COMBINATORIAL GEOMETRIES OF THE FIELD EXTENSIONS

JAKUB GISMATULLIN

Abstract

We classify projective planes in algebraic combinatorial geometries in arbitrary fields of characteristic zero. We investigate the first-order theories of such geometries and pregeometries. Then we classify the algebraic combinatorial geometries of arbitrary field extensions of the transcendence degree ≥ 5 and describe their groups of automorphisms. Our results and proofs extend similar results and proofs by Evans and Hrushovski in the case of algebraically closed fields.

Introduction

Let $K \subset L$ be an arbitrary field extension. We investigate the algebraic combinatorial geometry $\mathbb{G}(L / K)$ and pregeometry $\mathrm{G}(L / K)$ in L obtained from algebraic dependence relation over K. Such a geometry is sometimes called a full algebraic matroid.
In [1] the authors classify projective planes in $\mathbb{G}(L / K)$ for algebraically closed K and L. Using their results, we give such a classification for arbitrary fields K and L of characteristic zero. We prove a theorem about formulas with one quantifier of the first-order theory of $\mathbb{G}(L / K)$. Assume that the transcendence degree of L over K is at least 5 . When considering $\mathbb{G}(L / K)$ we may also assume that L is a perfect field and K is relatively algebraically closed in L. One of the main results of [2] is the reconstruction of the algebraically closed field L from $\mathbb{G}(L / K)$. We generalize this reconstruction to arbitrary field extension $K \subset L$ (of transcendence degree ≥ 5), and thus we obtain full classification of combinatorial geometries of fields: $\mathbb{G}\left(L_{1} / K_{1}\right)$ and $\mathbb{G}\left(L_{2} / K_{2}\right)$ are isomorphic if and only if field extensions

$$
K_{1} \subset L_{1} \text { and } K_{2} \subset L_{2}
$$

are isomorphic (here we assume that L_{1} and L_{2} are perfect and K_{1}, K_{2} are relatively algebraically closed). We also give a description of $\operatorname{Aut}(\mathbb{G}(L / K))$.

By \widehat{F} and \widehat{F}^{r} we denote algebraic and purely inseparable closure of F. Throughout this paper we assume that $K \subset L$ is an arbitrary field extension and the transcendence degree of L over K is at least 3. We take basic definitions of algebraic combinatorial geometry and pregeometry from $[1,2]$. For $X \subseteq L$, let $\operatorname{acl}_{K}(X)$ be $\widehat{K(X)}$. We denote by $\mathrm{G}(L / K)$ the pregeometry $\left(L, \operatorname{acl}_{K}\right)$. The geometry $\mathbb{G}(L / K)$ is obtained from $L \backslash \widehat{K}$ by factoring out the equivalence relation:

$$
x \sim y \quad \Longleftrightarrow \quad \widehat{K(x)}=\widehat{K(y)} .
$$

We can also transfer the closure operation acl_{K} from $\mathrm{G}(L / K)$ to $\mathbb{G}(L / K)$:

$$
\operatorname{acl}_{K}(Y / \sim)=\operatorname{acl}_{K}(Y) / \sim .
$$

[^0]Therefore we can regard the points of $\mathbb{G}(L / K)$ as sets $\operatorname{acl}_{K}(x)$, where $x \in L \backslash \widehat{K}$, and acl_{K} as the usual algebraic closure. When considering $\mathbb{G}(L / K)$ we assume that L is a perfect field and K is relatively algebraically closed in L (because $\mathbb{G}(L / K)=$ $\left.\mathbb{G}\left(\widehat{L}^{r} / K\right)=\mathbb{G}\left(\widehat{L}^{r} / \widehat{L}^{r} \cap \widehat{K}\right)\right)$. Subsets of $\mathbb{G}(L / K)$ of the form $\operatorname{acl}_{K}(X), X \subseteq \mathbb{G}(L / K)$, are called closed. The rank of a subset of $\mathbb{G}(L / K)$ or $\mathrm{G}(L / K)$ is its transcendence degree. We also have notions of independent set (for each $x \in X, x \notin \operatorname{acl}_{K}(X \backslash\{x\})$) and a basis of a closed subset as a maximal independent set (transcendence basis). Note that the closure operation acl_{K} satisfies the exchange condition:

$$
x \in \operatorname{acl}_{K}(A \cup\{y\}) \backslash \operatorname{acl}_{K}(A) \quad \Longrightarrow \quad y \in \operatorname{acl}_{K}(A \cup\{x\}) .
$$

Closed subset of rank 1 (respectively 2,3) is a point (respectively line and plane). If X is a closed subset of $\mathbb{G}(L / K)$, and a tuple $\bar{x} \subset L$ satisfies $X=\operatorname{acl}_{K}(\bar{x})$, then we say that \bar{x} is generic in X.

Let F be a skew field (division ring). We will denote by $\mathbb{P}(F)$ the projective plane over F. It is simply the set $F^{3} \backslash\{0\}$ factored out by the relation:

$$
\left(x_{1}, x_{2}, x_{3}\right) \simeq\left(y_{1}, y_{2}, y_{3}\right) \Longleftrightarrow(\exists 0 \neq \lambda \in F)\left(x_{1}, x_{2}, x_{3}\right)=\lambda\left(y_{1}, y_{2}, y_{3}\right)
$$

The paper is organized as follows. The first section is devoted to give some preliminary definitions and results from [1]. In the second section we classify the projective planes arising in $\mathbb{G}(L / K)$. Section 3 contains a theorem about first-order theory of $\mathrm{G}(L / K)$ and formulas with one quantifier. In Section 4 we transfer theorems from [2] to geometries of arbitrary field extensions and prove a general classification theorem for them.

The reader is referred to [6] for the model-theoretic background and notation, and to [8] for general background on pregeometries and matroids.

1. Preliminaries

For definitions and proofs in this section we refer the reader to [1]. Throughout this section we assume that K and L are algebraically closed. Let X be a subset of $\mathbb{G}(L / K)$ and let $\operatorname{acl}_{K}^{X}$ be the relative closure operation: $\operatorname{acl}_{K}^{X}(Y)=\operatorname{acl}_{K}(Y) \cap X$ for $Y \subseteq X$. We say that X is a projective plane of $\mathbb{G}(L / K)$ if the geometry $\left(X, \operatorname{acl}_{K}{ }^{X}\right)$ is itself a projective plane, meaning that:

1) the geometry $\left(X, \operatorname{acl}_{K}^{X}\right)$ has rank 3 ;
2) there are three noncollinear points in X;
3) any line has at least three different points;
4) any two lines intersect.

