′), φ is dominant.

Similarly there is a model K |= T such that X(K) is dense in W (K̃); as φ is
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bijective on X(K), we get dim W = dimW ′, and φ is generically finite. Therefore,
after cutting away parts of smaller dimension, we can refine both Galois covers such
that we get V = V ′ and G ⊂ G′.

Decompose the set C into conjugacy classes Ci. To each X(V
G
։ W, Ci) ⊂ X

we apply Lemma 3.2. The result is that φ restricted to X(V
G
։ W, Ci) has image

X(V
G′

։ W ′, CG′

i ), so we may again cut φ into parts and suppose that C consists

of a single conjugacy class and C′ = CG′

. Lemma 3.2 also yields |C|
|G| = |C′|

|G′| . This

equation in particular implies that for any Q ∈ C we have NG′(Q) ⊂ G.

In view of Lemma 3.6 (2), we now only have to check that αC′ = IndG′

G αC .
Set

Ĉ := {〈g〉 ⊂ G | αC(g) = 1} = {〈g〉 ⊂ G | Ppart(〈g〉) ∈ C} and

Ĉ′ := {〈g′〉 ⊂ G′ | αC′(g′) = 1} = {〈g′〉 ⊂ G | Ppart(〈g′〉) ∈ C′} .

We want to understand the relation between Ĉ and Ĉ′. For this, consider the map
η : Ĉ′ → C′, Q 7→ Ppart(Q). It maps Ĉ to C. We claim that Ĉ is exactly the

preimage of C under η. For this, we have to verify that for any group Q ∈ Ĉ′ with
Ppart(Q) ∈ C, we already have Q ⊂ G. Indeed: Q is abelian, so it is contained in
NG′(Ppart(Q)), and NG′(Ppart(Q)) is contained in G.

Now using that C consists of a single conjugacy class and that η commutes with

conjugation, we arrive at two conclusions: Ĉ′ = ĈG′

and |Ĉ′|
|C′| = fibersize of η = |Ĉ|

|C| .

Using this, we can finally compute IndG′

G αC . For any g′ ∈ G′, we have

IndG′

G αC(g′) =
1

|G|
#{h ∈ G′ | 〈hg′h−1〉 ∈ Ĉ} .

This is zero if 〈g′〉 /∈ ĈG′

= Ĉ′. Otherwise:

· · · =
1

|G|
· |Ĉ| · |NG′(〈g′〉)| =

|Ĉ|

|G|
·
|G′|

|Ĉ′|
= 1 .

(In the last equality, we combine |C|
|G| = |C′|

|G′| and |Ĉ′|
|C′| = |Ĉ|

|C| .) �

4. Other proofs on χc

In this section we prove the remaining statements on the map χc, namely the
uniqueness statement of Theorem 1.1 in the pseudo-finite case and compatibility of
the map χc with change of the base field k.

4.1. The uniqueness statement. We will use following properties of χc: it ex-
tends the known map χc : K0(Vark) → K0(Motk), it is invariant under definable

bijections, it is compatible with disjoint unions, and for any Galois cover V
G
։ W ,

the equality

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V )

holds.
Note that we will not need that χc is compatible with products.
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Proof of uniqueness in Theorem 1.1. By the almost quantifier elimination (Lemma 2.10)
and compatibility with disjoint unions, it is enough to prove uniqueness for defin-

able sets of the form X(V
G
։ W, C), where (V

G
։ W, C) is a colored Galois cover

and C = QG consists of a single conjugacy class of cyclic subgroups of G.
We proceed by induction on |G| and |Q|. (We will suppose that the statement

is true for G of the same size and Q smaller and vice versa.)
Suppose first that Q is not normal in G. Let G′ := NG(Q) be its normalizer

