
G-COMPACTNESS AND GROUPS

JAKUB GISMATULLIN AND LUDOMIR NEWELSKI

Abstract. Lascar described EKP as a composition of EL and the topological closure
of EL ([1]). We generalize this result to some other pairs of equivalence relations.

Motivated by an attempt to construct a new example of a non-G-compact theory,
we consider the following example. Assume G is a group definable in a structure M .
We define a structure M ′ consisting of M and X as two sorts, where X is an affine copy
of G and in M ′ we have the structure of M and the action of G on X. We prove that
the Lascar group of M ′ is a semi-direct product of the Lascar group of M and G/GL.
We discuss the relationship between G-compactness of M and M ′. This example may
yield new examples of non-G-compact theories.

1. Introduction

Let T be a complete theory in language L. We work within a monster model C |= T .
A model M |= T is small if M ≺ C and |M | = |T |. If X is a subset of a topological
space, then by int(X) we denote its interior and by cl(X) its closure. We recall some
well known facts about the Lascar Group and Lascar strong types (see [1, 9]). The group
of Lascar strong automorphisms is defined by:

AutfL(C) =
〈
Aut(C/M) : M is a small model

〉
,

and the Lascar (Galois) group of T by:

GalL(T ) = Aut(C)/AutfL(C).

This definition does not depend on the choice of the monster model C of T (it is
enough that C is |T |+-saturated and |T |+-strongly homogeneous). We say that a, b ∈
Ck (k < |T |+) have the same Lascar strong type, and write EL(a, b), if there exists
f ∈ AutfL(C) such that a = f(b). Thus EL is a ∅-invariant and bounded equivalence
relation on every sort Ck (because if a ≡

M
b for some small M ≺ C, then EL(a, b), so

|Ck/EL| ≤ |Sk(M)| ≤ 2|T |).

Definition 1.1. A symmetric formula ϕ(x, y) ∈ Lk+k(∅) is thick if for some n < ω, for
every sequence (ai)i<n there exist i < j < n such that ϕ(ai, aj). By Θ we denote the
conjunction of all thick formulas:

Θ(x, y) =
∧

ϕ thick

ϕ(x, y).

In the above definition we can equivalently take an infinite sequence (ai)i<ω. If ϕ
and θ are thick, then ψ(x, y) = ϕ(y, x) and ϕ ∧ θ are also thick (this follows from the
Ramsey theorem). Θ is a ∅-invariant relation (not necessarily an equivalence relation)
and if Θ(a0, a1), then we can extend (a0, a1) to an order indiscernible sequence (ai)i<ω.
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On the other hand if (ai)i<ω is a 2-indiscernible sequence, then ϕ(a0, a1) for every thick
ϕ.

Lemma 1.2. [9, Lemma 7]

(i) If Θ(a, b), then there is a small M such that a ≡
M
b.

(ii) If for some small M we have a ≡
M
b, then Θ2(a, b), i.e. there is c such that

Θ(a, c) ∧Θ(c, b).
(iii) EL is the transitive closure of Θ.

If π is a type over ∅, then we can define thick formulas on π(C) and their conjunction
Θπ similarly as in the above definition. Moreover, the last remark also holds for Θπ, so
EL|π(C) is the transitive closure of Θπ. One can prove that EL|π(C) is the finest bounded
∅-invariant equivalence relation on π(C).

There is a compact (not necessarily Hausdorff) topology on the group GalL(T ). Let
M and N be arbitrary small models and let

SM(N) = {tp(M ′/N) : tp(M ′) = tp(M)}
be a closed subset of S|T |(N). Thus SM(N) carries a compact subspace topology. The
quotient map j : Aut(C) → GalL(T ) factors as j = ν ◦ µ, where µ : Aut(C) → SM(N)
maps f to tp(f(M)/N), and µ : SM(N) → GalL(T ) maps tp(f(M)/N) to an appropriate
coset of AutfL(C), so we have the following commutative diagram:

Aut(C)
j=ν◦µ // //

µ

�� ��<
<<

<<
<<

<<
<<

<<
<<

GalL(T ) = Aut(C)/AutfL(C)

SM(N)

ν

99 99rrrrrrrrrrrrrrrrrrrrrr

We can induce topology on GalL(T ) from ν, i.e. X ⊆ GalL(T ) is closed if and only if
its preimage ν−1[X] is closed in SM(N). It can be easily seen that this definition of
topology does not depend on the choice of small models M and N ([9, Theorem 4]).
With this topology GalL(T ) becomes a compact topological group. We say that T is
G-compact when GalL(T ) is Hausdorff. If we consider Aut(C) with the usual topology
of pointwise convergence, then all the maps in the diagram are continuous. However ν
need not be open, instead ν satisfies some weak kind of openness.

Theorem 1.3. [9, Lemma 12] For p ∈ SM(N) define its Θ-neighbourhood as:

[p]Θ = {q ∈ SM(N) : p(x) ∪ q(y) ∪Θ(x, y) is consistent }.
If we take an arbitrary point p ∈ SM(N) and subset U ⊆ SM(N) such that [p]Θ ⊆ int(U),
then ν(p) ∈ int(ν[U ]).

The relation EL is ∅-invariant, so we may consider EL as a subset of S|T |+|T |(∅). Using

this, we define the relation EL as cl(EL). EL is ∅-invariant and contains EL. There
exists the finest bounded

∧
-definable over ∅ equivalence relation, denoted by EKP and

known as equality of Kim-Pillay strong types (there is also an appropriate group of
automorphisms AutfKP(C) such that EKP (a, b) if and only if for some f ∈ AutfKP(C),
a = f(b)). The next theorem describes some relationship between EKP ,Θ and EL.
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Theorem 1.4. [1, Corollary 2.6] EKP = Θ ◦ EL

An attempt to understand the proof of this theorem was a starting point of this paper.
In particular it was puzzling what properties of EL, EKP and Θ are responsible for the
relationship described in Theorem 1.4. It turnes out that the important point here is
that both EL and EKP are orbit equivalence relations with respect to some groups of
automorphisms of C. We elaborate on this in Section 2. We generalize Theorem 1.4
there and give a new proof of it based on Theorem 1.3. Also in Section 2 we generalize
some results about Lascar, Kim-Pillay and Shelah strong types.

Section 3 contains a model-theoretic analysis of a structure N = (M,X, ·), where M
is a given stucture and X is affine copy of some group G definable in M . We describe
the group of automorphisms of N as a semi-direct product of G and the group of
automorphisms of M . In particular we reduce the question of G-compactness of N to
the question of

∧
-definability of certain subgroup GL of G. This motivates us to look

for examples of G, where GL is not
∧

-definable.
In Section 4 we verify that GL is

∧
-definable in several cases, e.g. when M is small

or simple or o-minimal and G is definable compact.
In Section 5 we provide an example where a subgroup of G, similar in some sense to

GL, is not
∧

-definable, and also an example of a group G that is not G-compact.
We assume that the reader is familiar with basic notions of model theory.
The results in Sections 2, 3 and 4 are due to the first author, the proof of Lemma

3.7(1) and the examples in Section 5 are due to the second author.

