E-142

T. BLOSSIER ET A. MARTIN-PIZARRO*

Résumé. Nous collapsons le corps différentiel rouge de Poizat en des corps différentiellement clos de rang de Morley $\omega \cdot 2$, chacun muni d'un sous-groupe additif définissable de rang ω . En utilisant la dérivée logarithmique, on obtient un corps vert de rang $\omega \cdot 2$ avec un sous-groupe multiplicatif définissable divisible contenant le corps des constantes, qui reste définissable dans le réduit à la structure de corps vert.

Verde que te quiero verde. Verde viento. Verdes ramas. El barco sobre la mar y el caballo en la montaña. F. García Lorca Romance Sonámbulo.

1. Introduction

En 1991, Hrushovski [6, 5] donna une preuve de la conjecture de Mordell-Lang pour les corps de fonctions. Ce résultat était déjà connu en caractéristique nulle, mais l'originalité de cette nouvelle preuve réside dans son approche uniforme en toutes caractéristiques. Elle consiste à remplacer la structure du corps algébriquement clos de base, par une structure de corps dans laquelle l'énoncé de Mordell-Lang est équivalent à la notion modèle-théorique de monobasé pour un certain sous-groupe. En caractéristique nulle, il s'agit de montrer qu'un sous-groupe différentiel, le noyau de Manin, est monobasé. Il est alors utilisé un principe de dichotomie qui est satisfait par les géométries non triviales vivant dans un corps différentiel universel (appelé corps différentiellement clos) : ces géométries sont typiques de celle d'un corps algébriquement clos (dans ce cas, le corps des constantes) ou de celle d'un espace vectoriel. Au début des années 80, Zilber avait conjecturé ce principe de dichotomie pour toute géométrie associée à un ensemble fortement minimal. On rappelle qu'un ensemble fortement minimal est un ensemble irréductible de dimension 1.

Cette conjecture fut réfutée par Hrushovski [8] qui, par une méthode d'amalgamation utilisant des idées de Fraïssé , construisit des ensembles fortement minimaux avec des géométries plus exotiques. Cette méthode permit également à Poizat [13] de construire des corps ω -stables en toutes caractéristiques munis d'un sous-groupe additif de rang commensurable (qu'il nomma corps rouges) ainsi qu'un corps en

1

Date: 3 avril 2007.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 03C65; Secondary:03C50.

Key words and phrases. Model Theory, Differentially closed fields, Amalgamation method.

^{*} L'auteur est soutenu par le programme de recherche européen FP6-MOB-5-009541.

 $^{^{1}\}text{Cette}$ dimension est le rang de Morley. Une structure rangée par cette dimension est dite $\omega-stable.$

caractéristique nulle de rang $\omega \cdot 2$ muni d'un sous-groupe multiplicatif divisible sans torsion définissable de rang ω (nommé vert). Associé audit procédé, le collapse consiste à effectuer l'amalgamation dans une classe restreinte afin de forcer certains types à devenir algébriques. En conséquence, Poizat conjectura l'existence de collapses de rang fini autant pour les corps rouges en caractéristique positive que pour le corps vert. Les premiers furent collapsés dans [3], ce qui montra l'existence de corps de rang fini en caractéristique positive qui ne sont pas additivement minimaux. Dans [1], les corps verts furent également collapsés, ce qui montra l'existence de mauvais corps en caractéristique nulle. Rappelons au lecteur qu'un corps de rang fini est mauvais s'il admet un sous-groupe propre multiplicatif définissable divisible et que la non-existence de tels corps avait été conjecturée originellement dans le programme de classification de groupes de rang de Morley fini. En caractéristique positive, l'existence d'un mauvais corps forcerait à avoir une finitude de nombres premiers de Mersenne en p, c'est à dire de la forme $\frac{p^n-1}{p-1}$ [15].

Notons qu'un corps de rang de Morley fini en caractéristique nulle est additivement minimal. Néanmoins dans [13], Poizat conjectura qu'il devait être également possible d'obtenir des collapses rouges de rang minimal, c'est à dire de rang $\omega \cdot 2$. Rappelons que sa construction d'un corps rouge de caractéristique nulle, qui est de rang $\omega^2 \cdot 2$, est obtenue par amalgamation de corps différentiels. Le but de cet article est de collapser ce corps. Pour cela, nous suivrons la méthode des collapses de corps rouges de caractéristique positive [3]. Par contre, la théorie des corps différentiellement clos, même si elle est ω -stable, présente des particularités qui nous ont obligés à être minutieux dans la susdite adaptation. Les deux points délicats résident d'une part dans le fait que le sous-groupe additif rouge est ici un espace vectoriel sur un corps flottant, le corps des constantes, et d'autre part dans le fait que les rangs dans la théorie des corps différentiellement clos ne coïncident pas. Nous devons alors estimer le rang de Morley en utilisant l'encadrement donné par le degré différentiel pour les types à collapser. Ces types correspondent aux types génériques des sous-groupes additifs différentiels pour lesquels nous pouvons décrire uniformément leurs rangs, ceci à l'aide d'un résultat de Pillay et Pong [11].

La structure de cet article est la suivante : nous commençons par rappeler la construction par amalgamation de Poizat. Nous explicitons ensuite le calcul des rangs dans cette théorie. Cette description technique est nécessaire pour coder les types à collapser dans la partie qui suit. Dans ces deux parties, nous rappelons également les résultats de la théorie des corps différentiellement clos qui sont utilisés. La partie suivante décrit les collapses et leurs axiomatisations. Finalement, nous regardons le corps vert obtenu par dérivée logarithmique.

Tout au long de cet article, une certaine familiarité avec le procédé d'amalgamation et en particulier avec les constructions de corps colorés sera requise (voir par exemple [13, 2, 3]).

Les auteurs aimeraient remercier B. Poizat qui a inspiré ce travail ainsi que A. Pillay, F.O. Wagner et M. Ziegler pour leurs commentaires avisés.

2. Poizat et les rouges

Dans cette partie, nous rappelons au lecteur certains des résultats de [13] que nous utiliserons pour le collapse. Commençons par fixer les notations : nous travaillerons dans un corps différentiellement clos universel \mathbb{K} de caractéristique nulle et nous noterons C le corps des constantes (c.à.d. les éléments de dérivée nulle).

Soit $L := \{0, +, -, \cdot, d\}$ le langage des anneaux différentiels. Nous formons le langage L^* en ajoutant à L un prédicat unaire R et pour toute L^* -structure, les points dans R seront nommés rouges, les autres blancs. Dans la suite de ce papier, nous considérons uniquement des L^* -structures k telles que la restriction de k au langage L soit un sous-corps différentiel de \mathbb{K} et telles que R(k) soit un sous-espace vectoriel de (k, +) sur C_k (:= $C \cap k$). On appellera ces structures corps différentiels rouges. Nous appellerons degré différentiel d'un corps différentiel la taille d'une base de transcendance différentielle de ce corps. Nous définissons alors sur les corps différentiels rouges k de degré différentiel fini la prédimension suivante:

$$\delta(k) = 2 \operatorname{deg.dif} k - \operatorname{dim.lin_C} R(k)$$

où deg. dif k est le degré différentiel de k et dim. lin $_{\rm C}$ R(k) la dimension linéaire des points rouges sur C.

Notons que C dépend du sous-corps différentiel considéré, mais du fait que l'indépendance linéaire sur les constantes s'exprime à l'aide du Wronskien, la dimension linéaire des points rouges reste inchangée qu'on la considère au-dessus de C_k ou au-dessus de l'ensemble des constantes C. Nous utiliserons donc cette notation ambiguë pour δ .

Notons \mathcal{K}_0 la classe élémentaire des corps k différentiels algébriquement clos rouges, dont tout sous-corps différentiel de degré différentiel fini a une prédimension positive ou nulle. (Cette classe est $\forall \exists$ -axiomatisable.)

Pour tout corps $k \subset \mathbb{K}$ et toute partie $A \subset \mathbb{K}$, on notera $k\langle A \rangle$ la clôture algébrique du corps différentiel engendré par A au-dessus de k. On dira que A engendre k' au-dessus de k si $k' = k\langle A \rangle$.

Pour tout uple fini \bar{a} et tout partie B dans un corps k de \mathcal{K}_0 , on utilisera la notation :

$$\delta(\bar{a}/B) := 2 \operatorname{deg.dif}(\bar{a}/B) - \operatorname{dim.lin}_{\mathbb{C}}(\mathbb{R}(\mathbb{Q}\langle \bar{a}B\rangle)/\mathbb{R}(\mathbb{Q}\langle B\rangle)).$$

Cette prédimension n'est pas sous-modulaire : l'inégalité $\delta(\bar{a}/B) \leq \delta(\bar{a}/\mathbb{Q}\langle\bar{a}\rangle \cap \mathbb{Q}\langle B\rangle)$ n'est pas toujours vérifiée du fait que le corps des constantes n'est pas fixe. Par contre, dans le cas où $\mathbb{Q}\langle\bar{a}\rangle$, $\mathbb{Q}\langle B\rangle$ et $\mathbb{Q}\langle\bar{a}B\rangle$ ont même corps de constantes, cette inégalité est bien vérifiée.

On définit de la manière habituelle la notion d'autosuffisance : soient $k \subset k'$ deux corps dans \mathcal{K}_0 ; on dit que k est autosuffisant dans k' ou que k' est une extension autosuffisante de k (noté $k \leq k'$) si $\delta(\bar{a}/k) \geq 0$ pour tout uple fini \bar{a} de k'.