and W ′ := V/G′. Note that C′ := QG′

= {Q}. By induction, we know χc(X(V
G′

։

W ′, C′)). We have |G′|
|C′| = |G|

|C| , so Lemma 3.2 implies that the map W ′ → W induces

a bijection X(V
G′

։ W ′, C′) → X(V
G
։ W, C). So by assumption χc(X(V

G
։

W, C)) = χc(X(V
G′

։ W ′, C′)).
Now suppose Q is normal in G (and in particular C = {Q}). Let G′ := G/Q

and V ′ := V/Q. We know χc(X(V ′ G′

։ W, {1})) by (∗), and we have X(V ′ G′

։

W, {1}) = X(V
G
։ W, C1), where C1 = {Q1 ∈ Psub(G) | Q1 ⊂ Q} consists of all

(cyclic) subgroups of G contained in Q. But for any strict subgroup Q1 ( Q, we

know χc(X(V
G
։ W, QG

1 )) by induction. So χc(X(V
G
։ W, Q)) is the only (up to

now) unknown term in the equation

χc(X(V
G
։ W, C1)) =

∑

C2⊂C1

C2 one conjugacy class

χc(X(V
G
։ W, C2)) .

�

4.2. Change of the base field k. In this section, we prove Proposition 1.2, i.e.
that our map χc is essentially independent of the base field k. So suppose we
have a field k′ containing k and remember that we have canonical homomorphisms
⊗kk′ : K0(TGal,k) → K0(TGal,k′) and ⊗kk′ : K0(Motk)Q → K0(Motk′)Q.

Proof of Proposition 1.2. The claim of the proposition is χc(X⊗kk′) = χc(X)⊗kk′

for any definable set X of TGal,k. It is enough to check the statement for generators

of K0(TGal,k), i.e. we may suppose that X is of the form X = X(V
G
։ W, C) where

(V
G
։ W, C) is a colored Galois cover defined over k.
By tensoring with k′ and choosing one irreducible component V ′ of V ⊗k k′, we

get a Galois cover V ′ G′

։ W ′ over k′, where G′ is a subgroup of G. One easily verifies

X ⊗k k′ = X(V ′ G′

։ W ′, C′) where C′ := {Q ∈ C | Q ⊂ G′}.
Using Lemma 3.6 we get

χc(X(V ′ G′

։ W ′, C′)) = χc(G
′ # V ′, αC′) = χc(G

′ # V ′, ResG
G′ αC)

= χc(G # V ⊗k k′, αC) = χc(G # V, αC) ⊗k k′

= χc(X(V
G
։ W, C)) ⊗k k′ .

�
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5. Maps between Grothendieck rings

In this section we first prove the existence of the map θι between the different
Grothendieck rings K0(TGal,k) (Theorem 1.3) and then apply this to get Propo-
sition 1.4. Finally we check a compatibility between the maps θι and the maps
χc.

5.1. Existence of the maps θι. Remember the statement of the theorem. We
have a field k and an inclusion of torsion-free pro-cyclic groups ι : Gal2 →֒ Gal1. For
simplicity, we will now identify Gal2 with ι(Gal2) ⊂ Gal1. Denote by Ti := TGali,k

the theory of perfect PAC fields with Galois group Gal i and which contain k.
The map θ := θι : K0(T2) → K0(T1) was defined as follows. Any model K1 of

T1 yields a model K2 := K̃Gal2
1 of T2. For any X2 ⊂ An definable in T2, we defined

θ(X2)(K1) = X2(K2) ∩ Kn
1 .

What we have to check is:

(1) X2(K2) ∩ Kn
1 is definable (uniformly for all K1).

(2) If there is a definable bijection X2 → X ′
2 in T2, then there is also a definable

bijection θ(X2) → θ(X ′
2) in T1.

(3) θ is a ring homomorphism, i.e. compatible with disjoint unions and prod-
ucts.