2. Orbit equivalence relations

In this sectionG is always a subgroup of Aut(C). We can consider the orbit equivalence
relation EG defined as follows: EG(a, b) if and only if there is some f ∈ G with a = f(b),
where a and b are tuples of elements of C of length ≤ |T |, such tuples are called small.
In this paper we consider EG as an equivalence relation on the sets of small tuples of
elements of various sorts of C.

The results of this section are concerned with various properties of relations of the
form EG. Our motivation is based on the observation that almost all important equiv-
alence relations in model theory (e.g. EL, EKP and ESh) are of this form.

Some statements from the next proposition are probably well known (see [1, 5, 7, 9]).

Lemma 2.1. (i) Let M be an arbitrary small model, then

G · Aut(C/M) = {f ∈ Aut(C) : EG(M, f(M))}.

(ii) The relation EG is ∅-invariant on every sort if and only if for every small M ≺ C
and every F ∈ Aut(C)

G ⊆ GF · Aut(C/M).

In particular if G contains
⋃

F∈Aut(C) Aut(C/F [M ]) for some small M , then EG

is ∅-invariant if and only if GC Aut(C).
(iii) If G has bounded index in Aut(C), then EG is bounded and EL ⊆ EG. If EG is

∅-invariant bounded GC Aut(C) and G contains Aut(C/M) for some small M ,
then G has bounded index in Aut(C).

(iv) Let j : Aut(C) −→ GalL(T ) be the quotient map and assume that AutfL(C) ⊆ G.
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(a) j[G] is closed in GalL(T ) if and only if EG is
∧

-definable over any small
model. If GC Aut(C), then

∧
-definability is over ∅.

(b) j[G] is open in GalL(T ) if and only if G = Aut(C/e) for some e ∈ acleq(∅)
(i.e. e = m/F for some ∅-definable finite equivalence relation F on some
Cn, n < ω).

Proof. (i) Easy.
(ii) Without loss of generality we may work with small models, because every tuple

a may be extended to small model M . Take an arbitrary small M ≺ C, g ∈ G and F ∈
Aut(C). Then EG(M, g(M)). Assume that EG is ∅-invariant. Then EG(F (M), F (g(M)))
holds, so for some g′ ∈ G, F (g(M)) = g′(F (M)). Thus F−1 ◦ g′−1 ◦ F ◦ g ∈ Aut(C/M),
so g ∈ g′F ◦ Aut(C/M) ⊆ GF ◦ Aut(C/M). The other implication is similar.

For the second statement of (ii) assume that G ⊆ GF ·Aut(C/M). Then conjugating
by F−1 we obtain

GF−1 ⊆ G · Aut(C/F [M ]) = G,

for an appropriate small model M .
(iii) If G has bounded index in Aut(C), then there is a normal subgroup H C Aut(C)

of bounded index, with H ⊆ G (an intersection of boundedly many conjugates of G).
Thus EH is bounded and invariant, so EL ⊆ EH ⊆ EG.

For the second statement we use (i) to conclude that G = Aut(C/pM/EGq). G has
bounded index, because M/EG has boundedly many conjugates.

(iv) Note that j−1[j[G]] = G·AutfL(C) = G, thus µ[G] = ν−1[j[G]] (because j = ν◦µ).
(a) ⇒: Let M be an arbitrary small model. If j[G] is closed in GalL(T ), then µ[G] =

ν−1[j[G]] = {tp(M ′/M) : Φ(M ′,M)} for some type Φ(x, y) over ∅. We have that

EG(a, b) ⇐⇒ (∃f ∈ Aut(C)) (a = f(b) ∧ Φ(f(M),M)) ,

and thus EG is
∧

-definable over M :

EG(a, b) ⇐⇒ (∃z)(tp(b,M) = tp(a, z) ∧ Φ(z,M)).

⇐: There is a type Φ(x, y) over M such that

EG(a, b) ⇐⇒ Φ(a, b).

Since µ[G] = ν−1[j[G]] it is enough to prove that µ[G] is closed in SM(M). This is clear,
because:

µ[G] = {tp(g(M)/M) : g ∈ G} = {tp(M ′/M) : Φ(M ′,M)}.
(b) ⇒: First we deal with the case where G C Aut(C). Since GalL(T ) is a compact

topological group, j[G] has finite index in GalL(T ), hence it is closed. By (iva) EG

is ∅-
∧

-definable. Also G has finite index in Aut(C). It follows that EG has finitely
many classes on tp(M)(C) (the set of realisations of type tp(M)) and from (i) we have
G = Aut(C/(M/EG)). Hence there are a finite ∅-definable equivalence relation F and
m ⊂M such that G = Aut(C/(m/F )).

Now we deal with the general case, so G < Aut(C) need not be normal. However, still
G has finite index in Aut(C). Hence there is a normal subgroup H C Aut(C) contained
in G and such that j[H] is open (an intersection of finitely many conjugates of G). We
may apply the first case to H. We get an e ∈ acleq(∅) such that H = Aut(C/e). An
element e has finitely many conjugates, so e′ = p{g · e : g ∈ G}q ∈ acleq(∅). Now it is
obvious that G = Aut(C/e′).
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⇐: The subset ν−1[j[G]] = µ[G] = {tp(f(M)/M) : F (m, f(m)), f ∈ Aut(C)} of
SM(M) is clopen. �

Problem 2.2. Consider an equivalence relation E on sorts of C which is ∅-invariant.
Then we can build the following growing sequence of ∅-invariant relations:

(i) E0 = E,
(ii) E1 = cl(E) in Sk+k(∅),
(iii) for 1 ≤ α ∈ Ord let

• Eα+1 = cl(transitive closure of Eα),
• if α ∈ Lim, then Eα =

⋃
λ<αEλ.

Take E∞ =
⋃

α∈OrdEα. Then clearly E∞ is the finest type definable equivalence relation
which extends E, so we may ask the question: what is the first αE for which EαE

= E∞?
If E = EG, where AutfL(C) ⊆ G C Aut(C), then from the next Theorem 2.3(ii) we
conclude that αE ≤ 2.

It can be proved that AutfKP(C) = j−1[cl(idGalL(T ))]. Recall that EKP = EAutfKP(C)

is the finest bounded
∧

-definable over ∅ equivalence relation. The next Theorem 2.3(i)
generalizes this remark and Theorem 1.4 to an arbitrary group of automorphisms con-
taining AutfL(C).

Theorem 2.3. Let AutfL(C) ⊆ G < Aut(C) and consider G = j−1[cl(j[G])]. Then

(i) On each sort of C the relation E
G

is the finest bounded
∧

-definable over any
small model equivalence relation which extends EG.

(ii) If additionally GC Aut(C), then

E
G

= Θ ◦ EG,

where EG is cl(EG) in Sk+k(∅).

