G-COMPACTNESS AND GROUPS

JAKUB GISMATULLIN AND LUDOMIR NEWELSKI

ABSTRACT. Lascar described E_{KP} as a composition of E_L and the topological closure of E_L ([1]). We generalize this result to some other pairs of equivalence relations.

Motivated by an attempt to construct a new example of a non-G-compact theory, we consider the following example. Assume G is a group definable in a structure M. We define a structure M' consisting of M and X as two sorts, where X is an affine copy of G and in M' we have the structure of M and the action of G on X. We prove that the Lascar group of M' is a semi-direct product of the Lascar group of M and G/G_L . We discuss the relationship between G-compactness of M and M'. This example may yield new examples of non-G-compact theories.

1. INTRODUCTION

Let T be a complete theory in language L. We work within a monster model $\mathfrak{C} \models T$. A model $M \models T$ is small if $M \prec \mathfrak{C}$ and |M| = |T|. If X is a subset of a topological space, then by $\operatorname{int}(X)$ we denote its interior and by $\operatorname{cl}(X)$ its closure. We recall some well known facts about the Lascar Group and Lascar strong types (see [1, 9]). The group of Lascar strong automorphisms is defined by:

 $\operatorname{Autf}_{\mathrm{L}}(\mathfrak{C}) = \langle \operatorname{Aut}(\mathfrak{C}/M) \colon M \text{ is a small model } \rangle,$

and the Lascar (Galois) group of T by:

$$\operatorname{Gal}_{\mathrm{L}}(T) = \operatorname{Aut}(\mathfrak{C}) / \operatorname{Autf}_{\mathrm{L}}(\mathfrak{C}).$$

This definition does not depend on the choice of the monster model \mathfrak{C} of T (it is enough that \mathfrak{C} is $|T|^+$ -saturated and $|T|^+$ -strongly homogeneous). We say that $a, b \in \mathfrak{C}^k$ $(k < |T|^+)$ have the same Lascar strong type, and write $E_L(a, b)$, if there exists $f \in \operatorname{Autf}_L(\mathfrak{C})$ such that a = f(b). Thus E_L is a \emptyset -invariant and bounded equivalence relation on every sort \mathfrak{C}^k (because if $a \equiv b$ for some small $M \prec \mathfrak{C}$, then $E_L(a, b)$, so $|\mathfrak{C}^k/E_L| \leq |S_k(M)| \leq 2^{|T|}$).

Definition 1.1. A symmetric formula $\varphi(x, y) \in L_{k+k}(\emptyset)$ is *thick* if for some $n < \omega$, for every sequence $(a_i)_{i < n}$ there exist i < j < n such that $\varphi(a_i, a_j)$. By Θ we denote the conjunction of all thick formulas:

$$\Theta(x,y) = \bigwedge_{\varphi \text{ thick}} \varphi(x,y).$$

In the above definition we can equivalently take an infinite sequence $(a_i)_{i<\omega}$. If φ and θ are thick, then $\psi(x, y) = \varphi(y, x)$ and $\varphi \wedge \theta$ are also thick (this follows from the Ramsey theorem). Θ is a \emptyset -invariant relation (not necessarily an equivalence relation) and if $\Theta(a_0, a_1)$, then we can extend (a_0, a_1) to an order indiscernible sequence $(a_i)_{i<\omega}$.

²⁰⁰⁰ Mathematics Subject Classification. 03C60, 22C05, 20F28, 03H05.

Key words and phrases. strong types, G-compactness, regular action, automorphisms groups.

On the other hand if $(a_i)_{i < \omega}$ is a 2-indiscernible sequence, then $\varphi(a_0, a_1)$ for every thick φ .

Lemma 1.2. [9, Lemma 7]

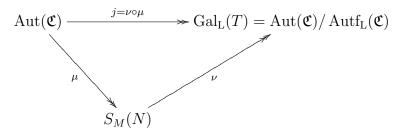
- (i) If Θ(a, b), then there is a small M such that a ≡ b.
 (ii) If for some small M we have a ≡ b, then Θ²(a, b), i.e. there is c such that $\Theta(a,c) \wedge \Theta(c,b).$
- (iii) E_L is the transitive closure of Θ .

If π is a type over \emptyset , then we can define thick formulas on $\pi(\mathfrak{C})$ and their conjunction Θ_{π} similarly as in the above definition. Moreover, the last remark also holds for Θ_{π} , so $E_L|_{\pi(\mathfrak{C})}$ is the transitive closure of Θ_{π} . One can prove that $E_L|_{\pi(\mathfrak{C})}$ is the finest bounded \emptyset -invariant equivalence relation on $\pi(\mathfrak{C})$.

There is a compact (not necessarily Hausdorff) topology on the group $\operatorname{Gal}_{L}(T)$. Let M and N be arbitrary small models and let

$$S_M(N) = \{ \operatorname{tp}(M'/N) \colon \operatorname{tp}(M') = \operatorname{tp}(M) \}$$

be a closed subset of $S_{|T|}(N)$. Thus $S_M(N)$ carries a compact subspace topology. The quotient map $j: \operatorname{Aut}(\mathfrak{C}) \to \operatorname{Gal}_{L}(T)$ factors as $j = \nu \circ \mu$, where $\mu: \operatorname{Aut}(\mathfrak{C}) \to S_{M}(N)$ maps f to $\operatorname{tp}(f(M)/N)$, and $\mu: S_M(N) \to \operatorname{Gal}_L(T)$ maps $\operatorname{tp}(f(M)/N)$ to an appropriate coset of $\operatorname{Autf}_{L}(\mathfrak{C})$, so we have the following commutative diagram:



We can induce topology on $\operatorname{Gal}_{L}(T)$ from ν , i.e. $X \subseteq \operatorname{Gal}_{L}(T)$ is closed if and only if its preimage $\nu^{-1}[X]$ is closed in $S_M(N)$. It can be easily seen that this definition of topology does not depend on the choice of small models M and N ([9, Theorem 4]). With this topology $\operatorname{Gal}_{L}(T)$ becomes a compact topological group. We say that T is G-compact when $\operatorname{Gal}_{L}(T)$ is Hausdorff. If we consider $\operatorname{Aut}(\mathfrak{C})$ with the usual topology of pointwise convergence, then all the maps in the diagram are continuous. However ν need not be open, instead ν satisfies some weak kind of openness.

Theorem 1.3. [9, Lemma 12] For $p \in S_M(N)$ define its Θ -neighbourhood as:

$$[p]_{\Theta} = \{ q \in S_M(N) \colon p(x) \cup q(y) \cup \Theta(x, y) \text{ is consistent } \}.$$

If we take an arbitrary point $p \in S_M(N)$ and subset $U \subseteq S_M(N)$ such that $[p]_{\Theta} \subseteq int(U)$, then $\nu(p) \in int(\nu[U])$.

The relation E_L is \emptyset -invariant, so we may consider E_L as a subset of $S_{|T|+|T|}(\emptyset)$. Using this, we define the relation $\overline{E_L}$ as $cl(E_L)$. $\overline{E_L}$ is \emptyset -invariant and contains E_L . There exists the finest bounded Λ -definable over \emptyset equivalence relation, denoted by E_{KP} and known as equality of Kim-Pillay strong types (there is also an appropriate group of automorphisms $\operatorname{Autf}_{\operatorname{KP}}(\mathfrak{C})$ such that $E_{KP}(a, b)$ if and only if for some $f \in \operatorname{Autf}_{\operatorname{KP}}(\mathfrak{C})$, a = f(b)). The next theorem describes some relationship between E_{KP} , Θ and E_L .

Theorem 1.4. [1, Corollary 2.6] $E_{KP} = \Theta \circ \overline{E_L}$

An attempt to understand the proof of this theorem was a starting point of this paper. In particular it was puzzling what properties of E_L , E_{KP} and Θ are responsible for the relationship described in Theorem 1.4. It turnes out that the important point here is that both E_L and E_{KP} are orbit equivalence relations with respect to some groups of automorphisms of \mathfrak{C} . We elaborate on this in Section 2. We generalize Theorem 1.4 there and give a new proof of it based on Theorem 1.3. Also in Section 2 we generalize some results about Lascar, Kim-Pillay and Shelah strong types.

Section 3 contains a model-theoretic analysis of a structure $N = (M, X, \cdot)$, where M is a given stucture and X is affine copy of some group G definable in M. We describe the group of automorphisms of N as a semi-direct product of G and the group of automorphisms of M. In particular we reduce the question of G-compactness of N to the question of Λ -definability of certain subgroup G_L of G. This motivates us to look for examples of G, where G_L is not Λ -definable.

In Section 4 we verify that G_L is \bigwedge -definable in several cases, e.g. when M is small or simple or *o*-minimal and G is definable compact.

In Section 5 we provide an example where a subgroup of G, similar in some sense to G_L , is not \bigwedge -definable, and also an example of a group G that is not G-compact.

We assume that the reader is familiar with basic notions of model theory.

The results in Sections 2, 3 and 4 are due to the first author, the proof of Lemma 3.7(1) and the examples in Section 5 are due to the second author.

2. Orbit equivalence relations

In this section G is always a subgroup of $\operatorname{Aut}(\mathfrak{C})$. We can consider the orbit equivalence relation E_G defined as follows: $E_G(a, b)$ if and only if there is some $f \in G$ with a = f(b), where a and b are tuples of elements of \mathfrak{C} of length $\leq |T|$, such tuples are called small. In this paper we consider E_G as an equivalence relation on the sets of small tuples of elements of various sorts of \mathfrak{C} .

The results of this section are concerned with various properties of relations of the form E_G . Our motivation is based on the observation that almost all important equivalence relations in model theory (e.g. E_L , E_{KP} and E_{Sh}) are of this form.

Some statements from the next proposition are probably well known (see [1, 5, 7, 9]).