The third statement is clear by definition.
(1) Any definable set X2 of T2 can be written as disjoint union of sets of the

form X(f : V
G
։ W, C2), where C2 is a conjugacy class of permitted subgroups of

G, so it is enough to prove that θ maps such sets to definable ones. We claim:

θ(X(V
G
։ W, C2)) = X(V

G
։ W, C1), where C1 is defined as follows: Let M be the

set of homomorphisms ρ1 : Gal1 → G such that ρ1(Gal2) ∈ C2. Then C1 is the set
of images of these homomorphisms M . In a formula:

C1 = {im ρ1 | ρ1 : Gal1 → G, ρ1(Gal2) ∈ C2} .

We have to check: For any model K1 of T1 and any element w ∈ W (K1), we have

w ∈ X(V
G
։ W, C1)(K1) if and only if w ∈ X(V

G
։ W, C2)(K2), where K2 = K̃Gal2

1

as above.
Choose an element v ∈ V (K̃1) with f(v) = w. We get a homomorphism

ρ1 : Gal1 → G defined by σ(v) = v.ρ1(σ) for any σ ∈ Gal1. Of course the re-
striction ρ2 := ρ1↾Gal2 satisfies the same property. By definition, we have w ∈

X(V
G
։ W, C1)(K1) if and only if im ρ1 ∈ C1 and w ∈ X(V

G
։ W, C2)(K2) if and

only if im ρ2 = ρ1(Gal2) ∈ C2. So we have to check that for any ρ1 : Gal1 → G we
have im ρ1 ∈ C1 if and only if ρ1(Gal2) ∈ C2.

“⇐” is clear by the definition of C1.
“⇒”: Suppose Q1 := im ρ1 ∈ C1. By the definition of C1, there is a homomor-

phism ρ′1 ∈ M with im ρ′1 = Q1. As Gal1 is pro-cyclic, homomorphisms Gal1 → Q1

are determined by the image of a generator, so we can write ρ1 = α ◦ ρ′1 for some
automorphism α ∈ Aut(Q1). As Q1 is cyclic, all its subgroups are characteristic
subgroups, so ρ1(Gal2) = α(ρ′1(Gal2)) = ρ′1(Gal2) ∈ C2. This implies ρ1 ∈ C1.

(2) Suppose X2 ⊂ An and X ′
2 ⊂ An′

are two definable sets in T2 and f : X2 → X ′
2

is a definable bijection. We have to show that there is a T1-definable bijection
θ(X2) → θ(X ′

2). Indeed, we will check that θ(f) is such a bijection. In other words
we have to verify the following statement:
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Let K1 be any model of T1 and K2 = K̃Gal2
1 . Then for any x ∈ X2(K2) and

x′ := f(x) ∈ X ′
2(K2), we have x ∈ Kn

1 if and only if x′ ∈ Kn′

1 .
Suppose x /∈ Kn

1 . Then there exists a σ ∈ Gal(K2/K1) moving x. But
σ(X2(K2)) = X2(K2), so σ(x) ∈ X2. As f is injective on X2(K2), this implies

σ(f(x)) = f(σ(x)) 6= f(x), so f(x) /∈ Kn′

1 .
The other direction works analogously. �

5.2. χc is not injective. As an example application of the maps θι, we will now
prove Proposition 1.4. To this end, we will construct a pair of definable sets X1 and
X2 such that χc(X1) = χc(X2) but χc(θι(X1)) 6= χc(θι(X2)) for a suitable map
ι : Gal →֒ Gal . (In fact, we will construct a whole bunch of such pairs.)

Proof of Proposition 1.4. Remember that Gal is a non-trivial subgroup of Ẑ, i.e.
Gal =

∏

p∈P Zp, where P is a non-empty set of primes.
For n ∈ N≥1, consider the group homomorphism ι : Gal →֒ Gal , σ 7→ σn. Apply-

ing Theorem 1.3 to this map gives an endomorphism θn of K0(TẐ,k), which can be

explicitly computed on sets defined by Galois covers as follows. Let (V
G
։ W, C2)

be a colored Galois cover. The computation in the proof of Theorem 1.3 shows

that θn(X(V
G
։ W, C2)) = X(V

G
։ W, C1), where C1 = {Q ∈ Psub(G) | Qn ∈ C2}

consists of those permitted subgroups of G whose subgroups of n-th powers lie in
C2.