Notons que k est autosuffisant dans k' si et seulement si les points rouges de $k\langle C_{k'}\rangle$ sont engendrés par les points rouges de k et $k\langle C_{k'}\rangle$ est autosuffisant dans k' [13, Lemme 2.3.1].

On dira par la suite qu'un ensemble A d'un corps k' de \mathcal{K}_0 est autosuffisant dans k' si $\mathbb{Q}\langle A\rangle$ est autosuffisant dans k' et A engendre les points rouges de $\mathbb{Q}\langle A\rangle$.

La relation d'autosuffisance est transitive pour la classe \mathcal{K}_0 mais il n'existe pas de clôture autosuffisante uniquement déterminée, elle *flotte* avec les constantes : soit K un corps de \mathcal{K}_0 , alors pour tout sous-corps k de K il existe un plus petit sous-corps autosuffisant de K contenant $C_K \cup k$. Si k_1 et k_2 sont deux corps minimales de \mathcal{K}_0 contenant k, autosuffisants dans K et de degré de différentiel minimal au-dessus de k alors ils sont engendrés par des bases linéaires rouges qui se correspondent par un isomorphisme linéaire au-dessus des constantes globales.

Dans [13], Poizat amalgame la classe \mathcal{K}_0 par la méthode de Hrushovski-Fraïssé :

Soient k_1 et k_2 deux corps de \mathcal{K}_0 d'intersection k. On place k_1 et k_2 de façon linéairement disjointe au-dessus de k et on considère la clôture algébrique $k' = k\langle k_1 \cup k_2 \rangle$ du corps différentiel engendré par k_1 et k_2 . (Notons que le corps des constantes de k' peut être plus gros que la clôture algébrique des corps de constantes de k_1 et k_2 .) On colorie en rouge les points de k' engendrés par les points rouges de k_1 et de k_2 . La structure ainsi obtenue s'appelle l'amalgame libre de k_1 et k_2 au-dessus de k.

Théorème 2.1. [13] La sous-classe de K_0 consistant en les corps différentiels de degré différentiel fini a la propriété d'amalgamation (donnée par l'amalgame libre). Soit \mathbb{K}_{ω} sa limite de Fraïssé. Alors \mathbb{K}_{ω} est à isomorphisme près l'unique modèle dénombrable ω -saturé de sa théorie, cette théorie est ω -stable de rang $\omega^2 \cdot 2$, et les rouges forment un sous-groupe additif de rang ω .

Pour la suite, on appelle théorie DCF_0 colorée la théorie de \mathbb{K}_{ω} . (La notation DCF_0 seule désignera la théorie des corps différentiellement clos de caractéristiques nulles dans le langage L.) Le calcul des rangs (de Lascar et de Morley) dans DCF_0 colorée se fait, comme habituellement, en décomposant les extensions autosuffisantes en tours d'extensions minimales (extensions autosuffisantes ne contenant pas de sous-extensions autosuffisantes propres intermédiaires).

Il est facile de vérifier qu'une extension minimale correspond à l'une des quatre possibilités suivantes. Par contre, le calcul des rangs des extensions minimales de second type est assez technique (voir la section suivante) :

Proposition 2.2. Une extension minimale k' dans \mathcal{K}_0 d'un corps k dans \mathcal{K}_0 correspond à l'un des cas suivants et on obtient les rangs suivants si on suppose de plus k' plongé de manière autosuffisante dans \mathbb{K}_{ω} :

- (1) k' est engendré par un point blanc différentiellement algébrique sur k. Dans ce cas $\delta(k'/k) = 0$ et les rangs (de Lascar et de Morley dans DCF₀ colorée) du point blanc sur k sont finis.
 - Sinon on a $C_{k'} = C_k$ et ou bien :
- (2) k' est engendré par une base \bar{a} de 2n points rouges linéairement indépendants et k' est de degré différentiel n sur k. Dans ce cas $\delta(k'/k) = 0$ et les rangs de \bar{a} sur k sont inférieurs à $\omega \cdot 2$;
- (3) k' est engendré par un point rouge différentiellement transcendant sur k. Dans ce cas $\delta(k'/k) = 1$ et les rangs de ce point rouge générique sont égaux ω^2 .
- (4) k' est engendré par un point blanc différentiellement transcendant sur k. Dans ce cas $\delta(k'/k) = 2$ et les rangs de ce point blanc générique sur k sont égaux $\omega^2 \cdot 2$.

3. Rangs colorés

Pour collapser les corps différentiels rouges, il est nécessaire d'analyser précisément le rang des extensions minimales de second type dans la proposition 2.2. Pour cela, commençons par rappeler des résultats sur la théorie DCF_0 et plus généralement de stabilité qui seront utiles.

Pour la suite, nous noterons RU (resp. RU^*) le rang de Lascar, RM et dM (resp. RM^* et dM^*) le rang et degré de Morley, dans la théorie DCF_0 (resp. dans la théorie DCF_0 colorée). Nous noterons del, ael et \bigcup la clôture définissable, la clôture algébrique, et l'indépendance dans la théorie DCF_0 .

Fait 3.1. Dans DCF_0 :

- (1) Soit \bar{a} un uple d'éléments différentiellement algébriques sur B. Alors $\mathrm{RM}(\bar{a}/B) \leq \mathrm{RD}(\bar{a}/B)$ où $\mathrm{RD}(\bar{a}/B)$ (le rang différentiel de \bar{a} sur B) correspond au degré de transcendance du corps différentiel engendré par \bar{a} au dessus de celui engendré par B.
- (2) Tout type p vérifie,

```
\omega \cdot \deg.\operatorname{dif}(p) \leq \operatorname{RU}(p) \leq \operatorname{RM}(p) < \omega \cdot (\deg.\operatorname{dif}(p) + 1)(\operatorname{voir}[4]).
```

- (3) Tout sous-groupe additif définissable de \mathbb{K}^n est connexe (car \mathbb{K} est de caractéristique nulle) et est un sous-espace vectoriel sur les constantes (voir par exemple [16, Corollary 1.12]).
- (4) Les rangs de Lascar et de Morley d'un groupe définissable sont égaux [11].
- (5) Pour tout uple \bar{a} de taille n, tout uple \bar{b} et tout ensemble de paramètres B tels que deg.dif $(\bar{a}/B) = n$ (c.à.d \bar{a} générique sur B) et \bar{b} différentiellement algébrique sur $\bar{a}B$, alors il existe \bar{c} différentiellement algébrique sur B telle que $\mathrm{RU}(\bar{a}\bar{b}/B\bar{c}) = \omega \cdot n$ et $\mathrm{RM}(\bar{c}/B) \leq \mathrm{RM}(\bar{b}/\bar{a}B)$. (Pour démontrer ce résultat on peut utiliser [10, Corollary 7.1.20]).

Notons alors que dans DCF_0 :

- Si p est un type sur B tel que $\mathrm{RU}(p) = \omega \cdot n$ alors une réalisation \bar{a} de p est générique sur $A \supset B$ si et seulement si deg.dif $(\bar{a}/A) = n$.
- Si $\varphi(\bar{x}, \bar{b})$ est une formule telle que $\mathrm{RM}(\varphi) = \omega \cdot n$ alors une réalisation \bar{a} de φ est générique sur $B \supset \bar{b}$ si et seulement si deg.dif $(\bar{a}/B) = n$.
- Soit p un type sur B de rang de Lascar $\omega \cdot n$. Par les inégalités de Lascar, pour toute réalisation \bar{a} de p et tout ensemble A d'éléments différentiellement algébriques sur B, on a $\bar{a} \bigcup_B A$. De plus les corps $\mathbb{Q}\langle \bar{a}B \rangle$ et $\mathbb{Q}\langle B \rangle$ ont même corps de constantes.

Nous aurons également besoin du lemme suivant [17] que nous appliquerons aux groupes additifs \mathbb{G}_a^n (où $\mathbb{G}_a := (\mathbb{K}, +)$):

Lemme 3.2. Soient G un groupe ω -stable abélien, et a, b et c des éléments de G deux à deux indépendants sur B tels que a = b + c. Alors :

- (1) Leurs types forts sur B ont même stabilisateur U qui est connexe et définissable sur $\operatorname{acl}^{eq}(B)$.
- (2) a, b et c sont des éléments génériques de cossettes de U définissables sur $\operatorname{acl}^{eq}(B)$.

Revenons maintenant au calcul des rangs des extensions minimales.

Un point blanc différentiellement algébrique a un type de nature purement corpique. Ses rangs dans DCF_0 coloré correspondent donc aux rangs dans DCF_0 sans couleur; ses rangs sont donc finis.

Le second cas est beaucoup plus délicat : notons \bar{a} une base linéaire de R(k') au dessus de k. Pour commencer supposons que $RU(\bar{a}/k) = \omega \cdot n$ où $n = \deg.\operatorname{dif}(\bar{a}/K)$ et que le type p de \bar{a} sur k dans DCF_0 est stationnaire. (En utilisant le fait 3.1 (5), on pourra ensuite se ramener à cette situation en ajoutant un uple fini d'éléments différentiellement algébriques, qui sont de rangs finis). Avec cette hypothèse, une réalisation \bar{a}' de p est indépendante de B si et seulement si $\deg.\operatorname{dif}(\bar{a}'/Bk) = n$. Par minimalité, $\delta(\bar{a}/k \cup M \cdot \bar{a}) < 0$ pour toute matrice M de $M_{2n}(C_k)$ de rang $1 \le d < 2n$,

c'est-à-dire $2\deg.\mathrm{dif}(\bar{a}/k\cup M\cdot\bar{a})<2n-d.$ Du fait que la clôture différentielle de k n'a pas plus de constantes que celles de k et que dans DCF_0 , \bar{a} est indépendant des constantes au-dessus de k, on en déduit que $2\deg.\mathrm{dif}(\bar{a}/k\cup M\cdot\bar{a})<2n-d$ pour toute matrice M de $\mathrm{M}_{2n}(C)$ de rang d parce que \bar{a} et C sont en position d'héritier-cohéritier au-dessus de la clôture différentiel de k.