Lemma 2.1. (i) Let M be an arbitrary small model, then

 $G \cdot \operatorname{Aut}(\mathfrak{C}/M) = \{ f \in \operatorname{Aut}(\mathfrak{C}) \colon E_G(M, f(M)) \}.$

(ii) The relation E_G is \emptyset -invariant on every sort if and only if for every small $M \prec \mathfrak{C}$ and every $F \in \operatorname{Aut}(\mathfrak{C})$

$$G \subseteq G^F \cdot \operatorname{Aut}(\mathfrak{C}/M).$$

In particular if G contains $\bigcup_{F \in Aut(\mathfrak{C})} Aut(\mathfrak{C}/F[M])$ for some small M, then E_G is \emptyset -invariant if and only if $G \triangleleft Aut(\mathfrak{C})$.

- (iii) If G has bounded index in $\operatorname{Aut}(\mathfrak{C})$, then E_G is bounded and $E_L \subseteq E_G$. If E_G is \emptyset -invariant bounded $G \triangleleft \operatorname{Aut}(\mathfrak{C})$ and G contains $\operatorname{Aut}(\mathfrak{C}/M)$ for some small M, then G has bounded index in $\operatorname{Aut}(\mathfrak{C})$.
- (iv) Let $j: \operatorname{Aut}(\mathfrak{C}) \longrightarrow \operatorname{Gal}_{\mathrm{L}}(T)$ be the quotient map and assume that $\operatorname{Autf}_{\mathrm{L}}(\mathfrak{C}) \subseteq G$.

- (a) j[G] is closed in $\operatorname{Gal}_{L}(T)$ if and only if E_{G} is \bigwedge -definable over any small model. If $G \triangleleft \operatorname{Aut}(\mathfrak{C})$, then \bigwedge -definability is over \emptyset .
- (b) j[G] is open in $\operatorname{Gal}_{\mathrm{L}}(T)$ if and only if $G = \operatorname{Aut}(\mathfrak{C}/e)$ for some $e \in \operatorname{acl}^{\mathrm{eq}}(\emptyset)$ (i.e. $e = \overline{m}/F$ for some \emptyset -definable finite equivalence relation F on some $\mathfrak{C}^n, n < \omega$).

Proof. (i) Easy.

(ii) Without loss of generality we may work with small models, because every tuple a may be extended to small model M. Take an arbitrary small $M \prec \mathfrak{C}, g \in G$ and $F \in \operatorname{Aut}(\mathfrak{C})$. Then $E_G(M, g(M))$. Assume that E_G is \emptyset -invariant. Then $E_G(F(M), F(g(M)))$ holds, so for some $g' \in G$, F(g(M)) = g'(F(M)). Thus $F^{-1} \circ g'^{-1} \circ F \circ g \in \operatorname{Aut}(\mathfrak{C}/M)$, so $g \in g'^F \circ \operatorname{Aut}(\mathfrak{C}/M) \subseteq G^F \circ \operatorname{Aut}(\mathfrak{C}/M)$. The other implication is similar.

For the second statement of (ii) assume that $G \subseteq G^F \cdot \operatorname{Aut}(\mathfrak{C}/M)$. Then conjugating by F^{-1} we obtain

$$G^{F^{-1}} \subseteq G \cdot \operatorname{Aut}(\mathfrak{C}/F[M]) = G,$$

for an appropriate small model M.

(iii) If G has bounded index in Aut(\mathfrak{C}), then there is a normal subgroup $H \triangleleft \operatorname{Aut}(\mathfrak{C})$ of bounded index, with $H \subseteq G$ (an intersection of boundedly many conjugates of G). Thus E_H is bounded and invariant, so $E_L \subseteq E_H \subseteq E_G$.

For the second statement we use (i) to conclude that $G = \operatorname{Aut}(\mathfrak{C}/\lceil M/E_G \rceil)$. G has bounded index, because M/E_G has boundedly many conjugates.

(iv) Note that $j^{-1}[j[G]] = G \cdot \operatorname{Autf}_{L}(\mathfrak{C}) = G$, thus $\mu[G] = \nu^{-1}[j[G]]$ (because $j = \nu \circ \mu$). (a) \Rightarrow : Let M be an arbitrary small model. If j[G] is closed in $\operatorname{Gal}_{L}(T)$, then $\mu[G] = \nu^{-1}[j[G]] = \{\operatorname{tp}(M'/M) \colon \Phi(M', M)\}$ for some type $\Phi(x, y)$ over \emptyset . We have that

$$E_G(a,b) \iff (\exists f \in \operatorname{Aut}(\mathfrak{C})) (a = f(b) \land \Phi(f(M), M))$$

and thus E_G is \bigwedge -definable over M:

$$E_G(a,b) \iff (\exists z)(\operatorname{tp}(b,M) = \operatorname{tp}(a,z) \land \Phi(z,M)).$$

 \Leftarrow : There is a type $\Phi(x, y)$ over M such that

$$E_G(a,b) \iff \Phi(a,b).$$

Since $\mu[G] = \nu^{-1}[j[G]]$ it is enough to prove that $\mu[G]$ is closed in $S_M(M)$. This is clear, because:

$$\mu[G] = \{ \operatorname{tp}(g(M)/M) \colon g \in G \} = \{ \operatorname{tp}(M'/M) \colon \Phi(M',M) \}$$

(b) \Rightarrow : First we deal with the case where $G \triangleleft \operatorname{Aut}(\mathfrak{C})$. Since $\operatorname{Gal}_{L}(T)$ is a compact topological group, j[G] has finite index in $\operatorname{Gal}_{L}(T)$, hence it is closed. By (iva) E_{G} is \emptyset - \bigwedge -definable. Also G has finite index in $\operatorname{Aut}(\mathfrak{C})$. It follows that E_{G} has finitely many classes on $\operatorname{tp}(M)(\mathfrak{C})$ (the set of realisations of type $\operatorname{tp}(M)$) and from (i) we have $G = \operatorname{Aut}(\mathfrak{C}/(M/E_{G}))$. Hence there are a finite \emptyset -definable equivalence relation F and $\overline{m} \subset M$ such that $G = \operatorname{Aut}(\mathfrak{C}/(\overline{m}/F))$.

Now we deal with the general case, so $G < \operatorname{Aut}(\mathfrak{C})$ need not be normal. However, still G has finite index in $\operatorname{Aut}(\mathfrak{C})$. Hence there is a normal subgroup $H \triangleleft \operatorname{Aut}(\mathfrak{C})$ contained in G and such that j[H] is open (an intersection of finitely many conjugates of G). We may apply the first case to H. We get an $e \in \operatorname{acl}^{\operatorname{eq}}(\emptyset)$ such that $H = \operatorname{Aut}(\mathfrak{C}/e)$. An element e has finitely many conjugates, so $e' = \lceil \{g \cdot e : g \in G\} \rceil \in \operatorname{acl}^{\operatorname{eq}}(\emptyset)$. Now it is obvious that $G = \operatorname{Aut}(\mathfrak{C}/e')$.

 $\Leftarrow: \text{ The subset } \nu^{-1}[j[G]] = \mu[G] = \{ \operatorname{tp}(f(M)/M) \colon F(\overline{m}, f(\overline{m})), f \in \operatorname{Aut}(\mathfrak{C}) \} \text{ of } S_M(M) \text{ is clopen.} \qquad \Box$

Problem 2.2. Consider an equivalence relation E on sorts of \mathfrak{C} which is \emptyset -invariant. Then we can build the following growing sequence of \emptyset -invariant relations:

- (i) $E_0 = E$,
- (ii) $E_1 = \operatorname{cl}(E)$ in $S_{k+k}(\emptyset)$,
- (iii) for $1 \leq \alpha \in Ord$ let
 - $E_{\alpha+1} = \text{cl}(\text{transitive closure of } E_{\alpha}),$
 - if $\alpha \in Lim$, then $E_{\alpha} = \bigcup_{\lambda < \alpha} E_{\lambda}$.

Take $E_{\infty} = \bigcup_{\alpha \in Ord} E_{\alpha}$. Then clearly E_{∞} is the finest type definable equivalence relation which extends E, so we may ask the question: what is the first α_E for which $E_{\alpha_E} = E_{\infty}$? If $E = E_G$, where $\operatorname{Aut}_{L}(\mathfrak{C}) \subseteq G \triangleleft \operatorname{Aut}(\mathfrak{C})$, then from the next Theorem 2.3(ii) we conclude that $\alpha_E \leq 2$.

It can be proved that $\operatorname{Autf}_{\mathrm{KP}}(\mathfrak{C}) = j^{-1}[\operatorname{cl}(\operatorname{id}_{\operatorname{Gal}_{\mathrm{L}}(T)})]$. Recall that $E_{KP} = E_{\operatorname{Autf}_{\mathrm{KP}}(\mathfrak{C})}$ is the finest bounded \bigwedge -definable over \emptyset equivalence relation. The next Theorem 2.3(i) generalizes this remark and Theorem 1.4 to an arbitrary group of automorphisms containing $\operatorname{Autf}_{\mathrm{L}}(\mathfrak{C})$.

Theorem 2.3. Let $\operatorname{Autf}_{L}(\mathfrak{C}) \subseteq G < \operatorname{Aut}(\mathfrak{C})$ and consider $\overline{\overline{G}} = j^{-1}[\operatorname{cl}(j[G])]$. Then

- (i) On each sort of \mathfrak{C} the relation $E_{\overline{G}}$ is the finest bounded \bigwedge -definable over any small model equivalence relation which extends E_G .
- (ii) If additionally $G \triangleleft \operatorname{Aut}(\mathfrak{C})$, then

$$E_{\overline{\overline{G}}} = \Theta \circ \overline{E_G},$$

where $\overline{E_G}$ is $cl(E_G)$ in $S_{k+k}(\emptyset)$.

Proof. (i) Let E be a \bigwedge -definable over M equivalence relation and $E_G \subseteq E$. Take an arbitrary $f \in \overline{\overline{G}}$ and a small tuple b. We have to prove that E(f(b), b). Consider the following set

$$H = \{ f \in \operatorname{Aut}(\mathfrak{C}) \colon E(f(b), b) \}$$

(*H* is not necessarily a group, because *E* is not necessarily \emptyset -invariant). It is enough to show that $\overline{\overline{G}} \subset H$.

