
Elimination of superfluous constants in the

language of quasi-analytic classes and description

of prime models in these classes

Alexandre Rambaud ∗

Abstract. Let E be a set of real restricted quasi-analytic functions ; we describe
a language L definable from E , +, × and <, and a L-theory T , universal and
“explicit”, such that T is equivalent to the complete theory of R in L and T is
model-complete. As a consequence, we give a description of the prime model of
this theory.

1 Introduction

This article is motivated by the results obtained in [Ra1], and condensed in
[Ra2], that we can summarize in this way : let F be a set of restricted maps from
Rn to R, ie which vanish outside a certain compact box and C∞ on this same
box (this box is not necessarily the same for each map). Let F be the closure
of F ∪R by sums, products, compositions, implicit functions and factorizations
by monomials ; in the continuation we only consider sets F such that F is a
quasi-analytic class. In these conditions, we describe a theory T , universal and
“explicit”, in the language L of ordered fields with rational powers, enlarged
by a symbol of function for each element of F ; so L has a symbol of constant
for each element of R. We prove at the same time that T is equivalent to the
complete theory of R and that T is model-complete, therefore admits quantifier
elimination. (This result is detailed in theorem 2.21 of this article.)
Consequences are, for example, the o-minimality of the complete theory of R
(proved initially in [RSW]), the cellular decomposition in cells locally C∞ and
the existence of a preparation theorem, in the way of Lion-Rolin (cf. [LR]), for
the considered classes.

One of the remarks that we can make is that the language L potentially
uses “too much” constants. Indeed L contains a constant for each element of R
and it is clear that in many cases, notably if F is countable, a lot of elements
of R are not definable from F , +, × and <.
So the aim of this article is to explicit, for each F , a “minimum” language L′, ie
every element of L′ is definable from F , +, × and <, and an universal L′-theory
T ′, such that T ′ is still equivalent to the complete theory of R in L′ and is still
model-complete. The theorem 4.7 establishes this result.
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We obtain as a consequence the corollary 4.8 which describes the prime model
of the complete theory R in L′ and in weaker languages. A particular case of
this result deals with restricted analytic classes and notably with the restricted
exponential : so we have an “explicit” description of the prime model of R in
the language of ordered rings enlarged by a restricted exponential. (See [vdD2]
and [vdDMM] for more details about these classes ; [W1] and [W2] can be also
consulted to go thoroughly into the study of the real exponential and the res-
tricted real exponential)

We suppose that the reader is familiar to the o-minimality, the basic concepts
of quasi-analycity and the results of [Ra1]. We can consult for example [vdD1]
or [C] for an introduction to o-minimality (and to real geometry in [C]) and
[VP] for a presentation of quasi-analycity.

2 Quasi-analytic classes

Notation 2.1 . Let A ⊂ R, B ⊂ Rn and (a1, ..., an) ∈ Rn ; in this article, we
will use the following notations.
A∗ = {x ∈ A;x 6= 0} ; A+ = {x ∈ A;x ≥ 0} ; A− = {x ∈ A;x ≤ 0}.
◦
B will refer to the interior of B for the topology of Rn.
(a1, ..., an) +B will refer to the set {(a1 + x1, ..., an + xn); (x1, ..., xn) ∈ B}.

Definition 2.2 . (basic box) Let n ∈ N∗ and A ⊂ R ; P is a n-basic box over A if
there exist two maps α : {1, ..., n} → (A∪Q)∩R∗

− et β : {1, ..., n} → (A∪Q)∩R∗
+

such that P =
∏n

i=1[α(i), β(i)].
The set α({1, ..., n}) ∪ β({1, ..., n}) will be noted B(P ).
A n-basic box is a n-basic box over R.
If P is a n-basic box, 1P will refer to the indicator function of P , ie 1P is the
map from Rn to {0, 1} such that if x ∈ P , 1P (x) = 1, otherwise 1P (x) = 0.

Definition 2.3 . Let n ∈ N∗ and P be a n-basic box ; we note Z(P ) the set of
maps from Rn to R which vanish outside P .
We note Z∞(P ) the subset of Z(P ) such that its elements are the maps C∞ on
P , ie C∞ on the interior of P and whose all partial derivatives have a limit at
the boundary of P .
We finally note Z∞ the union of R and of all the sets Z∞(P ).

Definition 2.4 . Let f be a map from Rn to R and P be a n-basic box ; in this
article, we will note feP the map from Rn to R which is equal to f on P and
which vanishes outside P .
By language abuse, we will say that f is defined on P if f vanishes outside P
and is C∞ -in the sense specified above- on P .

Definition 2.5 . We note Lfct the language which contains a symbol of constant
for each element of R and, for n ∈ N∗, a symbol of n-ary function for each total
map from Rn to R.
If c belongs to R (resp. if f is a map from Rn to R), we note ∗c (resp. ∗f) the
symbol of Lfct which corresponds ; if s ∈ Lfct, we note s the interpretation of s
in R. Thus if c belongs to R (res. if f is a map from Rn to R), ( ∗c) = c (resp.
( ∗f) = f).
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Notation 2.6 . Let q ∈ Q∗, we will note πq the map from R to R which asso-
ciates xq to x when xq is defined, 0 otherwise.
For example, if x ≥ 0, π 1

2
(x) =

√
x and if x < 0, π 1

2
(x) = 0 ; whereas

π 1
3
(x) = x

1
3 for every x ∈ R. In the same way , if x ∈ R∗, π−1(x) = 1

x

and π−1(0) = 0.