If a projective plane X is isomorphic to $\mathbb{P}(F)$, for some skew field F, then we say that X is coordinatised by F. It is well known ([3, Chapter 7]) that if the Desargues theorem is true in X, then X is coordinatised by a unique skew field. The converse is also true. If X_{1} and X_{2} are Desarguesian projective planes coordinatised by F_{1} and F_{2} respectively, and $X_{1} \subseteq X_{2}$, then F_{1} is a subskewfield of F_{2}. It is proved in [5] that any projective plane in $\mathbb{G}(L / K)$ is Desarguesian. The aim of the next section is to find all skew fields coordinatising some projective planes in $\mathbb{G}(L / K)$ for arbitrary $K \subset L$ of characteristic zero. The paper [1] describes all such skew fields in the case when L and K are algebraically closed.

Let $(G, *)$ be a one-dimensional irreducible K-definable algebraic group in L. Then G is isomorphic over K ([1, Section 3.1]), as an algebraic group, to one of the following commutative groups: $(L,+),\left(L^{*}, \cdot\right)$ or an elliptic curve. Since G is commutative,
the group $\operatorname{End}_{K}(G)=\operatorname{Hom}_{K}(G, G)$ of definable over K morphisms of G (as an algebraic group) may be given a ring structure $\left(\operatorname{End}_{K}(G),+, \circ\right)$ and is embeddable into a skew field of quotients $\operatorname{End}_{K}(G)_{0}$. If $\operatorname{char}(L)>0$, then $\operatorname{End}_{K}(L,+)$ is the ring of p-polynomials over K and we donote by $\mathcal{O}_{\widehat{K}}$ the skew field $\operatorname{End}_{K}(L,+)_{0}$. Let $\bar{x}, \bar{y}, \bar{z} \in G$ be an independent generics over K. We may consider G as an $\operatorname{End}_{K}(G)$ module and define

$$
\mathbb{P}((G, *): \bar{x}, \bar{y}, \bar{z})=\left\{\operatorname{acl}_{K}(a(\bar{x}) * b(\bar{y}) * c(\bar{z})):(a, b, c) \in \operatorname{End}_{K}(G)^{3} \backslash\{\mathbf{0}\}\right\} .
$$

This is a projective plane in $\mathbb{G}(L / K)$, coordinatised by $\operatorname{End}_{K}(G)_{0}$ i.e. elements of $\mathbb{P}((G, *): \bar{x}, \bar{y}, \bar{z})$ are dependent with respect to $\operatorname{End}_{K}(G)$ exactly if they are $\operatorname{acl}_{K^{-}}$ dependent.

Lemma 1.1. Let $x_{1}, x_{2}, x_{3}, x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime} \in L$.
(i) If each triple $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\}$ is algebraically independent over K, and

$$
\begin{aligned}
& \operatorname{acl}_{K}\left(x_{1}+x_{2}\right)=\operatorname{acl}_{K}\left(x_{1}^{\prime}+x_{2}^{\prime}\right), \quad \operatorname{acl}_{K}\left(x_{i}\right)=\operatorname{acl}_{K}\left(x_{i}^{\prime}\right), \text { for } i=1,2,3, \\
& \operatorname{acl}_{K}\left(x_{1}+x_{3}\right)=\operatorname{acl}_{K}\left(x_{1}^{\prime}+x_{3}^{\prime}\right),
\end{aligned}
$$

then there exist $0 \neq c, c^{\prime} \in \operatorname{End}_{K}(L,+)$ and $d_{1}, d_{2}, d_{3} \in K$ such that

$$
c^{\prime}\left(x_{1}^{\prime}\right)=c\left(x_{1}\right)+d_{1}, c^{\prime}\left(x_{2}^{\prime}\right)=c\left(x_{2}\right)+d_{2}, c^{\prime}\left(x_{3}^{\prime}\right)=c\left(x_{3}\right)+d_{3} .
$$

(ii) If each pair $\left\{x_{1}, x_{2}\right\}$ and $\left\{x_{1}^{\prime}, x_{2}^{\prime}\right\}$ is algebraically independent over K, and

$$
\operatorname{acl}_{K}\left(x_{1}\right)=\operatorname{acl}_{K}\left(x_{1}^{\prime}\right), \quad \operatorname{acl}_{K}\left(x_{2}\right)=\operatorname{acl}_{K}\left(x_{2}^{\prime}\right), \quad \operatorname{acl}_{K}\left(x_{1} \cdot x_{1}^{\prime}\right)=\operatorname{acl}_{K}\left(x_{2} \cdot x_{2}^{\prime}\right),
$$

then there exist $0 \neq n, m \in \mathbb{Z}$ and $0 \neq a, b \in K$ such that $x_{1}^{n}=a x_{2}^{m}, \quad y_{1}^{n}=b y_{2}^{m}$.
Proof. First statement follows from [1, Theorem 2.2.2] and the second from [2, Theorem 1.1].

2. Projective planes in $\mathbb{G}(L / K)$

Throughout this section we assume that $K \subset L$ is an arbitrary field extension and $\operatorname{tr} \operatorname{deg}_{K}(L) \geq 3$. The geometry $\mathbb{G}(L / K)$ naturally embeds into $\mathbb{G}(\widehat{L} / \widehat{K})$. Therefore we can use theorems about $\mathbb{G}(\widehat{L} / \widehat{K})$ to investigate $\mathbb{G}(L / K)$.

From the proof of [1, Theorem 3.3.1] we obtain some maximal projective planes in $\mathbb{G}(\widehat{L} / \widehat{K})$ in the following way. Suppose $x, y, z \in \widehat{L}$ are algebraically independent over K. Then the projective plane

$$
\mathbb{P}((\widehat{L},+): x, y, z)
$$

is the largest projective plane in $\mathbb{G}(\widehat{L} / \widehat{K})$ containing the tuple $\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(y), \operatorname{acl}_{K}(z)\right.$, $\left.\operatorname{acl}_{K}(x+y), \operatorname{acl}_{K}(x+z)\right)$, i.e. if a projective plane $\mathbb{P} \subset \mathbb{G}(\widehat{L} / \widehat{K})$ contains points $\left(\operatorname{acl}_{K}(x)\right.$, $\left.\operatorname{acl}_{K}(y), \operatorname{acl}_{K}(z), \operatorname{acl}_{K}(x+y), \operatorname{acl}_{K}(x+z)\right)$, then $\mathbb{P} \subseteq \mathbb{P}((\widehat{L},+): x, y, z)$.

The next theorem generalizes above remark to the geometry $\mathbb{G}(L / K)$ in characteristic zero. The case of positive characteristic requires detailed knowledge of the structure of $\mathcal{O}_{\widehat{K}}$.