Considérons alors une formule φ (à paramètres $\bar{b} \in k$) de DCF₀ qui isole p des types de rangs de Morley supérieurs ou égaux. De plus, on peut supposer que φ exprime d'une part l'indépendance linéaire de \bar{a} sur les constantes et d'autre part la minimalité, c.à.d. que pour toute uple \bar{a}' dans φ , pour tout 0 < d < 2n, pour toute matrice M de $M_{2n}(C)$ de rang d, le degré différentiel de \bar{a}' sur $\bar{b} \cup M \cdot \bar{a}'$ est strictement inférieur à n - d/2. (Ce deuxième point s'obtient par compacité.)

Lemme 3.3. Soit $\varphi(\bar{x}, \bar{b})$ une formule comme ci-dessus, c'est-à-dire telle que |x| = 2n, toute réalisation \bar{a}' de $\varphi(\bar{x}, \bar{b})$ est linéairement indépendante sur les constantes, deg.dif $(\varphi(\bar{x}, \bar{b})) = n$ et deg.dif $(\bar{a}'/\bar{b} \cup M \cdot \bar{a}') < n - d/2$ pour toute matrice $M \in M_{2n}(C)$ de rang d où 0 < d < 2n. Soit $K \in \mathcal{K}_0$ tel que $\bar{b} \in K$. Si \bar{a}' es une réalisation rouge de φ alors $\delta(\bar{a}'/K) \leq 0$. De plus $\delta(\bar{a}'/K) = 0$ si et seulement si \bar{a}' est dans le C-espace vectoriel engendré par R(K) ou \bar{a}' est C-linéairement indépendant au dessus de R(K) et de degré différentiel n sur K.

Démonstration. Soit $d=2n-\dim. \mathrm{lin}_{\mathbb{C}}(\bar{a}'/R(K))$. Soit M de rang d telle que $M \cdot \bar{a}' \in \mathbb{R}(K)$. Si 0 < d < 2n, alors $2 \operatorname{deg.dif}(\bar{a}'/K) \le 2 \operatorname{deg.dif}(\bar{a}'/\bar{b} \cup M \cdot \bar{a}') < 2n - d = \dim. \mathrm{lin}_{\mathbb{C}}(\bar{a}'/R(K))$ et donc $\delta(\bar{a}'/K) < 0$. Si d=0, alors $\delta(\bar{a}'/K) \le 0$ car $\operatorname{deg.dif}(\varphi(\bar{x},\bar{b})) = n$; et $\delta(\bar{a}'/K) = 0$ si et seulement si $\operatorname{deg.dif}(\bar{a}'/K) = n$.

Comme k est autosuffisant, le type p^* de \bar{a} sur k dans DCF₀ colorée est déterminé par p et la formule " \bar{a} est rouge". On peut supposer de plus l'ensemble des paramètres \bar{b} autosuffisant et considérer pour la suite que p et p^* sont les types de \bar{a} sur \bar{b} respectivement dans DCF₀ et DCF₀ colorée.

Lemme 3.4. Le type p^* est régulier et a une géométrie modulaire.

- (1) Si p^* est non trivial alors p est le type générique d'un sous-C-espace affine de \mathbb{K}^{2n} et $\mathrm{RU}^*(\bar{a}/k) = \mathrm{RM}^*(\bar{a}/k) = \omega$.
- (2) Si p^* est trivial alors $\mathrm{RU}^*(\bar{a}/k) \leq \mathrm{RM}^*(\bar{a}/k) < \omega$.

Démonstration. Du fait que $\mathrm{RU}(p) = \omega \cdot n$ et donc que l'on réalise une extension non déviante de p si et seulement si on reste de degré différentiel n, en appliquant le lemme 3.3, on en déduit que si $\bar{a}, \bar{a}_1 \dots \bar{a}_m$ sont des réalisations de p^* , alors \bar{a} dévie sur $\bar{a}_1 \dots \bar{a}_m$ au-dessus de k si et seulement si \bar{a} est dans l'espace vectoriel engendré par $\bar{a}_1 \dots \bar{a}_m$. Donc p^* est régulier et sa géométrie est modulaire.

(1) Supposons p^* non trivial. Alors il est facile de vérifier qu'il existe une réalisation \bar{a}_1 de p et deux uples \bar{a}_2 et \bar{a}_3 de \mathbb{K}^{2n} deux à deux indépendants sur \bar{b} dans DCF₀ tels que $\bar{a}_1 = \bar{a}_2 + \bar{a}_3$. Par le lemme 3.2 , \bar{a}_1 est générique d'une cossette d'un sous-groupe additif de \mathbb{K}^{2n} définissable dans DCF₀. Par le fait 3.1 (3) et (4) ce sous-groupe est un sous-espace vectoriel sur les constantes et $\mathrm{RM}(p) = \mathrm{RU}(p) = \omega \cdot n$. Alors φ est de rang $\omega \cdot n$ et de degré 1. Soit \bar{a}' rouge satisfaisant φ et B un ensemble de paramètres autosuffisant contenant \bar{b} . Comme B est autosuffisant, $\delta(\bar{a}'/B) = 0$. Donc par le lemme 3.3, ou bien \bar{a}' tombe dans le C-espace vectoriel engendré par B et est donc de rang fini sur B ou bien \bar{a}' réalise l'unique extension non déviante de p^* à B. D'où $\mathrm{RM}^*(p^*) \leq \omega$ et comme p^* a une géométrie d'espace affine sur C, les rangs sont exactement ω .

(2) Supposons p^* trivial. Par trivialité, toute extension déviante de p^* est de rang de Lascar au plus $2n(2n+|\bar{b}|)$ car déviante sur une réalisation de p^* et donc par le lemme 3.3 dans l'espace vectoriel engendré par cette réalisation et \bar{b} . Donc RU* (p^*) est fini. Par contre, on ne peut pas conclure par le même argument précédent pour le rang de Morley car le rang de φ dans DCF₀ n'est pas nécessairement monomial. Remarquons que \bar{a} peut se décomposer en deux uples \bar{a}_0 et \bar{a}_1 de taille n, avec \bar{a}_1 différentiellement algébrique sur $\bar{a}_0\bar{b}$. On peut alors également supposer que $\mathrm{RD}(\bar{a}_1'/\bar{a}_0'\bar{b}) \leq \mathrm{RD}(\bar{a}_1/\bar{a}_0\bar{b})$ pour toute réalisation $\bar{a}' = \bar{a}_0'\bar{a}_1'$ de φ .

Par ailleurs p^* trivial signifie que pour toutes réalisations rouges \bar{a} , \bar{a}' et \bar{a}'' de p, si deg.dif $(\bar{a}\bar{a}'\bar{a}''/\bar{b})=3n$ alors $\bar{a}'+\bar{a}''-\bar{a}$ n'est pas une réalisation de p. Par compacité, il existe une formule ψ dans p tel que si \bar{a} , \bar{a}' et \bar{a}'' rouges satisfont ψ et deg.dif $(\bar{a}\bar{a}'\bar{a}''/\bar{b})=3n$, alors $\bar{a}'+\bar{a}''-\bar{a}$ ne satisfait pas ψ . On peut supposer que $\varphi\to\psi$. Alors pour tout type q dans φ de RU $(q)=\omega\cdot n$, le type q^* (c.à.d. q et rouge) a une géométrie triviale. Notons que cette propriété peut être imposée uniformément sur les paramètres. On appelle alors une telle formule φ une formule à géométries triviales.

On va maintenant montrer par induction que toute réalisation rouge d'une telle formule a un rang de Morley fini dans DCF_0 colorée :

Sous-lemme. Soit $\varphi(\bar{x}, \bar{b})$ vérifiant les propriétés ci-dessus (avec |x| = 2n et \bar{b} autosuffisant). Pour tout \bar{a} rouge satisfaisant $\varphi(\bar{x}, \bar{b})$, le rang $RM^*(\bar{a}/\bar{b})$ est fini et borné en fonction de n, $|\bar{b}|$, $RD(\bar{a}_1/\bar{a}_0\bar{b})$ et l tel que $RM(\bar{a}/\bar{b}) \leq \omega \cdot n + l$.

Démonstration du sous-lemme. Soit \bar{a} rouge satisfaisant $\varphi(\bar{x}, \bar{b})$. On considère une formule $\psi(\bar{x}, \bar{b})$ impliquant φ et isolant le type q de \bar{a} sur \bar{b} des types de rangs de Morley supérieurs ou égaux. On fait alors la preuve par induction sur $RD(\bar{a}_1/\bar{a}_0\bar{b})$ et $RM(\psi(\bar{x}, \bar{b}))$.