In the continuation, we fix a set E included in Z∞ and A a subset of R.

We define now a certain type of Lfct-terms, the regular terms, which will be
those used in this article.

Definition 2.7 . (regular terms) Let F ⊂ Z∞ and B ⊂ R ; C will be the union
of B, of Q and of F ∩ R. All variables will be noted Xi (i ∈ N∗) ; so the coun-
table set V of the variables is {Xi; i ∈ N∗}. The order of the variables indexing
is important.

We define by induction the set RT [F , B](P ) and RT0[F , B], where P is a n-
basic box (n ∈ N∗), in the following way. At the beginning we suppose that all
the sets RT [F , B](P ) and RT0[F , B] are empty.
Let n ∈ N∗, P be a n-basic box, t ∈ RT [F , B](P ), (a, b) ∈ RT0[F , B]2 and σ a
strictly increasing map from {1, ..., n} to N∗.

1) (stability by elements of F and of C)

If c ∈ C, ∗c ∈ RT0[F , B]. If f ∈ F ∩ Z∞(P ), the term ∗f(Xσ(1), ..., Xσ(n))
belongs to RT [F , B](P )

2) (stability by permutations and increasing changes of variables)

if θ is a permutation of {1, ..., n}, then

t(Xθ(1), ..., Xθ(n)) ∈ RT [F , B](Pθ)

where Pθ = {(uθ(1), ..., uθ(n)) ∈ Rn; (u1, ..., un) ∈ P}. So Pθ is the permutation
of the coordinates of P by θ.
Moreover, s(Xσ◦θ(1), ..., Xσ◦θ(n)) ∈ RT [F , B](Pθ) if and only if s(Xθ(1), ..., Xθ(n)) ∈
RT [F , B](Pθ).

3) (stability by indicator functions and variables truncated to a basic box)

If Q is a n-basic box on C, ∗1Q(X1, ..., Xn) ∈ RT [F , B](Q). In the same
way, for i ∈ {1, ..., n}, Xi

∗× ∗1Q(X1, ..., Xn) is in RT [F , B](Q)

4) (stability by enlargement)

If for p ∈ N∗ and Q a p-basic box over C, hQ is the map from Rn+p to R, such
that for every (u1, ..., un+p) ∈ P×Q, hQ(u1, ..., un, un+1, ..., un+p) = t(u1, .., un),
and 0 outside P ×Q, then ∗hQ ∈ RT [F , B](P ×Q)

5) (stability of RT0[F , B] by field operations and by rational powers)
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If q ∈ Q∗, the terms a ∗+b, a ∗×b, ∗πq(a) are in RT0[F , B]

6) (stability of RT0[F , B] by composition by regular terms)

If (a1, ..., an) ∈ RT0[F , B]n and if s ∈ RT [F , B](Q), with Q a m-basic box
(m ≥ n), then :

- if m = n, s(a1, ...., an) ∈ RT0[F , B]
- if m > n, s(a1, ...., an, X1, ..., Xm−n) ∈ RT [F , B](Q′), where

Q′ = {(u1, ..., um−n) ∈ Rm−n; (a1, ..., an, u1, ..., um−n) ∈ Q}

7) (stability of the regular terms by truncated sums and products)

If Q is a n-basic box and if s ∈ RT [F , B](Q), the terms (s ∗+t) ∗×( ∗1P∩Q)
and s ∗×t are in RT [F , B](P ∩Q)

8) (stability of the regular terms by transpositions and products by RT0[F , B])

The terms (a ∗+t) ∗×( ∗1P ), (t ∗+a) ∗×( ∗1P ), a ∗×t and t ∗×a are in
RT [F , B](P )

9) (stability by compositions)

If Q1,...,Qn are r-basic boxes, if s1, ..., sn respectively belong to RT [F , B](Q1),...,
RT [F , B](Qn) and finally, if for all i ∈ {1, ..., n}, the following condition is sa-
tisfied :

∀(u1, ..., ur) ∈
n⋂

j=1

Qj (s1(u1, ..., ur), ..., sn(u1, ..., ur)) ∈ P

then the term (t(s1, ..., sn) ∗×( ∗1Tn
j=1 Qj

) belongs to RT [F , B](
⋂n

j=1Qj)

10) (stability by rational powers)

If t(P ) ⊂ R∗
+, then for all q ∈ Q∗, the term ∗πq(t) ∈ RT [F , B](P )

11) (stability at the boundary of the basic boxes)

If Q and Q′ are two n-basic boxes over C, if s ∈ RT [F , B](Q), if (a1, ..., an) ∈
RT0[F , B]n and if (ε1, ...εn) ∈ {−1, 1}n such that :

∀(u1, ..., un) ∈ Q′ s(a1 + ε1.u
2
1, ..., an + εn.u

2
n) ∈ Q

then the term (s(a1
∗+ ∗ε1

∗×X1, ..., an
∗+ ∗εn

∗×Xn)) ∗× ∗1Q′ ∈ RT [F , B](Q′).