Proof. (i) Let E be a
∧

-definable over M equivalence relation and EG ⊆ E. Take an

arbitrary f ∈ G and a small tuple b. We have to prove that E(f(b), b). Consider the
following set

H = {f ∈ Aut(C) : E(f(b), b)}
(H is not necessarily a group, because E is not necessarily ∅-invariant). It is enough to

show that G ⊆ H.
Note that j−1[j[H]] = AutfL(C) ·H = H, because for f ∈ AutfL(C), h ∈ H we have

E(h(b), b) and E(f(h(b)), h(b)) (EL ⊆ E), so E(f(h(b)), b) and f ◦ h ∈ H.
Since EG ⊆ E we have G ⊆ H, so we must only prove that cl(j[G]) ⊆ j[H] (because

j−1[j[H]] = H). The proof is completed by showing that j[H] is closed in GalL(T ). This
follows from the fact that the set

ν−1[j[H]] = µ[H] = {tp(f(M ′)/M ′) : E(f(b), b), f ∈ Aut(C)}

is closed in SM ′(M ′), where Mb ⊆M ′ ≺ C.
(ii) The relation E

G
is
∧

-definable over ∅, so E
G

is a closed subset of Sk+k(∅), thus

EG ⊆ E
G
. This gives Θ ◦ EG ⊆ E

G
.

Now we prove that E
G
⊆ Θ◦EG. Assume that a, b are small tuples such that E

G
(a, b),

i.e. a = f(b) for some f ∈ G. Without loss of generality we may assume that b = M , for
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some small M ≺ C, so a = f(M). Let p = µ(f) = tp(f(M)/M). Then ν(p) = j(f) ∈
cl(j[G]) and

[p]Θ ∩ cl(ν−1[j[G]]) 6= ∅,
because otherwise [p]Θ ⊆ int(ν−1[j[G]c]), and from Theorem 1.3

ν(p) ∈ int(ν[ν−1[j[G]c]]) = int(j[G]c) = cl(j[G])c,

a contradiction.
Let q ∈ [p]Θ ∩ cl(ν−1[j[G]]). There is some c = M ′ |= q such that Θ(f(M),M ′) and

q = tp(M ′/M) is in

cl(ν−1[j[G]]) = cl(µ[G]) = cl{tp(g(M)/M) : g ∈ G}
= cl{tp(g(M)/M) : EG(g(M),M)}.

Finally tp(M ′,M) ∈ cl(EG) = EG, and we obtain that Θ(a, c) and EG(c, b). �

Now we consider the relation ESh of equality of Shelah strong types:

ESh =
⋂
{E : E is a ∅-definable finite equivalence relation}.

It can be proved that ESh = Ej−1[QC], where QC C GalL(T ) is the intersection of all open
subgroups of GalL(T ) (the quasi-connected component). When GalL(T ) is Hausdorff (i.e.
T is G-compact) then QC is just the connected component of GalL(T ).

In the next proposition we generalize this property of ESh, but first we need a defi-
nition: if A ⊆ GalL(T ), then by QC(A) we denote the following set⋂

{H < GalL(T ) : A ⊆ H and H is open}.

Proposition 2.4. If H < GalL(T ), then Ej−1[QC(H)] is the intersection of all ∅-definable
finite equivalence relations which extend Ej−1[H]:

Ej−1[QC(H)] =
⋂
{E : E is a ∅-definable finite e.r. and Ej−1[H] ⊆ E}.

Moreover j−1[QC(H)] is equal to the group of all f ∈ Aut(C), satisfying

Ej−1[QC(H)](a, f(a))

for arbitrary small tuple a.

Proof. First we prove the equality of relations. (⊆) Assume that small tuples a, b are
Ej−1[QC(H)] equivalent, so a = f(b) for some f ∈ j−1[QC(H)], and E is a ∅-definable
finite equivalence relation extending Ej−1[H]. Define

G′ = {f ∈ Aut(C) : E(f(b), b)} = Aut(C/(b/E)).

Then H ⊆ j[G′] and j[G′] is open as a subset of GalL(T ) (Lemma 2.1(iv)(b)). Therefore
QC(H) ⊆ j[G′] and

f ∈ j−1[QC(H)] ⊆ j−1[j[G′]] = G′ · AutfL(C) = G′,

so E(a, b) holds.
(⊇) Let QC(H) =

⋂
{Gi : i ∈ I}. Using Lemma 2.1(iv)(b) we can find (ei)i∈I ⊆

acleq(∅) such that j−1[Gi] = Aut(C/ei). Then j−1[QC(H)] = Aut(C/{ei}i∈I). We can
assume that ei = mi/Fi for some ∅-definable finite equivalence relations Fi. Assume
that (a, b) belongs to⋂

{E : E is a ∅-definable finite e.r. and Ej−1[H] ⊆ E}.
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We have to find f ∈ j−1[QC(H)] for which b = f(a). It suffices to prove that the
following type in variables (yi)i∈I is consistent:

“ tp(b, yi)i∈I = tp(a,mi)i∈I” ∧
∧
i∈I

Fi(mi, yi).

Let ϕ(x, x1, . . . , xn) ∈ tp(a,mi)i∈I . It is enough to show that

ψ(b,m1, . . . ,mn) = (∃y1, . . . , yn)

(
ϕ(b, y1, . . . , yn) ∧

∧
1≤i≤n

Fi(mi, yi)

)
holds. The formula ψ = ψ(x,m1, . . . ,mn) is almost over ∅ (because m1, . . . ,mn ∈
acl(∅)). Let ψ1, . . . , ψk be all conjugates of ψ over ∅ and take

A(x, y) =
∧

1≤i≤k

(ψi(x) ↔ ψi(y)).

A is a ∅-definable finite equivalence relation and Ej−1[H] ⊆ A (because j−1[H] ⊆
j−1[QC(H)] = Aut(C/(mi/Fi))). Therefore A(a, b) and we know that ψ(a,m1, . . . ,mn)
holds, so ψ(b,m≤n) also holds.

Now we prove the second part of the proposition. Let G′ be the group of all automor-
phisms preserving Ej−1[QC(H)]. Inclusion j−1[QC(H)] ⊆ G′ is obvious.

(⊇) Let g ∈ G′ and a = M be a small model. Then Ej−1[QC(H)](M, g(M)), so g(M) =
f(M) for some f ∈ j−1[QC(H)]. Thus j(g) = j(f) (because gf−1 ∈ AutfL(C)) and
j(f) ∈ QC(H). Therefore g ∈ j−1[QC(H)]. �

3. An Example

Let M be an arbitrary structure in which we have a ∅-definable (interpretable) group
G. In this section we consider the following two sorted structure: N = (M,X, ·), where

• X and M are disjoint sorts,
• · : G × X → X is a regular (free and transitive) action of G on X i.e. X is an

affine copy of G,
• on M we take its original structure.

This structure was already considered e.g. in [9, 7]. Our study of N is based on ideas
from [9, Section 7].

In this section we describe various groups of automorphisms ofN in terms of appropri-
ate groups of automorphisms of M and groups related to G. We also give a description
of the relations EL, EKP and ESh on the sort X of N . In particular, in Corollary 3.6 we
prove that G-compactness of N is equivalent to G-compactness of M and

∧
-definability

of certain subgroup GL of G. Thus constructing a group G where the subgroup GL is
not

∧
-definable may yield a new example of a non-G-compact theory.

Fix an arbitrary point x0 from X and take N∗ = (M∗, X∗, ·), a monster model
extending N . Then G ⊆ G∗ and X = G · x0 ⊆ G∗ · x0 = X∗.