Note that $j^{-1}[j[H]] = \operatorname{Autf}_{L}(\mathfrak{C}) \cdot H = H$, because for $f \in \operatorname{Autf}_{L}(\mathfrak{C})$, $h \in H$ we have E(h(b), b) and E(f(h(b)), h(b)) ($E_{L} \subseteq E$), so E(f(h(b)), b) and $f \circ h \in H$.

Since $E_G \subseteq E$ we have $G \subseteq H$, so we must only prove that $cl(j[G]) \subseteq j[H]$ (because $j^{-1}[j[H]] = H$). The proof is completed by showing that j[H] is closed in $Gal_L(T)$. This follows from the fact that the set

$$\nu^{-1}[j[H]] = \mu[H] = \{ \operatorname{tp}(f(M')/M') \colon E(f(b), b), f \in \operatorname{Aut}(\mathfrak{C}) \}$$

is closed in $S_{M'}(M')$, where $Mb \subseteq M' \prec \mathfrak{C}$.

(ii) The relation $E_{\overline{\overline{G}}}$ is \bigwedge -definable over \emptyset , so $E_{\overline{\overline{G}}}$ is a closed subset of $S_{k+k}(\emptyset)$, thus $\overline{E_G} \subseteq E_{\overline{\overline{G}}}$. This gives $\Theta \circ \overline{E_G} \subseteq E_{\overline{\overline{G}}}$.

Now we prove that $E_{\overline{\overline{G}}} \subseteq \Theta \circ \overline{E_G}$. Assume that a, b are small tuples such that $E_{\overline{\overline{G}}}(a, b)$, i.e. a = f(b) for some $f \in \overline{\overline{G}}$. Without loss of generality we may assume that b = M, for

some small $M \prec \mathfrak{C}$, so a = f(M). Let $p = \mu(f) = \operatorname{tp}(f(M)/M)$. Then $\nu(p) = j(f) \in \operatorname{cl}(j[G])$ and

$$[p]_{\Theta} \cap \operatorname{cl}(\nu^{-1}[j[G]]) \neq \emptyset,$$

because otherwise $[p]_{\Theta} \subseteq \operatorname{int}(\nu^{-1}[j[G]^c])$, and from Theorem 1.3

$$\nu(p) \in \operatorname{int}(\nu[\nu^{-1}[j[G]^c]]) = \operatorname{int}(j[G]^c) = \operatorname{cl}(j[G])^c,$$

a contradiction.

Let $q \in [p]_{\Theta} \cap \operatorname{cl}(\nu^{-1}[j[G]])$. There is some $c = M' \models q$ such that $\Theta(f(M), M')$ and $q = \operatorname{tp}(M'/M)$ is in

$$\operatorname{cl}(\nu^{-1}[j[G]]) = \operatorname{cl}(\mu[G]) = \operatorname{cl}\{\operatorname{tp}(g(M)/M) \colon g \in G\}$$
$$= \operatorname{cl}\{\operatorname{tp}(g(M)/M) \colon E_G(g(M), M)\}$$

Finally $\operatorname{tp}(M', M) \in \operatorname{cl}(E_G) = \overline{E_G}$, and we obtain that $\Theta(a, c)$ and $\overline{E_G}(c, b)$.

Now we consider the relation E_{Sh} of equality of Shelah strong types:

 $E_{Sh} = \bigcap \{ E : E \text{ is a } \emptyset \text{-definable finite equivalence relation} \}.$

It can be proved that $E_{Sh} = E_{j^{-1}[QC]}$, where $QC \triangleleft \operatorname{Gal}_{L}(T)$ is the intersection of all open subgroups of $\operatorname{Gal}_{L}(T)$ (the quasi-connected component). When $\operatorname{Gal}_{L}(T)$ is Hausdorff (i.e. T is G-compact) then QC is just the connected component of $\operatorname{Gal}_{L}(T)$.

In the next proposition we generalize this property of E_{Sh} , but first we need a definition: if $A \subseteq \operatorname{Gal}_{L}(T)$, then by $\operatorname{QC}(A)$ we denote the following set

$$\bigcap \{ H < \operatorname{Gal}_{\mathcal{L}}(T) \colon A \subseteq H \text{ and } H \text{ is open} \}.$$

Proposition 2.4. If $H < \text{Gal}_{L}(T)$, then $E_{j^{-1}[\text{QC}(H)]}$ is the intersection of all \emptyset -definable finite equivalence relations which extend $E_{j^{-1}[H]}$:

$$E_{j^{-1}[\mathrm{QC}(H)]} = \bigcap \{ E \colon E \text{ is a } \emptyset \text{-definable finite e.r. and } E_{j^{-1}[H]} \subseteq E \}.$$

Moreover $j^{-1}[QC(H)]$ is equal to the group of all $f \in Aut(\mathfrak{C})$, satisfying

$$E_{j^{-1}[\mathrm{QC}(H)]}(a, f(a))$$

for arbitrary small tuple a.

Proof. First we prove the equality of relations. (\subseteq) Assume that small tuples a, b are $E_{j^{-1}[QC(H)]}$ equivalent, so a = f(b) for some $f \in j^{-1}[QC(H)]$, and E is a \emptyset -definable finite equivalence relation extending $E_{j^{-1}[H]}$. Define

$$G' = \{f \in \operatorname{Aut}(\mathfrak{C}) \colon E(f(b), b)\} = \operatorname{Aut}(\mathfrak{C}/(b/E))$$

Then $H \subseteq j[G']$ and j[G'] is open as a subset of $\operatorname{Gal}_{L}(T)$ (Lemma 2.1(iv)(b)). Therefore $\operatorname{QC}(H) \subseteq j[G']$ and

$$f \in j^{-1}[\operatorname{QC}(H)] \subseteq j^{-1}[j[G']] = G' \cdot \operatorname{Autf}_{\operatorname{L}}(\mathfrak{C}) = G',$$

so E(a, b) holds.

 (\supseteq) Let $QC(H) = \bigcap \{G_i : i \in I\}$. Using Lemma 2.1(iv)(b) we can find $(e_i)_{i \in I} \subseteq acl^{eq}(\emptyset)$ such that $j^{-1}[G_i] = Aut(\mathfrak{C}/e_i)$. Then $j^{-1}[QC(H)] = Aut(\mathfrak{C}/\{e_i\}_{i \in I})$. We can assume that $e_i = m_i/F_i$ for some \emptyset -definable finite equivalence relations F_i . Assume that (a, b) belongs to

 $\bigcap \{E \colon E \text{ is a } \emptyset \text{-definable finite e.r. and } E_{j^{-1}[H]} \subseteq E \}.$

We have to find $f \in j^{-1}[QC(H)]$ for which b = f(a). It suffices to prove that the following type in variables $(y_i)_{i \in I}$ is consistent:

$$"\operatorname{tp}(b, y_i)_{i \in I} = \operatorname{tp}(a, m_i)_{i \in I}" \land \bigwedge_{i \in I} F_i(m_i, y_i).$$

Let $\varphi(x, x_1, \ldots, x_n) \in \operatorname{tp}(a, m_i)_{i \in I}$. It is enough to show that

$$\psi(b, m_1, \dots, m_n) = (\exists y_1, \dots, y_n) \left(\varphi(b, y_1, \dots, y_n) \land \bigwedge_{1 \le i \le n} F_i(m_i, y_i) \right)$$

holds. The formula $\psi = \psi(x, m_1, \dots, m_n)$ is almost over \emptyset (because $m_1, \dots, m_n \in acl(\emptyset)$). Let ψ_1, \dots, ψ_k be all conjugates of ψ over \emptyset and take

$$A(x,y) = \bigwedge_{1 \le i \le k} (\psi_i(x) \leftrightarrow \psi_i(y)).$$

A is a \emptyset -definable finite equivalence relation and $E_{j^{-1}[H]} \subseteq A$ (because $j^{-1}[H] \subseteq j^{-1}[QC(H)] = \operatorname{Aut}(\mathfrak{C}/(m_i/F_i))$). Therefore A(a, b) and we know that $\psi(a, m_1, \ldots, m_n)$ holds, so $\psi(b, m_{\leq n})$ also holds.

Now we prove the second part of the proposition. Let G' be the group of all automorphisms preserving $E_{j^{-1}[QC(H)]}$. Inclusion $j^{-1}[QC(H)] \subseteq G'$ is obvious.

(⊇) Let $g \in G'$ and a = M be a small model. Then $E_{j^{-1}[QC(H)]}(M, g(M))$, so g(M) = f(M) for some $f \in j^{-1}[QC(H)]$. Thus j(g) = j(f) (because $gf^{-1} \in \text{Autf}_{L}(\mathfrak{C})$) and $j(f) \in QC(H)$. Therefore $g \in j^{-1}[QC(H)]$. □

3. An Example

Let M be an arbitrary structure in which we have a \emptyset -definable (interpretable) group G. In this section we consider the following two sorted structure: $N = (M, X, \cdot)$, where

- X and M are disjoint sorts,
- $: G \times X \to X$ is a regular (free and transitive) action of G on X i.e. X is an affine copy of G,
- on M we take its original structure.

This structure was already considered e.g. in [9, 7]. Our study of N is based on ideas from [9, Section 7].

In this section we describe various groups of automorphisms of N in terms of appropriate groups of automorphisms of M and groups related to G. We also give a description of the relations E_L , E_{KP} and E_{Sh} on the sort X of N. In particular, in Corollary 3.6 we prove that G-compactness of N is equivalent to G-compactness of M and \bigwedge -definability of certain subgroup G_L of G. Thus constructing a group G where the subgroup G_L is not \bigwedge -definable may yield a new example of a non-G-compact theory.