We note RT [F , B] the union of RT0[F , B] and of all the sets RT [F , B](P ).
The elements of RT [F , B](P ) are the regular terms over P , generated by F and
B ; those of RT0[F , B] are the regular constants ; and those of RT [F , B] are the
regular terms, generated by F and B.

Proposition 2.8 . By induction, we prove the following assertions.
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-There may exist a basic box P such that RT [F , B](P ) is empty.

-If P is a n-basic box such that RT [F , B](P ) 6= ∅, the elements of
RT [F , B](P ) are n-ary terms.

-If RT [F , B](P ) is not empty, the interpretation of an element of RT [F , B](P )
belongs to Z∞(P ).

These terms are called regular because all their subterms have an interpre-
tation in R which belongs to Z∞ ; moreover we precisely know by advance the
basic box where the function of interpretation is defined. Therefore we avoid
terms whose interpretation in R is at the same time C∞ and « pathological »,
like for example the term

(1 + π 1
2
(−2 + π 1

2
(1 +X)))× 1[−1,1]

(to be clearer, we omit the necessary symbols ∗). The interpretation of this
term is the function equal to 0 on R and so belongs to Z∞([−1, 1]). However,
the interpretation of some subterms of this term are not C∞ on [−1, 1].
The construction of a regular term is very close to the construction of a standard
term, except that, at each step, we have a control on the nature C∞ of the term
and on its basic box of definition. Thereby, the set of regular terms is almost
the set of standard terms but is easier to use. We can consult the remark 2.22
for more details on the conditions of closure of RT [F , B].

Definition 2.9 . E(A) is the smaller set which contains E ∪A and which satis-
fies the following conditions. Let P and P ′ be two n-basic boxes and Q a (n+1)-
basic box, all the three over RT0[E(A), A] ; we suppose that f ∈ RT [E(A), A](P ),
g ∈ RT [E(A), A](P ′) and h ∈ RT [E(A), A](Q).

1) The interpretation of a term of RT0[E(A), A] or of RT [E(A), A] is in E(A).

2) (Implicit definition) If h(0) = 0 6= ∂h
∂Xn+1

(0) then for all n-basic box D

and for all 1-basic box ∆ such that D × ∆ ⊂ Q, the map defined by φ on the
basic box D is in E(A), each time that h(X1, ..., Xn, φ(X1, ..., Xn)) = 0 on D

and that ∂h
∂Xn+1

6= 0 on D ×∆.

3) (Factorization) If there exists i ∈ {1, ..., n} such that f(X1, ..., Xn) = Xi.g(X1, ..., Xn)
on P ∩ P ′, geP∩P ′ ∈ E(A).

Proposition 2.10 . By construction, the elements of E(A) are in Z∞.

Remark 2.11 . (partial derivatives) The closure by factorization of E(A) im-
plies the closure of E(A) by partial derivatives (cf. proposition 2.1.6 of [Ra1])
-these both closures are even equivalent-.

Definition 2.12 . (quasi-analycity) E(A) is quasi-analytic if every function of
E(A), which doesn’t vanish around 0, has a partial derivative different from 0 at
the point 0.

In the continuation, we will consider a class E such that E(R) is quasi-
analytic. We stress the fact that it is E(R) which is quasi-analytic and not only
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E(A).
We deduce from the definition 2.12, using the translation, that the maps of
E(A) ∩ Z∞(P ) are quasi-analytic at every point of P .

Remark 2.13 . Thanks to the quasi-analycity, if P is a n-basic box and if
f ∈ E(A)∩Z∞(P ) vanishes on a whole open set included in P , then f vanishes
on all Rn.

Definition 2.14 . (domain) Thanks to the quasi-analycity, if f ∈ E(A) ∩
Z∞(P ) and if f doesn’t vanish on P , the basic box P is unique ; we will note it
dom(f) -domain of f-. If f vanishes on Rn, we pose dom(f) = Rn.

In the continuation, we will assimilate the symbol ∗+ with the sum +, ∗×
with the product × (or .). We will use too the symbol − for the subtraction and
|.| for the absolute value.
We will note equally ∗π−1(X) or 1

X and we will assimilate 1
X with the map

π−1.

Definition 2.15 . (language L(A) and theory T (A)) L(A) is the union of the
language of ordered rings, of { ∗πq; q ∈ Q∗} and of { ∗f ; f ∈ E(A)}. So R is a
L(A)-structure.

T (A) is the L(A)-theory which contains the following axioms. For all n-basic
box P , for all term t ∈ RT [E(A), A](P ) and for all a ∈ A ∪Q,

1) if R |= ∀(u1, ..., un) ∈ P t(u1, ..., un) = 0, the formula

∀(u1, ..., un) ∈ P t(u1, ..., un) = 0

is in T (A).