Tout d'abord, si $RD(\bar{a}_1/\bar{a}_0\bar{b}) = 0$, alors \bar{a}_1 est algébrique sur $\bar{a}_0\bar{b}$ et donc

- ou bien $RM(\bar{a}/\bar{b}) < \omega \cdot n$ (c.à.d. deg.dif $(\bar{a}/\bar{b}) < n$) et alors par le lemme 3.3, \bar{a} est dans l'espace vectoriel engendré par \bar{b} . On conclut que $RM^*(\bar{a}/\bar{b}) \leq 2n|\bar{b}|$.
- ou bien RM(\bar{a}/b) = $\omega \cdot n$ et RU(\bar{a}/\bar{b}) = $\omega \cdot n$. Alors pour tout \bar{a}' rouge satisfaisant ψ et tout ensemble $B \supset \bar{b}$ autosuffisant, ou bien \bar{a}' réalise une extension non déviante à B de q^* ou bien \bar{a}' n'est pas indépendant de B au-dessus de \bar{b} . Dans ce deuxième cas, par trivialité de q^* , il existe alors une réalisation \bar{a}'' de q^* déviante avec \bar{a}' au-dessus de \bar{b} telle que RM*(\bar{a}'/B) ≤ RM*($\bar{a}'/\bar{b}\bar{a}''$). Alors \bar{a}' tombe dans l'espace vectoriel engendré par $\bar{a}''\bar{b}$ et donc RM*($\bar{a}'/\bar{a}''\bar{b}$) ≤ $2n(2n+|\bar{b}|)$. D'où on déduit que RM*(\bar{a}/\bar{b}) ≤ $2n(2n+|\bar{b}|)+1$.

Si $RD(\bar{a}_1/\bar{a}_0\bar{b}) = i + 1$. Le cas $RM(\psi(\bar{x},\bar{b})) \leq \omega \cdot n$ se traite comme décrit ci-dessus. Sinon, $\omega \cdot n < RM(\psi(\bar{x},\bar{b})) \leq \omega \cdot n + k$ et on distingue alors deux cas :

- Ou bien $\mathrm{RU}(\bar{a}/\bar{b}) = \omega \cdot n$. D'une part, par induction sur le rang de Morley, l'ensemble des $\mathrm{RM}^*(\bar{a}'/\bar{b})$ pour les réalisations rouges \bar{a}' de ψ telles que $\mathrm{RM}(\bar{a}'/\bar{b}) < \mathrm{RM}(\psi(\bar{x},\bar{b}))$ est uniformément borné. D'autre part si \bar{a}' est une réalisation rouge générique de ψ qui dévie sur un ensemble autosuffisant B contenant \bar{b} , alors comme précédemment, $\mathrm{RM}^*(\bar{a}'/B) \leq 2n(2n+|\bar{b}|)$. On en déduit une borne pour $\mathrm{RM}^*(\bar{a}/\bar{b})$.
- Ou bien $\mathrm{RU}(\bar{a}/\bar{b}) > \omega \cdot n$. Alors, par le Fait 3.1 (5) il existe un élément blanc c différentiellement algébrique sur \bar{b} , tel que $\mathrm{RM}(\bar{a}/\bar{b}c) < \mathrm{RM}(\bar{a}/\bar{b})$ et $\mathrm{RM}(c/\bar{b}) \leq \mathrm{RM}(\bar{a}_1/\bar{a}_0\bar{b})$. Alors $\mathrm{RD}(\bar{a}_1/\bar{a}_0\bar{b}c) < \mathrm{RD}(\bar{a}_1/\bar{a}_0\bar{b})$ et donc par hypothèse d'induction $\mathrm{RM}^*(\bar{a}/\bar{b}c)$ est fini et borné en fonction de |b|+1,

 $\mathrm{RD}(\bar{a}_1/\bar{a}_0\bar{b}c) \leq i$ et $\mathrm{RM}(\bar{a}/\bar{b}c) \leq \mathrm{RM}(\bar{a}/\bar{b})$. On considère alors $\theta(\bar{x},z,\bar{b})$ contenant ψ , satisfaite par $\bar{a}c$ et telle que $\mathrm{RD}(\bar{x}_1/\bar{x}_0\bar{b}z) \leq i$. En particulier il existe une borne uniforme finie de $\mathrm{RM}^*(\bar{a}'/\bar{b}c')$, pour toute réalisation $\bar{a}'c'$ de θ . À l'aide de la formule θ , on peut borner $\mathrm{RM}^*(\bar{a}/\bar{b})$ par l'inégalité d'Erimbetov. Fin de la preuve du sous-lemme.

La formule $\varphi \wedge R(\bar{x})$ a donc un rang de Morley fini dans DCF₀ coloré et donc $RM^*(p^*) < \omega$.

Si le $\mathrm{RU}(\bar{a}/\bar{b})$ n'est pas monomial, par le fait 3.1 (5), il existe \bar{c} différentiellement algébrique tel que $\mathrm{RU}(\bar{a}/\bar{b}\bar{c}) = \omega \cdot n$. Dans le cas non trivial, l'additivité du rang de Lascar implique que $\mathrm{RU}^*(\bar{a}/\bar{b}) < \omega \cdot 2$, et dans le cas trivial, l'inégalité d'Erimbetov implique que les rangs restent finis. Dans le cas non trivial, une induction du même type que ci-dessus permet en fait de montrer que $\mathrm{RM}^*(\bar{a}/\bar{b}) < \omega \cdot 2$. De manière plus générale on peut vérifier que pour toute extension autosuffisante k' de k de prédimension nulle qui se décompose en une tour finie d'extensions minimales,

$$\omega \cdot m \le \mathrm{RU}^*(k'/k) \le \mathrm{RM}^*(k'/k) < \omega \cdot (m+1)$$

où m est le nombre d'extensions correspondantes à des génériques d'espaces affines.

En utilisant cette dernière remarque, le lecteur sagace notera facilement que le type générique rouge est limite de types de rang $\omega \cdot m$ avec m croissant. Il en déduira qu'il a rang ω^2 . Il notera également que tout blanc est produit de deux rouges et du fait que le rang d'un corps est monomial et que le groupe additif est connexe; il déduira que le type générique blanc est de rang $\omega^2 \cdot 2$.

D'après la description précédente, pour obtenir un collapse de rang $\omega \cdot 2$, il suffit donc de collapser à rang fini les extensions minimales affines, qu'on appellera préfinitaires. Pour ce faire, nous allons les rendre de dimension finie sur C, en leur interdisant d'avoir une infinité de réalisations rouges C-linéairement indépendantes.

4. Les codes

Dans cette partie nous travaillons dans DCF_0 . Nous allons fréquemment adapter les preuves de [3] à ce cadre en utilisant certaines propriétés de la théorie DCF_0 ; et en particulier celles rappelées dans le fait 3.1 et dans la remarque suivante :

Remarque 4.1. Dans DCF_0 :

- (1) Le générique de \mathbb{K}^n est définissable; c'est l'unique type de degré différentiel n.
- (2) Soient p un type stationnaire de rang de Morley $\omega \cdot n$ et $\bar{e}_0, \ldots, \bar{e}_m$ une suite de Morley de p au-dessus de B. Alors, pour tout \bar{d} de longueur inférieure ou égale à m, il existe au moins un \bar{e}_i tel que $\bar{d} \bigcup_{B} \bar{e}_i$.

Pour la suite, on dira qu'un ensemble définissable (ou un type) dans DCF₀ a un bon rang si son rang de Morley est un monôme de la forme $\omega \cdot n$. Deux ensembles définissables X et Y dans \mathbb{K}^n sont dits équivalents si $\mathrm{RM}(X) = \mathrm{RM}(Y)$ et $\mathrm{RM}(X \triangle Y) < \mathrm{RM}(X)$. On notera cette propriété $X \sim Y$. Soit X un sousensemble définissable de \mathbb{K}^n qui est génériquement un sous-groupe additif de \mathbb{K}^n . Son groupe invariant, $\mathrm{Inv}(X)$, est le sous-groupe $\{H \in \mathrm{GL}_n(C) \mid H(X) \sim X\}$.

Comme tout sous-groupe additif définissable est connexe, tout ensemble définissable X, qui est génériquement un sous-groupe additif, est de degré de Morley 1 (c.à.d.

"irréductible") et de plus si X a un bon rang alors par la remarque 4.1 (1), le sous-groupe Inv(X) est définissable.

Le lemme suivant se montre de manière analogue à [3, Lemma 2.7]

Lemme 4.2. Soient X un sous-ensemble B-définissable de \mathbb{K}^n ayant un bon rang et de degré de Morley 1, et \bar{e}_0 et \bar{e}_1 deux génériques B-indépendants. Si $\bar{e}_0 - H\bar{e}_1 \downarrow \bar{e}_0$ pour une matrice H de $GL_n(C)$, alors X est équivalent à un sous-espace affine sur C. De plus, si X est équivalent à un sous-espace vectoriel sur C, alors H est dans

Définition 4.3. On appelle ensemble *préfinitaire* toute partie définissable X de \mathbb{K}^{2n} à paramètres \bar{b} et de bon rang $\omega \cdot n$ telle que pour tout générique \bar{a} de X, les conditions suivantes sont réalisées :

(a) dim.lin_C(\bar{a}) = 2n.

Inv(X).

(b) pour toute matrice M de $M_{2n}(C)$ de rang 0 < d < 2n,

$$\operatorname{deg.dif}(\bar{a}/\bar{b} \cup M\bar{a}) < n - d/2.$$

(c) X est équivalent à un sous-espace affine sur C.

Notons qu'un ensemble préfinitaire est nécessairement de degré de Morley 1 car tout sous-groupe additif définissable est connexe.

Rappelons que les types de bon rangs ne dévient pas sur les constantes. Ainsi, on peut adapter les arguments utilisés pour les ensembles préalgébriques dans [3, Lemma 3.3], pour vérifier que la préfinitude est conservée par équivalence, translation et action de $\operatorname{GL}_{2n}(C)$.