Fix an arbitrary point x_0 from X and take $N^* = (M^*, X^*, \cdot)$, a monster model extending N. Then $G \subseteq G^*$ and $X = G \cdot x_0 \subseteq G^* \cdot x_0 = X^*$.

The group G^* acts on itself in two different, but commuting ways, the first one is by left translation $(g, h) \mapsto gh$, and the second one by the following rule $(g, h) \mapsto hg^{-1}$. We define homomorphic embeddings of automorphism groups:

$$\overline{\cdot}$$
: Aut $(M^*) \hookrightarrow$ Aut (N^*) , $\overline{\cdot}$: $G^* \hookrightarrow$ Aut (N^*) .

Let $h \in G^*$, $f \in \operatorname{Aut}(M^*)$, $g \in G^*$. We define $\overline{f}, \overline{g} \in \operatorname{Aut}(N^*)$ by: $\overline{f}|_{M^*} = f, \ \overline{f}(h \cdot x_0) = f(h) \cdot x_0,$ $\overline{g}|_{M^*} = \operatorname{id}_{M^*}, \ \overline{g}(h \cdot x_0) = (hg^{-1}) \cdot x_0.$

It is easy to verify the following laws: for $f \in Aut(M^*), g \in G^*$ we have

$$\overline{f} \circ \overline{g} = \overline{f(g)} \circ \overline{f}, \quad \overline{g} \circ \overline{f} = \overline{f} \circ \overline{f^{-1}(g)}$$

Using these embeddings we can identify $\operatorname{Aut}(M^*)$ and G^* with their images in $\operatorname{Aut}(N^*)$ and conclude that $G^* \triangleleft \operatorname{Aut}(N^*)$. In fact we will prove that $\operatorname{Aut}(N^*)$ is a semi-direct product of G^* and $\operatorname{Aut}(M^*)$.

There are two different actions of the group G^* on the set X^* : the first one comes from the above embedding

$$\overline{g}(h \cdot x_0) = (hg^{-1}) \cdot x_0$$

(it is definable over x_0). The second one comes from the regular action

$$g \cdot (h \cdot x_0) = (gh) \cdot x_0.$$

If $A \subseteq G^*$ satisfies $hA^{-1} = Ah$, then the orbits of $h \cdot x_0$ under both actions coincide: $\overline{A}(h \cdot x_0) = A \cdot (h \cdot x_0)$ (in this case we just write $A \cdot (h \cdot x_0)$).

In order to describe properties of N^* in terms of M^* and G^* we need the next definition.

Definition 3.1. For a group G and a binary relation E on G we define the set of Ecommutators $X_E = \{a^{-1}b: a, b \in G, E(a, b)\}$ and the E-commutant G_E as the subgroup of G generated by X_E

$$G_E = \langle X_E \rangle < G.$$

Remark 3.2. If $E = E_H$ for some $H < \operatorname{Aut}(G, \cdot)$, then $G_{E_H} \triangleleft G$. If E is \emptyset -invariant, then X_E and G_E are also \emptyset -invariant. If E is bounded, then G_E has bounded index in G, moreover $[G:G_E] \leq |G/E|$.

Proof. Let $a, x \in G$ and $h \in H$. Then

$$(X_{E_H})^x \ni (a^{-1}h(a))^x = (ax)^{-1}h(a)x = ((ax)^{-1}h(ax))(h(x)^{-1}x) \in X^2_{E_H}.$$

The last statement follows from the observation: if $a^{-1}b \notin G_E$, then $\neg E(a, b)$.

The following example justifies the names "*E*-commutators" and "*E*-commutant" from the previous definition. Let *E* be the conjugation relation in *G* i.e. $E = E_{\text{Inn}(G)}$ (where Inn(G) is the group of inner automorphisms of *G*). Then X_E is the set of all commutators and $G_E = [G, G]$.

In the case where $E = E_L [E = E_{KP}, E_{Sh}, \text{ respectively}]$ we just write X_L and $G_L [X_{KP}, X_{Sh}]$ instead of X_{E_L} and $G_{E_L} [X_{E_{KP}}, X_{E_{Sh}}]$. Note that G_L is generated by X_{Θ} .

In the next proposition we describe $\operatorname{Aut}(N^*)$, $\operatorname{Autf}_{L}(N^*)$ and $\operatorname{Gal}_{L}(\operatorname{Th}(N))$ as semidirect products of automorphisms groups of M^* and appropriate groups associated with G.

Proposition 3.3. (1) Aut $(N^*) = G^* \rtimes Aut(M^*)$, more precisely: for $F \in Aut(N^*)$, $F = \overline{g} \circ \overline{f}$, where $f = F|_{M^*}$ and $F(x_0) = g^{-1} \cdot x_0$.

(2) Let $(N', X') \prec (N^*, X^*)$ and $X' = G' \cdot (h_0 \cdot x_0)$ for some $h_0 \cdot x_0 \in X'$. Then

$$F \in \operatorname{Aut}(N^*/N') \iff (\exists f \in \operatorname{Aut}(M^*/M')) \left(F = \overline{f}^{\overline{h_0}}\right).$$

(3)
$$\operatorname{Autf}_{L}(N^{*}) = G_{L}^{*} \rtimes \operatorname{Autf}_{L}(M^{*}) \text{ and } \operatorname{Gal}_{L}(\operatorname{Th}(N)) = G^{*}/G_{L}^{*} \rtimes \operatorname{Gal}_{L}(\operatorname{Th}(M)).$$

Proof. (1) Let $F \in \operatorname{Aut}(N^*)$ and $f = F|_{M^*}$. Then $F\overline{f}^{-1}$ is the identity on M^* , and on $X^* = G^* \cdot x_0$ we have:

$$F\overline{f}^{-1}(h \cdot x_0) = F(f^{-1}(h) \cdot x_0) = h \cdot F(x_0) = h \cdot (g^{-1} \cdot x_0) = \overline{g}(h \cdot x_0),$$

for some $g \in G^*$. Thus $F = \overline{g} \circ f$. The group $\operatorname{Aut}(M^*)$ acts on G^* by conjugation, so for $g \in G^*$ and $f \in \operatorname{Aut}(M^*)$, $\overline{g}^{\overline{f}} = \overline{f(g)} \in G^*$. It is clear that $G^* \cap \operatorname{Aut}(M^*) = \{0\}$.

(2) (\Leftarrow) It is clear that $F|_{M'} = id_{M'}$. Using the fact that $f|_{M'} = id_{M'}$ we get for $h' \in X'$:

$$\overline{f}^{h_0}(h'h_0\cdot x_0) = \overline{h_0^{-1}} \circ \overline{f}(h'\cdot x_0) = \overline{h_0^{-1}}(h'\cdot x_0) = h'h_0\cdot x_0.$$

Thus $\overline{f}^{\overline{h_0}}|_{X'} = \operatorname{id}_{X'}$.

 (\Rightarrow) Let $f = F|_{M^*}$. Then $f = \overline{f}^{\overline{h_0}}|_{M^*} \in \operatorname{Aut}(M^*/M')$. By assumptions $h_0 \cdot x_0 = F(h_0 \cdot x_0) = F(h_0) \cdot F(x_0) = f(h_0) \cdot F(x_0),$

and then $F(x_0) = f(h_0^{-1})h_0 \cdot x_0$. By (1), $F = \overline{h_0^{-1}f(h_0)} \circ \overline{f} = \overline{h_0^{-1}} \circ \overline{f} \circ \overline{h_0} = \overline{f}^{\overline{h_0}}$. (3) It suffices to prove the first equality. \subseteq : From (2) we conclude that for every

 $F \in \operatorname{Autf}_{L}(N^{*})$ there are $h_{1}, \ldots, h_{n} \in G^{*}$ and $f_{1}, \ldots, f_{n} \in \operatorname{Autf}_{L}(M^{*})$ such that F = $\frac{1}{f_1} \frac{1}{h_1} \circ \ldots \circ \frac{1}{f_n} \frac{1}{h_n}$. Then

$$F = \overline{h_1^{-1} f_1(h_1)} \circ \overline{f_1} \circ \overline{h_2^{-1} f_2(h_2)} \circ \overline{f_2} \circ \dots \circ \overline{h_n^{-1} f_n(h_n)} \circ \overline{f_n}.$$

Using the rule $\overline{f} \circ \overline{g} = \overline{f(g)} \circ \overline{f}$, one can prove that $F = \overline{g} \circ \overline{f_1 \dots f_n}$, for some $g \in G_L$ (for example $\overline{f_1} \circ \overline{h_2^{-1} f_2(h_2)} = \overline{f_1(h_2^{-1}) f_1(f_2(h_2))} \circ \overline{f_1}$, and $f_1(h_2^{-1}) f_1(f_2(h_2)) = \overline{f_1(h_2^{-1}) f_1(f_2(h_2))} = \overline{f_1(h_2^{-1}) f_1(h_2^{-1})}$ $f_1(h_2)^{-1} f_2^{f_1^{-1}}(f_1(h_2)) \in X_L).$

 \supseteq : It is clear that $\operatorname{Autf}_{L}(N^{*}) \supseteq \operatorname{Autf}_{L}(M^{*})$ (use (2)). It is enough to prove that $\operatorname{Autf}_{L}(N^{*}) \supseteq X_{L}$. Assume that small tuples a, b satisfy b = f(a), for some $f \in$ $\operatorname{Autf}_{\operatorname{L}}(M^*)$. We have to prove that $\overline{a^{-1}b} \in \operatorname{Autf}_{\operatorname{L}}(N^*)$. Since $\overline{f}^{\overline{a}} \in \operatorname{Autf}_{\operatorname{L}}(N^*)$, we have $\overline{a^{-1}b} = \overline{a^{-1}f(a)} = \overline{f}^{\overline{a}} \circ \overline{f^{-1}} \in \operatorname{Autf}_{\mathrm{L}}(N^*).$ \square

Now we characterize some invariant subgroups of G^* : $G^0_{\emptyset}, G^{00}_{\emptyset}$ and G^{∞}_{\emptyset} , in terms of N^* .