Theorem 2.1. (char $(L)=0)$ Suppose that $x, y, z \in \widehat{L}$ are independent over \widehat{K} and the tuple $\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(y), \operatorname{acl}_{K}(z), \operatorname{acl}_{K}(x+y), \operatorname{acl}_{K}(x+z)\right)$ is in $\mathbb{G}(L / K)$ (x,y and z do not need to be in $L)$. Then

$$
\mathbb{P}((\widehat{L},+): x, y, z) \cap \mathbb{G}(L / K)=\left\{\operatorname{acl}_{K}(a x+b y+c z):(a, b, c) \in(\widehat{K} \cap L)^{3} \backslash\{\mathbf{0}\}\right\}
$$

is the projective plane in $\mathbb{G}(L / K)$, coordinatised by $\widehat{K} \cap L$. Moreover the above plane is the largest projective plane in $\mathbb{G}(L / K)$ containing the tuple $\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(y), \operatorname{acl}_{K}(z)\right.$, $\left.\operatorname{acl}_{K}(x+y), \operatorname{acl}_{K}(x+z)\right)$.
Proof. Let $f \in \operatorname{Aut}(\widehat{L} / L)$ be arbitrary. By assumption we have

$$
\begin{aligned}
\operatorname{acl}_{K}(x) & =f\left[\operatorname{acl}_{K}(x)\right]= \\
\operatorname{acl}_{K}(y) & =\operatorname{acl}_{K}(f(x)), \\
\operatorname{acl}_{K}(z) & =\operatorname{acl}_{K}(f(z)), \quad \quad \operatorname{acl}_{K}(x+y)=\operatorname{acl}_{K}(f(x)+z)=\operatorname{acl}_{K}(f(x)+f(z)),
\end{aligned}
$$

Therefore by Lemma 1.1 we obtain $f(x)=c^{\prime} \cdot x+d_{1}, f(y)=c^{\prime} \cdot y+d_{2}, f(z)=c^{\prime} \cdot z+d_{3}$, for some $d_{1}, d_{2}, d_{3} \in \widehat{K}$ and $0 \neq c^{\prime} \in \widehat{K}$.
\subseteq : Let $v \in \mathbb{P}((\widehat{L},+): x, y, z) \cap \mathbb{G}(L / K)$. We have $v=\operatorname{acl}_{K}(a x+b y+c z)=\operatorname{acl}_{K}(l)$, where $a, b, c \in \widehat{K}$ and $l \in L$. It follows $f[v]=v$, so

$$
\begin{gathered}
\operatorname{acl}_{K}(a x+b y+c z)=\operatorname{acl}_{K}(f(a) f(x)+f(b) f(y)+f(c) f(z)) \\
=\operatorname{acl}_{K}\left(c^{\prime} \cdot(f(a) x+f(b) y+f(c) z)+d^{\prime}\right)=\operatorname{acl}_{K}(f(a) x+f(b) y+f(c) z),
\end{gathered}
$$

for $c^{\prime}, d^{\prime}=f(a) d_{1}+f(b) d_{2}+f(c) d_{3} \in \widehat{K}$ (because $f[\widehat{K}]=\widehat{K}$). By [1, Example 2, Section 3.3] there is a nonzero $\lambda \in \widehat{K}$ such that $(f(a), f(b), f(c))=\lambda(a, b, c)$. If e.g. $a \neq 0$, then $f\left(\frac{b}{a}\right)=\frac{b}{a}$ and $f\left(\frac{c}{a}\right)=\frac{c}{a}$. But f has been arbitrary, so $\frac{b}{a}, \frac{c}{a} \in L$. Finally $v=\operatorname{acl}_{K}(a x+b y+c z)=\operatorname{acl}_{K}\left(x+\frac{b}{a} y+\frac{c}{a} z\right)$, where $\frac{b}{a}, \frac{c}{a} \in \widehat{K} \cap L$.
\supseteq : Let $a, b, c \in \widehat{K} \cap L$ and consider $v=\operatorname{acl}_{K}(a x+b y+c z)$. It remains to prove that $v \in \mathbb{G}(L / K)$. We have $f[v]=v$, because

$$
\begin{aligned}
& f\left[\operatorname{acl}_{K}(a x+b y+c z)\right]=\operatorname{acl}_{K}(a f(x)+b f(y)+c f(z)) \\
& =\operatorname{acl}_{K}\left(c^{\prime} \cdot(a x+b y+c z)+d^{\prime}\right)=\operatorname{acl}_{K}(a x+b y+c z) .
\end{aligned}
$$

Let $w(x)$ be a minimal monic polynomial for $a x+b y+c z$ over L. Then $v=\operatorname{acl}_{K}(a x+$ $b y+c z)=\operatorname{acl}_{K}($ roots of $w)=\operatorname{acl}_{K}($ coefficients of $w) \in \mathbb{G}(L / K)$.

The last part of the theorem follows from the first part and from remarks at the begining of this section.

From the above we have that the geometries $\mathbb{G}(\mathbb{C} / \mathbb{Q})$ and $\mathbb{G}(\mathbb{R} / \mathbb{Q})$ are not isomorphic, because in $\mathbb{G}(\mathbb{R} / \mathbb{Q})$ there is a maximal projective plane, coordinatised by $\widehat{\mathbb{Q}} \cap \mathbb{R}$ and in $\mathbb{G}(\mathbb{C} / \mathbb{Q})$ there is no such plane.

The next result generalizes [1, Corollary 3.3.2] and follows from Theorem 2.1.
Corollary 2.2. (char $(L)=0$) If $\mathbb{P} \subset \mathbb{G}(L / K)$ is a projective plane, then \mathbb{P} is coordinatised by a subfield of one of the following fields: $\mathbb{Q}(\sqrt{-d}), d \in \omega$ and $\widehat{K} \cap L$.

3. The first-order theory of $\mathrm{G}(L / K)$

We can regard $\mathrm{G}(L / K)$ (and thus $\mathbb{G}(L / K)$) as a model in the countable first-order language $\mathcal{L}=\left\{\operatorname{acl}_{n}: n<\omega\right\}$. Namely let

$$
\operatorname{acl}_{n}\left(a_{0}, \ldots, a_{n}\right) \Longleftrightarrow a_{0} \in \operatorname{acl}_{K}\left(a_{1}, \ldots, a_{n}\right)
$$

We obtain a structure (L, \mathcal{L}). The following Theorem 3.2 describes a small part of the first-order theory of (L, \mathcal{L}).

Proposition 3.1. Let F be an arbitrary field. If $F=F_{1} \cup \cdots \cup F_{n}$, for some subfields F_{1}, \ldots, F_{n} of F, then $F=F_{i}$ for some $1 \leq i \leq n$.

Proof. It follows from a well known result of B. H. Neumann [7]: if there is a covering of an abelian group by finitely many cosets of subgroups, then one of these subgroup has finite index. We leave the proof to the reader.

Theorem 3.2. Let $K \subseteq L_{1} \subseteq L_{2}$ be arbitrary field extensions. Assume that $\operatorname{tr} \operatorname{deg}_{K} L_{1}=$ $\operatorname{tr} \operatorname{deg}_{K} L_{2}<\aleph_{0}$ or $\operatorname{tr} \operatorname{deg}_{K} L_{1}, \operatorname{trdeg}{ }_{K} L_{2} \geq \aleph_{0}$. Then

$$
\left(L_{1}, \mathcal{L}\right) \prec_{1}\left(L_{2}, \mathcal{L}\right),
$$

i.e. for every \mathcal{L}-statement $\psi \in \mathcal{L}\left(L_{1}\right)$ with one quantifier and parameters from L_{1} we have $\left(L_{1}, \mathcal{L}\right) \models \psi \Longleftrightarrow\left(L_{2}, \mathcal{L}\right) \models \psi$.