On dira qu'une formule $\varphi(\bar{x}, \bar{y})$ encode un ensemble définissable X si il existe $\bar{b} \in \mathbb{K}$ tel que X et $\varphi(\bar{x}, \bar{b})$ sont équivalents.

Définition 4.4. Un code α est une formule $\varphi_{\alpha}(\bar{x}, \bar{y})$ telle que (pour un entier n_{α}):

- (a) La longueur de \bar{x} est $2n_{\alpha}$.
- (b) L'ensemble $\varphi_{\alpha}(\bar{x}, \bar{b})$ est soit vide, soit génériquement un sous-groupe additif de rang $\omega \cdot n_{\alpha}$.
- (c) Si \bar{a} est une réalisation de $\varphi_{\alpha}(\bar{x}, \bar{b})$ alors \bar{a} vérifie les conditions (a) et (b) de la définition 4.3.
- (d) Si $\varphi_{\alpha}(\bar{x}, \bar{b})$ et $\varphi_{\alpha}(\bar{x}, \bar{b}')$ non vides sont équivalents alors $\bar{b} = \bar{b}'$.
- (e) Pour toute matrice $M \in GL_{2n_{\alpha}}(C)$, l'ensemble $\varphi_{\alpha}(M \cdot \bar{x}, \bar{b})$ est encodé par φ_{α} .

Rappelons que les rangs de Lascar et de Morley sont les mêmes pour un groupe définissable dans DCF₀, il en est donc de même pour un ensemble préfinitaire.

Notons que dans la théorie DCF₀ le rang de Morley n'est pas définissable. Afin de montrer que tout groupe préfinitaire peut être codé, nous devons donc vérifier que l'on peut exprimer sur les paramètres qu'un sous-groupe additif a un bon rang.

Lemme 4.5. La propriété d'être un sous-groupe additif G définissable avec un bon rang est définissable sur les paramètres dans le sens suivant : si $\varphi(\bar{x}, \bar{b})$ définit un sous-groupe additif ayant un bon rang $\omega \cdot n$, il existe une formule du type de \bar{b} tel que pour tout \bar{b}' satisfaisant cette formule, $\varphi(\bar{x}, \bar{b}')$ a les mêmes propriétés.

Démonstration. Commençons par remarquer qu'un sous-groupe G définissable de \mathbb{K}^m a un bon rang $\omega \cdot n$ si et seulement si il est de degré différentiel supérieur ou égal à n et tout sous-groupe propre définissable est de degré différentiel strictement inférieur à n (voir [12, Théorème 6.7]).

Soit G un sous-groupe additif définissable de \mathbb{K}^m avec un bon rang $\omega \cdot n$. Alors G est défini par un système différentiel linéaire S à paramètres \bar{b} que l'on note $S_{\bar{b}}$. Pour exprimer que $S_{\bar{y}}$ est de degré différentiel supérieur ou égal à n, il suffit de dire qu'une projection sur n coordonnées est dans le type générique de \mathbb{K}^n ce qui est définissable (remarque 4.1 (1)).

Fixons un générique $(a_1, ..., a_m)$ de G sur \bar{b} . Si a_i est différentiellement algébrique sur a_{i_1} ,, a_{i_k} au dessus de \bar{b} , on peut supposer que $S_{\bar{b}}$ contient une équation différentielle linéaire l'exprimant et on peut la choisir unitaire en a_i (c.à.d. de la forme $a_i^{(r)} + = 0$). Ainsi, pour tout paramètre \bar{y} , le système $S_{\bar{y}}$ est de degré différentiel inférieur ou égal à n.

Il reste maintenant à exprimer que le degré chute dès que l'on considère un sous-groupe propre. Pour un sous-groupe propre donné par une nouvelle équation différentielle linéaire, cela s'exprime sur les paramètres car il suffit de dire qu'une certaine projection n'est pas de degré différentielle maximale. Pour l'exprimer globalement, il suffit de montrer que l'on peut borner l'ordre des équations différentielles à considérer.

Notons M l'ordre de $S_{\bar{y}}$, c'est à dire l'ordre maximal en toute les variables $x_1,...,x_m$. Considérons un sous-groupe défini par $S_{\bar{y}}$ et une seule nouvelle équation différentielle linéaire $g(x_1,...,x_k)=0$ (sur des paramètres quelconques). On peut supposer qu'il existe $l \leq k$ tel que $a_1,...,a_l$ est différentiellement transcendant et $a_{l+1},...,a_k$ différentiellement algébrique sur $a_1,...,a_l$ au dessus de \bar{b} . Si l=k, il n'y a rien à dire sur \bar{y} , le degré du sous-groupe chute nécessairement. Sinon à l'aide des équations du système, on commence à transformer g tel que l'ordre de g en les variables $x_{l+1},...,x_k$ soit inférieur à M.

Sous-lemme. Soient deux équations différentielles linéaires $g_0(x_1,...,x_k) = 0$ et $f(x_1,...,x_k) = 0$ d'ordre en $x_{l+1},...,x_k$ borné par m_0 telles que $f(x_1,...,x_k) = 0$ a ordre total borné par M et est non trivial en x_k . Alors le système $g_0 = 0$ et f = 0 implique un équation différentielle linéaire $g_1(x_1,...,x_{k-1}) = 0$ telle que l'ordre en $x_{l+1},...,x_k$ de g_1 est borné par $M^2 + m_0$ et l'ordre total de g_0 est borné par le maximum de l'ordre total de g_1 et de $M + m_0$.

Démonstration. On construit h_1 en enlevant à g_0 les dérivées de x_k d'ordre supérieur ou égal à l'ordre de x_k dans f à l'aide de dérivées de f d'ordre borné par l'ordre de x_k en g_0 . On en déduit que l'ordre de h_1 en $x_{l+1},...,x_k$ est borné par $M+m_0$ et l'ordre total de g_0 est borné par le maximum de l'ordre total de h_1 et $M+m_0$. Si h_1 est non trivial en x_k , on itère ce procédé avec f et h_1 , jusqu'à ce que h_r soit trivial en x_k . Ceci se fait en au plus M étapes. Un calcul simple montre alors que l'ordre en $x_{l+1},...,x_k$ de h_r est borné par M^2+m_0 . De plus on remarque facilement que pour tout i < r, l'ordre total de h_i est plus petit que le maximum de celui de f et de h_{i+1} . On en déduit que l'ordre total de g_0 est borné par le maximum de l'ordre total de h_r et de $M+m_0$. On pose $g_1=h_r$.

On utilise ce sous-lemme avec l'équation de S qui affirme que x_k est différentiellement algébrique sur $x_1, ..., x_l$. On obtient donc une équation $g_1(x_1, ..., x_{k-1}) = 0$. Si cette équation définit elle-même un sous-groupe propre, on traite ce cas par

induction sur k. Sinon, cette équation est impliquée par le système S. Dans ce cas, on itère le procédé de suppression de variables jusqu'à obtenir g_i identiquement nulle. Ceci se fait en au plus k-l étapes. En utilisant le sous-lemme précédent, un calcul simple montre que l'ordre total de g est alors borné par M(2 + (k - l - 1)M). \square

Lemme 4.6. Tout groupe préfinitaire peut être codé.

Démonstration. Soit X un groupe préfinitaire défini par $\varphi(\bar{x}, \bar{b})$. Par le lemme 4.5, on peut supposer que $\varphi(\bar{x}, \bar{y})$ satisfasse (b). Les conditions du (c) sont définissables, donc on peut supposer également que $\varphi(\bar{x}, \bar{y})$ les satisfasse. Les conditions (d) et (e) s'obtiennent exactement de la même façon que dans la preuve de [3, Lemma 4.3]. (Notons que DCF₀ a élimination d'imaginaires.)

Comme pour les ensembles préalgébriques des corps algébriquement clos de caractéristique fini, on peut choisir un ensemble de bons codes $\mathcal C$ tel que tout groupe préfinitaire est encodé par un unique code dans $\mathcal C$.

Pour chaque code α , on choisit m_{α} tel que pour toute suite de Morley \bar{e}_i de $\varphi_{\alpha}(\bar{x},\bar{b})$ et tout \bar{b}' de même taille que \bar{b} , alors l'un des \bar{e}_i est indépendant de \bar{b}' sur \bar{b} . (On peut choisir un tel m_{α} plus petit que |b|+2 par la remarque 4.1 (2) .)

Théorème 4.7. Pour tout code α et tout $\lambda \geq m_{\alpha}$, il y a une formule $\Psi_{\alpha}(\bar{x}_0, \dots, \bar{x}_{\lambda})$ telle que :

(a) Pour toute suite de Morley $\bar{e}_0, \ldots, \bar{e}_{\lambda}$ de $\varphi_{\alpha}(\bar{x}, \bar{b})$, on a $\Psi_{\alpha}(\bar{e}_0, \ldots, \bar{e}_{\lambda})$.

Réciproquement, pour chaque réalisation $(\bar{e}_0, \ldots, \bar{e}_{\lambda})$ de Ψ_{α} :

- (b) Il existe un unique \bar{b} tel que $\models \varphi_{\alpha}(\bar{e}_i,\bar{b})$ pour $0 \leq i \leq \lambda$. De plus, $\bar{b} \in \operatorname{dcl}(\bar{e}_{i_1},\ldots,\bar{e}_{i_{m_{\alpha}}})$ pour tout $i_1 < \cdots < i_{m_{\alpha}}$. (On appelle \bar{b} le paramètre canonique de la suite $\bar{e}_0,\ldots,\bar{e}_{\lambda}$.)
- (c) $\bar{e}_0, \ldots, \bar{e}_{\lambda}$ sont linéairement indépendants sur C.