The group G∗ acts on itself in two different, but commuting ways, the first one is by
left translation (g, h) 7→ gh, and the second one by the following rule (g, h) 7→ hg−1.
We define homomorphic embeddings of automorphism groups:

· : Aut(M∗) ↪→ Aut(N∗), · : G∗ ↪→ Aut(N∗).
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Let h ∈ G∗, f ∈ Aut(M∗), g ∈ G∗. We define f, g ∈ Aut(N∗) by:

f |M∗ = f, f(h · x0) = f(h) · x0,

g|M∗ = idM∗ , g(h · x0) = (hg−1) · x0.

It is easy to verify the following laws: for f ∈ Aut(M∗), g ∈ G∗ we have

f ◦ g = f(g) ◦ f, g ◦ f = f ◦ f−1(g).

Using these embeddings we can identify Aut(M∗) and G∗ with their images in Aut(N∗)
and conclude that G∗ C Aut(N∗). In fact we will prove that Aut(N∗) is a semi-direct
product of G∗ and Aut(M∗).

There are two different actions of the group G∗ on the set X∗: the first one comes
from the above embedding

g(h · x0) = (hg−1) · x0

(it is definable over x0). The second one comes from the regular action

g · (h · x0) = (gh) · x0.

If A ⊆ G∗ satisfies hA−1 = Ah, then the orbits of h · x0 under both actions coincide:
A(h · x0) = A · (h · x0) (in this case we just write A · (h · x0)).

In order to describe properties of N∗ in terms of M∗ and G∗ we need the next
definition.

Definition 3.1. For a group G and a binary relation E on G we define the set of E-
commutators XE = {a−1b : a, b ∈ G,E(a, b)} and the E-commutant GE as the subgroup
of G generated by XE

GE = 〈XE〉 < G.

Remark 3.2. If E = EH for some H < Aut(G, ·), then GEH
C G. If E is ∅-invariant,

then XE and GE are also ∅-invariant. If E is bounded, then GE has bounded index in
G, moreover [G : GE] ≤ |G/E|.

Proof. Let a, x ∈ G and h ∈ H. Then

(XEH
)x 3 (a−1h(a))x = (ax)−1h(a)x = ((ax)−1h(ax))(h(x)−1x) ∈ X2

EH
.

The last statement follows from the observation: if a−1b /∈ GE, then ¬E(a, b). �

The following example justifies the names “E-commutators” and “E-commutant”
from the previous definition. Let E be the conjugation relation in G i.e. E = EInn(G)

(where Inn(G) is the group of inner automorphisms of G). Then XE is the set of all
commutators and GE = [G,G].

In the case where E = EL [E = EKP , ESh, respectively] we just write XL and GL

[XKP , XSh] instead of XEL
and GEL

[XEKP
, XESh

]. Note that GL is generated by XΘ.
In the next proposition we describe Aut(N∗),AutfL(N∗) and GalL(Th(N)) as semidi-

rect products of automorphisms groups of M∗ and appropriate groups associated with
G.

Proposition 3.3. (1) Aut(N∗) = G∗oAut(M∗), more precisely: for F ∈ Aut(N∗),
F = g ◦ f , where f = F |M∗ and F (x0) = g−1 · x0.

(2) Let (N ′, X ′) ≺ (N∗, X∗) and X ′ = G′ · (h0 · x0) for some h0 · x0 ∈ X ′. Then

F ∈ Aut(N∗/N ′) ⇐⇒ (∃f ∈ Aut(M∗/M ′))
(
F = f

h0
)
.
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(3) AutfL(N∗) = G∗
L o AutfL(M∗) and GalL(Th(N)) = G∗/G∗

L o GalL(Th(M)).

Proof. (1) Let F ∈ Aut(N∗) and f = F |M∗ . Then Ff
−1

is the identity on M∗, and on
X∗ = G∗ · x0 we have:

Ff
−1

(h · x0) = F (f−1(h) · x0) = h · F (x0) = h · (g−1 · x0) = g(h · x0),

for some g ∈ G∗. Thus F = g ◦ f . The group Aut(M∗) acts on G∗ by conjugation, so

for g ∈ G∗ and f ∈ Aut(M∗), gf = f(g) ∈ G∗. It is clear that G∗ ∩ Aut(M∗) = {0}.
(2) (⇐) It is clear that F |M ′ = idM ′ . Using the fact that f |M ′ = idM ′ we get for

h′ ∈ X ′:

f
h0

(h′h0 · x0) = h−1
0 ◦ f(h′ · x0) = h−1

0 (h′ · x0) = h′h0 · x0.

Thus f
h0 |X′ = idX′ .

(⇒) Let f = F |M∗ . Then f = f
h0|M∗ ∈ Aut(M∗/M ′). By assumptions

h0 · x0 = F (h0 · x0) = F (h0) · F (x0) = f(h0) · F (x0),

and then F (x0) = f(h−1
0 )h0 · x0. By (1), F = h−1

0 f(h0) ◦ f = h−1
0 ◦ f ◦ h0 = f

h0
.

(3) It suffices to prove the first equality. ⊆: From (2) we conclude that for every
F ∈ AutfL(N∗) there are h1, . . . , hn ∈ G∗ and f1, . . . , fn ∈ AutfL(M∗) such that F =

f1
h1 ◦ . . . ◦ fn

hn
. Then

F = h−1
1 f1(h1) ◦ f1 ◦ h−1

2 f2(h2) ◦ f2 ◦ . . . ◦ h−1
n fn(hn) ◦ fn.

Using the rule f ◦ g = f(g) ◦ f , one can prove that F = g ◦ f1 . . . fn, for some

g ∈ GL (for example f1 ◦ h−1
2 f2(h2) = f1(h

−1
2 )f1(f2(h2)) ◦ f1, and f1(h

−1
2 )f1(f2(h2)) =

f1(h2)
−1f

f−1
1

2 (f1(h2)) ∈ XL).
⊇: It is clear that AutfL(N∗) ⊇ AutfL(M∗) (use (2)). It is enough to prove that

AutfL(N∗) ⊇ XL. Assume that small tuples a, b satisfy b = f(a), for some f ∈
AutfL(M∗). We have to prove that a−1b ∈ AutfL(N∗). Since f

a ∈ AutfL(N∗), we have

a−1b = a−1f(a) = f
a ◦ f−1 ∈ AutfL(N∗). �

Now we characterize some invariant subgroups of G∗: G0
∅, G

00
∅ and G∞

∅ , in terms of
N∗.

Proposition 3.4. (1) G∗
L = G∗ ∩ AutfL(N∗) and G∗

L is the smallest ∅-invariant
subgroup of G with bounded index in G∗ (i.e. G∗

L = G∞
∅ ).

(2) Let G′
KP = G∗ ∩ AutfKP(N∗), then G∗

KP ⊆ G′
KP and G′

KP is the smallest
∧

-
definable over ∅ subgroup with bounded index in G∗ (i.e. G′

KP = G00
∅ ).

(3) Let G′
Sh = G∗ ∩ AutfSh(N

∗), then G∗
Sh ⊆ G′

Sh and G′
Sh is the intersection of all

∅-definable subgroups of G∗ with finite index (i.e. G′
Sh = G0

∅).