2) if R |= ∀(u1, ..., un) ∈ P |t(u1, ..., un)| < ∗a, the formula

∀(u1, ..., un) ∈ P |t(u1, ..., un)| < ∗a

is in T (A)

3) the formula ∀(u1, ..., un) /∈ P t(u1, ..., un) = 0 is in T (A)

4) the formula ∀(u1, ..., un) ∈ P ∗1P (u1, ..., un) = 1 is in T (A)

5) T (A) contains the universal axioms of ordered rings and the uni-
versal axioms which define the ∗πq, for q ∈ Q∗.

6) T (A) contains the simple diagram of R in the language L(A), ie
the quantifier-free formulas satisfied by R.

Remark 2.16 . L(A) without the symbol of the order is a sub-language of Lfct ;
moreover R is a model of T (A).

Proposition 2.17 . With the notations of the previous definition, if R satisfies
the formula ∀(u1, ..., un) ∈ P t(u1, ..., un) > 0, T (A) also satisfies this formula.
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Proof : as t is continuous on P , which is compact, t(P ) has a minimum, m ∈ R
and a maximum M ∈ R ; as t is strictly positive on P , m > 0. Further there
exists (q, a) ∈ Q∗

+
2 such that m > q − a > 0 and M < q + a.

We pose s = (t−q). ∗1P ; so s is in RT [E(A), A](P ) and R satisfies ∀(u1, ..., un) ∈
P |s(u1, ..., un)| < a. Therefore, T (A) proves that t is positive on P . �proposition

Proposition 2.18 . Let T1(A) be the L-theory which contains all the formulas
of the points 1, 3, 4, 5 et 6 of the definition 2.15 and the following axioms :
if R |= ∀(u1, ..., un) ∈ P t(u1, ..., un) > 0, the formula

∀(u1, ..., un) ∈ P t(u1, ..., un) > 0

is in T1(A). T (A) and T1(A) are equivalent.

Proof : The proposition 2.17 proves that T (A) ` T1(A). Now, let t ∈ RT [E(A), A](P )
and a ∈ A ∪ Q such that R |= ∀(u1, ..., un) ∈ P |t(u1, ..., un)| < ∗a. Let us
consider the two terms s1 = −(t− ∗a) ∗× ∗1P and s2 = (t+ ∗a) ∗× ∗1P . s1 and
s2 are in RT [E(A), A](P ) ; furthermore, R, and so T1(A), satisfies that s1 and
s2 are positive on P . Thus T1(A) proves ∀(u1, ..., un) ∈ P |t(u1, ..., un)| < ∗a.
So T1(A) ` T (A).�proposition

Notation 2.19 . Let A =
⋃

f∈E∗ B(dom(f)), where E∗ is the set which contains
all the maps of E which are not equal to 0 on all Rn, for a given n ∈ N∗.
We note L(A) = L, T (A) = T , E(A) = E, RT [E(A), A](P ) = RT (P ), RT [E(A), A] =
RT and E0 = E(A) ∩ R.
Moreover, the subset of the n-ary terms of RT will be noted RTn.

Remark 2.20 . If f ∈ E, B(dom(f)) is included in E0.

The aim of this article is to prove that T is equivalent to the complete theory
of R in the language L and that T is model-complete. In this purpose we will
draw on the following results, which come from [Ra1] -and [Ra2]-.

Theorem 2.21 . T (R) is equivalent to the complete theory of R in the language
L(R) and T (R) is model-complete.

Remark 2.22 . The language L(R) and the theory T (R) are different from the
language, noted L, and from the theory, noted T , of [Ra1] -notice : the two last
symbols L and T haven’t got the same meaning as those used in this article- ;
moreover in [Ra1] we don’t use the notion of regular term. We leave it to the
reader to check that these modifications haven’t any impact on the main results
of [Ra1] and notably on the theorem 3.2.3, which becomes the theorem 2.21 of
the present article.

Indeed, in a first time in [Ra1] -chapter 2.4-, the results only deal with terms
C∞ around 0 and are local (around 0), as it is specified at the beginning of the
mentioned chapter. Truncating the terms on certain basic boxes, as it is done
in the construction of regular terms hasn’t an effect on these local properties.
In particular, we keep the corollary 2.4.9 of [Ra1] -which establishes a prepa-
ration theorem for the terms C∞- relatively to regular terms (and so the used
matrices are composed of regular terms too).

Then, in the chapter 2.5 of [Ra1], we deal with all the terms ; there the boun-
daries of the basic boxes play a part. These problems of boundary are the raison
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d’être of the condition 11 of closure of regular terms (cf. définition 2.21 of the
present article). This condition comes directly from the study of the case 6 of
the lemma 2.5.8 of [Ra1].
Thus we can transpose the lemma 2.5.8 to regular terms (and, there too, the
considered matrices must be composed of regular terms).

Finally, thanks to previous remarks, we can transpose too the theorem 2.5.13
to regular terms ; then it follows the theorem 2.21 of the present article.

3 E-transcendence

Definition 3.1 (E-transcendence). Let n ∈ N∗ ; (a1, ...an) ∈ Rn is E-transcendent
if, for every n-ary map f , which belongs to E and for every (q1, ..., qn) ∈ Qn,

such that (a1 − q1, ..., an − qn) ∈
◦

dom(f),
(f(a1 − q1, ..., an − qn) = 0) implies that f vanishes on a whole neighbourhood
of (a1 − q1, ..., an − qn).