(d)
$$\Psi_{\alpha}(\bar{f}_0, \dots, \bar{f}_{\lambda})$$
 pour tout $\begin{pmatrix} \bar{f}_0 \\ \vdots \\ \bar{f}_{\lambda} \end{pmatrix} = M \begin{pmatrix} \bar{e}_0 \\ \vdots \\ \bar{e}_{\lambda} \end{pmatrix}$ avec $M \in GL_{\lambda+1}(C)$.

- (e) $\Psi_{\alpha}(\bar{e}_0,\ldots,\bar{e}_{i-1},\bar{e}_i-H\bar{e}_j,\bar{e}_{i+1},\ldots,\bar{e}_{\lambda})$ pour tout H de $\operatorname{Inv}(\varphi_{\alpha}(\bar{x},\bar{b}))$ et tout $i \neq j$.
- (f) $Si \ \bar{e}_i \ est \ g\'{e}n\'{e}rique \ dans \ \varphi_{\alpha}(\bar{x},\bar{b}), \ alors$

$$\bar{e}_i - H\bar{e}_j \underbrace{\downarrow}_{\bar{b}} \bar{e}_i$$

pour tout $j \neq i$ et H dans $GL_{2n_{\alpha}}(C) \setminus Inv(\varphi_{\alpha}(\bar{x}, \bar{b}))$.

 $D\'{e}monstration.$ Montrons pour commencer que le type partiel suivant vérifie toutes les propriétés voulues :

$$\Sigma(\bar{e}_0, \dots, \bar{e}_{\lambda}) = \text{"il existe } \bar{b} \text{ tel que } \bar{e}_0, \dots, \bar{e}_{\lambda}$$

$$\text{est une suite de Morley de } \varphi_{\alpha}(\bar{x}, \bar{b}) \text{"}$$

Par définition, Σ satisfait (a) et (c). Le choix de \bar{m}_{α} avec la propriété (d) du code, nous donne (b). Notons que l'uple $\bar{e}_0...\bar{e}_{\lambda}$ a un bon rang et est donc indépendant des constantes. On en déduit que toute transformation linéaire de cette suite reste une

²Par (b) et $\lambda \ge m_{\alpha}$ cette nouvelle suite a aussi pour paramètre canonique \bar{b} .

suite de Morley sur \bar{b} ainsi que la transformation d'un seul élément de la suite par une matrice du sous-groupe invariant associé au code. Par conséquent Σ satisfait (d) et (e). Par le lemme 4.2, on a (f).

Par compacité on choisit Ψ_0 dans Σ satisfaisant les propriétés (b), (c) et (f).

On regarde maintenant le groupe $GL_{\lambda+1}(C)$ comme sous-groupe de $GL_{2n_{\alpha}(\lambda+1)}(C)$ agissant par combinaisons linéaires d'uples de longueur $2n_{\alpha}$. Le groupe $GL_{\lambda+1}(C)$ est connexe donc indécomposable dans la structure C qui est un pur corps algébriquement clos. Pour chaque $H \in GL_{2n_{\alpha}}(C)$, soit C_H le conjugué de $GL_{\lambda+1}(C)$ par la matrice

$$\begin{pmatrix} H & & & \\ & Id & & \\ & & \ddots & \\ & & & Id \end{pmatrix}$$

Par le théorème des indécomposables de Zilber, le sous-groupe $G(\alpha, \bar{e}_0, ..., \bar{e}_{\lambda})$ engendré par $\{C_H\}_{H \in \text{Inv}(\varphi_{\alpha}(\bar{x},\bar{b}))}$ est uniformément définissable sur \bar{b} . Notons que pour tout $H \in \text{Inv}(\varphi_{\alpha}(\bar{x},\bar{b}))$, la transformation

$$(\bar{e}_0,...,\bar{e}_i,...\bar{e}_{\lambda}) \rightarrow (\bar{e}_0,...,\bar{e}_{i-1},\bar{e}_i-H\bar{e}_j,\bar{e}_{i+1},...,\bar{e}_{\lambda})$$

est dans ce sous-groupe.

Soit Ψ définie par

$$\bigwedge_{\tau \in G(\alpha, \bar{e}_0, \dots, \bar{e}_{\lambda})} \Psi_0(\tau(\bar{e}_0, \dots, \bar{e}_{\lambda}))$$

Alors Ψ vérifie toutes les propriétés.

5. La chute des rouges

Dans cette section, on travaille dans le corps différentiel rouge \mathbb{K}_{ω} (c.f. Théorème 2.1) et on considère des structures de \mathcal{K}_0 plongées de manière autosuffisantes dans \mathbb{K}_{ω} .

Une pseudo-suite de Morley de longueur $\lambda+1$ (avec $\lambda \geq m_{\alpha}$) pour le code α est une réalisation rouge d'une formule $\Psi_{\alpha}(\bar{x}_0,\ldots,\bar{x}_{\lambda})$ satisfaisant les propriétés du théorème 4.7. On appellera transformation d'une pseudo-suite de Morley $(\bar{e}_0,\ldots,\bar{e}_{\lambda})$ une pseudo-suite obtenue par transformations successives de types (d) ou (e) dans le théorème 4.7. Notons que le paramètre canonique d'une transformation peut être différent de celui de la pseudo-suite de départ.

Lemme 5.1. Pour tout code α et tout entier r, il existe une fonction entière $\lambda = \lambda(\alpha, r)$ telle que pour toute extension autosuffisante $k \leq k'$ dans K_0 vérifiant $C_{k'} = C_k$ et toute pseudo-suite de Morley $\bar{e}_0, \ldots, \bar{e}_{\lambda}$ dans k', avec paramètres \bar{b} , si la suite ne peut pas être transformée en une pseudo-suite de Morley à paramètres dans k, alors on peut extraire une sous-suite de Morley (au sens de DCF₀) sur $k \cup \bar{b}$ de longueur r.

Démonstration. La preuve suit essentiellement celles des articles précédents (voir [8], [3]). Le but est de borner le nombre d'éléments de la suite qui sont des combinaisons linéaires de prédécesseurs modulo k. Soit X une partie quelconque de cette suite. Pour chaque \bar{e}_i inclus dans le $C_{k'}$ -espace vectoriel engendré par X au-dessus de k, on associe une matrice H_i à coefficients dans $C_{k'} = C_k$ tel que $\bar{e}_i = H_i X + m_i$ avec $m_i \in k$. La dimension linéaire ξ de l'espace de telles matrices est bornée en fonction de |X| et α . Avec $\xi + 1$ tels \bar{e}_i , on obtient une combinaison linéaire qui

chute dans k. Par hypothèse le nombre de telles combinaisons linéaires est borné par m_{α} et donc le nombre de \bar{e}_i comme ci-dessus est borné en fonction de |X| et α . Alors le résultat suit en prenant X minimale contenant $\bar{e}_0, \ldots, \bar{e}_{m_{\alpha}-1}$ telle que l'ensemble des coordonnées de la pseudo-suite de Morley est contenu dans le sous-espace vectoriel engendré par X au-dessus de k.

De la même façon que dans [3], on choisit deux fonctions μ et μ^* définies sur l'ensemble de codes \mathcal{C} , à valeurs dans \mathbb{N} et à fibres finies telles que :

```
-\mu(\alpha) \geq \max(\lambda(\alpha, \mu^*(\alpha)), m_\alpha);
```

 $-\mu^*(\alpha) \ge \max(\lambda(\alpha, m_{\alpha} + 1) + 1, 2n_{\alpha} + 1).$

et on définit la sous-classe \mathcal{K}_{μ} des structures dans \mathcal{K}_0 qui pour tout code $\alpha \in \mathcal{C}$, ne possèdent pas de pseudo-suite de Morley de longueur $\mu(\alpha) + 1$.

La classe \mathcal{K}_{μ} est évidemment élémentaire. (Ajout d'axiomes universels aux axiomes de la classe \mathcal{K}_0). Nous commençons par vérifier que cette classe a la propriété d'amalgamation.

Les conditions sur les fonctions μ et μ^* permettent de montrer le lemme suivant en appliquant le lemme 5.1 de la même manière que dans la preuve de [3, Lemma 8.1] :

Lemme 5.2. Soient $k, k_1, k_2 \in \mathcal{K}_0$ tels que k est autosuffisant dans k_1 et k_2 et tels que $C_{k\langle k_1 \cup k_2 \rangle} = C_{k_1} = C_{k_2} = C_k$. Si pour un code $\alpha \in \mathcal{C}$, l'amalgame libre $k\langle k_1 \cup k_2 \rangle$ contient une pseudo suite de Morley de longueur $\mu(\alpha) + 1$ pour le code α , alors le paramètre canonique d'une de ses transformations est contenu dans k_1 ou dans k_2 .

Pour montrer la propriété d'amalgamation pour la classe \mathcal{K}_{μ} , nous allons ajouter des constantes afin de travailler à corps de constantes fixe.

Lemme 5.3. Si $k \in \mathcal{K}_{\mu}$ et k' est une extension autosuffisante de k obtenue en ajoutant des constantes alors $k' \in \mathcal{K}_{\mu}$.