(1) $G_L^* = G^* \cap \operatorname{Autf}_L(N^*)$ and G_L^* is the smallest \emptyset -invariant Proposition 3.4.

- subgroup of G with bounded index in G^* (i.e. $G_L^* = G_{\emptyset}^{\infty}$). (2) Let $G'_{KP} = G^* \cap \operatorname{Autf}_{KP}(N^*)$, then $G^*_{KP} \subseteq G'_{KP}$ and G'_{KP} is the smallest \bigwedge definable over \emptyset subgroup with bounded index in G^* (i.e. $G'_{KP} = G_{\emptyset}^{00}$).
- (3) Let $G'_{Sh} = G^* \cap \operatorname{Autf}_{Sh}(N^*)$, then $G^*_{Sh} \subseteq G'_{Sh}$ and G'_{Sh} is the intersection of all \emptyset -definable subgroups of G^* with finite index (i.e. $G'_{Sh} = G^0_{\emptyset}$).

Proof. (1) The first equality follows directly from Proposition 3.3(3). Let $H < G^*$ be \emptyset -invariant with bounded index. It suffices to prove that $X_{\Theta} \subseteq H$. Take an order inscernible sequence $(a_n)_{n < \omega}$ (so $\Theta(a_0, a_1)$). If $a_0^{-1}a_1 \notin H$, then for every i < j < i $\omega, a_i^{-1}a_i \notin H$, but we can extend an indiscernible sequence as much as we want, so the index $[G^*: H]$ is unboundedly large, a contradiction.

(2) If $N' \prec N^*$ is an arbitrary small model, then

$$G'_{KP} = \{g \in G^* \colon E_{KP}(N', \overline{g}(N'))\}.$$

Inclusion \subseteq is obvious. \supseteq : If $E_{KP}(N', \overline{g}(N'))$, then $\overline{g}(N') = F(N')$ for some $F \in \text{Autf}_{KP}(N^*)$. Since $\overline{g}|_{M^*} = \text{id}_{M^*}$, $F \in G^*$, and $\overline{g}F^{-1} \in \text{Autf}_{L}(N^*)$, so $\overline{g} \in G'_{KP}$.

 G'_{KP} has bounded index $(G^*_L \subseteq G'_{KP})$ and is \bigwedge -definable over $N'x_0$. In fact G'_{KP} is \emptyset -invariant. To see this let $F = \overline{g'} \circ \overline{f'} \in \operatorname{Aut}(N^*)$. Then

$$F[G'_{KP}] = \{F(g) \colon E_{KP}(N', \overline{g}(N'))\} = \{F(g) \colon E_{KP}(F(N'), F(\overline{g}(N')))\},\$$

but $F \circ \overline{g} = \overline{g'} \circ \overline{f'} \circ \overline{g} = \overline{g'f'(g)g'^{-1}} \circ F$, thus

$$F[G'_{KP}] = \{f'(g) \colon E_{KP}(F(N'), \overline{g'} \circ f'(g)g'^{-1}(F(N')))\} \\ = \{f'(g) \colon E_{KP}(\overline{g'^{-1}}F(N'), \overline{f'(g)}(\overline{g'^{-1}}F(N'))\} = G'_{KP},$$

and hence G'_{KP} is \bigwedge -definable over \emptyset . The relation $E(x, y) = x^{-1}y \in G'_{KP}$ is bounded \bigwedge -definable over \emptyset , therefore $E_{KP}|_{G^*} \subseteq E$ and $G^*_{KP} \subseteq G'_{KP}$. Take $H < G^*$, another subgroup which is \bigwedge -definable over \emptyset and has bounded index in G^* . Then $E_{KP} \subseteq E_H$, so for $g \in G'_{KP}$ we have $E_H(x_0, \overline{g}(x_0))$ and then $g^{-1} \cdot x_0 = \overline{g}(x_0) = \overline{h}(x_0) = h^{-1} \cdot x_0$ for some $h \in H$. By regularity of \cdot we obtain $g = h \in H$.

(3) As in (2) it can be proved that G'_{Sh} is \bigwedge -definable over \emptyset . Let $g \in G'_{Sh}$, and $H < G^*$ be a \emptyset -definable subgroup with finite index in G^* . We show that $g \in H$. Consider the relation $E(x, y) = (\exists h \in H)(x = h \cdot y)$ on X^* . E is a \emptyset -invariant, finite equivalence relation on X^* , thus $E_{Sh}|_{X^*} \subseteq E$. By regularity of \cdot we conclude that $g \in H$. If we consider $E(x, y) = x^{-1}y \in H$ on G^* , then $E_{Sh}|_{G^*} \subseteq E$ and therefore $G^*_{Sh} \subseteq H$.

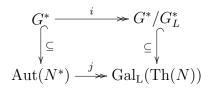
Let g belong to all \emptyset -definable subgroups of G^* of finite index. We prove that $\overline{g} \in \operatorname{Autf}_{\operatorname{Sh}}(N^*)$. From Proposition 2.4 we know that $\operatorname{Autf}_{\operatorname{Sh}}(N^*)$ is the preimage under the quotient map j of the quasi-connected component QC of $\operatorname{Gal}_{\operatorname{L}}(\operatorname{Th}(N))$. Let $H \lhd \operatorname{Gal}_{\operatorname{L}}(\operatorname{Th}(N))$ be an open subgroup. It suffices to show that $\overline{g} \in j^{-1}[H] \lhd \operatorname{Aut}(N^*)$. Note that the group $H' = j^{-1}[H] \cap G^*$ is \emptyset -invariant, because for $f \in \operatorname{Aut}(M^*)$ if $\overline{g} \in j^{-1}[H]$, then $\overline{f(g)} = \overline{g}^{\overline{f^{-1}}} \in j^{-1}[H]$. H' is also definable, because by Lemma 2.1(iv)(b), $j^{-1}[H] = \operatorname{Aut}(\mathfrak{C}/\overline{m}/F))$, so $g \in H'$ if and only if $F(\overline{m}, \overline{g}(\overline{m}))$. Hence H' is a \emptyset -definable subgroup of G^* of finite index and thus $\overline{g} \in j^{-1}[H]$.

The compact topological group $\operatorname{Gal}_{L}(\operatorname{Th}(N^{*}))$ contains as a subgroup the group G^{*}/G_{L}^{*} , so we may ask about the induced topology on G^{*}/G_{L}^{*} . The next proposition describes this topology.

- **Proposition 3.5.** (1) The induced subspace topology on G^*/G_L^* from $\operatorname{Gal}_L(\operatorname{Th}(N))$ is precisely the logic topology: let $i: G^* \to G^*/G_L^*$ be the quotient map, then $X \subseteq G^*/G_L^*$ is closed if and only if its preimage $i^{-1}[X] \subseteq G^*$ is \bigwedge -definable over some (equivalently every) small model. With this topology G^*/G_L^* is a compact topological group (this topology is Hausdorff if and only if G_L^* is \bigwedge -definable).
 - (2) The topology of $\operatorname{Gal}_{\mathrm{L}}(\operatorname{Th}(M))$ as the Lascar group of $\operatorname{Th}(M)$ and the induced topology on $\operatorname{Gal}_{\mathrm{L}}(\operatorname{Th}(M))$ as a subspace of $\operatorname{Gal}_{\mathrm{L}}(\operatorname{Th}(N))$ coincide.
 - (3) If $X \subseteq G^*/G_L^*$ and $Y \subseteq \operatorname{Gal}_L(\operatorname{Th}(M))$ are closed, then $X \cdot Y \subseteq \operatorname{Gal}_L(\operatorname{Th}(N))$ is also closed. In particular, if $\operatorname{Th}(M)$ is G-compact, then G^*/G_L^* is closed subgroup of $\operatorname{Gal}_L(\operatorname{Th}(N))$.
 - (4) The closure of identity in G^*/G_L^* is G'_{KP}/G_L^* .
 - (5) The quasi-connected component (the intersection of all open subgroups) of G^*/G_L^* is G'_{Sh}/G_L^* .

Proof. (1) Let N' be a small model. Without loss of generality we may assume that $x_0 \in N'$. The restriction of the quotient map j to G^* is precisely the quotient map i.

We have the following commutative diagram:



Let $X \subseteq G^*/G_L^*$ be closed in the induced subspace topology, i.e. $X = G^*/G_L^* \cap C$, where $C \subseteq \text{Gal}_L(\text{Th}(N))$ is closed. Then $\nu^{-1}[C]$ is closed in $S_{N'}(N')$, so there exists a type $\Phi(x, y)$ over \emptyset for which

$$\nu^{-1}[C] = \mu[j^{-1}[C]] = \{ \operatorname{tp}(F(N')/N') \colon F \in j^{-1}[C] \} = \{ \operatorname{tp}(N''/N') \colon \Phi(N'',N') \}.$$

The subset $i^{-1}[X] \subseteq G^*$ is \bigwedge -definable over N', because for $g \in G^*$

$$g \in i^{-1}[X] \Leftrightarrow \overline{g} \in j^{-1}[C] \Leftrightarrow \Phi(\overline{g}(N'), N').$$

The implication \Leftarrow in the last equivalence holds, because if $\Phi(\overline{g}(N'), N')$, then $\overline{g}(N') = F(N')$ for some $F \in j^{-1}[C]$, and thus $j(\overline{g}) = j(F) \in C$.