Proposition 3.2 . Let n ∈ N∗ ; let (a1, ..., an) ∈ Rn and y ∈ R such that
(a1, ..., an) is E-transcendent but (a1, ..., an, y) is not ; then for all open set U of
Rn+1 which contains (a1, ..., an, y), there exist (q1, ...qn, q) ∈ Qn+1, S a n-basic
box over Q and φ ∈ E ∩ Z∞(S) such that :

-(a1 − q1, ..., an − qn) ∈
◦
S

-y = q + φ(a1 − q1, ..., an − qn)

-∀(x1, ..., xn) ∈ S (x1 + q1, ..., xn + qn, q + φ(x1, ..., xn)) ∈ U

Proof : as (a1, ..., an, y) is not E-transcendent, there exist a (n + 1)-ary map

f ∈ E and (r1, ..., rn, r) ∈ Qn+1 such that (a1 − r1, ..., an − rn, y − r) ∈
◦

dom(f),
f doesn’t locally vanish around (a1−r1, ..., an−rn, y−r) and f(a1−r1, ..., an−
rn, y − r) = 0.

As f doesn’t vanish on all Rn+1, dom(f) is a (n + 1)-basic box ; we pose
dom(f) = Πn+1

i=1 [αi, βi]. We consider U an open set of Rn+1 which contains
(a1, ..., an, y).

Let u ∈ [αn+1, βn+1] ∩ Q ; we pose gu(X1, ..., Xn) = f(X1, ..., Xn, u). So gu

belongs to E ∩ Z∞(Πn
i=1[αi, βi]).

We pose too h(Y ) = f(a1 − r1, ..., an − rn, Y ) ; so h belongs to E(R).

By hypothesis, h is quasi-analytic around y − r. Thus, either h locally vanishes
around y − r (so vanishes on all R), or there exists k ∈ N such that

∂f

∂Y k
(a1 − r1, ..., an − rn, y − r) 6= 0

Case 1 : h vanishes on all R.
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In this case, for all u ∈ [an+1, bn+1] ∩ Q, f(a1 − r1, ..., an − rn, u) = 0 and so
the function gu always vanishes on all Rn, because (a1, ..., an) is E-transcendent.
Therefore, by continuity, f vanishes on all Rn+1, what is supposed false.

Case 2 : h is not equal to 0 on all R.

In this case, we pose d = min{k ∈ N; ∂f
∂Y k (a1 − r1, ..., an − rn, y − r) 6= 0}.

d is strictly positive because f(a1 − r1, ..., an − rn, y − r) = 0. Therefore :

∂f

∂Y d−1
(a1 − r1, ..., an − rn, y − r) = 0

and
∂f

∂Y d
(a1 − r1, ..., an − rn, y − r) 6= 0

So there exists a (n+1)-basic box D over Q and (t1, ..., tn, t) ∈ Qn+1 such that :

-(a1 − r1 − t1, ...., an − rn − tn, y − r − t) ∈
◦
D

- for every (u1, ...un, v) ∈ D, (t1 + r1 +u1, ..., tn + rn +un, t+ r+ v) ∈ U

- ∂f
∂Y d (X1 + t1, ..., Xn + tn, Y + t) is different from 0 on D

We pose τ = ∂f
∂Y d−1 (t1, ..., tn, t) (so τ ∈ E0) and

θ(X1, ..., Xn, Y, Z) = (
∂f

∂Y d−1
(X1 + t1, ..., Xn + tn, Y + t) +Z − τ)eD×[−1−τ,1+τ ]

thus θ belongs to E and θ(0) = 0 ; moreover, ∂θ
∂Y (0) 6= 0 and θ(a1−r1−t1, ..., an−

rn − tn, y − r − t, τ) = 0

Therefore, there exists a (n + 1)-basic box B over Q and an -implicit- func-
tion φ ∈ E ∩ Z(B) such that :

-∀(x1, ..., xn, z) ∈ B θ(x1, ..., xn, φ(x1, ..., xn, z), z) = 0

-(a1 − r1 − t1, ...an − rn − tn, τ) ∈ B

So we obtain that y − r − t = φ(a1 − r1 − t1, ..., an − rn − tn, τ).�proposition

Thus, in these conditions, y belongs to the L-structure generated by (a1, ..., an).
Besides, by extension to the case « n = 0 », we obtain the following proposition.

Proposition 3.3 . Let y ∈ R such that y is not E-transcendent then y ∈ E0.

Corollary 3.4 . Let (x1, ..., xp) ∈ Rp not all in E0 ; there exist n ∈ {1, ..., p} and
a strictly increasing map l from {1, ...n} in {1, ..., p} such that (xl(1), ..., xl(n))
is E-transcendent and satisfies the following conditions.