It is easy to check that without the condition on transcendence degree, the theorem will not be true.

Proof. We can assume that $\psi=\exists x \varphi(x, \bar{c})$, where $\bar{c} \subseteq L_{1}$ and φ is a quantifier free formula. Using the exchange property for acl_{K} we may assume that $\varphi(x, \bar{c})$ is of the form

$$
\bigvee_{k<l}\left(\left(x \in \bigcap_{i<n_{k}} \operatorname{acl}_{K}\left(A_{k, i}\right) \backslash \bigcup_{j<m_{k}} \operatorname{acl}_{K}\left(B_{k, j}\right)\right) \wedge((\text { in }) \text { equality about } x, \bar{c})\right),
$$

where $A_{k, i}, B_{k, j} \subseteq \bar{c} \subseteq L_{1}$.
Let $\{p, q\}=\{1,2\}$ and assume that $L_{p} \models \exists x \varphi(x, \bar{c})$, then there exists $a \in L_{p}$ with $L_{p} \models \varphi(a, \bar{c})$. Without loss of generality we may assume that $a \notin \bar{c}$, so

$$
a \in \bigcap_{i<n} \operatorname{acl}_{K}\left(A_{i}\right) \backslash \bigcup_{j<m} \operatorname{acl}_{K}\left(B_{j}\right) .
$$

If $n=0$, then by assumptions we have $a^{\prime} \in L_{q}$ such that $L_{q} \models \varphi\left(a^{\prime}, \bar{c}\right)$. Let $n \neq 0$. Note that by Proposition 3.1, $L_{p} \models \exists x \varphi(x, \bar{c})$ is equivalent to:

$$
(\forall j<m) \operatorname{acl}_{K}\left(B_{j}\right) \cap \bigcap_{i<n} \operatorname{acl}_{K}\left(A_{i}\right) \varsubsetneqq \bigcap_{i<n} \operatorname{acl}_{K}\left(A_{i}\right),
$$

i.e. for $j<m, \widehat{K\left(B_{j}\right)} \cap \bigcap_{i<n} \widehat{K\left(A_{i}\right)} \cap L_{p} \nsubseteq \bigcap_{i<n} \widehat{K\left(A_{i}\right)} \cap L_{p}$. The next lemma will be useful in the proof.

Lemma 3.3. Suppose that A and B are finite subsets of L_{1}. Then there exists a finite subset $C \subseteq L_{1}$ satisfying

$$
\widehat{K(A)} \cap \widehat{K(B)}=\widehat{K(C)} .
$$

Proof. Let C^{\prime} be a transcendence basis of a $\widehat{K(A)} \cap \widehat{K(B)}$ over K. Write $C^{\prime}=\left\{c_{1}, \ldots, c_{k}\right\} \subset$ $\widehat{L_{1}}$. Then $\widehat{K(A)} \cap \widehat{K(B)}=\widehat{K\left(C^{\prime}\right)}$. Take a minimal monic polynomial $w_{i} \in L_{1}[X]$ for c_{i} over L_{1} and let $C=\bigcup_{1 \leq i \leq k}\left(\right.$ coefficients of $\left.w_{i}\right) \subseteq L_{1}$. We shall show that $\widehat{K\left(C^{\prime}\right)}=\widehat{K(C)}$. By definition $C^{\prime} \subset \widehat{K(C)}$, hence \subseteq. By symmetric polynomials we obtain

$$
C \subseteq K\left(\bigcup_{1 \leq i \leq k} \text { roots of } w_{i}\right) \subseteq \widehat{K\left(C^{\prime}\right)}
$$

We explain the last inclusion: if $w_{i}(a)=0$, then there exist $f \in \operatorname{Aut}\left(\widehat{L_{1}} / L_{1}\right), f\left(c_{i}\right)=a$, and thus $c_{i} \in \widehat{K\left(C^{\prime}\right)}$. Finally $a=f\left(c_{i}\right) \in f\left[\widehat{K\left(C^{\prime}\right)}\right]=f[\widehat{K(A)} \cap \widehat{K(B)}] \stackrel{A, B \subset L_{1}}{=} \widehat{K(A)} \cap$ $\widehat{K(B)}=\widehat{K\left(C^{\prime}\right)}$.

By Lemma 3.3, to finish the proof it remains to show the following lemma.
Lemma 3.4. For $A, B \subseteq L_{1}$

$$
\widehat{K(A)} \cap L_{1} \nsubseteq \widehat{K(B)} \cap L_{1} \Longleftrightarrow \widehat{K(A)} \cap L_{2} \nsubseteq \widehat{K(B)} \cap L_{2}
$$

Proof. Implication \Rightarrow is obvious. \Leftarrow : Suppose, contrary to our claim, that $\widehat{K(A)} \cap L_{1}=$ $\widehat{K(B)} \cap L_{1}$. Take $\left.a \in \widehat{(B(B)} \backslash \widehat{K(A)}\right) \cap L_{2}$ and the minimal monic polynomial $w(X)=$ $X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0} \in K(B)[X]$ for a over $K(B)$. Then for $i<n$ we have $a_{i} \in K(B) \subseteq L_{1}$, so by assumption $a_{i} \in \widehat{K(A)} \cap L_{1}$, hence $\left.w \in \widehat{(K(A)} \cap L_{1}\right)[X]$ and thus $a \in\left(\widehat{K(A)} \cap L_{1}\right) \subseteq \widehat{K(A)}$. But by assumption $a \notin \widehat{K(A)} \cap L_{2}$ and $a \in L_{2}$, which is impossible.

4. The reconstruction L from $\mathbb{G}(L / K)$ and corollaries

In this section we generalize some theorems of [2] from the case of algebraically closed fields to the case of arbitrary field extensions. Throughout this section $K \subset L$ will be an arbitrary field extension, $\operatorname{char}(L)=p$ and $\operatorname{tr} \operatorname{deg}_{K}(L) \geq 5$.