Démonstration. Soit $\bar{e}_0, \ldots, \bar{e}_{\lambda}$ une pseudo-suite de Morley dans k' pour le code α . Considérons, $\bar{e}'_0, \ldots, \bar{e}'_{\lambda}$ dans R(k) tel que $\bar{e}_i = M_i \bar{e}'_i$ où les M_i sont des matrices sur le corps des constantes de k'. Par conséquent, au sens de DCF₀, la clôture différentielle de k' satisfait la formule

 $\exists M_1, \ldots, M_{\lambda}$ des matrices sur C de tailles fixées telles que $\Psi_{\alpha}(M_1 \bar{e}'_1, \ldots, M_{\lambda} \bar{e}'_{\lambda})$. Cette formule est donc satisfaite dans la clôture différentielle de k (qui est sous-structure élémentaire de la clôture différentielle de k'). Du fait que prendre la clôture différentielle n'ajoute pas de constantes, on obtient une pseudo-suite de Morley dans

Le lemme suivant se montre de manière analogue au [3, Lemma 7.3] (en remarquant tout d'abord, par le lemme précédent, que le corps des constantes est fixe

dans ce cas):

k.

Lemme 5.4. Soient $k \in \mathcal{K}_{\mu}$ et $k' \notin \mathcal{K}_{\mu}$ une extension minimale de k contenant une pseudo-suite de Morley $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)}$ de paramètre canonique $\bar{b} \in k$ pour un code $\alpha \in \mathcal{C}$. Alors il existe une pseudo-suite de Morley $\bar{e}'_0, \ldots, \bar{e}'_{\mu(\alpha)}$ pour le même code et avec même paramètre canonique telle que k contient $\bar{e}'_0, \ldots, \bar{e}'_{\mu(\alpha)-1}$ et $k' = k \langle \bar{e}'_{\mu(\alpha)} \rangle$. Notons qu'alors α est l'unique code vérifiant ces propriétés.

Théorème 5.5. La classe \mathcal{K}_{μ} a la propriété d'amalgamation.

Démonstration. Il suffit de montrer la propriété pour des extensions minimales k_1 et k_2 de k dans \mathcal{K}_{μ} . Notons k' l'amalgame libre $k\langle k_1 \cup k_2 \rangle$. On peut supposer que $C_{k'} = C_k$ (il suffit pour cela d'étendre k par les constantes de k' en utilisant le lemme 5.3). Avec cette hypothèse, la prédimension est sous-modulaire entre k et k' et par conséquent k' est une extension minimale de k_1 et de k_2 . À l'aide des lemmes 5.2, 5.4, 3.3 et de la remarque 4.1 (2), on montre alors, de la même manière que dans la preuve du [3, Theorem8.2], que si $k' \notin \mathcal{K}_{\mu}$ alors k_1 et k_2 sont isomorphes au-dessus de k.

On suit la notation des articles précedents et on dit qu'un corps K dans \mathcal{K}_{μ} est riche si pour tout sous-corps autosuffisant finiment engendrée k dans K et toute extension finiment engendré $k \leq k'$ dans \mathcal{K}_{μ} , il existe une k-copie de k' autosuffisante dans K. Par la propriété d'amalgamation, il y a un unique corps riche dénombrable (à isomorphisme près). Maintenant, nous vérifions que les corps riches correspondent aux modèles ω -saturés d'une théorie. Pour cela, nous devons commencer par décrire les extensions minimales qui ne restent pas dans la classe \mathcal{K}_{μ} .

Notons que dans le lemme suivant, on ne suppose pas qu'une extension préfinitaire est engendrée par un type de bon rang dans DCF₀ (contrairement aux ensembles préfinitaires qui sont par définition des ensembles définissables ayant bon rang).

Lemme 5.6. Soient $k \in \mathcal{K}_{\mu}$ et k' une extension minimale de k. Alors :

- (1) Ou bien k' n'est pas une extension préfinitaire et alors $k' \in \mathcal{K}_{\mu}$.
- (2) Ou bien k' est une extension préfinitaire et alors $k' \notin \mathcal{K}_{\mu}$ si et seulement si k' contient une pseudo-suite de Morley $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)}$ de paramètre canonique \bar{b} pour un code $\alpha \in \mathcal{C}$ telle que l'une des conditions suivantes soit réalisée :
 - (a) k contient $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)-1}$ et $k' = k \langle \bar{e}_{\mu(\alpha)} \rangle$.
 - (b) $\mu^*(\alpha)$ éléments parmis $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)}$ forment (au sens de DCF₀) une suite de Morley de $\varphi_{\alpha}(\bar{x}, \bar{b})$ au-dessus de $k \cup \bar{b}$.

Démonstration. Par le lemme 5.3, on peut supposer que $C_{k'} = C_k$. Si k' est engendré par un point blanc différentiellement algébrique ou générique alors R(k') = R(k) et donc $k' \in \mathcal{K}_{\mu}$ car k' contient les même pseudo-suites de Morley que k.

Sinon, supposons que k' contienne une pseudo-suite de Morley $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)}$ de paramètre canonique \bar{b} pour un code $\alpha \in \mathcal{C}$. On distingue deux cas :

Ou bien après une transformation de $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)}$, on peut supposer que k contient \bar{b} . Alors par le lemme 5.4, on est dans le cas (2a) et dans ce cas k' est une extension préfinitaire correspondant en fait à un groupe préfinitaire (en particulier cette extension a un bon rang).

Sinon, par le lemme 5.1, au moins $\mu^*(\alpha)$ éléments parmis $\bar{e}_0, \ldots, \bar{e}_{\mu(\alpha)}$ forment une suite de Morley de $\varphi_{\alpha}(\bar{x}, \bar{b})$ au-dessus de $k \cup \bar{b}$. En particulier, il existe un élément \bar{e}_i générique au-dessus de $k \cup \bar{b}$. Ce n'est pas possible si k' est engendré par un générique rouge car dans ce cas dim. $\lim_{C} (R(k')/R(k)) = 1$. Par ailleurs \bar{e}_i a un rang coloré infini sur k, donc k' ne peut-être engendré par un uple rouge de rang coloré fini. Par conséquent k' est nécessairement préfinitaire.

Corollaire 5.7. Pour chaque code $\alpha \in \mathcal{C}$ il existe un axiome $\forall \exists$, χ_{α} , tel que tout corps $k \in \mathcal{K}_{\mu}$ différentiellement clos satisfait χ_{α} si et seulement s'il n'admet aucune extension minimale préfinitaire $k\langle \bar{a} \rangle$ dans \mathcal{K}_{μ} , donnée par une réalisation générique rouge \bar{a} d'une cossette définissable sur k d'un groupe codé par α .

Démonstration. De la même façon que dans la preuve [3, Corollary 7.5], à partir de la caractérisation des extensions minimales qui ne sont pas dans \mathcal{K}_{μ} , en utilisant le lemme 5.6 et le fait que μ^* est à fibres finies, on vérifie facilement qu'il existe une partie finie $\mathcal{C}_{\alpha} \subset \mathcal{C}$ de codes telle qu'une telle extension $k\langle \bar{a} \rangle \notin \mathcal{K}_{\mu}$ si et seulement si $k\langle \bar{a} \rangle$ contient une pseudo-suite de Morley de longueur $\mu(\beta) + 1$ pour un certain $\beta \in \mathcal{C}_{\alpha}$. Notons que comme k est différentiellement clos, pour chaque \bar{a} générique rouge d'une cossette définissable sur k d'un groupe codé par α , il existe \bar{b} et \bar{a}' dans k tel que \bar{a} est générique de l'ensemble préfinitaire défini par $\varphi_{\alpha}(\bar{x} - \bar{a}', \bar{b})$.

Ainsi, k n'a pas une telle extension minimale dans \mathcal{K}_{μ} associée au code α si et seulement si k satisfait pour tous paramètres \bar{a}' et \bar{b} de k tels que $\varphi_{\alpha}(\bar{x}-\bar{a}',\bar{b})$ non vide, il existe un code $\beta \in \mathcal{C}_{\alpha}$, des uples rouges $\bar{m}_0,...,\bar{m}_{\mu(\beta)}$ de k et des matrices $M_0,...,M_{\mu(\beta)}$ à coefficients dans C_k tel que la formule $\Psi_{\beta}(M_0 \cdot \bar{x} + \bar{m}_0,...,M_{\mu(\beta)} \cdot \bar{x} + \bar{m}_{\mu(\beta)})$ est générique au sens DCF₀ dans $\varphi_{\alpha}(\bar{x} - \bar{a}',\bar{b})$.

Du fait que $\varphi_{\alpha}(\bar{x} - \bar{a}', \bar{b})$ a un bon rang, l'équivalence d'une sous-formule est une propriété uniformément définissable en les paramètres (par définissabilité du générique). De plus, en utilisant l'élimination des quantificateurs dans DCF₀, on remarque que cette propriété est définissable par une formule $\forall \exists$.

Considérons maintenant la théorie T^{μ} suivante :

- (1) Axiomatisation de \mathcal{K}_{μ} ;
- (2) Axiomatisation de DCF₀;
- (3) Les axiomes χ_{α} pour $\alpha \in \mathcal{C}$;
- (4) Pour toute formule $\phi(\bar{x}, \bar{y})$ à géométries triviales, si l'ensemble $\phi(\bar{x}, \bar{b})$ est non vide alors $\phi(\bar{x}, \bar{b})$ a une réalisation rouge.

Théorème 5.8. Un corps K de \mathcal{K}_{μ} est riche si et seulement si K est un modèle ω -saturé de T^{μ} .

Démonstration. Montrons qu'un modèle K ω -saturé est riche. Soit k finiment engendré tel que $k \leq K$ et k' une extension minimale de k dans \mathcal{K}_{μ} .

Si k' est engendré au-dessus de k par un élément différentiellement algébrique blanc alors il suffit de réaliser le type corpique de cet élément dans K ce qui est possible car K est un modèle ω -saturé de DCF₀.