9



For all open set U of Rp which contains (x1, ..., xp), there exist (q1, ...qp) ∈ Qp,
S a n-basic box over Q and φ1,....,φp in E ∩ Z∞(S) such that

-(xl(1) − ql(1), ..., xl(n) − ql(n)) ∈
◦
S

-xi = qi + φi(xl(1) − ql(1), ..., xl(n) − ql(n)) for all i ∈ {1, ..., p}

-∀(u1, ..., un) ∈ S ∀i ∈ {1, ..., p} (q1+φ1(u1, ..., un), ..., qp+φp(u1, ..., un)) ∈
U

Proof : by recurrence, using propositions 3.2 and 3.3.

4 Extensions of structures

Proposition 4.1 . By construction, E0 is the L-sub-structure of R generated
by the empty set.

Notation 4.2 . Let a ∈ R ; we note pa, the complete 1-type of a in the language
L.

Definition 4.3 . Let M be a L-structure ; M realizes R if for every a ∈ R, pa

is realized in M.

Proposition 4.4 . Let N be a model of T and M be a L-sub-structure of N ,
such that M realizes R. There exists an L-embedding from R to M.

Proof : we note M the underlying set of M. Let Γ be the set of couples (C, i)
where C is a L-sub-structure of R and i is an embedding from C to M ; Γ is
non-empty because it contains (E0, Id), where Id is the canonical embedding
which associates to an element of E0 its interpretation in M. (E0, Id) is the
minimal element of Γ.
As Γ is inductive for inclusion, there exists a bigger element (D, j) ∈ Γ.

If the underlying set of D is R, we conclude ; otherwise let y ∈ R such that
y doesn’t belong to the underlying set of D, noted D. There exists ỹ ∈M such
that ỹ realizes the type py.
We will use the following lemma ; we can find a proof in [Ri], for example.

Lemma 4.5 . (embedding of ordered fields) Let k be a field and K and L be
two ordered fields such that k is embedded into K by f and in L by g ; let Ω be
a non-empty set, σ1 be a map from Ω to K and σ2 be a map from Ω to L such
that the following condition, noted (∗), is satisfied.

(∗) For every n ∈ N, for every P ∈ k[X1, ..., Xn] and for every (x1, ..., xn) ∈ Ωn,
if P (σ1(x1), ..., σ1(xn)) = 0 ( resp. P (σ1(x1), ..., σ1(xn)) > 0) then P (σ2(x1), ..., σ2(xn)) =
0 (resp. P (σ2(x1), ..., σ2(xn)) > 0).

Then there exists an embedding h from the field generated by all the σ1(x)
(x ∈ Ω), into L such that h(σ1(x)) = σ2(x) and h ◦ f = g.
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Let n ∈ N∗ and Tn = {(t, u1, ..., un); t ∈ RTn ∧ (u1, ..., un) ∈ Dn} ; we note
T the union of D ∪ {y} and of all the sets Tn. We consider the two following
maps σ1 and σ2 defined in this way.

1) σ1 : T → R such that

- for all n ∈ N∗ and for all (t, u1, ..., un) ∈ T , σ1(t, u1, ..., un) =
t(u1, ..., un)

- for all u ∈ D ∪ {y}, σ1(u) = u

2) σ2 : T →M such that

- for all n ∈ N∗ and for all (t, u1, ..., un) ∈ T ), σ2(t, u1, ..., un)
is the interpretation of t in M applied in (j(u1), ..., j(un))

- for all u ∈ D, σ2(u) = j(u)

- σ2(y) = ỹ

We will show the relation (∗) for polynomials over Q and for the maps σ1

and σ2 defined above. We remark that it is sufficient to show that for every
regular (n+1)-ary term t and for every (u1, ..., un) ∈ Dn, we have the following
property :

if the interpretation of t in R applied in (u1, ..., un, y) is equal to 0 (resp. strictly
positive), the interpretation of t in M applied in (j(u1, ..., j(un), ỹ) is equal to
0 (resp. strictly positive).

So let t be a regular (n + 1)-ary term and (u1, ..., un) ∈ Dn. We can suppose
that t doesn’t vanish identically.

Case 1 : the interpretation of t in R applied in (u1, ..., un, y) is
equal to 0 (ie t(u1, ..., un, y) = 0).

We note τ̃ the interpretation of a term τ in M. We can suppose, without res-
tricting the generality, that none of the ui or y belong to B(dom(t)) ; indeed we
remind that, as t ∈ E , the set B(dom(t)) is included in E0.
Thanks to propositions 3.2, 3.3 and to corollary 3.4, as y /∈ D, there exist a
family E-transcendent (v1, ...., vp, y) with p ≤ n, (q1, ..., qn+1) ∈ Qn+1 and n+ 1
maps φ1,...,φn+1 which belong to E ∩ Z∞(P ) (P is a (n+ 1)-basic box over Q)
such that :

- for every k ∈ {1, ..., p}, there exists an unique l(k) ∈ {1, ..., n} such
that vk = ul(k).