We begin with important definitions (see [2] Definitions 2.1, 2.3 and 2.6). Let $(L \backslash K)^{(2)}$ denote the set of pairs $(x, y) \in L^{2}$ such that x and y are algebraically independent over K. We define the following subsets of $\mathbb{G}(L / K)^{4}$:

$$
\begin{aligned}
& \mathscr{Q}=\left\{\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(y), \operatorname{acl}_{K}(x+y), \operatorname{acl}_{K}(x / y)\right):(x, y) \in(L \backslash K)^{(2)}\right\} \\
& =\left\{\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(x z), \operatorname{acl}_{K}(x z+x), \operatorname{acl}_{K}(z)\right):(x, z) \in(L \backslash K)^{(2)}\right\}, \\
& \mathscr{Q}^{\prime}=\left\{\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(y), \operatorname{acl}_{K}(x+y), \operatorname{acl}_{K}(x \cdot y)\right):(x, y) \in(L \backslash K)^{(2)}\right\}, \\
& \mathscr{J}=\operatorname{Im}(j),
\end{aligned}
$$

where $j:(L \backslash K)^{(2)} \rightarrow \mathbb{G}(L / K)^{5}$ is the function

$$
j(x, a)=\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(x+a), \operatorname{acl}_{K}(x a), \operatorname{acl}_{K}(x+x a), \operatorname{acl}_{K}(a)\right) .
$$

Let $\psi\left(A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}, D, E, F, G, H, I, P, Q, R, S, T, U, X, Y, Z\right)$ be an \mathcal{L}-formula (see Section 3), standing for the assumptions from [2, Lemma 3.1 (1), (2)] and [2, Corollary 3.4] (where $A=\operatorname{acl}_{K}\left(A_{1}, A_{2}\right)$, etc.).
Theorem 4.1. The sets $\mathscr{Q}, \mathscr{Q}^{\prime}$ and \mathscr{J} are definable without parameters in $\mathbb{G}(L / K)$.
Proof. When K and L are algebraically closed then the proof of this theorem can be found in [2, Section 3]. We sketch it in this case.

Let $\psi_{\mathscr{Q}}(P, D, Y, I)=\left(\exists A_{1}, \ldots, Z\right) \psi\left(A_{1}, \ldots, Z\right)$ where the quantifier is free from P, D, Y, I. Then the formula $\psi_{\mathscr{Q}}$ defines \mathscr{Q}. Now we find a formula for \mathscr{Q}^{\prime}. Lemma 2.2 in [2] gives us configuration for multiplication: if $(x, y) \in(L \backslash K)^{(2)}$ and if the points A^{\prime}, $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime} \in \mathbb{G}(L / K)$ are such that the configuration of points and lines in $\mathbb{G}(L / K)$ holds as in Figure 4.1, then

$$
E^{\prime}=\operatorname{acl}_{K}(x \cdot y),
$$

Figure 4.1. Configuration for the multiplication
and there exist $a \in A^{\prime}$ such that $A^{\prime}=\operatorname{acl}_{K}(a), B^{\prime}=\operatorname{acl}_{K}(a x), C^{\prime}=\operatorname{acl}_{K}(a y)$ and $D^{\prime}=\operatorname{acl}_{K}(a x y)$. Thus if we know $\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(y)$ and $\operatorname{acl}_{K}(x / y)$, then in $\mathbb{G}(L / K)$ we can construct $\operatorname{acl}_{K}(x y)$. Let $\psi_{\mathscr{Q}^{\prime}}(A, B, C, D)$ be
$\left(\exists A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, V\right) \psi_{\mathscr{Q}}(A, B, C, V) \wedge$ (the configuration in Figure 4.1 holds),
where in Figure 4.1 we put A instead of $\operatorname{acl}_{K}(x), D$ instead of E^{\prime}, B instead of $\operatorname{acl}_{K}(y)$ and V instead of $\operatorname{acl}_{K}(x / y)$. Therefore $\psi_{\mathscr{Q}^{\prime}}$ defines \mathscr{Q}^{\prime}. To find a formula for \mathscr{J} we recall [2, Proposition 2.4]: let X, P, Q, R, A be in $\mathbb{G}(L / K)$. Then

$$
(X, P, Q, R, A) \in \mathscr{J} \quad \Longleftrightarrow \quad(X, Q, R, A) \in \mathscr{Q} \wedge\left((X, A, P, Q),(X, A, P, R) \in \mathscr{Q}^{\prime}\right)
$$

Hence, the formula

$$
\psi_{\mathscr{F}}(X, P, Q, R, A)=\psi_{\mathscr{Q}}(X, Q, R, A) \wedge \psi_{\mathscr{Q}^{\prime}}(X, A, P, Q) \wedge \psi_{\mathscr{V}^{\prime}}(X, A, P, R)
$$

defines \mathscr{J} in algebraically closed case.
Now we turn to the general case, i.e. when K and L are arbitrary fields. It is sufficient to prove the next Claim, because we have for instance $(X, Q, R, A) \in \mathscr{Q} \Leftrightarrow$ $(\exists P)(X, P, Q, R, A) \in \mathscr{J}$.
Claim. The formula $\psi_{\mathscr{F}}$ defines \mathscr{J} in $\mathbb{G}(L / K)$.
We will prove that the following conditions are equivalent:
(1) $(X, P, Q, R, A) \in \mathscr{J}^{\mathbb{G}(L / K)}$,
(2) $(X, P, Q, R, A) \in \mathscr{J}^{\mathbb{G}(\hat{L} / \widehat{K})} \wedge(X, P, Q, R, A) \subset \mathbb{G}(L / K)$,
(3) $\mathbb{G}(\widehat{L} / \widehat{K}) \models \psi_{\mathscr{g}}(X, P, Q, R, A) \wedge(X, P, Q, R, A) \subset \mathbb{G}(L / K)$,
(4) $\mathbb{G}(L / K) \models \psi_{\mathcal{J}}(X, P, Q, R, A)$.

Implications (i) \Rightarrow (ii) and (ii) \Leftrightarrow (iii) are obvious. For (ii) \Rightarrow (i) take an arbitrary $f \in$ $\operatorname{Aut}(\widehat{L} / L)$ and write $(X, P, Q, R, A)=j(x, a)$ for some $(x, a) \in(\widehat{L} \backslash \widehat{K})^{(2)}$. Since $j(x, a) \subset$ $\mathbb{G}(L / K)$, we have $j(x, a)=f(j(x, a))=j(f(x), f(a))$, so by [2, Lemma 2.5] there exist $n \in \mathbb{Z}$ such that $f(x)=x^{p^{n}}, f(a)=a^{p^{n}}$. We show that $f(x)=x$ and $f(a)=a$. On the contrary, suppose that $p \neq 0$ and $n \neq 0$. Then $f(f(x))=f\left(x^{p^{n}}\right)=f(x)^{p^{n}}=x^{p^{2 n}}$ and in general $f^{m}(x)=x^{p^{m \cdot n}}$. However $x \in \widehat{L}$, so the set $\left\{f^{m}(x): m<\omega\right\}$ is finite. Hence, there is $k<\omega$ such that $x^{k}=1$, which implies $x \in \widehat{K}$, a contradiction.
(iv) \Rightarrow (iii): It is sufficient to show that for $(A, B, C, D) \subset \mathbb{G}(L / K)$

$$
\begin{aligned}
\mathbb{G}(L / K) \models \psi_{\mathscr{Q}}(A, B, C, D) & \Longrightarrow \quad \mathbb{G}(\widehat{L} / \widehat{K}) \models \psi_{\mathscr{Q}}(A, B, C, D), \\
\mathbb{G}(L / K) \models \psi_{\mathscr{Q}^{\prime}}(A, B, C, D) & \Longrightarrow \quad \mathbb{G}(\widehat{L} / \widehat{K}) \models \psi_{\mathscr{Q}^{\prime}}(A, B, C, D) .
\end{aligned}
$$