Proof. (1) The first equality follows directly from Proposition 3.3(3). Let H < G∗ be
∅-invariant with bounded index. It suffices to prove that XΘ ⊆ H. Take an order
inscernible sequence (an)n<ω (so Θ(a0, a1)). If a−1

0 a1 /∈ H, then for every i < j <
ω, a−1

i aj /∈ H, but we can extend an indiscernible sequence as much as we want, so the
index [G∗ : H] is unboundedly large, a contradiction.

(2) If N ′ ≺ N∗ is an arbitrary small model, then

G′
KP = {g ∈ G∗ : EKP (N ′, g(N ′))}.
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Inclusion ⊆ is obvious. ⊇: If EKP (N ′, g(N ′)), then g(N ′) = F (N ′) for some F ∈
AutfKP(N∗). Since g|M∗ = idM∗ , F ∈ G∗, and gF−1 ∈ AutfL(N∗), so g ∈ G′

KP .
G′

KP has bounded index (G∗
L ⊆ G′

KP ) and is
∧

-definable over N ′x0. In fact G′
KP is

∅-invariant. To see this let F = g′ ◦ f ′ ∈ Aut(N∗). Then

F [G′
KP ] = {F (g) : EKP (N ′, g(N ′))} = {F (g) : EKP (F (N ′), F (g(N ′)))},

but F ◦ g = g′ ◦ f ′ ◦ g = g′f ′(g)g′−1 ◦ F , thus

F [G′
KP ] = {f ′(g) : EKP (F (N ′), g′ ◦ f ′(g)g′−1(F (N ′)))}

= {f ′(g) : EKP (g′−1F (N ′), f ′(g)(g′−1F (N ′))} = G′
KP ,

and hence G′
KP is

∧
-definable over ∅. The relation E(x, y) = x−1y ∈ G′

KP is bounded∧
-definable over ∅, therefore EKP |G∗ ⊆ E and G∗

KP ⊆ G′
KP . Take H < G∗, another

subgroup which is
∧

-definable over ∅ and has bounded index in G∗. Then EKP ⊆ EH ,
so for g ∈ G′

KP we have EH(x0, g(x0)) and then g−1 · x0 = g(x0) = h(x0) = h−1 · x0 for
some h ∈ H. By regularity of · we obtain g = h ∈ H.

(3) As in (2) it can be proved that G′
Sh is

∧
-definable over ∅. Let g ∈ G′

Sh, andH < G∗

be a ∅-definable subgroup with finite index in G∗. We show that g ∈ H. Consider the
relation E(x, y) = (∃h ∈ H)(x = h · y) on X∗. E is a ∅-invariant, finite equivalence
relation on X∗, thus ESh|X∗ ⊆ E. By regularity of · we conclude that g ∈ H. If we
consider E(x, y) = x−1y ∈ H on G∗, then ESh|G∗ ⊆ E and therefore G∗

Sh ⊆ H.
Let g belong to all ∅-definable subgroups of G∗ of finite index. We prove that g ∈

AutfSh(N
∗). From Proposition 2.4 we know that AutfSh(N

∗) is the preimage under
the quotient map j of the quasi-connected component QC of GalL(Th(N)). Let H C
GalL(Th(N)) be an open subgroup. It suffices to show that g ∈ j−1[H] C Aut(N∗).
Note that the group H ′ = j−1[H] ∩ G∗ is ∅-invariant, because for f ∈ Aut(M∗) if

g ∈ j−1[H], then f(g) = gf−1 ∈ j−1[H]. H ′ is also definable, because by Lemma
2.1(iv)(b), j−1[H] = Aut(C/m/F )), so g ∈ H ′ if and only if F (m, g(m))). Hence H ′ is
a ∅-definable subgroup of G∗ of finite index and thus g ∈ j−1[H]. �

The compact topological group GalL(Th(N∗)) contains as a subgroup the group
G∗/G∗

L, so we may ask about the induced topology on G∗/G∗
L. The next proposition

describes this topology.

Proposition 3.5. (1) The induced subspace topology on G∗/G∗
L from GalL(Th(N))

is precisely the logic topology: let i : G∗ → G∗/G∗
L be the quotient map, then

X ⊆ G∗/G∗
L is closed if and only if its preimage i−1[X] ⊆ G∗ is

∧
-definable over

some (equivalently every) small model. With this topology G∗/G∗
L is a compact

topological group (this topology is Hausdorff if and only if G∗
L is

∧
-definable).

(2) The topology of GalL(Th(M)) as the Lascar group of Th(M) and the induced
topology on GalL(Th(M)) as a subspace of GalL(Th(N)) coincide.

(3) If X ⊆ G∗/G∗
L and Y ⊆ GalL(Th(M)) are closed, then X · Y ⊆ GalL(Th(N)) is

also closed. In particular, if Th(M) is G-compact, then G∗/G∗
L is closed subgroup

of GalL(Th(N)).
(4) The closure of identity in G∗/G∗

L is G′
KP/G

∗
L.

(5) The quasi-connected component (the intersection of all open subgroups) of G∗/G∗
L

is G′
Sh/G

∗
L.

Proof. (1) Let N ′ be a small model. Without loss of generality we may assume that
x0 ∈ N ′. The restriction of the quotient map j to G∗ is precisely the quotient map i.
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We have the following commutative diagram:

G∗ i // //
� _

⊆
��

G∗/G∗
L� _

⊆
��

Aut(N∗)
j // // GalL(Th(N))

Let X ⊆ G∗/G∗
L be closed in the induced subspace topology, i.e. X = G∗/G∗

L∩C, where
C ⊆ GalL(Th(N)) is closed. Then ν−1[C] is closed in SN ′(N ′), so there exists a type
Φ(x, y) over ∅ for which

ν−1[C] = µ[j−1[C]] = {tp(F (N ′)/N ′) : F ∈ j−1[C]} = {tp(N ′′/N ′) : Φ(N ′′, N ′)}.
The subset i−1[X] ⊆ G∗ is

∧
-definable over N ′, because for g ∈ G∗

g ∈ i−1[X] ⇔ g ∈ j−1[C] ⇔ Φ(g(N ′), N ′).

The implication ⇐ in the last equivalence holds, because if Φ(g(N ′), N ′), then g(N ′) =
F (N ′) for some F ∈ j−1[C], and thus j(g) = j(F ) ∈ C.

Now assume that i−1[X] is
∧

-definable over N ′, i.e. for g ∈ G∗, g ∈ i−1[X] if and
only if Ψ(g,N ′), for some type Ψ. Let C = X ·GalL(Th(M)) ⊆ GalL(Th(N)). Then

X = G∗/G∗
L ∩ C.

In order to prove that C is closed in GalL(Th(N)) it is enough to show that

ν−1[C] = {tp(F (N ′)/N ′) : F ∈ j−1[C]}
= {tp(N ′′/N ′) : xN ′′

0 = g−1 · x0, Ψ(g,N ′) holds and tp(N ′′) = tp(N ′)}.