- (v1 − ql(1), ..., vp+1 − ql(p+1)) ∈
◦
P
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- for every (x1, ..., xp+1) ∈ P , (q1+φ1(x1, ..., xp+1), ..., qn+1+φn+1(x1, ..., xp+1)) ∈
dom(t)

- for every k ∈ {1, .., n}, uk − qk = φk(v1 − ql(1), ..., vp+1 − ql(p+1))
and y − qn+1 = φn+1(v1 − ql(1), ..., vp+1 − ql(p+1))

We pose

s = (t(q1 + φ1(X1, ..., Xp+1), ..., qn+1 + φn+1(X1, ..., Xp+1)))× 1P

(to be clearer, we omit the necessary ∗).
Thus s(v1 − ql(1), ..., vp+1 − ql(p+1)) = 0 and as (v1, ..., vp+1) is E-transcendent,
s vanishes on a whole neighbourhood of (v1 − ql(1), ..., vp+1 − ql(p+1)).

Therefore N satisfies that s̃ vanishes on all j(R) where R is a (p+ 1)-basic box
over Q. As (D, j) ∈ Γ, (j(u1), ..., j(un), ỹ) ∈ {(q1 + φ1(z1, ..., zp+1), ..., qn+1 +
φn+1(z1, ..., zp+1)); (z1, ..., zp+1) ∈ j(R)}.
So N |= t(j(u1), ..., j(un), ỹ) = 0 and thus M |= t(j(u1), ..., j(un), ỹ) = 0.

Case 2 : the interpretation of t in R applied in (u1, ..., un, y) is
strictly positive (ie t(u1, ..., un, y) > 0).

By continuity, there exist (q1, ..., qn+1) ∈ Qn+1 and a (n+ 1)-basic box R such
that t is strictly positive on the set (q1, ..., qn+1)+ ∈ R.
Therefore, in N and so in M, t̃(q1 + X1, ..., qn+1 + Xn+1) is strictly posi-
tive on j(R). As ỹ satisfies the type py, (j(u1), ..., j(un), ỹ) ∈ R ; thereby
t̃(j(u1), ..., j(un), ỹ) > 0.

We deduce from the study of these two cases, that there exists an L-embedding,
which extends j, from the structure generated by D and y into M. We conclude,
using the hypothesis of maximality of (D, j), that D = R.�proposition

Proposition 4.6 . Let N be a model of T and M be a L-sub-structure of N ;
M and N can be extended into two L(R)-structures M′ and N ′ such that :

- M′ and N ′ are L(R)-structures

- M′ is a L(R)-sub-structure of N ′ and N ′ is a model of T (R)

Proof : let i be an L-embedding from R to M.

We will show that for every term t ∈ RT [E(R),R](P ) (P a n-basic box), there
exist a n-basic box Q over E0, a r-basic box S over E0, a E-transcendent family

(u1, ..., ur) ∈
◦
S (possibly r = 0 ; in this case, this family doesn’t play a part)

and a term t̂ ∈ RT (Q× S), where Q contains P , such that :

t(X1, ..., Xn) = t̂(X1, ..., Xn, u1, ..., ur)eP
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on all Rn

t̂(X1, ..., Xn, i(u1), ..., i(ur))ei(P ) will be the ideal candidate for the interpre-
tation of the term t in M and in N (we extend canonically the notation eP to
N ).

The main problem comes from the fact that we could use some functions of
E(R) to construct t ; however E(R) is different from E .

The construction of the operator .̂ (which is not necessary unique : we use
implicitly the Axiom of Choice at each step of the construction) is made by
induction on the rank of the creation of t. We won’t detail each operation and
we will focus on certain one : the other cases are obtained by analogy with the
considered cases.

1) At first, if f ∈ E , we simply pose ∗̂f = ∗f . So we have the ini-
tialization.

2) Then, let us consider the closure by implicit functions ; the method is
very close to the one used in the proof of the proposition 3.2. Here we suppose
that P -and so Q- is a n + 1-basic box, thus t is (n + 1)-ary. We suppose too
that ∂t

∂Xn
6= 0 and t(0) = 0.

We place ourselves in the conditions of map of point 2) of the definition 2.9. We
use the same notations, posing ∆ = [a, b]. D is not necessarily a basic box over
E0 and a and b are not also necessarily in E0.

As D × [a, b] ⊂
◦
P , there exist a n-basic box over Q, D′ and (a′, b′) ∈ Q2 such

that D × [a, b] ⊂ D′ × [a′, b′] ⊂
◦
P and ∂t

∂Xn
6= 0 on all D′ × [a′, b′] ; so there

exists an implicit function for t, noted φ′ -notice : exceptionally, here, φ′ won’t
refer to the derivative of φ- defined on D′ and which extends φ. Moreover we
can suppose that ∀(x1, ..., xn) ∈ D′ φ′(x1, ..., xn) ∈ [a′, b′].
By hypothesis of induction, t(X1, ..., Xn, Xn+1) = t̂(X1, ..., Xn, Xn+1, u1, ..., ur)eP

By continuity, there exist a r-basic box B over Q and (q1, ..., qr) ∈ Qr such
that :

(u1−q1, ..., ur−qr) ∈
◦
B, (q1, ..., qr)+B ⊂ S and for all (x1, ..., xn, xn+1, y1, ..., yr) ∈

D′ × [a′, b′]×B, ∂t̂
∂Xn+1

(x1, ..., xn+1, q1 + y1, ..., qr + yr) 6= 0

We pose t̂(0, ..., 0, q1, ..., qr) = µ and

θ(X1, ...., Xn+1, U1, ..., Ur, Z) = ((t̂(X1, ..., Xn+1, q1+U1, ..., qr+Ur))−µ+Z)eQ×B×[−1−µ,1+µ]