It is immediately seen that we must only prove the following: for $X, Y, A_{1}, A_{2} \in$ $\mathbb{G}(L / K)$, if $\mathbb{G}(L / K) \models\left(\forall A^{\prime} \in \operatorname{acl}_{K}\left(A_{1}, A_{2}\right)\right) X \notin \operatorname{acl}_{K}\left(A^{\prime} Y\right)$ then $\mathbb{G}(\widehat{L} / \widehat{K}) \models\left(\forall A^{\prime} \in\right.$ $\left.\operatorname{acl}_{K}\left(A_{1}, A_{2}\right)\right) X \notin \operatorname{acl}_{K}\left(A^{\prime} Y\right)$. Since $\mathbb{G}(\widehat{L} / \widehat{K})=\mathbb{G}(\widehat{L} / K)$, and the above formula has one quantifier, our statement follows from Theorem 3.2.
(i) $\wedge($ iii $) \Rightarrow($ iv $)$: Take an element $\left(x^{\prime}, a^{\prime}\right) \in(L \backslash K)^{(2)}$ such that $(X, P, Q, R, A)=$ $j\left(x^{\prime}, a^{\prime}\right)$. We must show the following (remember that $\operatorname{acl}_{K}\left(a^{\prime}+1\right)=\operatorname{acl}_{K}\left(a^{\prime}\right)$, etc.)

- $\mathbb{G}(L / K) \models \psi_{\mathscr{Q}}\left(\operatorname{acl}_{K}\left(x^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime} a^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime}+x^{\prime} a^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime} a^{\prime} / x^{\prime}\right)\right)$,
- $\mathbb{G}(L / K) \models \psi_{\mathscr{Q}^{\prime}}\left(\operatorname{acl}_{K}\left(x^{\prime}\right), \operatorname{acl}_{K}\left(a^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime}+a^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime} a^{\prime}\right)\right)$,
- $\mathbb{G}(L / K) \models \psi_{\mathscr{Q}^{\prime}}\left(\operatorname{acl}_{K}\left(x^{\prime}\right), \operatorname{acl}_{K}\left(a^{\prime}+1\right), \operatorname{acl}_{K}\left(x^{\prime}+\left(a^{\prime}+1\right)\right), \operatorname{acl}_{K}\left(x^{\prime}\left(a^{\prime}+1\right)\right)\right)$.

It is an easy consequence of [2, Corollary 3.4]. We give the proof only for the first case, the other cases are left to the reader. Let

$$
(P, D, Y, I)=\left(\operatorname{acl}_{K}\left(x^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime} a^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime}+x^{\prime} a^{\prime}\right), \operatorname{acl}_{K}\left(x^{\prime} a^{\prime} / x^{\prime}\right)=\operatorname{acl}_{K}\left(a^{\prime}\right)\right) .
$$

We can find an algebraically independent (over \widehat{K}) set $\{a, b, c, d, x\} \in L$ such that

$$
(P, D, Y, I)=\left(\operatorname{acl}_{K}(b), \operatorname{acl}_{K}(a x), \operatorname{acl}_{K}(a x+b), \operatorname{acl}_{K}(a x / b)\right)
$$

and define points as in thesis of from [2, Corollary 3.4] i.e. $A=\operatorname{acl}_{K}(a, b), \ldots, R=$ $\operatorname{acl}_{K}(c b+d)$. Finally points $A, \ldots, Z \in \mathbb{G}(L / K)$ satisfy the assumption of [2, Corollary 3.4], and thus they fulfil the formula ψ, so P, D, Y and I fulfil $\psi_{\mathscr{Q}}$ in $\mathbb{G}(L / K)$.

Now we prove the main classification theorem. We recall that $\widehat{F}^{r}=\bigcup_{n \in \omega} F^{p^{-n}}$ is purely inseparable closure of F.
Theorem 4.2. Suppose that $K \subset L$ and $K^{\prime} \subset L^{\prime}$ are field extensions and $\operatorname{tr} \operatorname{deg}_{K}(L)$, $\operatorname{tr} \operatorname{deg}_{K^{\prime}}\left(L^{\prime}\right) \geq 5$.
(i) The field \widehat{L}^{r} is uniformly interptable in $\mathbb{G}(L / K)$, using a formula with one (arbitary) parameter from $L \backslash \widehat{K}$.
(ii) Every isomorphism $F: \mathbb{G}(L / K) \xrightarrow{\cong} \mathbb{G}\left(L^{\prime} / K^{\prime}\right)$ is induced by some isomorphism $\widetilde{F}: \widehat{L}^{r} \xrightarrow{\cong} \widehat{L}^{r}$ such that $\widetilde{F}\left[\widehat{L^{r}} \cap \widehat{K}\right]=\widehat{L^{\prime}} \cap \widehat{K^{\prime}}$, and for each $x \in \widehat{L}^{r} \backslash \widehat{K}$, $F\left(\operatorname{acl}_{K}(x)\right)=\operatorname{acl}_{K}(\widetilde{F}(x))$. In particular $\mathbb{G}(L / K) \cong \mathbb{G}\left(L^{\prime} / K^{\prime}\right)$ if and only if field extensions $\widehat{L}^{r} \cap \widehat{K} \subset \widehat{L}^{r}$ and $\widehat{L}^{\prime}{ }^{r} \cap \widehat{K}^{\prime} \subset \widehat{L}^{\prime}{ }^{r}$ are isomorphic.
(iii) The natural mapping

$$
H: \operatorname{Aut}\left(\widehat{L}^{r} /\left\{\widehat{L}^{r} \cap \widehat{K}\right\}\right) \longrightarrow \operatorname{Aut}(\mathbb{G}(L / K))
$$

is an epimorphism. If char $(L)=0$, then H is an isomorphism of groups and if char $(L) \neq 0$ then $\operatorname{ker} H \cong \mathbb{Z}$ is generated by the Frobenius automorphism.
Proof. Let \cong be the following equivalence relation on $\mathscr{J}([2$, Definition 2.9])

$$
j(x, a) \cong j\left(x^{\prime}, a^{\prime}\right) \quad \Longleftrightarrow \quad(\exists n \in \mathbb{Z}) a^{\prime}=a^{p^{n}}
$$

Using [2, Lemma 2.8] we obtain that \cong is a definable (without parameters) equivalence relation on \mathscr{J}. When x, x^{\prime} and a are algebraically indepedent (over K), then

$$
j(x, a) \cong j\left(x^{\prime}, a^{\prime}\right) \Leftrightarrow(\exists P) \text { configuration from Fig. } 3 \text { in [2, Lem. 2.8] holds. }
$$

Implication \Leftarrow follows from [2, Lemma 2.8]. For \Rightarrow assume that $a^{\prime}=a^{p^{n}}$ for some $0 \leq$ $n \in \mathbb{Z}$. We must find a suitable P from $\mathbb{G}(L / K)$. We have $\operatorname{acl}_{K}(a x)=\operatorname{acl}_{K}\left(a^{p^{n}} x^{p^{n}}\right)=$ $\operatorname{acl}_{K}\left(a^{\prime} x^{p^{n}}\right), \operatorname{acl}_{K}((a+1) x)=\operatorname{acl}_{K}\left(\left(a^{p^{n}}+1\right) x^{p^{n}}\right)=\operatorname{acl}_{K}\left(\left(a^{\prime}+1\right) x^{p^{n}}\right)$ and $\operatorname{acl}_{K}(x)=$ $\operatorname{acl}_{K}\left(x^{p^{n}}\right)$. Hence $P=\operatorname{acl}_{K}\left(x^{p^{n}} / x^{\prime}\right) \in \mathbb{G}(L / K)$.