The last equality holds because j−1[C] = i−1[X]◦Aut(M∗), and if F = g◦f, g ∈ i−1[X],
then xN ′′

0 = F (x0) = g ◦ f(x0) = g−1 · x0 (here N ′′ = F (N ′)).
(2) The proof is similar to the proof in (1) and we leave it to the reader.
(3) The set ν−1[X · Y ] = µ[j−1[X · Y ]] is closed in SN ′(N ′) because it is equal to the

following

{tp(g ◦ f(N ′)/N ′) : g ∈ i−1[X], f ∈ j−1[Y ]} =
{tp(N ′′/N ′) : tp(M ′′/M ′) ∈ ν−1[Y ], xN ′′

0 = g−1 · x0, g ∈ i−1[X] and tp(N ′′) = tp(N ′)}.
Above we use the fact that j−1[X · Y ] = i−1[X] ◦ ν−1[Y ].

(4)G′
KP/G

∗
L contains cl(id), becauseG′

KP is
∧

-definable over ∅. The subgroup i−1[cl(id)]
of G∗ is

∧
-definable over ∅ and of bounded index (because G∗

L ⊆ i−1[cl(id)]), thus
G′

KP ⊆ i−1[cl(id)].
(5) The group G′

Sh is the intersection of all ∅-definable subgroups of G∗ of finite
index, thus G′

Sh/G
∗
L contains quasi-connected component QC (because if H < G∗ is

∅-definable of finite index, then H/G∗
L is closed of finite index, hence open). Let H be

an arbitrary open subgroup of G∗/G∗
L. It suffices to show that G′

Sh/G
∗
L ⊆ H. The group

H is closed of finite index, hence H ·GalL(Th(M)) is a closed subgroup of GalL(Th(N))
of finite index. Therefore

AutfSh(N
∗) ⊆ j−1[H ·GalL(Th(M))],

and then G′
Sh ⊆ i−1[H]. This gives G′

Sh/G
∗
L ⊆ H. �

The next corollary motivates us to investigate
∧

-definability of G∗
L. We do this in the

next section. If G∗
L is not

∧
-definable, then N may give us a new kind of not G-compact

theory.
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Corollary 3.6. Th(N) is G-compact if and only if Th(M) is G-compact and G∗
L is∧

-definable.

Proof. The topological group G is Hausdorff if nad only if {eG} is closed and we can
apply the previous proposition. �

Now we describe the relations Θ, EL, EKP and ESh on the sort X∗ in terms of orbits
of the groups G∗

L, G
′
KP and G′

Sh from Proposition 3.3.

Lemma 3.7. Let x ∈ X∗ and n < ω.

(1) {y ∈ X∗ : Θn(x, y)} = Xn
Θ · x

(2) x/EL = G∗
L · x

(3) x/EKP = G′
KP · x

(4) x/ESh = G′
Sh · x

Proof. (1) It is enough to prove this for n = 1. ⊆: Assume x, y ∈ X∗,Θ(x, y) and y = g0x
for some g0 ∈ G∗. We may assume that x = x0. We can extend (x0, g0x0) to an order
indiscernible sequence (x0, g0x0, g1x0, . . .) ⊆ X∗. Then for 0 ≤ i1 < . . . < in < ω, 0 ≤
j1 < . . . < jn < ω:

(x0, gi1x0, gi2x0, . . .) ≡ (gj1x0, gj2x0, gj3x0, . . .).

Applying the automorphism gj1 we obtain:

(gj1x0, gj2x0, gj3x0, . . .) ≡ (x0, gj2g
−1
j1
x0, gj3g

−1
j1
x0, . . .).

Hence from the previous two equivalences we get

(gi1x0, gi2x0, . . .) ≡
x0

(gj2g
−1
j1
x0, gj3g

−1
j1
x0, . . .),

so
(gi1 , gi2 , . . .) ≡ (gj2g

−1
j1
, gj3g

−1
j1
, . . .).

It means that (g0, g1, . . .) ⊆ G∗ is also order indiscernible and g0 ≡ g0g
−1
1 , so g0 ∈ XΘ.

⊇: Let y = gx0 for g = ab−1 ∈ XΘ, where Θ(a, b). We can find an indiscernible
sequence (b, gb, . . .) ⊆ G∗, and then (bx0, gbx0, . . .) ⊆ X∗ is also indiscernible, so
Θ(bx0, gbx0). Applying b, we obtain Θ(x0, gx0).

(2) Inclusion ⊇ follows from Proposition 3.3(3). ⊆: Let y = F (x) for some F = g◦f ∈
AutfL(N∗). We may assume that x = x0. Then y = gf(x0) = gx0 = g−1x0 and g ∈ GL.

(3) ⊇ follows from Proposition 3.4(2). Since EKP |X∗ ⊆ EG′
KP
|X∗ we have ⊆.

(4) ⊇ follows from Proposition 3.4(3). ⊆: We know that G′
Sh =

⋂
i∈I Hi, where Hi is

∅-definable with finite index. Therefore EG′
Sh
|X∗ =

⋂
i∈I EHi

|X∗ , so ESh|X∗ ⊆ EG′
Sh
|X∗

and we are done. �

Using Theorems 1.1 and 3.1 from [7] we can give a detailed analysis of Lascar and
Kim-Pillay strong types on X∗. This analysis describes also some basic properties of
the group G. By diam(a) we denote the diameter of the Lascar strong type a/EL (see
[7]). Note that every two elements of X∗ have the same type over ∅, thus their Lascar
strong types have the same diameter.

Remark 3.8. There are only two possibilities:

Case 1 The diameters of all Lascar strong types on X∗ are infinite. The group G∗
L is

not
∧

-definable, EL $ EKP , G∗
L $ G′

KP (i.e. Th(N) is not G-compact) and
2ℵ0 ≤ [G∗ : G∗

L] = |X∗/EL| ≤ 2|T |.
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Case 2 There is n < ω such that for every x ∈ X∗, diam(x) = n. Then EL|X∗ =
EKP |X∗ = Θn|X∗ and G∗

L = Xn
Θ = G′

KP are
∧

-definable groups.

Lemma 3.9. (1) Either G′
KP = G∗

L, or [G′
KP : G∗

L] ≥ 2ℵ0.
(2) If the language of the structure M is countable, then either

G′
Sh = G′

KP or [G′
Sh : G′

KP ] ≥ 2ℵ0 .

In the last case the space of ∅-types SG(∅) of G is of power 2ℵ0.

Proof. (1) follows from preceding remark, Lemma 3.7 and [7, Theorem 1.1].
(2) The proof is very similar to the proof of [4, Theorem 3.5], so we are brief. Consider

the group H = G∗/G′
KP . This group with the logic topology is a compact Hausdorff

topological group. Since the language is countable, H is metrizable. Let d0 be a metric
on H. Modifying d0 as in [4] we obtain an equivalent metric d, which is ∅-invariant.
Since H is Hausdorff, the connected component of H is equal to the quasi-connected
component QC, and by Proposition 3.5(5)

QC = G′
Sh/G

′
KP .

Assume that G′
Sh 6= G′

KP and take g ∈ G′
Sh \ G′

KP . Let r = d(e/G′
KP , g/G

′
KP ). For

every δ with 0 < δ < r there is gδ ∈ G′
Sh such that d(e/G′

KP , gδ/G
′
KP ) = δ (because

G′
Sh/G

′
KP is connected). The metric d is ∅-invariant, hence for δ < δ′,

tp(gδ) 6= tp(gδ′) and d(gδ′/G
′
KP , gδ/G

′
KP ) ≥ δ′ − δ > 0.