Note that θn is interesting only if n has prime factors which lie in P ; otherwise,
n and |Q| are coprime for any permitted subgroup Q ⊂ G, which implies Q = Qn,
C1 = C2, and θn = id.

Now let V
G
։ W be any non-trivial Galois cover such that all prime factors of |G|

lie in P , and define X := X(V
G
։ W, {id}). By condition (∗) of Theorem 1.1, we

have χc(X) = 1
Gχc(V ), so χc(X ×G) = χc(V ). (Here G is interpreted as a discrete

set.) However, we will see that for n = |G|, we have χc(θn(X × G)) 6= χc(θn(V )).
As θn is the identity on K0(Vark), we have θn(V ) = [V ]. On the other hand,

the subgroup of n-th powers of any cyclic subgroup of G is trivial, so θn(X) =

[X(V
G
։ W, Psub(G))] = [W ] and θn(X × G) = [W × G]. But V and W × G are

two varieties with a different number of irreducible components, so χc(θn(X×G)) 6=
χc(θn(V )). �

5.3. Compatibility of χc and θι. We prove the following compatibility statement:

Proposition 5.1. Suppose k is a field of characteristic zero and Gal2 ⊂ Gal1 are
two torsion-free pro-cyclic groups such that Gal1 / Gal2 is torsion-free, too. We use
the following notation: Ti := TGali,k (for i = 1, 2) are the corresponding theories,
χi

c : K0(Ti) → K0(Motk)Q are the maps of Theorem 1.1, and θ : K0(T2) → K0(T1)
is the map provided by Theorem 1.3 applied to the inclusion Gal2 ⊂ Gal1. Then
we have:

χ2
c = χ1

c ◦ θ .

Proof. For i = 1, 2 let Pi be the set of primes such that Gal i =
∏

p∈Pi
Zp. We

have P2 ⊂ P1, and Gal2 is just the factor of Gal1 corresponding to P2. We will
write Psubi resp. Pparti for the permitted subgroups and the permitted part to
distinguish between the two Galois groups.
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We only have to verify the statement for sets of the form X(V
G
։ W, C2), where

(V
G
։ W, C2) is a colored Galois cover for T2. By the proof of Theorem 1.3, we

have θ(X(V
G
։ W, C2)) = X(V

G
։ W, C1), where C1 consists of the images of those

maps ρ : Gal1 → G which satisfy ρ(Gal2) ∈ C2. As Gal2 is a direct factor of Gal1,
we get C1 = {Q ∈ Psub1(G) | Ppart2(Q) ∈ C2}.

Now remember Definition 3.7: χi
c(X(V

G
։ W, Ci)) = χc(G # V, αCi

), where

αCi
(g) :=

{

1 if Pparti(〈g〉) ∈ Ci

0 otherwise.

But Ppart1(〈g〉) ∈ C1 if and only if Ppart2(Ppart1(〈g〉)) = Ppart2(〈g〉) ∈ C2, so
αC1

= αC2
, and the claim is proven. �

6. Open problems

6.1. Uniqueness of χc. In the case of pseudo-finite fields, the conditions given
in Theorem 1.1 are enough to render χc unique. One would like to have a similar
uniqueness statement in the other cases. Unfortunately, the condition

(∗) χc(X(V
G
։ W, {1})) =

1

|G|
χc(V )

is false in general if |G| has prime factors not in P (where Gal =
∏

p∈P Zp). For

algebraically closed fields for example, we have χc(X(V
G
։ W, {1})) = χc(W ),

which is not equal to 1
|G|χc(V ) unless G is trivial.