When x, x^{\prime} and a are collinear, then we put ([2, Definition 2.9])
$j(x, a) \cong j\left(x^{\prime}, a^{\prime}\right) \Leftrightarrow$ there exist $j\left(z, a^{\prime \prime}\right)$ with $z \notin \operatorname{acl}_{K}(a, x)$ and the configuration in Fig. 3 holds between $j(x, a), j\left(z, a^{\prime \prime}\right)$ and $j\left(z, a^{\prime \prime}\right), j\left(x^{\prime}, a^{\prime}\right)$.
Take an arbitrary $a \in L \backslash \widehat{K}$ and let

$$
\mathscr{J}_{1}=[j(x, a)]_{\cong}=\left\{j\left(x^{\prime}, a\right): x^{\prime} \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)\right\}
$$

be one of the classes of \cong (here we use the equality $j\left(x^{\prime}, a^{p^{n}}\right)=j\left(x^{\prime p^{-n}}, a\right)$ and properties of \widehat{L}^{r}). We repeat the Proof [2, Theorem C]. Let

$$
\mu: \mathscr{J}_{1} \rightarrow \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a), \quad \mu(j(x, a))=x
$$

be a bijective map. It follows from [2, Lemma 2.11] that there are generic definable over a operations \oplus and \odot on $\mathscr{J}_{1} \times \mathscr{J}_{1}$ which satisfy: if $j(x, a), j(y, a) \in(L \backslash K)^{(2)}$ and x, x^{\prime}, a are independent, then

$$
\begin{aligned}
& j(x, a) \oplus j\left(x^{\prime}, a\right)=j\left(x+x^{\prime}, a\right) \\
& j(x, a) \odot j\left(x^{\prime}, a\right)=j\left(x \cdot x^{\prime}, a\right)
\end{aligned}
$$

(the same definition works for non-algebraically closed case). Note that the map μ respects these operations (when defined). We now interpret the field \widehat{L}^{r} in $\mathbb{G}(L / K)$. Define a relation \equiv on \mathscr{J}_{1}^{2} by

$$
\left(j\left(x_{1}, a\right), j\left(x_{2}, a\right)\right) \equiv\left(j\left(y_{1}, a\right), j\left(y_{2}, a\right)\right) \quad \Longleftrightarrow \quad \frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}
$$

It is a definable over a equivalence relation. We moreover define the product and the sum of two classes $\left[j\left(x_{1}, a\right), j\left(x_{2}, a\right)\right]_{\equiv}$ and $\left[j\left(x_{1}, a\right), j\left(x_{2}, a\right)\right]_{\equiv}$ as in [2], i.e.

$$
\left[j\left(x^{\prime}, a\right), j(x, a)\right]_{\equiv} \cdot\left[j\left(y^{\prime}, a\right), j(y, a)\right]_{\equiv}=\left[j\left(x^{\prime \prime}, a\right), j\left(y^{\prime \prime}, a\right)\right]_{\equiv},
$$

for suitable $x^{\prime \prime}$ and $y^{\prime \prime}$ such that $\frac{x^{\prime}}{x} \frac{y^{\prime}}{y}=\frac{x^{\prime \prime}}{y^{\prime \prime}}$. We need a new class $0 \equiv$ to define the sum of classes in a standard fashion. Finally we extend μ to the isomorphism of fields:

$$
\mu:\left(\mathscr{J}_{1}^{2} / \equiv\right) \cup\{0 \equiv\} \stackrel{ }{\rightrightarrows} \widehat{L}^{r}, \quad \mu\left(j(x, a), j\left(x^{\prime}, a\right)\right)=\frac{x}{x^{\prime}}, \quad \mu\left(0_{\equiv}\right)=0,
$$

which establishes (i).
(ii): Let $F: \mathbb{G}(L / K) \stackrel{\cong}{\rightrightarrows} \mathbb{G}\left(L^{\prime} / K^{\prime}\right)$. Then

$$
\begin{gathered}
F: \mathscr{J}_{1}^{\mathbb{G}(L / K)}=[j(x, a)] \cong \xrightarrow{\cong} \mathscr{J}_{1}^{\mathbb{G}\left(L^{\prime} / K^{\prime}\right)}=[j(y, b)]_{\cong}, \\
F:\left(\mathscr{J}_{1}^{\mathbb{G}(L / K)}\right)^{2} / \equiv \cup\{0 \equiv\} \xrightarrow{\cong}\left(\mathscr{J}_{1}^{\mathbb{G}\left(L^{\prime} / K^{\prime}\right)}\right)^{2} / \equiv \cup\{0 \equiv\},
\end{gathered}
$$

for some $y, b \in L^{\prime}$. Hence F induces an isomorphism of fields $\widetilde{F}: \widehat{L^{r}} \xrightarrow{\cong} \widehat{L}^{r}$.
First, we show that $\widetilde{F}\left[\widehat{L}^{r} \cap \widehat{K}\right]=\widehat{L^{\prime}} \cap \widehat{K^{\prime}}$. Let $c \in \widehat{L^{r}} \cap \widehat{K}$ and $x \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)$. Then we may write

$$
\begin{align*}
F(j(c x, a)) & =j\left(y_{1}, b\right), \tag{1}\\
F(j(x, a)) & =j\left(y_{2}, b\right), \tag{2}\\
\widetilde{F}(c) & =\mu\left(F\left([j(c x, a), j(x, a)]_{\equiv}\right)\right)=\mu\left(\left[j\left(y_{1}, b\right), j\left(y_{2}, b\right)\right]_{\equiv}\right)=\frac{y_{1}}{y_{2}}, \tag{3}
\end{align*}
$$

for some $y_{1}, y_{2} \in \widehat{L}^{r}$. However $c \in \widehat{K}$ yields that

$$
\begin{aligned}
j(c x, a) & =\left(\operatorname{acl}_{K}(c x), \operatorname{acl}_{K}(c x+a), \operatorname{acl}_{K}(c x a), \operatorname{acl}_{K}(c x a+c x), \operatorname{acl}_{K}(a)\right) \\
& =\left(\operatorname{acl}_{K}(x), \operatorname{acl}_{K}(c x+a), \operatorname{acl}_{K}(x a), \operatorname{acl}_{K}(x a+x), \operatorname{acl}_{K}(a)\right) .
\end{aligned}
$$