Therefore the power of SG(∅) is 2ℵ0 and gδ′g
−1
δ /∈ G′

KP , hence [G′
Sh : G′

KP ] = 2ℵ0 . �

4.
∧

-definability in G

In this section we investigate
∧

-definability of G∗
L in several special cases.

Proposition 4.1. If the theory of M is small, then G∗
L = G′

KP = G′
Sh. Hence G∗

L is∧
-definable.

Proof. Equality G∗
L = G′

KP follows from [7, Theorem 3.1(2)]. Equality G′
KP = G′

Sh

follows from Lemma 3.9. �

Proposition 4.2. If the theory of M is simple, then the theory of N is also simple and
G∗

L = X2
Θ = G′

KP .

Proof. If Th(M) is simple, then Th(N) is also simple, because the structure N ′ =
(M,G, ·) (where · : G × G → G is the group action) is definable in M . Thus N ′ is
simple, and N is obtained from N ′ by forgetting some structure. Therefore Th(N) is
also simple. In every simple structure EL = EKP = Θ2, so G∗

L = X2
Θ follows from

Lemma 3.7. �

Now we give a criterion for equality G′
KP = G′

Sh, when the theory of M is simple. If
in this case G′

KP ( G′
Sh, then it gives us a solution of an open problem: there exist an

example of a structure with simple theory and in which Kim-Pillay and Shelah strong
types are different (see Lemma 3.7). To state this criterion we need one definition. We
call a subset P ⊆ G∗ thick if P is symmetric (P = P−1) and there exist a natural
number n < ω such that for any sequence g0, . . . , gn−1 ∈ G there exist i < j < n such
that

g−1
i · gj ∈ P.
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When ϕ(x, y) is a thick formula (see Definition 1.1) then Xϕ (see Definition 3.1) is thick
set. On the other hand if P is definable thick set, then the formula ϕP (x, y) = x−1 ·y ∈ P
is also thick and P = XϕP

. It is easy to see that for every n < ω we have

Xn
Θ =

⋂
{Xn

ϕ : ϕ ∈ L is thick}.

Lemma 4.3. If M has a simple theory, then EKP |X∗ ( ESh|X∗ (i.e. G′
KP ( G′

Sh) if
and only if there exists a ∅-definable thick set P such that

G′
Sh 6⊆ P 2,

i.e. P 2 does not contain any ∅-definable subgroup of G of finite index (see Proposition
3.4(3)).

Proof. If every thick P satisfies G′
Sh ⊆ P 2, then clearly G′

Sh ⊆ X2
Θ = G∗

L = G′
KP , so

G′
Sh = G′

KP .
If G′

Sh = G′
KP , then from 4.2 we have that G′

Sh = X2
Θ =

⋂
{P 2 : P is thick}. Thus

every thick P satisfies G′
Sh ⊆ P 2. �

Example 4.4. There is an example of an abelian group (G, ·, . . .) which has a simple
ω-categorical theory and satisfies XΘ ( X2

Θ = G∗ (Example 6.1.10 in [2], private com-
munication by E. Hrushovski). Consider a countable infinite dimensional vector space
V over F2 = {0, 1}. Let B = {bi : i < ω} be its basis and Q : V → F2 be the following
degenerate orthogonal form with the induced scalar product (·, ·):

Q

(∑
i

λibi

)
= λ2

0 + λ1λ2 + λ3λ4 + . . . , (a, b) = Q(a+ b)−Q(a)−Q(b), a, b ∈ V.

Q is degenerate, because its radical K = {v ∈ V : (v, ·) ≡ 0} = {0, b0} is nontrivial. The
structure G = (V,+, Q) has simple ω-categorical theory. We show that

XΘ ⊆ V \ {b0}.
If Θ(v, w), then Q(v) = Q(w). Assume on the contrary that v−w = b0, then v = w+b0,
so:

Q(w) = Q(v) = Q(w + b0) = Q(w) +Q(b0) + (w, b0) = Q(w) + 1,

and we reach a contradiction.
There are only 4 types over ∅: tp(0), tp(b0), p(x), q(x), where p, q are types of el-

ements v, w 6= 0, b0 with Q(v) = 0, Q(w) = 1 respectively. The sets XΘ, X
2
Θ are ∅-

invariant, so they must be a union of some sets described by above types. Consider
V0 = lin(b0, bk : k ≥ 5) ≺ V . It is easy to see that

(b1, b4) ≡
b2b3V0

(b1 + b3, b4 + b2), (b1, b3) ≡
b2b4V0

(b1 + b4, b3 + b2).

Thus by Lemma 1.2(ii) b3 = (b1+b3)−b1 ∈ X2
Θ and Q(b3) = 0. Also b1 ≡

V0

b1+b4+b3+b2,

so b4 + b3 + b2 ∈ X2
Θ and Q(b4 + b3 + b2) = 1. Therefore V \ {0, b0} ⊆ X2

Θ and then by
Proposition 4.2 XΘ ( X2

Θ = V .

The next proposition gives us
∧

-definability of G∗
L for some special groups definable

in the o-minimal theories.

Proposition 4.5. (1) If G is definably compact, definable in an o-minimal expan-
sions of a real closed field, then G∗

L = X2
Θ = G′

KP = G00.
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(2) If (G,<,+, . . .) is an o-minimal expansion of an ordered group (G,<,+), then
G∗ = G∗

L = X2
Θ = G00.

Proof. (1) In [3] it is proved that under the above assumptions G has fsg and there
exists G00 (the smallest definable subgroup of bounded index in G∗). It is also proved
that G00 is equal to

Stab(p) = {g ∈ G∗ : g · q = q},
for some (global) generic type p(x) ∈ S(G∗). Since p is a type over the model G∗,
Stab(p) ⊆ X2

Θ. Therefore

G00 = Stab(p) ⊆ X2
Θ ⊆ G∗

L ⊆ G′
KP = G00

∅ = G00.

(2) By [8, Corollary 2.6] we can find a global type p(x) ∈ S(G∗), satisfying Stab(p) =
G∗. Therefore G∗ = G∗

L = X2
Θ = G00. �

Case 1 from Remark 3.8 may lead us to a new example of a non-G-compact theory.
There is a criterion for

∧
-definability of G∗

L [7, Theorem 3.1]: G∗
L is

∧
-definable if

and only if G∗
L = Xn

Θ for some n < ω. Thus if XΘ generates a group in infinitely many
steps, then G∗

L is not
∧

-definable and Case 1 holds.
We have some further partial results concerning

∧
-definability of G∗

L. These results
involve generic subsets of G and measures on G. They will be a part of Ph.D. thesis of
the first author and appear in a forthcoming paper.

5. More examples

We were not able to construct an example of a group G, where GL is not
∧

-definable.
We can try at least to construct a group G, where GE is not

∧
-definable for some

equivalence relation E other that EL (which gives rise to GL).
It is rather easy to find such examples even in the stable case, with the relation E∧
-definable and coarser than equality of types ≡.
However even in the stable case we were not able to construct an example of G where

G≡ is not
∧

-definable, although we conjecture such an example exists. In this case G∗
Sh

equals G0, and is type definable, and equals GL.
Since we are interested in finding an example where GL is not

∧
-definable, naturally

we are interested in non-
∧

-definable GE, where E is close to EL.
In this section we give only an example (Example 5.1), where G≡ is not

∧
-definable.