Now assume that $i^{-1}[X]$ is \bigwedge -definable over N', i.e. for $g \in G^*$, $g \in i^{-1}[X]$ if and only if $\Psi(g, N')$, for some type Ψ . Let $C = X \cdot \operatorname{Gal}_{\mathrm{L}}(\operatorname{Th}(M)) \subseteq \operatorname{Gal}_{\mathrm{L}}(\operatorname{Th}(N))$. Then

$$X = G^* / G_L^* \cap C.$$

In order to prove that C is closed in $\operatorname{Gal}_{L}(\operatorname{Th}(N))$ it is enough to show that

$$\nu^{-1}[C] = \{ \operatorname{tp}(F(N')/N') \colon F \in j^{-1}[C] \} \\ = \{ \operatorname{tp}(N''/N') \colon x_0^{N''} = g^{-1} \cdot x_0, \ \Psi(g, N') \text{ holds and } \operatorname{tp}(N'') = \operatorname{tp}(N') \}.$$

The last equality holds because $j^{-1}[C] = i^{-1}[X] \circ \operatorname{Aut}(M^*)$, and if $F = \overline{g} \circ \overline{f}$, $g \in i^{-1}[X]$, then $x_0^{N''} = F(x_0) = \overline{g} \circ \overline{f}(x_0) = g^{-1} \cdot x_0$ (here N'' = F(N')).

(2) The proof is similar to the proof in (1) and we leave it to the reader.

(3) The set $\nu^{-1}[X \cdot Y] = \mu[j^{-1}[X \cdot Y]]$ is closed in $S_{N'}(N')$ because it is equal to the following

$$\{ \operatorname{tp}(\overline{g} \circ f(N')/N') \colon g \in i^{-1}[X], f \in j^{-1}[Y] \} = \{ \operatorname{tp}(N''/N') \colon \operatorname{tp}(M''/M') \in \nu^{-1}[Y], \ x_0^{N''} = g^{-1} \cdot x_0, \ g \in i^{-1}[X] \text{ and } \operatorname{tp}(N'') = \operatorname{tp}(N') \}.$$

Above we use the fact that $j^{-1}[X \cdot Y] = i^{-1}[X] \circ \nu^{-1}[Y]$.

(4) G'_{KP}/G^*_L contains cl(id), because G'_{KP} is \bigwedge -definable over \emptyset . The subgroup $i^{-1}[cl(id)]$ of G^* is \bigwedge -definable over \emptyset and of bounded index (because $G^*_L \subseteq i^{-1}[cl(id)]$), thus $G'_{KP} \subseteq i^{-1}[cl(id)]$.

(5) The group G'_{Sh} is the intersection of all \emptyset -definable subgroups of G^* of finite index, thus G'_{Sh}/G^*_L contains quasi-connected component QC (because if $H < G^*$ is \emptyset -definable of finite index, then H/G^*_L is closed of finite index, hence open). Let H be an arbitrary open subgroup of G^*/G^*_L . It suffices to show that $G'_{Sh}/G^*_L \subseteq H$. The group H is closed of finite index, hence $H \cdot \operatorname{Gal}_L(\operatorname{Th}(M))$ is a closed subgroup of $\operatorname{Gal}_L(\operatorname{Th}(N))$ of finite index. Therefore

$$\operatorname{Autf}_{\operatorname{Sh}}(N^*) \subseteq j^{-1}[H \cdot \operatorname{Gal}_{\operatorname{L}}(\operatorname{Th}(M))],$$

and then $G'_{Sh} \subseteq i^{-1}[H]$. This gives $G'_{Sh}/G^*_L \subseteq H$.

The next corollary motivates us to investigate \bigwedge -definability of G_L^* . We do this in the next section. If G_L^* is not \bigwedge -definable, then N may give us a new kind of not G-compact theory.

Corollary 3.6. Th(N) is G-compact if and only if Th(M) is G-compact and G_L^* is \bigwedge -definable.

Proof. The topological group G is Hausdorff if nad only if $\{e_G\}$ is closed and we can apply the previous proposition.

Now we describe the relations Θ , E_L , E_{KP} and E_{Sh} on the sort X^* in terms of orbits of the groups G_L^* , G'_{KP} and G'_{Sh} from Proposition 3.3.

Lemma 3.7. Let $x \in X^*$ and $n < \omega$.

(1) $\{y \in X^* : \Theta^n(x, y)\} = X^n_\Theta \cdot x$ (2) $x/E_L = G^*_L \cdot x$ (3) $x/E_{KP} = G'_{KP} \cdot x$ (4) $x/E_{Sh} = G'_{Sh} \cdot x$

Proof. (1) It is enough to prove this for n = 1. \subseteq : Assume $x, y \in X^*$, $\Theta(x, y)$ and $y = g_0 x$ for some $g_0 \in G^*$. We may assume that $x = x_0$. We can extend $(x_0, g_0 x_0)$ to an order indiscernible sequence $(x_0, g_0 x_0, g_1 x_0, \ldots) \subseteq X^*$. Then for $0 \le i_1 < \ldots < i_n < \omega, 0 \le j_1 < \ldots < j_n < \omega$:

$$(x_0, g_{i_1}x_0, g_{i_2}x_0, \ldots) \equiv (g_{j_1}x_0, g_{j_2}x_0, g_{j_3}x_0, \ldots).$$

Applying the automorphism $\overline{g_{j_1}}$ we obtain:

$$(g_{j_1}x_0, g_{j_2}x_0, g_{j_3}x_0, \ldots) \equiv (x_0, g_{j_2}g_{j_1}^{-1}x_0, g_{j_3}g_{j_1}^{-1}x_0, \ldots).$$

Hence from the previous two equivalences we get

$$(g_{i_1}x_0, g_{i_2}x_0, \ldots) \equiv_{x_0} (g_{j_2}g_{j_1}^{-1}x_0, g_{j_3}g_{j_1}^{-1}x_0, \ldots),$$

 \mathbf{SO}

$$(g_{i_1}, g_{i_2}, \ldots) \equiv (g_{j_2}g_{j_1}^{-1}, g_{j_3}g_{j_1}^{-1}, \ldots).$$

It means that $(g_0, g_1, \ldots) \subseteq G^*$ is also order indiscernible and $g_0 \equiv g_0 g_1^{-1}$, so $g_0 \in X_{\Theta}$.

 \supseteq : Let $y = gx_0$ for $g = ab^{-1} \in X_{\Theta}$, where $\Theta(a, b)$. We can find an indiscernible sequence $(b, gb, \ldots) \subseteq G^*$, and then $(bx_0, gbx_0, \ldots) \subseteq X^*$ is also indiscernible, so $\Theta(bx_0, gbx_0)$. Applying \overline{b} , we obtain $\Theta(x_0, gx_0)$.

(2) Inclusion \supseteq follows from Proposition 3.3(3). \subseteq : Let y = F(x) for some $F = \overline{g} \circ \overline{f} \in$ Autf_L(N^{*}). We may assume that $x = x_0$. Then $y = \overline{gf}(x_0) = \overline{g}x_0 = g^{-1}x_0$ and $g \in G_L$.

(3) \supseteq follows from Proposition 3.4(2). Since $E_{KP}|_{X^*} \subseteq E_{G'_{KP}}|_{X^*}$ we have \subseteq .

(4) \supseteq follows from Proposition 3.4(3). \subseteq : We know that $G'_{Sh} = \bigcap_{i \in I} H_i$, where H_i is \emptyset -definable with finite index. Therefore $E_{G'_{Sh}}|_{X^*} = \bigcap_{i \in I} E_{H_i}|_{X^*}$, so $E_{Sh}|_{X^*} \subseteq E_{G'_{Sh}}|_{X^*}$ and we are done.

Using Theorems 1.1 and 3.1 from [7] we can give a detailed analysis of Lascar and Kim-Pillay strong types on X^* . This analysis describes also some basic properties of the group G. By diam(a) we denote the diameter of the Lascar strong type a/E_L (see [7]). Note that every two elements of X^* have the same type over \emptyset , thus their Lascar strong types have the same diameter.

Remark 3.8. There are only two possibilities:

Case 1 The diameters of all Lascar strong types on X^* are infinite. The group G_L^* is not \bigwedge -definable, $E_L \subsetneqq E_{KP}, G_L^* \subsetneqq G'_{KP}$ (i.e. Th(N) is not G-compact) and $2^{\aleph_0} \leq [G^*: G_L^*] = |X^*/E_L| \leq 2^{|T|}$.

Case 2 There is $n < \omega$ such that for every $x \in X^*$, diam(x) = n. Then $E_L|_{X^*} = E_{KP}|_{X^*} = \Theta^n|_{X^*}$ and $G_L^* = X_{\Theta}^n = G'_{KP}$ are \bigwedge -definable groups.

Lemma 3.9. (1) Either $G'_{KP} = G^*_L$, or $[G'_{KP} : G^*_L] \ge 2^{\aleph_0}$. (2) If the language of the structure M is countable, then either

$$G'_{Sh} = G'_{KP} \text{ or } [G'_{Sh} : G'_{KP}] \ge 2^{\aleph_0}.$$

In the last case the space of \emptyset -types $S_G(\emptyset)$ of G is of power 2^{\aleph_0} .

Proof. (1) follows from preceding remark, Lemma 3.7 and [7, Theorem 1.1].

(2) The proof is very similar to the proof of [4, Theorem 3.5], so we are brief. Consider the group $H = G^*/G'_{KP}$. This group with the logic topology is a compact Hausdorff topological group. Since the language is countable, H is metrizable. Let d_0 be a metric on H. Modifying d_0 as in [4] we obtain an equivalent metric d, which is \emptyset -invariant. Since H is Hausdorff, the connected component of H is equal to the quasi-connected component QC, and by Proposition 3.5(5)

$$QC = G'_{Sh}/G'_{KP}$$

Assume that $G'_{Sh} \neq G'_{KP}$ and take $g \in G'_{Sh} \setminus G'_{KP}$. Let $r = d(e/G'_{KP}, g/G'_{KP})$. For every δ with $0 < \delta < r$ there is $g_{\delta} \in G'_{Sh}$ such that $d(e/G'_{KP}, g_{\delta}/G'_{KP}) = \delta$ (because G'_{Sh}/G'_{KP} is connected). The metric d is \emptyset -invariant, hence for $\delta < \delta'$,

$$\operatorname{tp}(g_{\delta}) \neq \operatorname{tp}(g_{\delta'})$$
 and $d(g_{\delta'}/G'_{KP}, g_{\delta}/G'_{KP}) \geq \delta' - \delta > 0.$

Therefore the power of $S_G(\emptyset)$ is 2^{\aleph_0} and $g_{\delta'}g_{\delta}^{-1} \notin G'_{KP}$, hence $[G'_{Sh}:G'_{KP}] = 2^{\aleph_0}$. \Box

4. \bigwedge -definability in G

In this section we investigate \bigwedge -definability of G_L^* in several special cases.