Thus from (1) and (2) above, we have

$$
\begin{aligned}
F\left(\operatorname{acl}_{K}(x)\right) & =\operatorname{acl}_{K}\left(y_{1}\right)=\operatorname{acl}_{K}\left(y_{2}\right), \\
F\left(\operatorname{acl}_{K}(x a)\right) & =\operatorname{acl}_{K}\left(y_{1} b\right)=\operatorname{acl}_{K}\left(y_{2} b\right), \\
F\left(\operatorname{acl}_{K}(x a+x)\right) & =\operatorname{acl}_{K}\left(y_{1} b+y_{1}\right)=\operatorname{acl}_{K}\left(y_{2} b+y_{2}\right) .
\end{aligned}
$$

Hence from Lemma 1.1 (ii) we obtain $n, m \in \mathbb{Z}$ and $d_{1}, d_{2} \in \widehat{K}$ satisfying $y_{1}^{n}=d_{1} y_{2}^{m}$ and $\left(y_{1} b\right)^{n}=d_{2}\left(y_{2} b\right)^{m}$. It gives that $n=m$, and $y_{1}=c^{\prime} y_{2}$ for some $c^{\prime} \in \widehat{K}$. Finally $\widetilde{F}(c)=\frac{y_{1}}{y_{2}}=c^{\prime} \in \widehat{L^{\prime}}{ }^{r} \cap \widehat{K^{\prime}}$.

Now we show the following

$$
\left(\forall x \in \widehat{L}^{r} \backslash \widehat{K}\right) \quad F\left(\operatorname{acl}_{K}(x)\right)=\operatorname{acl}_{K}(\widetilde{F}(x))
$$

It follows from the preceding results that for $x_{1}, x_{2} \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)$

$$
F\left(\left[j\left(x_{1}, a\right), j\left(x_{2}, a\right)\right]_{\equiv}\right)=\left[j\left(y \widetilde{F}\left(\frac{x_{1}}{x_{2}}\right), b\right), j(y, b)\right]_{\equiv},
$$

for some $b \in \widehat{L}^{\prime}$ and $y \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(b)$. Let $t=\frac{y}{\widetilde{F}\left(x_{2}\right)}$. We obtain

$$
\left(\forall x \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)\right) \quad F(j(x, a))=j(\widetilde{F}(x) t, b)
$$

Let $x_{1}, x_{2} \in \widehat{L}^{r}$ be algebraically independent over $\operatorname{acl}_{K}(a)$. Then

$$
\begin{aligned}
j\left(\widetilde{F}\left(x_{1} x_{2}\right) t, b\right) & =F\left(j\left(x_{1} x_{2}, a\right)\right)=F\left(j\left(x_{1}, a\right) \odot j\left(x_{2}, a\right)\right)=F\left(j\left(x_{1}, a\right)\right) \odot F\left(j\left(x_{2}, a\right)\right) \\
& =j\left(\widetilde{F}\left(x_{1}\right) t, b\right) \odot j\left(\widetilde{F}\left(x_{2}\right) t, b\right)=j\left(\widetilde{F}\left(x_{1}\right) \widetilde{F}\left(x_{1}\right) t^{2}, b\right)
\end{aligned}
$$

Hence $t=1$ and from the above

$$
\left(\forall x \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)\right) \quad F\left(\operatorname{acl}_{K}(x)\right)=\operatorname{acl}_{K}(\widetilde{F}(x)) .
$$

What is left is to show our claim for points from $\operatorname{acl}_{K}(a) \backslash \widehat{K}$. Let $a^{\prime} \in \operatorname{acl}_{K}(a) \backslash \widehat{K}$. Take independent points $t, s \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)$, then

$$
\operatorname{acl}_{K}\left(a^{\prime}\right)=\operatorname{acl}_{K}\left(t, t a^{\prime}\right) \cap \operatorname{acl}_{K}\left(s, s a^{\prime}\right)
$$

so as $t a^{\prime}, s a^{\prime} \in \widehat{L}^{r} \backslash \operatorname{acl}_{K}(a)$ from the preceding result we have

$$
\left.F\left(\operatorname{acl}_{K}\left(a^{\prime}\right)\right)=\operatorname{acl}_{K}(\widetilde{F}(t)), \widetilde{F}\left(t a^{\prime}\right)\right) \cap \operatorname{acl}_{K}\left(\widetilde{F}(s), \widetilde{F}\left(s a^{\prime}\right)\right)=\operatorname{acl}_{K}\left(\widetilde{F}\left(a^{\prime}\right)\right)
$$

The observation that $\mathbb{G}(L / K)=\mathbb{G}\left(\widehat{L}^{r} / K\right)$ finishes the proof of (ii).
(iii) It follows immediately from (ii) that H is an epimorphism. Let $f \in \operatorname{ker} H$. Then $j(x, a)=f(j(x, a))=j(f(x), f(a))$, so from [2, Lemma 2.5] there is $n \in \mathbb{Z}$ such that $f(x)=x^{p^{n}}$ and $f(a)=a^{p^{n}}$. But x and a were arbitrary (independent), so $f=$ Frob n.

Acknowledgements. I would like to thank Ludomir Newelski for introducing me to this subject and for guidance in preparing this paper.

References

[1] D. M. Evans and E. Hrushovski, 'Projective planes in algebraically closed fields', Proc. London Math. Soc. (3) 62 (1991) 1-24.
[2] D. M. Evans and E. Hrushovski, 'The automorphism group of the combinatorial geometry of an algebraically closed field', J. London Math. Soc. (2) 52 (1995) 209-225.
[3] R. Hartshorne, Foundations of projective geometry (W.A. Benjamin, Inc., New York, 1967).
[4] K. L. Holland, 'On finding fields from their algebraic closure geometries', Proc. Amer. Math. Soc. 116 (1992), no. 4, 1135-1142.
[5] B. Lindström, 'A Desarguesian theorem for algebraic combinatorial geometries', Combinatorica 5 (1985), no. 3, 237-239.
[6] D. Marker, Model theory (Graduate Texts in Mathematics 217, Springer-Verlag, New York, 2002).
[7] B. H. Neumann, 'Groups covered by permutable subsets', J. London Math. Soc. 29 (1954) 236248.
[8] D. J. A. Welsh, Matroid theory (Academic Press, London-New York, 1976).
Mathematical Institute, University of Wroclaw, Pl. Grunwaldzki 2/4, 50-384 WroClaw, Poland

E-mail address: gismat@math.uni.wroc.pl

[^0]: 2000 Mathematics Subject Classification. Primary 03C98, 51D20; Secondary 12F20, 05B35.
 Key words and phrases. Combinatorial geometry, full algebraic matroid, projective plane, transcendental field extension.