We could not come closer to EL than ≡. We give also an example (Example 5.2) of a
group G with non-G-compact theory.

Example 5.1. In [6] there is an example (for every n < ω) of a finite group Gn in
which commutators XInn(Gn) generate commutant G′

n = [Gn, Gn] = GInn(Gn) in precisely
n steps. We expand the structure (Gn, ·) to obtain a structure Gn satisfying

Aut(Gn) = Inn(Gn),

i.e. every automorphism of Gn is an inner automorphism of Gn. Note that in Gn the set
X≡ equals XInn(Gn) and generates a group in n steps. Consider the product

∏
n<ω Gn of

the groups Gn. We expand
∏

n<ω Gn to a structure G as follows. For each k let Ek be
the equivalence relation on

∏
n<ω Gn given by

Ek(u, v) ⇔ u(k) = v(k).
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Then
∏

n<ω Gn/Ek is naturally identified with Gk. We expand
∏

n<ω Gn by the relations
Ek, k < ω, and the Gk-structure on Gk (identified with

∏
n<ω Gn/Ek). We denote the

quotient map ∏
n<ω

Gn →
∏
n<ω

Gn/Ek

by πk.
Let G∗ be a large saturated extension of G. We will prove that in G∗, the group G∗≡ is

not
∧

-definable. This boils down to proving that

(∗) πk[X
G∗
≡ ] = XGk

≡ .

Indeed, suppose the above holds. Then, since XGk
≡ generates a group in ≥ n steps,

also XG∗
≡ generates a group in ≥ n steps. As n is arbitrary, we get that XG∗

≡ generates
the group G∗≡ in infinitely many steps. By [7, Theorem 3.1(1)], the group G∗≡ is not∧

-definable.
Now we prove (∗). ⊆ is clear, since every automorphism of G∗ induces an automor-

phism of Gk. To prove ⊇, consider a, b ∈ Gk with b = f(a) for some f ∈ Aut(Gk). We
can extend f to an automorphism of G and then to G∗. If a = πk(a

′) for a′ ∈ G∗, then

b = f(a) = πk(f(a′)),

and therefore πk(a
′−1f(a′)) = a−1b.

Now we give an example of group G whose theory is not G-compact, but case 2 from
Remark 3.8 holds.

Example 5.2. First we construct a group with a large finite diameter of Lascar strong
types. Let M0 = (M0, R, f) be a dense circular ordering (with respect to a ternary
relation R), equipped with a function f , which is a cyclic bijection of M0 respecting
R, of period 3. This structure was considered in [1] to construct the first example of a
non-G-compact theory. Our group M3 will be the disjoint union of M0 and {0} equipped
with a structure of vector space over F2 (i.e. M3 will be an abelian group of exponent
2) so that the addition + on M3 is “independent” of f and R.

To be more specific, let L be the language consisting of a ternary relation symbol R,
function symbols + (binary) and f (unary) and a constant 0. To express “independence”
of f and + we define inductively a set of terms T in L as follows.

Definition 5.3. Let T be the smallest set of terms of L such that:

(1) v, f(v), f2(v) are in T for every variable v.
(2) If τ1, . . . , τk (k ≥ 2) are distinct terms in T , then the terms f(τ1 + . . .+ τk) and

f 2(τ1 + . . .+ τk) are in T .

Let T (x) be the set of terms in T in variables x.

+ will be interpreted as an associative operation, so we may omit parentheses in
τ1 + . . .+ τk in condition (2) in Definition 5.3. f will be interpreted as a cyclic function
of period 3, so in Definition 5.3 there is no need to consider fk for k ≥ 3.

Definition 5.4. Let C be the class of L-structures (V,+, 0, R, f) such that:

(1) (V,+, 0) is a vector space over F2, of infinite dimension.
(2) R is a circular order on the set V ∗ = V \ {0}.
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(3) f is a cyclic bijection of V ∗ of period 3, respecting R. That is, every point of V ∗

is a cyclic point of f of period 3 and R(x, y, z) implies R(f(x), f(y), f(z)). Also,
R(x, f(x), f2(x)) holds in V ∗.

(4) For every a ∈ V ∗, the set T (a) = {τ(a) : τ ∈ T } is lineary independent.

Condition (4) in Definition 5.4 expresses the fact that in the structures in C f is
“independent” of the vector space structure.
C is an elementary class with the joint embedding and amalgamation properties. Let

T3 be the model completion of Th(C). T3 has quantifier elimination and its models are
the existentially closed structures in C. We describe the 1-types in T3.

Let C be a monster model of T3. Let a ∈ C∗ = C \ {0}. The type of a is determined
by the way in wich the linear span lin(T (a)) is circularly ordered by R, or even by the
way in which the set lin(T (a)) ∩ (a, f(a)) is linearly ordered by R. Here for a 6= b ∈ C∗

(a, b) = {c ∈ C∗ : R(a, c, b)}, [a, b) = {a} ∪ (a, b).

R induces on (a, b) a linear ordering that we denote by <. So there are 2ℵ0 complete
1-types over ∅ in T3.

We say a few words about indiscernible sequences in C. First, if (an)n<ω is an infinite
indiscernible sequence in C, then a1 ∈ (a0, f(a0)) or a1 ∈ (f 2(a0), a0).

Secondly, we point how to construct an indiscernible sequence in C. Assume p(x) =
tp(a) for some a ∈ C∗. Let C−(a), C+(a) be a Dedekind cut in the set lin(T (a)) ∩
(a, f(a)). That is, C−(a) < C+(a) and C−(a) ∪ C+(a) = lin(T (a)) ∩ (a, f(a)).

It follows that for every a′ realising p, the corresponding sets C−(a′), C+(a′) are a
Dedekind cut in the set lin(T (a′)) ∩ (a′, f(a′)) and also the sets f(C−(a′)), f(C+(a′))
and f 2(C−(a′)), f2(C+(a′)) are Dedekind cuts in the sets lin(T (a′))∩ (f(a′), f2(a′)) and
lin(T (a′)) ∩ (f 2(a′), a′), respectively.

We can find a sequence (an)n<ω of elements of C∗ such that for every n > m,

[an, f(an)) ⊆ (am, f(am)) and C−(am) < [an, f(an)) < C+(am).

Using the Ramsey theorem we can find such a sequence that is moreover indiscernible.
Using indiscernible sequences like that we see that p(x) is a strong Lascar type of
diameter at least 3 and at most 6.

Similarly, replacing period 3 by period n (n ≥ 3), we construct a G-compact group
Mn = (Mn,+, 0, Rn, fn) with the diameter of Lascar strong types ≥ n.

Now let M =
∏

3≤n<ω Mn be the product of the groups Mn. Let En be the equiv-
alence relation on M given by En(x, y) ⇔ x(n) = y(n). Then M/En is naturally
identified with Mn.

We consider M as a group expanded by the relations En and the relations Rn and
functions fn on M/En. Hence in M there is no finite bound on the diameter of Lascar
strong types. By [7], M is not G-compact.
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