Si $\delta(k'/k) = 0$ et k' est engendré par une base rouge \bar{a} de taille 2n. Après avoir ajouté des éléments différentiellement algébriques, on peut supposer que le type p de \bar{a} sur k dans DCF₀ a rang U égal à $\omega \cdot n$. Dans ce cas :

Ou bien le type rouge p^* de \bar{a} sur k est trivial et alors par les axiomes (4) et la saturation de K, on trouve une réalisation rouge de p dans K (c'est-à-dire K réalise p^*).

Ou bien p^* est alors le générique d'une cossette d'un groupe préfinitaire codé par un code $\alpha \in \mathcal{C}$. Dans ce cas, l'amalgame libre de K et k' au-dessus de k n'est pas dans \mathcal{K}_{μ} par l'axiome χ_{α} . Alors par le théorème 5.5, le corps k' doit se plonger nécessairement dans K de manière autosuffisante au-dessus de k.

Si k' est engendré par le générique rouge au-dessus de k, on l'approxime dans K par des types rouges triviaux et donc par saturation, ce générique est réalisé dans K. Le même argument d'approximation montre que K réalise le générique blanc.

Montrons maintenant que les corps riches sont modèles de T^{μ} . Soit K un corps riche. Alors K est bien dans \mathcal{K}_{μ} et il est différentiellement clos car tout type

différentiellement algébrique sur un ensemble fini est réalisé par un point blanc dans K. (Il suffit de plonger l'amalgame libre d'une extension par un point différentiellement algébrique). Par richesse, il contient toujours des réalisations des extensions triviales (qui restent dans \mathcal{K}_{μ}) au-dessus de paramètres donnéq. Si jamais on restait dans la classe \mathcal{K}_{μ} en ajoutant à K une réalisation rouge générique d'une cossette d'un groupe codé par $\alpha \in \mathcal{C}$, on pourrait alors facilement trouver dans K une suite de Morley rouge de ce groupe, de longueur arbitrairement grande, et obtiendrait, par la propriété (a) de Ψ_{α} , une pseudo-suite de Morley de longueur trop grande.

Puisque tous les riches se correspondent par va et vient infini, on déduit qu'ils sont tous ω -saturés.

Pour la suite, nous notons K l'unique modèle riche dénombrable.

Corollaire 5.9. La théorie T^{μ} est de rang $\omega \cdot 2$ et les rouges forment un sous-groupe additif de rang ω .

Démonstration. Soit k' une extension minimale affine de bon rang sur k engendrée par une base rouge \bar{a} . Rappelons que le type de \bar{a} est alors le générique d'une cossette définissable d'un groupe codé par $\varphi_{\alpha}(\bar{x},\bar{b})$, où l'on peut supposer \bar{b} autosuffisant. Du fait que la taille des pseudo-suites de Morley correspondantes est bornée, les réalisations rouges de $\varphi_{\alpha}(\bar{x},\bar{b})$ sont incluses dans l'espace vectoriel engendré par \bar{b} et une suite de Morley finie de cette formule. Comme C est de rang 1, le rang de Morley de $\varphi_{\alpha}(\bar{x},\bar{b}) \wedge R(\bar{x})$ est donc fini.

Les extensions minimales de prédimensions nulles sont donc toutes de rangs finis et le même résultat suit pour toutes les extensions autosuffisantes de prédimensions nulles. De plus, comme on n'a pas collapser les extensions triviales, il y a des rouges de rang fini arbitrairement grand et donc le générique rouge est de rang ω .

Par connexité du groupe additif de K, le rang du générique blanc est au moins $\omega \cdot 2$ mais on a l'égalité car tout point est produit de deux rouges : en effet, pour $a \in K$, on considère une clôture autosuffisante k de a et on prend une paire de rouges r_1, r_2 linéairement indépendants sur k telle que $a = r_1 \cdot r_2$ et r_1 est différentiellement transcendant sur k. Cette paire détermine alors une extension triviale qui est donc réalisée dans K.

6. Les verts

Dans cette dernière section, nous travaillons dans le modèle riche K obtenu dans section 4.

Considérons le logarithme différentiel défini de la façon suivante :

$$\begin{array}{cccc} \mathfrak{L}\partial: & \mathbb{G}_m & \to & \mathbb{G}_a \\ & x & \to & \frac{x'}{x} \end{array}$$

où \mathbb{G}_m (resp. \mathbb{G}_a) dénote le groupe algébrique multiplicatif (resp. additif) de K. Notons que $\mathfrak{L}\partial$ est un homomorphisme de groupes avec noyau $\mathbb{G}_m(C) = C^*$. On défini maintenant :

$$V = \{ \bar{x} \in \mathbb{G}_m \, | \, \mathfrak{L}\partial(x) \in \mathbf{R} \}$$

et on l'appelle ensemble de points verts de K. Il est un sous-groupe multiplicatif divisible (parce que R est un \mathbb{Q} -espace vectoriel) qui contient de la torsion (toute

la torsion de \mathcal{C}^*). Poizat [13] avait déjà noté que la structure réduite (K, V) n'est pas un mauvais corps, même si on oublie la dérivé (et donc les rouges). Nous répétons et complétons maintenant son argument. Dans le langage étendu, V a aussi rang ω (parce que le noyau de $\mathfrak{L}\partial$ a rang 1 et l'application $\mathfrak{L}\partial$ est surjective car K est différentiellement clos). De plus, V est divisible, et donc indécomposable (multiplicativement mais aussi additivement). Le théorème des indécomposables montre qu'il existe une borne ξ (en fait, 4) telle que tout élément de K s'exprime comme somme de ξ éléments de V. Cet énoncé reste alors vrai dans la structure réduite, donc K et V ont des rangs commensurables dans la structure (K, V). Maintenant, [14] donne l'existence d'un plus petit corps définissable F contenant le corps de constantes C. En passant au langage étendu, on déduit que F a rang fini, et donc F = C parce que C est algébriquement clos. Ainsi le rang de C dans le réduit reste 1, et le rang de K est au moins ω . Par commensurabilité de K et V et le fait que K est multiplicativement connexe, le rang de V reste ω et le rang de K est $\omega \cdot 2$ dans la structure réduite (K, V).

En utilisant l'application de Manin, on obtient des sous-groupes non-algébriques d'une variété semiabelienne donnée telles que la structure réduite n'a pas rang fini.

RÉFÉRENCES

- [1] A. Baudisch, M. Hils, A. Martin-Pizarro, F. Wagner, Die böse Farbe, soumis en 2006.
- [2] A. Baudisch, A. Martin-Pizarro, M. Ziegler, On fields and Colours, Algebra i Logika, 45, no 2, 92–105 (2006).
- [3] A. Baudisch, A. Martin-Pizarro, M. Ziegler, Red fields, J. Symbolic Logic, 72, vol. 1, 207–225, 2007.
- [4] F. Benoist Rangs et types de rang maximum dans les corps différentiellement clos, J. Symbolic Logic, 67, vol 3, 1178–1188, (2002).
- [5] E. Bouscaren, Model Theory and Algebraic Geometry: an introduction to E. Hrushovski's proof of the geometric Mordell-Lang conjecture, Lecture Notes in Mathematics, 1696, Springer-Verlag, Berlin, Germany, 1991.
- [6] E. Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc., 9, n° 3, 667–690, 1996.
- [7] E. Hrushovski, Strongly minimal expansions of algebraically closed fields, Israel J. Math, 79, 129–151, (1992).
- [8] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic, 62, 147–166, (1993).
- [9] D. Marker, Model theory of differential fields, dans Model theory of fields, Lecture Notes in Logic, 5, ASL, La Jolla(CA), EU, (1996).
- [10] A. Pillay, Geometric Stability Theory, Oxford Logic Guides, 33. Oxford University Press, New York, (1996).
- [11] A. Pillay, W.Y. Pong, On Lascar rank and Morley rank of definable groups in differentially closed fields, J. Symbolic Logic, 67, vol 3, 1189–1196, (2002).
- [12] B. Poizat, Groupes Stables. Une tentative de conciliation entre la géométrie algébrique et la logique mathématique, Nur al-Mantiq wal-Ma rifah, Bruno Poizat, Lyon (1987).
- [13] B. Poizat, L'égalité au cube, J. Symb. Logic, 66, n° 4, 1647–1676, (2001).
- $[14]\,$ F.O. Wagner, Subgroups of stable groups, J. Symb. Logic, $\bf 55,\,n^o$ 1, 151–156, (1990).
- [15] F.O. Wagner, Bad fields in positive characteristic, Bull. London Math. Soc, $\bf 35$, $n^{\rm o}$ 4, 499–502, (2003).
- [16] C. Wood, Differentialy closed fields In E. Bouscaren, editor, Model Theory and Algebraic Geometry, Lecture Notes in Mathematics 1696. Springer-Verlag, (1998).

- [17] M. Ziegler, Lemma für Daniels beschränkte Automorphismen, preprint at http://de.arxiv.org/math.LO/0608433
- T. Blossier, Université de Lyon, Université Lyon 1, Institut Camille Jordan UMR 5208 CNRS, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France E-mail address: blossier@math.univ-lyon1.fr
- A. Martin Pizarro, Institut für Mathematik, Humboldt-Universität zu Berlin, D $\!-\!10099$ Berlin, Allemagne.

Adresse actuelle: Université de Lyon, Université Lyon 1, Institut Camille Jordan UMR 5208 CNRS, 43 BOULEVARD DU 11 NOVEMBRE 1918, F-69622 VILLEURBANNE CEDEX, FRANCE E-mail address: pizarro@mathematik.hu-berlin.de, pizarro@math.univ-lyon1.fr