Proposition 4.1. If the theory of M is small, then $G_L^* = G'_{KP} = G'_{Sh}$. Hence G_L^* is \wedge -definable.

Proof. Equality $G_L^* = G'_{KP}$ follows from [7, Theorem 3.1(2)]. Equality $G'_{KP} = G'_{Sh}$ follows from Lemma 3.9.

Proposition 4.2. If the theory of M is simple, then the theory of N is also simple and $G_L^* = X_{\Theta}^2 = G'_{KP}$.

Proof. If $\operatorname{Th}(M)$ is simple, then $\operatorname{Th}(N)$ is also simple, because the structure $N' = (M, G, \cdot)$ (where $\cdot: G \times G \to G$ is the group action) is definable in M. Thus N' is simple, and N is obtained from N' by forgetting some structure. Therefore $\operatorname{Th}(N)$ is also simple. In every simple structure $E_L = E_{KP} = \Theta^2$, so $G_L^* = X_{\Theta}^2$ follows from Lemma 3.7.

Now we give a criterion for equality $G'_{KP} = G'_{Sh}$, when the theory of M is simple. If in this case $G'_{KP} \subsetneq G'_{Sh}$, then it gives us a solution of an open problem: there exist an example of a structure with simple theory and in which Kim-Pillay and Shelah strong types are different (see Lemma 3.7). To state this criterion we need one definition. We call a subset $P \subseteq G^*$ thick if P is symmetric $(P = P^{-1})$ and there exist a natural number $n < \omega$ such that for any sequence $g_0, \ldots, g_{n-1} \in G$ there exist i < j < n such that

$$g_i^{-1} \cdot g_j \in P.$$

When $\varphi(x, y)$ is a thick formula (see Definition 1.1) then X_{φ} (see Definition 3.1) is thick set. On the other hand if P is definable thick set, then the formula $\varphi_P(x, y) = x^{-1} \cdot y \in P$ is also thick and $P = X_{\varphi_P}$. It is easy to see that for every $n < \omega$ we have

$$X_{\Theta}^n = \bigcap \{ X_{\varphi}^n \colon \varphi \in L \text{ is thick} \}.$$

Lemma 4.3. If M has a simple theory, then $E_{KP}|_{X^*} \subsetneq E_{Sh}|_{X^*}$ (i.e. $G'_{KP} \subsetneq G'_{Sh}$) if and only if there exists a \emptyset -definable thick set P such that

$$G'_{Sh} \not\subseteq P^2$$
,

i.e. P^2 does not contain any \emptyset -definable subgroup of G of finite index (see Proposition 3.4(3)).

Proof. If every thick P satisfies $G'_{Sh} \subseteq P^2$, then clearly $G'_{Sh} \subseteq X^2_{\Theta} = G^*_L = G'_{KP}$, so $G'_{Sh} = G'_{KP}$.

If $G'_{Sh} = G'_{KP}$, then from 4.2 we have that $G'_{Sh} = X^2_{\Theta} = \bigcap \{P^2 \colon P \text{ is thick}\}$. Thus every thick P satisfies $G'_{Sh} \subseteq P^2$.

Example 4.4. There is an example of an abelian group $(G, \cdot, ...)$ which has a simple ω -categorical theory and satisfies $X_{\Theta} \subsetneq X_{\Theta}^2 = G^*$ (Example 6.1.10 in [2], private communication by E. Hrushovski). Consider a countable infinite dimensional vector space V over $\mathbb{F}_2 = \{0, 1\}$. Let $\mathcal{B} = \{b_i : i < \omega\}$ be its basis and $Q : V \to \mathbb{F}_2$ be the following degenerate orthogonal form with the induced scalar product (\cdot, \cdot) :

$$Q\left(\sum_{i}\lambda_{i}b_{i}\right) = \lambda_{0}^{2} + \lambda_{1}\lambda_{2} + \lambda_{3}\lambda_{4} + \dots, \quad (a,b) = Q(a+b) - Q(a) - Q(b), \ a,b \in V.$$

Q is degenerate, because its radical $K = \{v \in V : (v, \cdot) \equiv 0\} = \{0, b_0\}$ is nontrivial. The structure $\mathcal{G} = (V, +, Q)$ has simple ω -categorical theory. We show that

$$X_{\Theta} \subseteq V \setminus \{b_0\}.$$

If $\Theta(v, w)$, then Q(v) = Q(w). Assume on the contrary that $v - w = b_0$, then $v = w + b_0$, so:

$$Q(w) = Q(v) = Q(w + b_0) = Q(w) + Q(b_0) + (w, b_0) = Q(w) + 1,$$

she a contradiction

and we reach a contradiction.

There are only 4 types over \emptyset : $\operatorname{tp}(0)$, $\operatorname{tp}(b_0)$, p(x), q(x), where p, q are types of elements $v, w \neq 0, b_0$ with Q(v) = 0, Q(w) = 1 respectively. The sets X_{Θ}, X_{Θ}^2 are \emptyset invariant, so they must be a union of some sets described by above types. Consider $V_0 = \lim(b_0, b_k \colon k \geq 5) \prec V$. It is easy to see that

$$(b_1, b_4) \underset{b_2 b_3 V_0}{\equiv} (b_1 + b_3, b_4 + b_2), \ (b_1, b_3) \underset{b_2 b_4 V_0}{\equiv} (b_1 + b_4, b_3 + b_2).$$

Thus by Lemma 1.2(ii) $b_3 = (b_1+b_3) - b_1 \in X_{\Theta}^2$ and $Q(b_3) = 0$. Also $b_1 \equiv b_1 + b_4 + b_3 + b_2$, so $b_4 + b_3 + b_2 \in X_{\Theta}^2$ and $Q(b_4 + b_3 + b_2) = 1$. Therefore $V \setminus \{0, b_0\} \subseteq X_{\Theta}^2$ and then by Proposition 4.2 $X_{\Theta} \subsetneq X_{\Theta}^2 = V$.

The next proposition gives us Λ -definability of G_L^* for some special groups definable in the *o*-minimal theories.

Proposition 4.5. (1) If G is definably compact, definable in an o-minimal expansions of a real closed field, then $G_L^* = X_{\Theta}^2 = G'_{KP} = G^{00}$.

(2) If (G, <, +, ...) is an o-minimal expansion of an ordered group (G, <, +), then $G^* = G_L^* = X_{\Theta}^2 = G^{00}$.

Proof. (1) In [3] it is proved that under the above assumptions G has fsg and there exists G^{00} (the smallest definable subgroup of bounded index in G^*). It is also proved that G^{00} is equal to

$$\operatorname{Stab}(p) = \{ g \in G^* \colon g \cdot q = q \},\$$

for some (global) generic type $p(x) \in S(G^*)$. Since p is a type over the model G^* , $\operatorname{Stab}(p) \subseteq X^2_{\Theta}$. Therefore

$$G^{00} = \operatorname{Stab}(p) \subseteq X_{\Theta}^2 \subseteq G_L^* \subseteq G'_{KP} = G_{\emptyset}^{00} = G^{00}.$$

(2) By [8, Corollary 2.6] we can find a global type $p(x) \in S(G^*)$, satisfying $\operatorname{Stab}(p) = G^*$. Therefore $G^* = G_L^* = X_{\Theta}^2 = G^{00}$.

Case 1 from Remark 3.8 may lead us to a new example of a non-G-compact theory.

There is a criterion for \bigwedge -definability of G_L^* [7, Theorem 3.1]: G_L^* is \bigwedge -definable if and only if $G_L^* = X_{\Theta}^n$ for some $n < \omega$. Thus if X_{Θ} generates a group in infinitely many steps, then G_L^* is not \bigwedge -definable and Case 1 holds.

We have some further partial results concerning \bigwedge -definability of G_L^* . These results involve generic subsets of G and measures on G. They will be a part of Ph.D. thesis of the first author and appear in a forthcoming paper.

5. More examples

We were not able to construct an example of a group G, where G_L is not \bigwedge -definable. We can try at least to construct a group G, where G_E is not \bigwedge -definable for some equivalence relation E other that E_L (which gives rise to G_L).

It is rather easy to find such examples even in the stable case, with the relation $E \wedge$ -definable and coarser than equality of types \equiv .

However even in the stable case we were not able to construct an example of G where G_{\equiv} is not \bigwedge -definable, although we conjecture such an example exists. In this case G_{Sh}^* equals G^0 , and is type definable, and equals G_L .

Since we are interested in finding an example where G_L is not \bigwedge -definable, naturally we are interested in non- \bigwedge -definable G_E , where E is close to E_L .

In this section we give only an example (Example 5.1), where G_{\equiv} is not \wedge -definable. We could not come closer to E_L than \equiv . We give also an example (Example 5.2) of a group G with non-G-compact theory.