Thus θ ∈ E , θ(0) = 0 and ∂θ
∂Xn+1

6= 0 on all D′ × [a′, b′]×B × [−1− µ, 1 + µ].
So there exists an implicit map ψ defined on D′ ×B such that

t̂(X1, ..., Xn, ψ(X1, ..., Xn, U1, ..., Ur, Z), q1 + U1, ..., qr + Ur, Z) = 0

on all D′ ×B × [−1− µ, 1 + µ]
By unicity of the implicit functions, φ(X1, ..., Xn) = ψ(X1, ..., Xn, u1−q1, ..., ur−
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qr, t̂(0, ..., 0, q1, ..., qr))eD.
Therefore we pose φ̂(X1, ..., Xn) = ψ(X1, ..., Xn, u1 − q1, ..., ur − qr)eD.

3) If a ∈ R, let us consider s = a + t ∈ E(R) ; let q ∈ Q such that
|a| < q. In this case we pose, (we still use the notations of the hypothesis of
induction)

h(X1, ..., Xn, U1, ..., Ur, Y ) = (Y + t̂(X1, .., Xn, U1, ..., Ur))eQ×S×[−q,q]

Thus h ∈ E . Moreover, thanks to the proposition 3.2, either the family (u1, ..., ur, a)
is E-transcendent, or a = φ(u1 − q1, ..., ur − qr) with φ ∈ E ∩ Z∞(S′) and
(q1, ..., qr) ∈ Qr, such that (q1, ..., qr) + S′ ⊂ S . In this last case, we consider

k(X1, ..., Xn, V1, ..., Vr) = h(X1, ..., Xn, V1, ..., Vr, φ(V1, ..., Vr))eQ×S′

So k ∈ E .
In the first case, we pose ŝ = ∗h ; indeed, s(X1, ..., Xn) = h(X1, ..., Xn, u1, ..., ur, a)eP
and (u1, ..., ur, a) is E-transcendent.
In the second case, we pose ŝ = ∗k ; indeed, s(X1, ..., Xn) = k(X1, ..., Xn, u1 −
q1, ..., ur − qr)eP and (u1 − q1, ..., ur − qr) is E-transcendent.

We can use the same method to go on the construction of the operator .̂ for
every point of the definitions 2.7 anf 2.15.
So we interpret inN andM the term t(X1, ..., Xn) by t̂(X1, ..., Xn, i(u1), ..., i(ur))eP .
By construction, the L(R)-structures M′ and N ′ obtained by this way are two
extensions of M and N , and M′ is a L(R)-sub-structure of N ′.
It only remains to prove that N ′ is a model of T (R). In fact all has been done to
reach this result ; indeed, if t vanishes on all P in R, then t̂(X1, ..., Xn, u1, .., ur)
vanishes on all Q. As (u1, ..., ur) is E-transcendent, t̂ vanishes on all Rn+r and
so on all Q × B, where B is a r-basic box over Q which contains (u1, ..., ur).
It is the same for N , since N is a model of T ; therefore, by definition of the
interpretation of t in N ′, N ′ satisfies that t̃ vanishes identically on i(P ).
In the same way, and by analogy with the end of the proof of the proposition
4.4, using the proposition 2.18, we also obtain that N ′ satisfies the axiom of the
point 2 in the definition of T (R) (sign of the terms).
The other axioms of T (R) are clearly satisfied by N ′, thanks to its definition.
So N ′ is a model of T (R).�proposition

Theorem 4.7 . T is equivalent to the complete theory of R in the language L
and T is model-complete, so admits the quantifier elimination.

Proof : let A be a L-sub-structure of a model B of T ; by compactness, there
exist an elementary L-extension M of A and an elementary L-extension N of
B such that M is a L-sub-structure of N and M realizes R. Thus, thanks to
the previous proposition, M and N can be extended in two L(R)-structures M′

and N ′ such that M′ is a L(R)-sub-structure of N ′ and N ′ |= T (R). As T (R) is
model-complete and universal, M′ is an elementary L(R)-sub-structure of N ′.
ThereforeM is an elementary L-sub-structure ofN and soA is an elementary L-
sub-structure of B. Thus T is model-complete and admits quantifier elimination,
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because T is universal.
Thanks to the proposition 4.4, for all model M of T which realizes R, there
exists an L-embedding from R into M. So every model which realizes R is a
model of the complete theory of R in the language L ; thus, by compactness, T
is equivalent to the complete theory of R in the language L. �theorem

Corollary 4.8 . Let L0 be the union of the language of ordered rings and of
the set { ∗f ; f ∈ E}. Let L0 ⊂ L1 ⊂ L ; the complete theory of R in the language
L1 has a prime model which is E0.

Proof : it is sufficient to remark that all the elements of E are definable in the
language L0. �corollary
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teurs, Thèse, Université Paris 7, Paris, 2005.
(http ://www.logique.jussieu.fr/ rambaud/these.pdf)
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