The first question is: is the weak version of (∗) (when one requires all prime
factors of |G| to lie in P ) enough to get uniqueness? And if not: is there some other
nice condition rendering χc unique? One fact suggesting that the weak condition
could already be strong enough is that this is true indeed for algebraically closed
fields.

6.2. From motives to measure. The parallels between the definitions of the
virtual motive associated to a definable set and the measure of such a set ([2], [9])
suggest that one should be able to extract the measure from the motive. More
precisely, fix a perfect PAC field K of characteristic zero with pro-cyclic Galois
group Gal . Note that there are two theories around now: TGal,K , the theory of
pseudo-finite fields containing K (which is not complete) and Th(K), the (complete)
theory of K itself.

Denote by dim: K0(Th(K)) → N the dimension of [3] (which needs not coincide
with the usual dimension for varieties: only components “visible over K” are con-
sidered) and by µ : K0(Th(K)) → Q the measure of [9]. The question is whether a
dotted map in the following diagram exists making the diagram commutative.

K0(TK) K0(Th(K))

K0(MotK)Q N × Q

χc (dim, µ)

If K is algebraically closed, then this is obviously true: In this case µ(V ) is just
the number of irreducible components of V , and both this and the dimension of V
(which is the usual one in this case) can be seen in the corresponding motive.

If K is pseudo-finite, this is true, too: Let X be a definable set of TGal,K . Then
it makes sense to speak about X(F ) for finite fields F of almost all characteristics.
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Lemma 3.3.2 of [4] states that for almost all characteristics, the number of points
|X(F )| is encoded in the motive. (Not very surprisingly, it is the trace of the
Frobenius automorphism on the motive.) The dimension and the measure of X in
K can be computed from these cardinalities.

The way one extracts the dimension and the measure from the motive seems
quite different in the two above cases. This suggests that one might get interesting
new insights by generalizing this to arbitrary procyclic Galois groups.

6.3. Larger Galois groups for the maps θι. The quantifier elimination result
of [6] does not only work for fields with pro-cyclic Galois groups, but for some
larger Galois groups as well. (The Galois group has to satisfy what Fried-Jarden
call the “embedding property”.) It seems plausible that Theorem 1.3 should be
generalizable to this context as well. However the proof will need some modifica-

tions. Indeed for Gal1 = Ẑ ∗ Ẑ = 〈a, b〉 and Gal2 = 〈a〉 ⊂ Gal1, one can construct a

T2-definable set X = X(V
G
։ W, C) such that θ(X) is not definable using the same

Galois cover V
G
։ W .

6.4. Larger Galois groups for the maps χc. Another natural question is whether
the map χc can also be defined for fields with larger Galois group. However, in [9]
we already showed that the measure of [2] does not extend to this generality. In-

deed, no measure exists for example if the Galois group is Ẑ ∗ Ẑ. This suggests
that it is neither possible to associate motives to definable sets of such theories.
Probably, T

Ẑ∗Ẑ,k contains too many definable bijections so that the corresponding

Grothendieck ring gets too small. One might even hope to show that K0(TẐ∗Ẑ,k) is

trivial.

6.5. What exactly do we know about K0(TGal,k)? We showed that the maps
χc do not yield the full information about the definable sets and we showed how
additional information can be obtained using the maps θι. The question is now: do
we get all additive information using both maps together? More precisely, a strong
version of this would be:

Question 6.1. Suppose X1 and X2 are two definable sets in TGal,k, and sup-
pose that for any injective endomorphism ι : Gal →֒ Gal we have χc(θι(X1)) =
χc(θι(X2)). Does this imply [X1] = [X2] in K0(TGal,k)?

This is of course a very difficult question (and I am not so sure if I really believe
that the answer is positive), as in particular it would imply that χc is injective
for algebraically closed fields. In fact the question I would prefer to ask is: is
Question 6.1 true “up to varieties”, or, “up to whatever is missing in the case of
algebraically closed fields”? The first open problem here is to give a precise meaning
to this last question.
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