Example 5.1. In [6] there is an example (for every $n < \omega$) of a finite group G_n in which commutators $X_{\text{Inn}(G_n)}$ generate commutant $G'_n = [G_n, G_n] = G_{\text{Inn}(G_n)}$ in precisely n steps. We expand the structure (G_n, \cdot) to obtain a structure \mathcal{G}_n satisfying

$$\operatorname{Aut}(\mathcal{G}_n) = \operatorname{Inn}(G_n),$$

i.e. every automorphism of \mathcal{G}_n is an inner automorphism of G_n . Note that in \mathcal{G}_n the set X_{\equiv} equals $X_{\operatorname{Inn}(G_n)}$ and generates a group in *n* steps. Consider the product $\prod_{n < \omega} G_n$ of the groups G_n . We expand $\prod_{n < \omega} G_n$ to a structure \mathcal{G} as follows. For each k let E_k be the equivalence relation on $\prod_{n < \omega} G_n$ given by

$$E_k(u,v) \Leftrightarrow u(k) = v(k).$$

Then $\prod_{n<\omega} G_n/E_k$ is naturally identified with G_k . We expand $\prod_{n<\omega} G_n$ by the relations E_k , $k < \omega$, and the \mathcal{G}_k -structure on G_k (identified with $\prod_{n<\omega} \mathcal{G}_n/E_k$). We denote the quotient map

$$\prod_{n<\omega}G_n\to\prod_{n<\omega}G_n/E_k$$

by π_k .

Let \mathcal{G}^* be a large saturated extension of \mathcal{G} . We will prove that in \mathcal{G}^* , the group \mathcal{G}^*_{\equiv} is not \wedge -definable. This boils down to proving that

$$(*) \qquad \qquad \pi_k[X_{\equiv}^{\mathcal{G}^*}] = X_{\equiv}^{\mathcal{G}_k}$$

Indeed, suppose the above holds. Then, since $X_{\equiv}^{\mathcal{G}_k}$ generates a group in $\geq n$ steps, also $X_{\equiv}^{\mathcal{G}^*}$ generates a group in $\geq n$ steps. As n is arbitrary, we get that $X_{\equiv}^{\mathcal{G}^*}$ generates the group \mathcal{G}_{\equiv}^* in infinitely many steps. By [7, Theorem 3.1(1)], the group \mathcal{G}_{\equiv}^* is not \wedge -definable.

Now we prove (*). \subseteq is clear, since every automorphism of \mathcal{G}^* induces an automorphism of \mathcal{G}_k . To prove \supseteq , consider $a, b \in \mathcal{G}_k$ with b = f(a) for some $f \in \operatorname{Aut}(\mathcal{G}_k)$. We can extend f to an automorphism of \mathcal{G} and then to \mathcal{G}^* . If $a = \pi_k(a')$ for $a' \in \mathcal{G}^*$, then

$$b = f(a) = \pi_k(f(a')),$$

and therefore $\pi_k(a'^{-1}f(a')) = a^{-1}b$.

Now we give an example of group G whose theory is not G-compact, but case 2 from Remark 3.8 holds.

Example 5.2. First we construct a group with a large finite diameter of Lascar strong types. Let $\mathcal{M}_0 = (\mathcal{M}_0, \mathcal{R}, f)$ be a dense circular ordering (with respect to a ternary relation \mathcal{R}), equipped with a function f, which is a cyclic bijection of \mathcal{M}_0 respecting \mathcal{R} , of period 3. This structure was considered in [1] to construct the first example of a non-G-compact theory. Our group \mathcal{M}_3 will be the disjoint union of \mathcal{M}_0 and $\{0\}$ equipped with a structure of vector space over \mathbb{F}_2 (i.e. \mathcal{M}_3 will be an abelian group of exponent 2) so that the addition + on \mathcal{M}_3 is "independent" of f and \mathcal{R} .

To be more specific, let L be the language consisting of a ternary relation symbol R, function symbols + (binary) and f (unary) and a constant 0. To express "independence" of f and + we define inductively a set of terms \mathcal{T} in L as follows.

Definition 5.3. Let \mathcal{T} be the smallest set of terms of L such that:

- (1) $v, f(v), f^2(v)$ are in \mathcal{T} for every variable v.
- (2) If τ_1, \ldots, τ_k $(k \ge 2)$ are distinct terms in \mathcal{T} , then the terms $f(\tau_1 + \ldots + \tau_k)$ and $f^2(\tau_1 + \ldots + \tau_k)$ are in \mathcal{T} .

Let $\mathcal{T}(\overline{x})$ be the set of terms in \mathcal{T} in variables \overline{x} .

+ will be interpreted as an associative operation, so we may omit parentheses in $\tau_1 + \ldots + \tau_k$ in condition (2) in Definition 5.3. f will be interpreted as a cyclic function of period 3, so in Definition 5.3 there is no need to consider f^k for $k \ge 3$.

Definition 5.4. Let C be the class of L-structures (V, +, 0, R, f) such that:

- (1) (V, +, 0) is a vector space over \mathbb{F}_2 , of infinite dimension.
- (2) R is a circular order on the set $V^* = V \setminus \{0\}$.

- (3) f is a cyclic bijection of V^* of period 3, respecting R. That is, every point of V^* is a cyclic point of f of period 3 and R(x, y, z) implies R(f(x), f(y), f(z)). Also, $R(x, f(x), f^2(x))$ holds in V^* .
- (4) For every $a \in V^*$, the set $\mathcal{T}(a) = \{\tau(a) \colon \tau \in \mathcal{T}\}$ is lineary independent.

Condition (4) in Definition 5.4 expresses the fact that in the structures in C f is "independent" of the vector space structure.

 \mathcal{C} is an elementary class with the joint embedding and amalgamation properties. Let T_3 be the model completion of Th(\mathcal{C}). T_3 has quantifier elimination and its models are the existentially closed structures in \mathcal{C} . We describe the 1-types in T_3 .

Let \mathfrak{C} be a monster model of T_3 . Let $a \in \mathfrak{C}^* = \mathfrak{C} \setminus \{0\}$. The type of a is determined by the way in which the linear span $\operatorname{lin}(\mathcal{T}(a))$ is circularly ordered by R, or even by the way in which the set $\operatorname{lin}(\mathcal{T}(a)) \cap (a, f(a))$ is linearly ordered by R. Here for $a \neq b \in \mathfrak{C}^*$

$$(a,b) = \{c \in \mathfrak{C}^* : R(a,c,b)\}, [a,b) = \{a\} \cup (a,b).$$

R induces on (a, b) a linear ordering that we denote by $\langle .$ So there are 2^{\aleph_0} complete 1-types over \emptyset in T_3 .

We say a few words about indiscernible sequences in \mathfrak{C} . First, if $(a_n)_{n < \omega}$ is an infinite indiscernible sequence in \mathfrak{C} , then $a_1 \in (a_0, f(a_0))$ or $a_1 \in (f^2(a_0), a_0)$.

Secondly, we point how to construct an indiscernible sequence in \mathfrak{C} . Assume $p(x) = \operatorname{tp}(a)$ for some $a \in \mathfrak{C}^*$. Let $C^-(a), C^+(a)$ be a Dedekind cut in the set $\operatorname{lin}(\mathcal{T}(a)) \cap (a, f(a))$. That is, $C^-(a) < C^+(a)$ and $C^-(a) \cup C^+(a) = \operatorname{lin}(\mathcal{T}(a)) \cap (a, f(a))$.

It follows that for every a' realising p, the corresponding sets $C^{-}(a'), C^{+}(a')$ are a Dedekind cut in the set $\lim(\mathcal{T}(a')) \cap (a', f(a'))$ and also the sets $f(C^{-}(a')), f(C^{+}(a'))$ and $f^{2}(C^{-}(a')), f^{2}(C^{+}(a'))$ are Dedekind cuts in the sets $\lim(\mathcal{T}(a')) \cap (f(a'), f^{2}(a'))$ and $\lim(\mathcal{T}(a')) \cap (f^{2}(a'), a')$, respectively.

We can find a sequence $(a_n)_{n < \omega}$ of elements of \mathfrak{C}^* such that for every n > m,

$$[a_n, f(a_n)) \subseteq (a_m, f(a_m))$$
 and $C^-(a_m) < [a_n, f(a_n)) < C^+(a_m)$.

Using the Ramsey theorem we can find such a sequence that is moreover indiscernible. Using indiscernible sequences like that we see that p(x) is a strong Lascar type of diameter at least 3 and at most 6.

Similarly, replacing period 3 by period $n \ (n \ge 3)$, we construct a *G*-compact group $\mathcal{M}_n = (M_n, +, 0, R_n, f_n)$ with the diameter of Lascar strong types $\ge n$.

Now let $\mathcal{M} = \prod_{3 \le n < \omega} \mathcal{M}_n$ be the product of the groups \mathcal{M}_n . Let E_n be the equivalence relation on \mathcal{M} given by $E_n(x, y) \Leftrightarrow x(n) = y(n)$. Then \mathcal{M}/E_n is naturally identified with \mathcal{M}_n .

We consider \mathcal{M} as a group expanded by the relations E_n and the relations R_n and functions f_n on \mathcal{M}/E_n . Hence in \mathcal{M} there is no finite bound on the diameter of Lascar strong types. By [7], \mathcal{M} is not G-compact.

References

- E. Casanovas, D. Lascar, A. Pillay, M. Ziegler, Galois groups of first order theories. J. Math. Log. 1 (2001), no. 2, 305–319
- G. Cherlin, E. Hrushovski, *Finite structures with few types*. Annals of Mathematics Studies, 152. Princeton, NJ, 2003.
- [3] E. Hrushovski, Y. Peterzil, A. Pillay, Groups, measures, and the NIP. To appear in Journal of the AMS.

- [4] K. Krupiński, L. Newelski, On Bounded Type-Definable Equivalence Relations. Notre Dame Journal of Formal Logic 43 (2002) no. 4, 231–242
- [5] D. Lascar, A. Pillay, Hyperimaginaries and automorphism groups. J. Symbolic Logic 66 (2001), no. 1, 127–143
- [6] I. D. Macdonald, On cyclic commutator subgroups. J. London Math. Soc. 38 (1963) 419-422
- [7] L. Newelski, The diameter of a Lascar strong type. Fundam. Math. 176 (2003), no. 2, 157–170
- [8] M. Petrykowski, Weak generic types and coverings of groups II. preprint 2007
- [9] M. Ziegler, Introduction to the Lascar group. London Math. Soc. Lecture Note Ser., 291, 279–298

Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

E-mail address: gismat@math.uni.wroc.pl, newelski@math.uni.wroc.pl